WorldWideScience

Sample records for wing tip vortices

  1. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  2. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Directory of Open Access Journals (Sweden)

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  3. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  4. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  5. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  6. Stability of helical tip vortices in a rotor far wake

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    , corresponding to Rankine, Gaussian and Scully vortices, at radial extents ranging from the core radius of a tip vortex to several rotor radii. The analysis shows that the stability of tip vortices largely depends on the radial extent of the hub vorticity as well as on the type of vorticity distribution. As part......As a means of analysing the stability of the wake behind a multi-bladed rotor the stability of a multiplicity of helical vortices embedded in an assigned flow field is addressed. In the model the tip vortices in the far wake are approximated by infinitely long helical vortices with constant pitch...... and radius. The work is a further development of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear stability of N equally azimuthally spaced helical vortices was considered. In the present work the analysis is extended to include an assigned vorticity field due to root...

  7. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    Science.gov (United States)

    Posada, Jose Alejandro

    Wingtip vortex reductions have been obtained by Boundary Layer Control application to an AR=1.5 rectangular wing using a NACA 0012 airfoil. If wingtip shed vorticity could be reduced significantly, then so would induced drag resulting in improved cruise fuel economy. Power savings would be even more impressive at low flight speed or in climb. A two dimensional wing produces lift without wingtip vorticity. Its bound vorticity, Gamma, equals the contour integral of the boundary layer vorticity gamma or Gamma = ∮gamma · dl. Where the upper and lower boundary layers meet at the cusped TE, their local static pressure pu=pl then the boundary layer outer edge inviscid velocity Vupper=Vlower and gammalower=-gamma upper. This explains the 2-D wing self cancellation of the upper and lower surface boundary layer vorticity when they meet upon shedding at the trailing edge. In finite wings, the presence of spanwise pressure gradients near the wing tips misaligns gammalower and gammaupper at the wingtip TE preventing the upper and lower surface boundary layers from completely canceling each other. To prevent them from generating wing tip vortices, the local boundary layers need to be captured in suction slots. Once vorticity is captured, it can be eliminated by viscous mixing prior to venting over board. The objective of this dissertation was to use a commercial Computational Fluid Dynamics code (Fluent) to search for the best configuration to locate BLC suction slots to capture non-parallel boundary layer vorticity prior to shedding near the wingtips. The configuration selected for running the simulations was tested by trying to duplicate a 3D wing for which sufficient experimental and computational models by others are available. The practical case selected was done by Chow et al in the 32 x 48 in. low speed wind tunnel at the Fluid Mechanics Laboratory of NASA Ames Research Center, and computationally analyzed by Dacles-Mariani et al, and Khim and Rhee. The present

  8. Influence of wing tip morphology on vortex dynamics of flapping flight

    Science.gov (United States)

    Krishna, Swathi; Mulleners, Karen

    2013-11-01

    The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.

  9. Effect of tip vortices on flow over NACA4412 aerofoil with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available Effect of tip vortices on flow and laminar separation bubble over NACA4412 aerofoil at low Reynolds numbers and different angles of attack was investigated in detail by performing force and flow visualization via smoke wire technique. Experiments have been done at Reynolds number of 50000 and the wing model of aspect-ratio was 1 and 3, respectively. From the experimental results, the flow visualization results showed that tip vortices effect on the laminar separation bubble and the bubble reduces over the wing with low aspect ratio as the angle of attack increased. Moreover, it was noticed that stall angles decreased as aspect-ratio increased at the same Reynolds number.

  10. VORTICAL MODEL OF THE WING COVERED WITH CONTINUOUSLY DISTRIBUTED CIRCULATION OF THE VORTICAL LAYER

    Directory of Open Access Journals (Sweden)

    B. L. Artamonov

    2014-01-01

    Full Text Available The linear vortical model ot the final scope of a wing is exsamined. It representis the flat rectangular spatial veil covered with continuously distributed vortical layer. Elements of digitization of a veil are the quadrangular panels laying on its surface. Method, algorithms and the program of calculation of three making vectors of inductive speed from any guided rectangular platform covered with a vortical layer are created. Its intensity linearly changes on the surface of a platform. The decision is received in elementary functions. The numerical way solves the task of a definition of the law of circulation of the attached whirlwinds in scope of a wing and calculation of its aerodynamic characteristics, being based on the accepted vortical model and a hypothesis of flat sections.

  11. Force and vortical flow development on pitching wings at high rates

    Science.gov (United States)

    Bernal, Luis; Yu, Huai-Te; Ol, Michael; Granlund, Kenneth

    2014-11-01

    Recent experimental results of pitching flat plate wings are presented. High pitch-rate perching maneuvers are frequently used by birds for feeding and landing. Insects use very fast rotation rates at the end of each flapping stroke, which results in high thrust and precise flight. These wing motions are also of interest for engineered micro air vehicles to achieve semi-autonomous landing by unskilled operators. The wing motion considered is a constant rotation rate pitch motion from 0 to 45 degrees of an aspect-ratio-4 flat-plate wing. The goal is to gain a better understanding of force generation mechanisms and their relationship to two- and three-dimensional vortical flow structures. Leading edge, trailing edge, and tip vortices form with large separated flow regions over the wing, however comparison with linear potential flow theory gives good agreement. The evolution of the leading edge vortex is delayed for pivot axes locations downstream of the leading edge. Large forces at the end of the motion slowly return to the steady state value over more than 30 convective times. The flow in the near wake shows a brief period of vortex shedding and strong three dimensional effects. Two different three-dimensional flow features are observed: A rapid development of three-dimensionality in the core of the leading and trailing edge vortices and a swirl motion in the near wake. However the impact of these three-dimensional flow features on force development is small.

  12. Tip vortices in the actuator line model

    Science.gov (United States)

    Martinez, Luis; Meneveau, Charles

    2017-11-01

    The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.

  13. Magnetic vortices induced by a moving tip

    Science.gov (United States)

    Magiera, Martin P.; Hucht, Alfred; Wolf, Dietrich E.

    2013-03-01

    A two-dimensional easy-plane ferromagnetic substrate interacting with a dipolar tip which is magnetized perpendicular with respect to the easy plane is studied numerically by solving the Landau-Lifshitz Gilbert equation [Europhys. Lett. 100, 27004 (2012)]. Due to the symmetry of the dipolar field of the tip, in addition to the collinear structure a magnetic vortex structure becomes stable. It is robust against excitations caused by the motion of the tip. The moved vortex structure shows an increased energy dissipation compared to the collinear structure. We show that for high excitations the system may perform a transition between the two states. The influence of domain walls, which may also induce this transition, is examined. Financial support by the German Research Foundation (DFG) through SFB 616 ``Energy Dissipation at Surfaces'' and the German Exchange Association (DAAD) through the Project Related Exchange Brazil-Germany (PROBRAL) is acknowledged.

  14. Tip vorticity reduction and optimization of lifting surfaces

    NARCIS (Netherlands)

    Sparenberg, JA

    In linearized optimization theory, lifting surfaces, moving in an inviscid and incompressible fluid, shed tip vorticity of which the strength has infinite square-root singularities. Here we discuss that an optimization procedure can be coupled to constraints so that the strength of the shed

  15. Nonlinear Aerodynamics and the Design of Wing Tips

    Science.gov (United States)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  16. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100birds, bats, autorotating seeds, and pectoral fins of fish. We found that, on average, wings and fins have a Rossby number close to that of flies (Ro=3). Theoretically, many of these animals

  17. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  18. Instability of helical tip vortices in rotor wakes

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    The conditions for the appearance of instabilities in systems of helical vortices constitute an intriguing problem that still remains partly unsolved. The experimental study of Felli, Camussi & Di Felice (J. Fluid Mech., this issue, vol. 682, 2011, pp. 5-53) has shed new light on some of the basi...

  19. The Stability of Tip Vortices Generated by a Flexible Wind Turbine

    Science.gov (United States)

    Rodriguez', Steven; Jaworski, Justin

    2016-11-01

    The influence of root-vortices and a trailing vortex sheet on tip-vortex dynamics of a flexible onshore and floating-offshore wind turbine configurations are investigated numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is coupled to a finite element solver for linear flapwise bending deformations. A synthetic time series of rigid-body rotor motions emulates the offshore environment for the NREL 5MW reference wind turbine. To evaluate the influence of root vortices and the trailing vortex sheet, a linear stability analysis is first performed for a rotor wake consisting only of the tip vortices. The stability analysis is then modified to account for the presence of the root vortices and trailing vortex sheet. Stability trends of the two analyses are compared to identify any influence that the root vortices and the trailing vortex sheet have on the tip-vortex dynamics. Lastly, the aforementioned stability analyses are conducted for varying tip speed ratios to identify intrinsically stable helical structures.

  20. Helical light emission from plasmonic vortices via magnetic tapered tip

    Science.gov (United States)

    Maccaferri, N.; Gorodetski, Y.; Garoli, D.

    2018-01-01

    We investigate an architecture where a plasmonic vortex excited in a gold surface propagates on an adiabatically tapered magnetic tip and detaches to the far-field while carrying a well-defined optical angular momentum. We analyze the out-coming light and show that, despite generally high losses of flat magnetic surface, our 3D structure exhibits high energy throughput. Moreover, we show that once a magneto-optical activity is activated inside the magnetic tip a modulation of the total power transmittance is possible.

  1. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability

  2. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  3. Experimental Investigation on Limit Cycle Wing Rock Effect on Wing Body Configuration Induced by Forebody Vortices

    National Research Council Canada - National Science Library

    Rong, Zhen; Deng, Xueying; Ma, Baofeng; Wang, Bing

    2016-01-01

    ...° swept wing configuration undergoing a limit cycle oscillation using a synchronous measurement and control technique of wing rock/particle image velocimetry/dynamic pressure associated with the time...

  4. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    Science.gov (United States)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  5. Characterisation of a horizontal axis wind turbine's tip and root vortices

    Science.gov (United States)

    Sherry, Michael; Sheridan, John; Jacono, David Lo

    2013-03-01

    The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex filaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjæreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind configurations. Qualitative flow visualisations using hydrogen bubble, particle streakline and planar laser-induced fluorescence techniques were combined with quantitative data measurements taken using planar particle image velocimetry. Vortices were identified using velocity gradient tensor invariants. Parameters that describe the helical vortex wake, such as the helicoidal pitch, and vortex circulation, were determined for three tip speed ratios. Particular attention is given here to the root vortex, which has been investigated minimally to date. Signatures of the coherent tip vortices are seen throughout the measurement domain; however, the signature of the root vortex is only evident much closer to the rotor plane, irrespective of the turbine configuration. It is postulated that the root vortex diffuses rapidly due to the effects of the turbine support geometries.

  6. A lifting line model to investigate the influence of tip feathers on wing performance.

    Science.gov (United States)

    Fluck, M; Crawford, C

    2014-11-24

    Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles.

  7. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  8. Probabilistic Analysis and Design of a Raked Wing Tip for a Commercial Transport

    Science.gov (United States)

    Mason Brian H.; Chen, Tzi-Kang; Padula, Sharon L.; Ransom, Jonathan B.; Stroud, W. Jefferson

    2008-01-01

    An approach for conducting reliability-based design and optimization (RBDO) of a Boeing 767 raked wing tip (RWT) is presented. The goal is to evaluate the benefits of RBDO for design of an aircraft substructure. A finite-element (FE) model that includes eight critical static load cases is used to evaluate the response of the wing tip. Thirteen design variables that describe the thickness of the composite skins and stiffeners are selected to minimize the weight of the wing tip. A strain-based margin of safety is used to evaluate the performance of the structure. The randomness in the load scale factor and in the strain limits is considered. Of the 13 variables, the wing-tip design was controlled primarily by the thickness of the thickest plies in the upper skins. The report includes an analysis of the optimization results and recommendations for future reliability-based studies.

  9. Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a finite-span flapping wing

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.; Soria, J. [Monash University, Laboratory for Turbulence Research in Aerospace and Combustion, Mechanical Engineering, Melbourne, VIC (Australia); Ellenrieder, K.D. von [Florida Atlantic University, Department of Ocean Engineering, Dania Beach, FL (United States)

    2005-08-01

    The structure of the flow behind wings with finite span (3D) is significantly more complex than the flow behind infinite span (2D) wings. It has been shown that the presence of wingtip vortices behind finite span wings significantly modifies the geometry of the wake flow. It is felt that this modification alters the dynamics of interaction between leading and trailing edge vorticity in a manner that affects the ability of 2D flapping wings to produce thrust. A model of the mean flow skeleton has been proposed from qualitative flow visualization experiments. An unambiguous quantitative representation of the actual flow is required for comparison to the proposed model. To accomplish this the full 3D 3C velocity is required in the volume behind the 3D flapping wing. It is proposed to use stereoscopic multigrid digital particle image velocimetry (SMDPIV) measurements to investigate this unsteady oscillatory flow. This paper reports preliminary SMDPIV measurements along the plane of a symmetrical NACA-profile wing at a Strouhal number of 0.35. Phase averaged measurements are used to investigate the complex flow topology and the influence of the forcing flow on the evolution of the large scale structure of a jet-flow. This paper focuses on optimizing the SMDPIV experimental methodology applied to liquid flows. By refining the 2D 3C technique, the 3D topology of the flow can be investigated with a high degree of accuracy and repeatability. Preliminary results show that the flow is characterized by two pairs of coherent structures of positive and negative vorticity. The arrangement of these structures in the flow is controlled by the motion of the wing. Vorticity of opposite rotation is shed at the extreme heave and pitch positions of the aerofoil to set up a thrust indicative vortex street in support of the suggested topological model. (orig.)

  10. Experimental Investigation of the Influence of a Reverse Delta Type Add-on Device on the Flap-tip Vortex of a Wing

    Science.gov (United States)

    Altaf, A.; Thong, T. B.; Omar, A. A.; Asrar, W.

    2017-03-01

    Particle Image Velocimetry was used in a low speed wind tunnel to investigate the effect of interactions of vortices produced by an outboard flap-tip of a half wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half wing. This work investigates the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction at a chord-based Reynolds number of Rec=2.74×105 . It was found that the add-on device significantly reduces the tangential velocity magnitude and enlarges the vortex core of the resultant vortex by up to 36.1% and 36.8%, respectively.

  11. Instability of outer tip vortices for a 2.5 MW wind turbine: integrating snow PIV with LES

    Science.gov (United States)

    Sotiropoulos, Fotis; Yang, Xiaolei; Hong, Jiarong; Barone, Matthew

    2015-11-01

    Recent field experiments conducted around a 2.5 MW wind turbine using super-large-scale PIV (SLPIV) using natural snow particles have revealed tip vortex cores (visualized as areas devoid of snowflakes) of complex shape, consisting of both round and elongated void patterns. Here we employ large-eddy simulation to elucidate the structure and dynamics of the complex tip vortices identified experimentally. The LES is shown to reproduce vortex cores in remarkable agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. We show that the stretched elongated vortex cores observed in 2D planes are the footprints of a second set of counter-rotating spiral vortices that emanates along the tip shear layer immediately downwind of the blades and is intertwined with the tip vortices. We argue that this large-scale instability is of centrifugal type since the mean flow characteristics in the outer tip shear layer resemble those of the Taylor-Couette flow. This study highlights the feasibility of employing snow voids to visualize tip vortices and demonstrates the enormous potential of integrating SLPIV with LES as a powerful tool for gaining novel insights into the wakes of utility scale wind turbines. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), Sandia National Laboratories and NSF Career Award (NSF-CBET-1454259) for Jiarong Hong. Computational resources were provided by SNL and MSI.

  12. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    Science.gov (United States)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  13. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  14. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    Science.gov (United States)

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  15. All-theoretical prediction of cabin noise due to impingement of propeller vortices on a wing structure

    Science.gov (United States)

    Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.

    1987-01-01

    Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.

  16. An Airplane Design having a Wing with Fuselage Attached to Each Tip

    Science.gov (United States)

    Spearman, Leroy M.

    2001-01-01

    This paper describes the conceptual design of an airplane having a low aspect ratio wing with fuselages that are attached to each wing tip. The concept is proposed for a high-capacity transport as an alternate to progressively increasing the size of a conventional transport design having a single fuselage with cantilevered wing panels attached to the sides and tail surfaces attached at the rear. Progressively increasing the size of conventional single body designs may lead to problems in some area's such as manufacturing, ground-handling and aerodynamic behavior. A limited review will be presented of some past work related to means of relieving some size constraints through the use of multiple bodies. Recent low-speed wind-tunnel tests have been made of models representative of the inboard-wing concept. These models have a low aspect ratio wing with a fuselage attached to each tip. Results from these tests, which included force measurements, surface pressure measurements, and wake surveys, will be presented herein.

  17. Control of wing-tip vortex using winglets at low Reynolds number

    Science.gov (United States)

    Cho, Seunghyun; Choi, Haecheon

    2014-11-01

    Winglets are considered as one of the effective devices for reducing induced drag, and thus many studies have been conducted, but mainly at high Reynolds numbers (Re ~106 ~107) for commercial airplanes. However, small-size unmanned air vehicles (UAV), operating at low Reynolds numbers (Re aerodynamic performance of an UAV by varying the cant angle. The WASP UAV model is used and the Reynolds numbers considered are 110,000 ~ 140,000 based on the free stream velocity and mean chord length of the WASP wing. The lift and drag forces on UAV are measured, and PIV measurements are conducted at several cross-flow planes for a few different angles of attack (α) . At high angles of attack (7° ~13°) , the winglets with the cant angle of 70° increase the aerodynamic performance, whereas at low angles of attack (2° ~6°) , the wing-tip extension (cant angle of 0°) shows better performances. The velocity fields measured from PIV indicate that, with the winglet, the wing-tip vortex moves away from the wing surface at α =12° , and the downwash motion in the wake behind the trailing edge is decreased, reducing the magnitude of the induced drag. A concept of changing the cant angle during flight is also suggested at this talk. Supported by 2011-0028032.

  18. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  19. Characterisation of a horizontal axis wind turbine’s tip and root vortices

    OpenAIRE

    Sherry, Michael; Sheridan, John; Lo Jacono, David

    2013-01-01

    The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex filaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjæreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind configura...

  20. An investigation of wing leading-edge vortices at supersonic speeds

    Science.gov (United States)

    Miller, D. S.; Wood, R. M.

    1983-01-01

    Studies at subsonic and transonic speeds of the fundamental vortex behavior on the leeward surface of wings have led to the design of several unique and novel leading-edge devices commonly referred to as 'vortex flaps'. The present investigation has the objective to provide some fundamental vortex-flow results obtained at supersonic speeds. Experimental studies were performed in which pressure data and several types of flow visualization data were obtained on the leeward surface of a series of flat delta-wing models to identify the various flow mechanisms which can occur and to determine the effect of leading-edge sweep, Mach number, and angle of attack on the vortex strength and location. The reported investigation forms part of a study which is to explore the use of wing leading-edge vortex technology as a supersonic wing-design tool. The obtained results indicate that the procedure of distributing the vortex force as a pressure variation about a vortex action line is a promising concept.

  1. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, Inwon [Pusan National University, Busan (Korea, Republic of)

    2007-03-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer.

  2. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, In Won [Pusan National University, Busan (Korea, Republic of)

    2007-01-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer

  3. Measurements of Tip Vortices from a Full-Scale UH-60A Rotor by Retro- Reflective Background Oriented Schlieren and Stereo Photogrammetry

    Science.gov (United States)

    Schairer, Edward; Kushner, Laura K.; Heineck, James T.

    2013-01-01

    Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.

  4. Design and optimization of wing tips for wind turbines. Final report; Design og optimering af vingetipper for vindmoeller. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Zhu, W.J.; Borbye, J.; Okulov, V.L.; Mikkelsen, R. (DTU Mekanik, Kgs. Lyngby (Denmark)); Gaunaa, M.; Rethore, P.-E.; Soerensen, N.N. (Danmarks Tekniske Univ. Risoe DTU, Afd. for Vindenergi, Roskilde (Denmark))

    2011-03-15

    The aim of the project was to suggest and analyse new shapes of wing tips for wind turbines to optimize their performance. Several simple wing tips and their flow topology were analysed, and the impact of different design variables was determined in order to establish which design has the best effect for the performance. For the numerical flow calculations, primarily the Navier-Stokes code EllipSys was used. As a supplement to the viscous Navier-Stokes calculations, in-viscous calculations were made using a lifting-line theory. This is a simple technique to determine the load distribution along the wing tip in those cases where viscous effects can be neglected. A large part of the project has focused on improving accuracy of the lifting-line method. Besides forming the basis for improved tip configurations, the calculations were also used to improve the so-called tip correction. Based on the numerical results from CFD calculations an improved tip correction was developed. (ln)

  5. Research on three different Euler's schemes applied to a delta wing with vortical flows

    Science.gov (United States)

    Longo, J. M. A.

    The capability of the numerical solution of the Euler equations to predict vortex flow fields around a sharp leading edge cropped delta wing at moderate to high angles of attack was investigated for subsonic and transonic flow regimes. The solution of the Euler equations discretized on a given grid is independent of the numerical scheme used to solve the Euler equations, and also of the grid topology and the convergence level. Only the numerical dissipation is responsible for the deviation in the solutions. The dominant effect is related to the truncation error, which is drastically reduced by a proper mesh design in places where high flow grandients are expected. The comparison of computed results with experimental data proves that Euler solvers are a valuable engineering tool for total forces prediction including vortex bursting phenomena and vortex-shock wave interaction.

  6. Fluid vortices

    National Research Council Canada - National Science Library

    Green, Sheldon I

    1995-01-01

    ... . . . . . . . . . . . . . . . Vorticity Kinematics and Dynamics - Physical Principles The Vorticity Equation with Examples . . . . Summary . . . . . . . . . . . . . . . . . Vorticity in Orthogonal...

  7. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    Science.gov (United States)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  8. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  9. Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team

    2015-11-01

    Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.

  10. An experimental study of spanwise flow effects on lift generation in flapping wings

    Science.gov (United States)

    Hong, Youngsun

    Using a combination of force transducer measurement to quantify net lift force, a high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. When flapping a flat plate wing and a wing of identical wing area and aspect ratio, but cambered in span (both wings in hover with no change in pitch), the spanwise cambered wing was found to generate a greater mean lift force through the whole flap cycle under the same acceleration. However, depending on the angle in flapping arc, the spanwise cambered wing can generate less lift than the flat wing. Additionally, since the lift force generated by the wingtip vortex in the spanwise plane resulting from the flapping motion has yet to be directly quantified, the wingtip vortex is investigated to determine precisely how it augments the lift force through the various phases in the flapping motion. Vortices in the vicinity of the wingtip generate lift force in the spanwise plane of flapping wings. In classical fixed wing aerodynamics, the presence of wing tip vortices has been shown to increase the lift locally near the tip. Also, the impingement of large vortices on the upper surface of delta wings is considered to contribute largely to the lift force at higher angles of attack. This study determined that vortices in the spanwise plane (streamwise vorticity) generate lift in a similar manner in flapping wings. Using a mechanical ornithopter with wings fabricated in-house, vortices were identified at several different locations along the span of the wing, and at numerous different points throughout the flapping cycle under a variety of operating conditions. The lift generated by these spanwise planar oriented vortices was

  11. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  12. Experimental Evaluation of Stagnation Point Collection Efficiency of the NACA 0012 Swept Wing Tip

    Science.gov (United States)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2010-01-01

    This paper presents the experimental work of a number of icing tests conducted in the Icing Research Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a function of the modified inertia parameter and the sweep angle. The preliminary results showed that there could be some limitation of the test method due to the ice erosion problem when encountered, and also found that, for conditions free of such problem, the stagnation point collection efficiency measurement for sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis.

  13. Large aerodynamic forces on a sweeping wing at low Reynolds number

    Science.gov (United States)

    Mao, Sun; Jianghao, Wu

    2004-02-01

    The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number ( Re) considered in the present note is 480 ( Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result, the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force.

  14. Vortical flows

    CERN Document Server

    Wu, Jie-Zhi; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers.  Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific ap...

  15. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  16. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  17. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  18. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer

    2016-10-01

    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  19. Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

    Science.gov (United States)

    2016-02-26

    lift- generating mechanisms and relate flow structures to the unsteady forces generated by the wing, synchronized flow visualization, force measurements... generated at the leading edge to drain from the LEV into the tip vortex. At higher Reynolds numbers (Re = 8,000), periodically shedding vortices have been...controlled model motion. The motor assembly, shown in Figure 3(a), is mounted on the towing carriage and contains two brushless linear motors, and a

  20. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  1. Passive generation of streamwise vorticity in axisymmetric jets using half delta-wing vortex generators and its effect on jet mixing

    Science.gov (United States)

    Carletti, Mark J.

    This research focuses on enhancing the mixing characteristics of an axisymmetric jet through the placement of small triangular teeth, or vortex generators, inside the jet nozzle. The performance of vortex generators has been shown to be a strong function of their size, shape, orientation and location, as well as jet exit conditions. For larger generators, the mass flow rate increased by as much as 50% at 8 jet diameters downstream, and the length of the potential core is reduced by over 70%. The performance of the vortex generators is also found to improve at higher Mach number flows (0.21 to 0.71), where compressibility effects would otherwise decrease the jet's mixing rate. At low angles of attack, the generator produces a single vortex, adding streamwise vorticity to the flow, blocking only a small portion of the jet exit. As the angle of attack of the vortex generators is increased beyond 30sp°, there is a transition in the production of vorticity, as a secondary vortex begins to form. After approximately 40sp°, the blockage of the generator nearly triples, as a counter-rotating pair of vortices is shed. For these higher angles of attack, the flow patterns and vorticity produced is very similar to that observed in tab flows. In comparing vortex generator flows to delta tab flows, equivalent increases in mass flow rate were observed for nozzles of equal flow blockages. Suggesting that increased jet mixing is a strong function of the blockage associated with the mixing device. Also examined is the effect of internal placement of tabs and vortex generators. The performance of vortex generators is slightly enhanced by placing them inside the nozzle, 1.5 jet diameters from the jet exit. The effect of delta tabs, on the other hand, which depends on a large pressure drop across the tooth, is drastically reduced when they are placed inside the jet nozzle. Finally, this work has several practical applications in the aeronautical community. It is part of a preliminary

  2. The Aerodynamics of Deforming Wings at Low Reynolds Number

    Science.gov (United States)

    Medina, Albert

    Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be

  3. Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings

    Science.gov (United States)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.

  4. The origins of a wind turbine tip vortex

    NARCIS (Netherlands)

    Micallef, D.; Akay, B.; Simao Ferreira, C.J.; Sant, T.; Van Bussel, G.J.W.

    2014-01-01

    The tip vortex of a wind turbine rotor blade originates as a result of a complex distribution of vorticity along the blade tip thickness. While the tip vortex evolution was extensively studied previously in other work, the mechanism of the initiation of the tip vorticity in a 3D rotating environment

  5. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  6. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods, namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.

  7. Unsteady Aerodynamics of Nonslender Delta Wings

    OpenAIRE

    Gursul, I; Gordnier, R; Visbal, M

    2005-01-01

    Unsteady aerodynamics of nonslender delta wings, covering topics of shear layer instabilities, structure of nonslender vortices, breakdown, maneuvering wings, and fluid/structure interactions, are reviewed in this paper. Vortical flows develop at very low angles of attack, and form close to the wing surface. This results in strong interactions with the upper-surface boundary layer and in a pronounced dependence of the flow structure on Reynolds number. Vortex breakdown is observed to be much ...

  8. Tip-modified Propellers

    DEFF Research Database (Denmark)

    Andersen, Poul

    1999-01-01

    wings. The literature on four different designs is reviewed: the end-plate propeller; the two-sided, shifted end-plate propeller; the tip-fin propeller; and the bladelet propeller. The conclusion is that it is indeed possible to design tip-modified propellers that, relative to an optimum conventional...

  9. Vortex interactions with flapping wings and fins can be unpredictable

    NARCIS (Netherlands)

    Lentink, D.; Heijst, van G.J.F.; Muijres, F.T.; Leeuwen, van J.L.

    2010-01-01

    As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether

  10. Volumetric visualization of the near- and far-field wake in flapping wings.

    Science.gov (United States)

    Liu, Yun; Cheng, Bo; Barbera, Giovanni; Troolin, Daniel R; Deng, Xinyan

    2013-09-01

    The flapping wings of flying animals create complex vortex wake structure; understanding its spatial and temporal distribution is fundamental to animal flight theory. In this study, we applied the volumetric 3-component velocimetry to capture both the near- and far-field flow generated by a pair of mechanical flapping wings. For the first time, the complete three-dimensional wake structure and its evolution throughout a wing stroke were quantified and presented experimentally. The general vortex wake structure maintains a quite consistent form: vortex rings in the near field and two shear layers in the far field. Vortex rings shed periodically from the wings and are linked to each other in successive strokes. In the far field, the shed vortex rings evolve into two parallel shear layers with dominant vorticity convected from tip and root vortices. The shear layers are nearly stationary in space compared to the periodic vortex rings shed in the near field. In addition, downwash passes through the centers of the vortex rings and extends downward between the two shear layers.

  11. Trailing vortices from low speed flyers

    Science.gov (United States)

    Waldman, Rye; Kudo, Jun; Breuer, Kenneth

    2009-11-01

    The structure and strength of the vortex wake behind a airplane or animal flying with a fixed or flapping wing contains valuable information about the aerodynamic load history. However, the amount of vorticity measured in the trailing vortex is not always in agreement with the known lift generated, and the behavior of these vortices at relatively low Reynolds numbers is also not well-understood. We present the results from a series of wind tunnel PIV experiments conducted behind a low-aspect ratio rectangular wing at a chord-Reynolds numbers of 30,000. In addition to wake PIV measurements measured in the cross-stream (Trefftz) plane, we measure the lift and drag directly using a six-axis force-torque transducer. We discuss how vortex size, shape, strength and position vary in time and downstream location, as well as the challenges associated with the use of PIV wake measurements to accurate determine aerodynamic forces.

  12. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  13. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.

    2014-12-01

    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  14. Ground effect on the aerodynamics of three-dimensional hovering wings.

    Science.gov (United States)

    Lu, H; Lua, K B; Lee, Y J; Lim, T T; Yeo, K S

    2016-10-25

    This paper reports the results of combined experimental and numerical studies on the ground effect on a pair of three-dimensional (3D) hovering wings. Parameters investigated include hovering kinematics, wing shapes, and Reynolds numbers (Re). The results are consistent with the observation by another study (Gao and Lu, 2008 Phys. Fluids, 20 087101) which shows that the cycle-averaged aerodynamic forces generated by two-dimensional (2D) wings in close proximity to the ground can be broadly categorized into three regimes with respect to the ground clearance; force enhancement, force reduction, and force recovery. However, the ground effect on a 3D wing is not as significant as that on a 2D flapping wing reported in (Lu et al 2014 Exp. Fluids, 55 1787); this could be attributed to a weaker wake capture effect on 3D wings. Also, unlike a 2D wing, the leading edge vortex (LEV) remains attached on a 3D wing regardless of ground clearance. For all the wing kinematics considered, the three above-mentioned regimes are closely correlated to a non-monotonic trend in the strength of downwash due to the restriction of root and tip vortex formation, and a positional shift of wake vortices. The root vortices in interaction with the ground induce an up-wash in-between the two wings, causing a strong 'fountain effect' (Maeda and Liu, 2013 J. Biomech. Sci. Eng., 8 344) that may increase the body lift of insects. The present study further shows that changes in wing planform have insignificant influence on the overall trend of ground effect except for a parallel shift in force magnitude, which is caused mainly by the difference in aspect ratio and leading edge pivot point. On the two Reynolds numbers investigated, the results for the low Re case of 100 do not deviate significantly from those of a higher Re = 5000 except for the difference in force magnitudes, since low Reynolds number generates lower downwash, weaker LEV, and lower rotational circulation. Additionally, lower Re

  15. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    Science.gov (United States)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  16. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  17. A quantitative comparison of leading-edge vortices in incompressible and supersonic flows

    Science.gov (United States)

    2002-01-14

    When requiring quantitative data on delta-wing vortices for design purposes, low-speed results have often been extrapolated to configurations intended for supersonic operation. This practice stems from a lack of database owing to difficulties that pl...

  18. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    Science.gov (United States)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  19. Gradient and vorticity banding

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2008-01-01

    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding,"

  20. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  1. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  2. Magnetoplasmonic control of plasmonic vortices

    Science.gov (United States)

    Maccaferri, Nicolò; Gorodetski, Yuri; Toma, Andrea; Zilio, Pierfrancesco; De Angelis, Francesco; Garoli, Denis

    2017-11-01

    We theoretically investigate the generation of far-field propagating optical beams with a desired orbital angular momentum by using an archetypical magnetoplasmonic tip surrounded by a gold spiral slit. The use of a magnetic material can lead to important implications once magneto-optical activity is activated through the application of an external magnetic field. The physical model and the numerical study presented here introduce the concept of magnetically tunable plasmonic vortex lens, namely a magnetoplasmonic vortex lens, which ensures a tunable selectivity in the polarization state of the generated nanostructured beam. The presented system provides a promising platform for a localized excitation of plasmonic vortices followed by their beaming in the far-field with an active modulation of both light's transmission and helicity.

  3. Nonlinear slender wing aerodynamics. [delta wing

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1976-01-01

    On present day high performance aircraft, a large portion of the lift is generated by leading edge vortices generated by flow separation off the highly swept leading edges of the lifting surfaces employed. It has been shown in an earlier paper how the vortex effects can be superimposed on a modified slender wing theory to give the unsteady longitudinal characteristics of sharp-edged delta wings up to very high angles of attack. The present paper extends the previous analysis to include the effects of leading edge roundness and trailing edge sweep on the aerodynamic characteristics. The paper also derives analytic means for prediction of the yaw stability of slender wings and the first order effects of Mach number. Universal scaling laws are defined for rapid preliminary design estimates of the slender wing lift and rolling moment. The results indicate that simple analytic tools can be developed to predict the aeroelastic characteristics of the space shuttle ascent configuration with its complicated flow field and aeroelastic cross-couplings.

  4. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  5. Tipping Point

    Medline Plus

    Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture ...

  6. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.

    Science.gov (United States)

    Birch, James M; Dickson, William B; Dickinson, Michael H

    2004-03-01

    The elevated aerodynamic performance of insects has been attributed in part to the generation and maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows created by a wing undergoing identical motion at Re of approximately 120 and approximately 1400. In both cases, motion at constant angular velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits prolonged vortex attachment takes different forms at different Re.

  7. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  8. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  9. Vortices at Microwave Frequencies

    Science.gov (United States)

    Silva, Enrico; Pompeo, Nicola; Dobrovolskiy, Oleksandr V.

    2017-11-01

    The behavior of vortices at microwave frequencies is an extremely useful source of information on the microscopic parameters that enter the description of the vortex dynamics. This feature has acquired particular relevance since the discovery of unusual superconductors, such as cuprates. Microwave investigation then extended its field of application to many families of superconductors, including the artificially nanostructured materials. It is then important to understand the basics of the physics of vortices moving at high frequency, as well as to understand what information the experiments can yield (and what they can not). The aim of this brief review is to introduce the readers to some basic aspects of the physics of vortices under a microwave electromagnetic field, and to guide them to an understanding of the experiment, also by means of the illustration of some relevant results.

  10. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...... models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation. Achievements in the fields of stability analysis, waves on vortices and vortex breakdown are also presented....

  11. Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John; Thompson, Mark

    2017-06-01

    This computational study analyzes the effect of variation of the radius of gyration (rg), expressed as the Rossby number Ro=rg/C , with C the chord, on the aerodynamics of a rotating wing at a Reynolds number of 1400. The wing is represented as an aspect-ratio-unity rectangular flat plate aligned at 45 ∘ . This plate is accelerated near impulsively to a constant rotational velocity and the flow is allowed to develop. Flow structures are analyzed and force coefficients evaluated. Trends in velocity field degradation with increasing Ro are consistent with previous experimental studies. At low Ro the flow structure generated initially is mostly retained with a strong laminar leading-edge vortex (LEV) and tip vortex (TV). As both Ro and travel distance increase, the flow structure degrades such that at high Ro it begins to resemble that of a translating wing. Additionally, the present study has shown the following. (i) At low Ro the LEV and TV structure is laminar and steady; as Ro increases this structure breaks down, and the location at which it breaks down shifts closer to the wing root. (ii) For moderate Ro of 1.4 and higher, the LEV is no longer steady but enters a shedding regime fed by the leading-edge shear layer. (iii) At the lowest Ro of 0.7 the lift force rises during start-up and then stabilizes, consistent with the flow structure being retained, while for higher Ro a force peak occurs after the initial acceleration is complete, followed by a reduction in lift which appears to correspond to shedding of excess leading-edge vorticity generated during start-up. (iv) All rotating wings produced greater lift than a translating wing, this increase varied from ˜65 % at the lowest Ro=0.7 down to ˜5 % for the highest Ro examined of 9.1.

  12. Southwest, Frontier planes clip wings in Phoenix

    National Research Council Canada - National Science Library

    Ben Mutzabaugh

    2017-01-01

    ... reports did not specify which one. Video from ABC 15 of Phoenix showed damage to the wing tip of the Southwest plane. A separate image tweeted by CBS 5 of Phoenix indicated that the wing of the Frontier aircraft also was damaged. The Frontier flight was bound for Denver, and the carrier put passengers on a replacement aircraft. Passengers on Southwest's ...

  13. Vortices and Jacobian varieties

    DEFF Research Database (Denmark)

    Manton, Nicholas S.; M. Romão, Nuno

    2011-01-01

    We investigate the geometry of the moduli space of N-vortices on line bundles over a closed Riemann surface of genus g > 1, in the little explored situation where 1 = 1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely on the crit...

  14. Relativistic Electron Vortices.

    Science.gov (United States)

    Barnett, Stephen M

    2017-03-17

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  15. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  16. Colors and pterin pigmentation of pierid butterfly wings

    NARCIS (Netherlands)

    Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G.

    2007-01-01

    The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We

  17. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  18. Tipping Point

    Medline Plus

    Full Text Available ... and furniture, appliance and tv tip-overs. The force of a large television falling from tipping furniture ... 50 lb. TV falls with about the same force as child falling from the third story of ...

  19. Tipping Point

    Medline Plus

    Full Text Available ... death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ... tv tip-overs. The force of a large television falling from tipping furniture can be staggering. A ...

  20. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  1. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  2. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    Science.gov (United States)

    2016-07-01

    Another test by Kitaplioglu and Caradonna (1994) provided unsteady surface pressure and acoustic data for the validation of CFD and acoustic analyses...and 3-component PIV measurements. The ultimate intent is to obtain data of adequate quality to validate computational simulations as well as to...constructed as a body of rotation using the tip airfoil section. All the results reported in this work used the rounded tips on both the wing and the

  3. Computational Investigation of a Pitch Oscillating Canard on Lift Enhancement and Tip Vortex Mitigation

    Science.gov (United States)

    2017-04-01

    simulations were employed. Simulations were performed on the Cray XC40 (Excalibur) and Cray XC30 ( Lightning ) supercomputers located at ARL’s Department of... plane of nondimensional vorticity magnitude for all combinations near the canard tip (y/c = 0.1, or 2 mm, inboard from the tip) at M∞ = 0.5 undergoing...cycle of oscillation for all parameter combinations. A plane of nondimensional vorticity magnitude for all combinations near the canard tip (y/c = 0.1

  4. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  5. A refined tip correction based on decambering

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Dag, Kaya Onur; Ramos García, Néstor

    2016-01-01

    A new tip correction for use in performance codes based on the blade element momentum (BEM) or the lifting-line techniqueis presented. The correction modifies the circulation by taking into account the additional influence of the inductionof the vortices in the wake, using the so-called decamberi...

  6. Aerodynamic Improvements by Discrete Wing Tip Jets.

    Science.gov (United States)

    1984-03-01

    jet mdifid votex ~ s elevat-ed much les, th-an was seen 111 Figur( V)1. The strength 6f the jet modilficed vortex is 6l4.2% of the total x’oiticity...I alyto i c V il’~ votex sy stem inhs beeii elimniin ated (-a limiit ini ram,) aqifl the, Jowuwash-4 as i(’se1 by Ohe tra;Ivel of vrict’s ncar. the

  7. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to either...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  8. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  9. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  10. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  11. CPAP Tips

    Medline Plus

    Full Text Available ... total__ Find out why Close CPAP Tips from FDA USFoodandDrugAdmin Loading... Unsubscribe from USFoodandDrugAdmin? Cancel Unsubscribe Working... ... tips from the U.S. Food and Drug Administration (FDA) on how to safely and effectively use your ...

  12. Technology Tips

    Science.gov (United States)

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  13. Tipping Point

    Medline Plus

    Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...

  14. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    Science.gov (United States)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  15. Influence of forebody cross-sectional shape on wing vortex burst location

    Science.gov (United States)

    Hall, R. M.

    1986-01-01

    A water tunnel study examining the influence of forebody cross section on the position of the wing vortex burst was carried out in the NASA Ames-Dryden water tunnel for a 55-deg cropped delta-wing model. Two of three cross sections investigated were chine-shaped, where the included angle of the chine was either 7.5-deg, representing a rather small side-edge angle, or 90 deg, representing a more moderate design. The third cross section was circular and served as a baseline for comparison. It is found that the 7.5 deg chine cross section generated the strongest forebody vortices of the three configurations and that these strong forebody vortices interacted with the main wing vortices in such a manner as to dramatically delay wing vortex burst position at zero sideslip. If the configuration is sideslipped, large asymmetries in wing vortex burst location may result.

  16. Tipping Point

    Medline Plus

    Full Text Available ... fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash format. Almost ... accidents involving young children and furniture, appliance and tv tip-overs. The force of a large television ...

  17. Tipping Point

    Medline Plus

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...

  18. Tipping Point

    Medline Plus

    Full Text Available ... of a large television falling from tipping furniture can be staggering. A 50 lb. TV falls with ... story of a building. That kind of impact can kill a child or cause severe injuries. About ...

  19. Tipping Point

    Medline Plus

    Full Text Available ... appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch ... reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The force of ...

  20. CPAP Tips

    Medline Plus

    Full Text Available ... sleeping? Here are some tips from the U.S. Food and Drug Administration (FDA) on how to safely and effectively use your CPAP device. Category Education License Standard YouTube License Show more Show less ...

  1. Tipping Point

    Medline Plus

    Full Text Available ... 16,000 (mostly young children) were treated in emergency rooms for tip-over related injuries in 2006, ... unaware of the deadly danger of this hidden hazard. Parents should include securing TVs, furniture, and appliances ...

  2. Tipping Point

    Medline Plus

    Full Text Available ... CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in ... to prevent a tip-over tragedy. Share Post Facebook Twitter Google Plus Reddit Connect with Me:  Visit ...

  3. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  4. The tip of the iceberg: a distinctive new spotted-wing Megaselia species (Diptera: Phoridae) from a tropical cloud forest survey and a new, streamlined method for Megaselia descriptions.

    Science.gov (United States)

    Hartop, Emily A; Brown, Brian V

    2014-01-01

    A new Megaselia species, M.shadeae, with a large, central, pigmented and bubble-like wing spot and a greatly enlarged radial wing vein fork, is described from Zurquí de Moravia, Costa Rica. As part of the Zurquí All Diptera Biodiversity Inventory (ZADBI) project, it represents the first of an incredible number of new phorid species to be described from this one Costa Rican cloud forest site. A new, streamlined method of description for species of this enormous genus of phorid flies is presented.

  5. The tip of the iceberg: a distinctive new spotted-wing Megaselia species (Diptera: Phoridae from a tropical cloud forest survey and a new, streamlined method for Megaselia descriptions

    Directory of Open Access Journals (Sweden)

    Emily Hartop

    2014-11-01

    Full Text Available A new Megaselia species, M. shadeae, with a large, central, pigmented and bubble-like wing spot and a greatly enlarged radial wing vein fork, is described from Zurquí de Moravia, Costa Rica. As part of the Zurquí All Diptera Biodiversity Inventory (ZADBI project, it represents the first of an incredible number of new phorid species to be described from this one Costa Rican cloud forest site. A new, streamlined method of description for species of this enormous genus of phorid flies is presented.

  6. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  7. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  8. Strain and vorticity patterns in ideally ductile transpression zones

    Science.gov (United States)

    Robin, Pierre-Yves F.; Cruden, Alexander R.

    1994-04-01

    The prevalent model for ductile shear zones assumes that they develop by progressive simple shearing, resulting in a monoclinic fabric in which the vorticity vector is parallel to the shear zone and perpendicular to the lineation. But some ductile shear zones exhibit an amount of coaxial flattening, or a fabric pattern which appear to be incompatible with the assumptions of plane strain and progressive simple shear. In certain sections of the Archean Larder Lake—Cadillac deformation zone (LCDZ), for example, vorticity indicators (asymmetric pressure wings, Z-folds, SC fabrics), best seen on horizontal surfaces, indicate dextral transcurrent motion, whereas stretching lineations have variable but steep plunges. In the Proterozoic Mylonite Zone (MZ) of south-west Sweden, vorticity indicators combined with foliation and lineation data suggest a continuous change from reverse dip-slip motion close to the footwall to sinistral transcurrent motion adjacent to the hangingwall of the zone. Such departures from the ideal progressive simple shear zone pattern may in fact be common. Rather than invoke two stages of deformation, we explore the possibility that these patterns could be the result of ductile transpression. Ductile transpression between relatively rigid walls implies an extrusion of material out of the shear zone. When the material cannot slip freely along the boundaries of the zone, the extrusion strain is by necessity heterogeneous. In order to explore these heterogeneous strain distributions, we have developed a continuum mechanics model in which the 'transpressed' rock is a linear viscous material squeezed upward between two parallel, rigid, vertical walls. Transpression is further generalized by modelling oblique (i.e. with a dip-slip component) relative displacements of the walls. Models, which can vary in their obliquity and their 'press'/'trans' ratio, are examined for their distributions of K-values, strain rate intensity, 'lineation' (direction of

  9. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    Science.gov (United States)

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  10. Tipping Point

    Medline Plus

    Full Text Available ... 24 hours a day. For young children whose home is a playground, it’s the best way to prevent a tip-over tragedy. Share Post Facebook Twitter ... Security, and Legal Notice | Accessibility Policy | Open Government @ CPSC | ...

  11. CPAP Tips

    Medline Plus

    Full Text Available ... 3 Tips for Sleeping With a CPAP - Duration: 2:02. WebMD 42,375 views 2:02 About to spend my first night using ... 534 views 4:39 CPAP Mask Tutorial - Duration: 2:19. somnomedics 35,554 views 2:19 CPAP ...

  12. Tipping Point

    Medline Plus

    Full Text Available ... 24 hours a day. For young children whose home is a playground, it’s the best way to prevent a tip-over tragedy. Share Post Facebook Twitter Google Plus Reddit Connect with Me:  Visit other Web ...

  13. CPAP Tips

    Medline Plus

    Full Text Available ... sleeping? Here are some tips from the U.S. Food and Drug Administration (FDA) on how to safely ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  14. CPAP Tips

    Medline Plus

    Full Text Available ... are some tips from the U.S. Food and Drug Administration (FDA) on how to safely and effectively ... views 3:03 FDA CDER Regulatory Science: Improving Drug Review with Data Standards - Duration: 3:01. USFoodandDrugAdmin ...

  15. CPAP Tips

    Medline Plus

    Full Text Available ... are some tips from the U.S. Food and Drug Administration (FDA) on how to safely and effectively ... views 9:28 FDA CDER Regulatory Science: Improving Drug Review with Data Standards - Duration: 3:01. USFoodandDrugAdmin ...

  16. CPAP Tips

    Medline Plus

    Full Text Available ... in to report inappropriate content. Sign in Transcript Statistics Add translations 200,671 views Like this video? ... 3 Tips for Sleeping With a CPAP - Duration: 2:02. WebMD 57,416 views 2:02 How ...

  17. CPAP Tips

    Medline Plus

    Full Text Available ... some tips from the U.S. Food and Drug Administration (FDA) on how to safely and effectively use ... WebMD 42,592 views 2:02 How CPAP works 5_23_11.wmv - Duration: 3:03. KenWarnerRemoteSleep ...

  18. CPAP Tips

    Medline Plus

    Full Text Available ... 3 Tips for Sleeping With a CPAP - Duration: 2:02. WebMD 44,809 views 2:02 Airing: the first hoseless, maskless, micro-CPAP ... 569 views 6:50 CPAP Mask Tutorial - Duration: 2:19. somnomedics 36,067 views 2:19 How ...

  19. The Aerodynamic Optimization of Wings at Subsonic Speeds and the Influence of Wingtip Design. Thesis

    Science.gov (United States)

    Zimmer, H.

    1987-01-01

    Some of the objectives of modern aircraft development are related to the achievement of reduced fuel consumption and aircraft noise. This investigation is mainly concerned with the aerodynamic aspects of aircraft development, i.e., reduction of induced drag. New studies of wing design, and in particular wing tips, are considered. Induced drag is important since, in cruising flight, it accounts for approximately one-third of the entire drag for the aircraft, and one-half while climbing. A survey is presented for the wing geometries and wing tip designs studied, and theoretical investigations of different planar wings with systematically varied wing tip forms are conducted. Attention is also paid to a theoretical study of some planar and nonplanar wings and their comparison with experimental data.

  20. Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11

    Science.gov (United States)

    Pirzadeh, Shahyar Z.

    2009-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  1. Active Control of Stationary Vortices

    Science.gov (United States)

    Nino, Giovanni; Breidenthal, Robert; Bhide, Aditi; Sridhar, Aditya

    2016-11-01

    A system for active stationary vortex control is presented. The system uses a combination of plasma actuators, pressure sensors and electrical circuits deposited on aerodynamic surfaces using printing electronics methods. Once the pressure sensors sense a change on the intensity or on the position of the stationary vortices, its associated controller activates a set of plasma actuator to return the vortices to their original or intended positions. The forces produced by the actuators act on the secondary flow in the transverse plane, where velocities are much less than in the streamwise direction. As a demonstration case, the active vortex control system is mounted on a flat plate under low speed wind tunnel testing. Here, a set of vortex generators are used to generate the stationary vortices and the plasma actuators are used to move them. Preliminary results from the experiments are presented and compared with theoretical values. Thanks to the USAF AFOSR STTR support under contract # FA9550-15-C-0007.

  2. Turbulent Flow Over a Low-Camber Pitching Arc Wing

    Science.gov (United States)

    Molki, Majid

    2014-11-01

    Aerodynamics of pitching airfoils and wings are of great importance to the design of air vehicles. This investigation presents the effect of camber on flow field and force coefficient for a pitching circular-arc airfoil. The wing considered in this study is a cambered plate of zero thickness which executes a linear pitch ramp, hold and return of 45° amplitude. The momentum equation is solved on a mesh that is attached to the wing and executes a pitching motion with the wing about a pivot point located at 0.25-chord or 0.50-chord distance from the leading edge. Turbulence is modeled by the k - ω SST model. Using the open-source software OpenFOAM, the conservation equations are solved on a dynamic mesh and the flow is resolved all the way to the wall (y+ ~ 1). The computations are performed for Re = 40,000 with the reduced pitch rate equal to K = cθ˙ / 2U∞ = 0 . 2 . The results are presented for three wings, namely, a flat plate (zero camber) and wings of 4% and 10% camber. It is found that the flow has complex features such as leading-edge vortex, near-wake vortex pairs, clockwise and counter-clockwise vortices, and trailing-edge vortex. While vortices are formed over the flat plate, they are formed both over and under the cambered wing.

  3. Tip enhancement

    CERN Document Server

    Kawata, Satoshi

    2007-01-01

    This book discusses the recent advances in the area of near-field Raman scattering, mainly focusing on tip-enhanced and surface-enhanced Raman scattering. Some of the key features covered here are the optical structuring and manipulations, single molecule sensitivity, analysis of single-walled carbon nanotubes, and analytic applications in chemistry, biology and material sciences. This book also discusses the plasmonic materials for better enhancement, and optical antennas. Further, near-field microscopy based on second harmonic generation is also discussed. Chapters have been written by some of the leading scientists in this field, who present some of their recent work in this field.·Near-field Raman scattering·Tip-enhanced Raman spectroscopy·Surface-enhanced Raman spectroscopy·Nano-photonics·Nanoanalysis of Physical, chemical and biological materials beyond the diffraction limits·Single molecule detection

  4. Tip Vortex Index (TVI) Technique for Inboard Propeller Noise Estimation

    OpenAIRE

    Sezen, Savaş; Dogrul, Ali; Bal, Şakir

    2018-01-01

    Cavitating marine propeller is one of the most dominant noise sources inmarine vessels.  The aim of this study isto examine the cavitating propeller noise induced by tip vortices for twinscrew passenger vessels. To determine the noise level inboard, tip vortex index(TVI) technique has been used. This technique is an approximate method based onnumerical and experimental data. In this study, it is aimed to predict theunderwater noise of a marine propeller by applying TVI technique for ...

  5. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  6. SPIV investigations of correlation between streamwise vorticity and velocity in the wake of a vortex generator in a boundary layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2013-01-01

    vortex generated by the interaction between the tip vortex and the wall. Depending on the height and angle of the vane, some structures are enhanced and others are suppressed. Comparing the corresponding vorticity and velocity fields, a strong correlation between the two is found. Stream-wise vorticity...... have been conducted in cross-planes to obtain a full picture of the wake for each measured case. It is observed that this seemingly simple configuration produces a complicated vortex system consisting of 4 vortices: the tip vortex, a horseshoe vortex system consisting of two sleeves and a secondary...... induced velocity with the observed strong correlation found is not at all evident. This has previously been shown to be true for the primary (tip) vortex, but not for the remaining secondary structures....

  7. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  8. Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48

    Science.gov (United States)

    Bidwell, Colin S.

    2014-01-01

    Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.

  9. Vitality of optical vortices (Presentation)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available This presentation discusses the vitality of optical vortices to distinguish between vortex dipole creation and annihilation events. Vitality is expressed in terms of the transverse 1st and 2nd order derivatives of the optical field. It can be used...

  10. Unstable vortices do not confine

    NARCIS (Netherlands)

    Achúcarro, A.; Roo, M. de; Huiszoon, L.; Landshoff, P.V.

    1998-01-01

    Recently, a geometric model for the confinement of magnetic charges in the context of type II string compactifications was constructed. This model assumes the existence of stable magnetic vortices with quantized flux in the low energy theory. However, quantization of flux alone does not imply that

  11. Analysis of kinematics of flapping wing MAV using optitrack systems

    OpenAIRE

    Rongfa, Matthew NG; Pantuphag, Teppatat; Srigrarom, Sutthiphong; Thipyopas, Chinnapat

    2017-01-01

    This paper presents the kinematics of the wing of the ornithopter-like MAV by means of motion-capturing technique (Optitrack). The positions of the marker(s) of one complete oscillation are presented with respect to time in a two-dimensional plane and understand the wing dynamic behaviour of an ornithopter through these graphs. Specifically the wing geometry and kinematics with time in three dimensional space is analysed on the kinematic data of the wing tip path, leading edge bending and tra...

  12. Flowfield in the plane of symmetry below a delta wing

    Science.gov (United States)

    Cramer, M. S.; George, A. R.; Seebass, A. R.

    1976-01-01

    The flowfield in the plane of symmetry of a thin lifting delta wing with supersonic leading edges is examined for wings with apex angles that are comparable to the Mach angle, as well as for the limiting case of a straight leading edge. For these two cases, a simplified treatment of the interaction between the plane expansion wave emanating from the trailing edge and the three-dimensional bow shock is presented. In the region unaffected by the wing tips, the shock decays inversely with distance from the wing.

  13. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  14. Review of vortices in wildland fire

    Science.gov (United States)

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  15. Analysis of kinematics of flapping wing UAV using OptiTrack systems

    OpenAIRE

    Rongfa, Matthew Ng; Pantuphag, Teppatat; Srigrarom, Sutthiphong

    2016-01-01

    An analysis of the kinematics of a flapping membrane wing using experimental kinematic data is presented. This motion capture technique tracks the positon of the retroreflective marker(s) placed on the left wing of a 1.3-m-wingspan ornithopter. The time-varying three-dimensional data of the wing kinematics were recorded for a single frequency. The wing shape data was then plotted on a two-dimensional plane to understand the wing dynamic behaviour of an ornithopter. Specifically, the wing tip ...

  16. An Experimental Investigation of Leading Edge Vortical Flow about a Delta Wing during Wing Rock

    Science.gov (United States)

    1991-12-01

    fp4,*fp5,*fp6,*fp7,*fp8,* fp9 ,*fp 10,*fpl11,*~fp 12; FILE *fpl3, *fpl4, *fplS, ***fptr, int i, j, jj, k, 1, m, mark, limit, frame rate, npts, numtargs...164 if(( fp9 = fopen(fza, "rbŘ, --NU-LLL) printf("Error opening file~n"); exit( 1); /* Reading from the table of contents of the track file * fseek(fpl...point * fseek(fp8, mark+28, 0); /* Location of first data point * Ifseek( fp9 , mark+28, 0); /* Location of first data point ~ for( j=O; jɛ j++ ) * Loop

  17. Unsteady flow phenomena associated with leading-edge vortices

    Science.gov (United States)

    Breitsamter, C.

    2008-01-01

    This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.

  18. Chiral vortical effect for bosons

    Science.gov (United States)

    Avkhadiev, Artur; Sadofyev, Andrey V.

    2017-08-01

    The thermal contribution to the chiral vortical effect is believed to be related to the axial anomaly in external gravitational fields. We use the universality of the spin-gravity interaction to extend this idea to a wider set of phenomena. We consider the Kubo formula at weak coupling for the spin current of a vector field and derive a novel anomalous effect caused by the medium rotation: the chiral vortical effect for bosons. The effect consists in a spin current of vector bosons along the angular velocity of the medium. We argue that it has the same anomalous nature as in the fermionic case and show that this effect provides a mechanism for helicity transfer, from flow helicity to magnetic helicity.

  19. Tip Refinement Grafts: The Designer Tip.

    Science.gov (United States)

    Daniel, Rollin K

    2009-01-01

    In cosmetic rhinoplasty, the patient's satisfaction is most often determined by the quality of the tip surgery, but perfecting a technique for consistently attractive tips can be challenging. As a result, rhinoplasty surgery is now entering a new era of "designer tip" operations, wherein surgeons can employ a combination of open suture tip techniques and tip refinement grafts to achieve consistent results. The grafts are made from excised lateral crural cartilage and, depending upon the specific aesthetic goals, the shape can include the following:domal, shield, diamond, folded, or combination. It is possible to alter dome-defining points, tip point, projection,definition, volume, and size and shape. A study of 100 consecutive female rhinoplasties indicated that tip sutures alone were used in 36% of cases, while a tip refinement graft was added to a sutured tip in 59% of cases.

  20. Vortical flows in technical applications

    OpenAIRE

    Krause, Egon

    2006-01-01

    Two examples of flows dominated by vortical structures are discussed: In the first interaction and decay of vortex structures in in-cylinder flows of automotive engines are described. Numerical studies revealed clearly identifiable vortex rings, generated during the intake stroke. The influence of compressibility on the vortex formation was studied by using Mach-Zehnder interferometry in a specially designed test stand of a towed one-cylinder engine, and with numerical solutions of the Navier...

  1. Vortices in polariton OPO superfluids

    OpenAIRE

    Marchetti, F. M.; Szymanska, M. H.

    2012-01-01

    his chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quan...

  2. Buoyancy-Induced, Columnar Vortices

    Science.gov (United States)

    Simpson, Mark; Glezer, Ari

    2015-11-01

    Free buoyancy-induced, columnar vortices (dust devils) that are driven by thermal instabilities of ground-heated, stratified air in areas with sufficient insolation convert the potential energy of low-grade heat in the surface air layer into a vortex flow with significant kinetic energy. A variant of the naturally-occurring vortex is deliberately triggered and anchored within an azimuthal array of vertical, stator-like flow vanes that form an open-top enclosure and impart tangential momentum to the radially entrained air. This flow may be exploited for power generation by coupling the vortex to a vertical-axis turbine. The fundamental mechanisms associated with the formation, evolution, and dynamics of an anchored, buoyancy-driven columnar vortex within such a facility are investigated experimentally using a heated ground plane. Specific emphasis is placed on the manipulation of the vortex formation and structure and the dependence of the vorticity production and sustainment mechanisms on the thermal resources and characteristic scales of the anchoring flow vanes using stereo-PIV. It is shown that manipulation of the formation and advection of vorticity concentrations within the enclosure can be exploited for increasing the available kinetic energy. Supported by ARPA-E.

  3. Vortices vacate vales and other singular tales

    Science.gov (United States)

    Turner, Ari Mark

    Quantized vortices in superfluids are a microscopic analogue of the vortices found in a sink as the water rushes down the drain. Unlike ordinary vortices, vortices in superfluid helium or artificial Bose condensates are particle-like because they are very long-lived. My thesis discusses forces experienced by these vortices which have a geometric origin. The first part focuses on vortices in a layer of liquid helium on a curved substrate. Such vortices experience a force that has Gaussian curvature as its source; vortices are attracted to negative and repelled from positive Gaussian curvature. Ideas about contexts where this force might be observed experimentally and the conformal mapping techniques for calculating the strength of the force are presented. The second part focuses on predictions about vortices in a dilute optically trapped Bose condensate of spinor atoms and derives their properties from first principles. Now the atoms' internal spin space provides the nontrivial geometry; spinor states can be classified by introducing a set of points on the sphere called "spin roots". The spin two phase diagram is determined as a function of the interaction parameters. Homotopy theory shows that multiple types of vortices can be created in a condensate of spin two atoms. The interactions between these vortices can be calculated using the spin roots' symmetry group. Metastable vortex states can arise in both contexts. A vortex on a curved surface be trapped near a saddle point. If thermal fluctuations push the vortex away from the saddle, it can move to the edge of the film and disappear, releasing the kinetic energy of the superfluid currents that circle the vortex. Sets of vortices in a spinor condensate can trap each other in a molecule (in the presence of a magnetic field). After a long time, thermal fluctuations can bring the component molecules together, leading to a "chemical reaction" in which new vortices that are not trapped are produced. Then the molecule

  4. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    -time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present...

  5. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    First, using a main carbon spar with a thin sheet of balsa wood for wing membrane forms a wing weighing approximately 30mg. Additionally, the wing...structural rigidity. These wings weighed approximately 40 mg. The balsa wood wing, composite wing, and comparison to a locust wing, which was being...mimicked, are shown in Figure 11 [17]. Figure 11: Comparison of Balsa Wood , Composite, and Locust Wing [17] A similar wing structure design is

  6. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  7. To tip or not to tip?

    OpenAIRE

    Saayman, Melville

    2014-01-01

    Tipping is an important source of income for a variety of occupations in the hospitality and tourism industry. One such occupation is waitressing and although much research has been done, especially in America, very little has been done in African countries. The purpose of this paper is therefore to determine the reasons why people tip or do not tip, as well as which socio-demographic and behavioural variables have the greatest influence on tipping. A survey was conducted at restaurants durin...

  8. Numerical study of tandem flapping wings hovering near ground

    Science.gov (United States)

    Srinidhi, N. G.; Vengadesan, S.

    2016-11-01

    The ground effect on tandem elliptical foils hovering in an inclined stroke plane is studied using immersed boundary projection method. The computations are carried out at a low Reynolds number, Re = 100 , in a quiescent fluid at different heights from the ground. The effect of phase relationship, Ψ, between the fore- and hindwings on force variation is studied. Flow induced by the rebound vortices changes the effective angle of attack (AoA) of the wings and influences the force generation. In some cases, the shed vortices merge with the rebound vortices and create a sustained recirculating vortex which has a significant effect on the force generation of the forewing. In counter-stroking (Ψ =180o) and in-phase stroking (Ψ =0o), the rebound vortices increase the effective AoA of the forewing and increase the lift coefficients; interestingly, for Ψ =90o , such an increase in forces is not observed. Except for the cases with Ψ =90o , time-averaged vertical force coefficient of the forewing is always greater than the hindwing. For selected cases, backward in time finite-time Lyapunov exponent (FTLE) ridges are used in conjunction with vorticity contours to gain more insight into the vorticity dynamics.

  9. Effects of an upstream triangular plate on the wing-body junction flow

    Science.gov (United States)

    Théberge, M.-A.; Ekmekci, A.

    2017-09-01

    The use of a short triangular leading-edge plate at the base of a wing-body junction is experimentally evaluated as a passive control method to eliminate the horseshoe vortices or at least to subdue their strength. The impact of the plate geometry on the efficacy of the control is assessed by considering triangular plates that have a length of 1T, 2T, and 3T, a width of 0.1T and 0.2T, and a height of 1.5T, where T is the maximum thickness of the wing. The wing model is a NACA 0020 airfoil. The Reynolds number based on the chord length is varied from Rec = 25 000 to 75 000. The incoming boundary layer is laminar in all experiments. Particle Image Velocimetry is utilized to characterize the temporal behavior and circulation strength of horseshoe vortices. The λ2-criterion is used as the vortex identification method. All the triangular leading-edge plates investigated in this study are found to decrease the circulation strength of the horseshoe vortices in the symmetry plane, although by varying degrees, compared to the baseline configuration that has no plate control. An increase in the upstream reach of the leading-edge plate significantly mitigates the vortical organization, vorticity, size, and circulation strength of horseshoe vortices. Although all plate lengths in question achieve a regression in the horseshoe vortex regime and, at the lowest Reynolds number considered, they all reduce the number of horseshoe vortices compared to the uncontrolled case, as the Reynolds number increases, longer plates are needed for such an effect. On the other hand, an increase in the thickness of the leading-edge plate deteriorates the desired control by increasing the vortical organization, vorticity magnitude, size, and circulation strength of horseshoe vortices. At higher Reynolds numbers, a thicker plate performs even poorer, resulting in extra horseshoe vortices, which can be unsteady depending on the Reynolds number. Nevertheless, all the triangular plates considered in

  10. Making sound vortices by metasurfaces

    CERN Document Server

    Ye, Liping; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou

    2016-01-01

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  11. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  12. Improvement of a near wake model for trailing vorticity

    DEFF Research Database (Denmark)

    Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughl...... of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model....

  13. CFD analysis of wing trailing edge vortex generator using serrations

    Directory of Open Access Journals (Sweden)

    Alawadhi H. A.

    2014-03-01

    Full Text Available This study presents computational results of a NACA0012 base wing with the trailing edge modified to incorporate triangular serrations. The effect of the serrations were investigated in three stages, the deflection angle of the serration with respect to the wing chord were examined from -90° to 90° at 10° intervals; the results obtained showed that although larger deflection induces a stronger vorticity magnitude, the strength of the vortex decays faster than compared to smaller deflections. Moreover, the vorticity profile downstream of the wing varies with deflection angle of the serration. Next, the addition of a Clark Y flap to the base wing to analyze the flow pattern and the effect on the flow separation; without serrations attached to the base wing trailing edge, at a high angle of attack, the flow will separate early and would render the flap less effective. The Vortex generator energizes the boundary layer and encourages the flow to remain attached to the flap, allowing for a greater range flap deflection. A wind tunnel experiment was developed and conducted to substantiate the computational analysis in a real world scenario. There was a positive correlation between the results obtained experimentally and computationally.

  14. Roll Motion Control of a Delta Wing by LE Actuators

    Science.gov (United States)

    Lee, Gwo-Bin; Ho, Chih-Ming; Tsao, Tom; Tai, Yu-Chong

    1996-11-01

    For a delta wing at high angle of attack, the two leading edge vortices contribute a significant portion of the total lift. If the symmetry of the two vortices is perturbed by miniature actuators, a large rolling moment can be generated. This experimentally obtained rolling moment, when normalized by the moment generated by a single leading edge vortex , can be as high as 50%. The size of the actuator is about equal to the thickness of the boundary layer at the leading edge of the wing. This length scale matching provides a coupling between the perturbations and the flow field. We also have tested the concept on a one seventh scale model of a Mirage aircraft. In the flight tests, the miniature leading edge actuators have been shown to be able to control the motion of the aircraft in several maneuvering modes. This work is supported by a DARPA grant managed by AFOSR.

  15. Tips for Daily Living

    Science.gov (United States)

    ... over the country who’ve created or discovered adaptive and often innovative ways to get things done! Submit your tips today! Check out our Tips for Submitting Tips ! Take a video (it can even be on a smartphone!) or write down your tips. Complete the submission ...

  16. Discussion on the complete-form vorticity equation and slantwise vorticity development

    Science.gov (United States)

    Wang, Xiuming; Zhou, Xiaogang; Tao, Zuyu; Liu, Hua

    2016-02-01

    The complete form of the vertical vorticity tendency equation (the complete-form vorticity equation) is derived from the Ertel potential vorticity equation to contain thermodynamic factors. In this study, a new complete-form vorticity equation, which has the same form as the original complete-form vorticity equation, is deduced from the absolute vorticity vector equation combined with the continuity equation and the expression of three-dimensional (3D) entropy gradient. By comparing the complete-form vorticity equation with the classical vertical vorticity equation, it is found that regardless of whether or not the isentropic surface is tilting, the two vorticity equations are in essence the same. The "baroclinic term" of the complete-form vorticity equation is exactly equal to the solenoidal term of the classical one, and there is a significant amount of cancellation between the two baroclinic items (the "slantwise term" and the horizontal vorticity change term) in the complete-form vorticity equation. In operational weather analysis, the tilt of the isentropic surface can be diagnosed according to the density of the isotherm on the upper-level isobaric map. For synoptic-scale motion, the vertical vorticity produced by the tilt of the isentropic surface is due to the contribution of atmospheric baroclinicity, which is measured by the solenoid. The 3D solenoid is parallel to the isentropic surface, so the more tilted the isentropic surface, the bigger the projection of the 3D solenoid in the vertical direction. The baroclinic contribution can be interpreted based on the PV thinking theory, but the relationship between the vorticity field and the potential vorticity field is not immediate.

  17. Numerical analysis of the tip and root vortex position in the wake of a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ivanell, S [Royal Institute of Technology/Gotland University, Stockholm/Visby (Sweden); Soerensen, J N [Technical University of Denmark, Lyngby (Denmark); Mikkelsen, R [Technical University of Denmark, Lyngby (Denmark); Henningson, D [Royal Institute of Technology, Stockholm (Sweden)

    2007-07-15

    The stability of tip and root vortices are studied numerically in order to analyse the basic mechanism behind the break down of tip and root vortices. The simulations are performed using the CFD program {sup E}llipSys3D{sup .} In the computations the so-called Actuator Line Method is used, where the blades are represented by lines of body forces representing the loading. The forces on the lines are implemented using tabulated aerodynamic aerofoil data. In this way, computer resources are used more efficiently since the number of mesh points locally around the blade is decreased, and they are instead concentrated in the wake behind the blades. We here present results of computed flow fields and evaluate the flow behaviour in the wake. In particular we compare the position of the root vortices as to the azimuthal position of the tip votices.

  18. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    Science.gov (United States)

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-01-26

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45o. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3x103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5~10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings. © 2018 IOP Publishing Ltd.

  19. Supermodularity and Tipping

    OpenAIRE

    Geoffrey Heal; Howard Kunreuther

    2006-01-01

    We model tipping as a game-theoretic phenomenon and investigate the connection between supermodular games, tipping of equilibria and cascading, and apply the results to issues that arise in the context of homeland security and computer security. We show that tipping and cascading can occur in supermodular games and that "increasing differences"is a sufficient condition for tipping. Supermodularity and tipping of equilibria are closely related. We relate our results to Schelling%u2019s early w...

  20. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  1. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  2. An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles (BMAVs

    Directory of Open Access Journals (Sweden)

    Praveena Nair Sivasankaran

    2017-04-01

    Full Text Available This article studies the elastic properties of several biomimetic micro air vehicle (BMAV wings that are based on a dragonfly wing. BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms (e.g., insects, birds, and bats. Three structurally identical wings were fabricated using different materials: acrylonitrile butadiene styrene (ABS, polylactic acid (PLA, and acrylic. Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly. These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10–250 Hz. A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels × 240 pixels and 35000 frames per second. The maximum bending angle, maximum wing tip deflection, maximum wing tip twist angle, and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing. The results show that the ABS wing has considerable flexibility in the chordwise direction, whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction. Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced. Therefore, the ABS wing (fabricated using a 3D printer shows the most promising results for future applications.

  3. Magnetic gates and guides for superconducting vortices

    Science.gov (United States)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; Rosenmann, D.; Benseman, T.; Kwok, W.-K.

    2017-04-01

    We image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy strips. By altering the magnetization orientation in the strips using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the strip edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the strip edges and derive analytical formulas for the vortex-magnetic strips coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic strip array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.

  4. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  5. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  6. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    Science.gov (United States)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  7. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  8. A vorticity budget for the Gulf Stream

    Science.gov (United States)

    Le Bras, Isabela; Toole, John

    2017-04-01

    We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.

  9. Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.

    Science.gov (United States)

    Mountcastle, Andrew M; Combes, Stacey A

    2014-04-01

    The wings of many insects accumulate considerable wear and tear during their lifespan, and this irreversible structural damage can impose significant costs on insect flight performance and survivability. Wing wear in foraging bumblebees (and likely many other species) is caused by inadvertent, repeated collisions with vegetation during flight, suggesting the possibility that insect wings may display biomechanical adaptations to mitigate the damage associated with collisions. We used a novel experimental technique to artificially induce wing wear in bumblebees and yellowjacket wasps, closely related species with similar life histories but distinct wing morphologies. Wasps have a flexible resilin joint (the costal break) positioned distally along the leading edge of the wing, which allows the wing tip to crumple reversibly when it hits an obstacle, whereas bumblebees lack an analogous joint. Through experimental manipulation of its stiffness, we found that the costal break plays a critical role in mitigating collision damage in yellowjacket wings. However, bumblebee wings do not experience as much damage as would be expected based on their lack of a costal break, possibly due to differences in the spatial arrangement of supporting wing veins. Our results indicate that these two species utilize different wing design strategies for mitigating damage resulting from collisions. A simple inertial model of a flapping wing reveals the biomechanical constraints acting on the costal break, which may help explain its absence in bumblebee wings.

  10. Numerical investigation of tip clearance effects on the performance of ducted propeller

    Directory of Open Access Journals (Sweden)

    Ding Yongle

    2015-09-01

    Full Text Available Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.

  11. Experimental investigation of a flapping wing model

    Energy Technology Data Exchange (ETDEWEB)

    Hubel, Tatjana Y.; Tropea, Cameron [Technische Universitaet Darmstadt, Fachgebiet Stroemungslehre und Aerodynamik, Darmstadt (Germany)

    2009-05-15

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle. (orig.)

  12. Effect of Pitching Delta Wing on Vortex Structures with and without Impingement Plate

    OpenAIRE

    ŞAHİN, Muammer ÖZGÖREN and Beşir

    2014-01-01

    Flow past the leading edge of a delta wing oscillating about its mid-cord in a pitch plane with a reduced frequency of K=0.74 generates primary vortices having mostly elongated shapes. Their shapes and orientations vary with the pitching angle of the delta wing in upstroke and downstroke directions. Unsteady flows around the impingement plate placed downstream of the delta wing and in the flow field downstream of the onset of vortex breakdown are characterized by the existence of unstea...

  13. Correlations between Abelian monopoles and center vortices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Nejad, Seyed Mohsen, E-mail: smhosseininejad@ut.ac.ir; Deldar, Sedigheh, E-mail: sdeldar@ut.ac.ir

    2017-04-15

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  14. Vortices and turbulence in trapped atomic condensates

    Science.gov (United States)

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  15. Atmospheric Vortices near Guadalupe Island

    Science.gov (United States)

    2000-01-01

    These MISR images from June 11, 2000 (Terra orbit 2569) demonstrate a turbulent atmospheric flow pattern known as the von Karman vortex street. This phenomenon is named after aerodynamicist Theodore von Karman, who theoretically derived the conditions under which it occurs. The alternating double row of vortices can form in the wake of an obstacle, in this instance the eastern Pacific island of Guadalupe. The rugged terrain of this volcanic Mexican island reaches a maximum elevation of 1.3 kilometers. The island is about 35 kilometers long and is located 260 kilometers west of Baja California.The vortex pattern is made visible by the marine stratocumulus clouds around Guadalupe Island. The upper image is a color view obtained by MISR's vertical-viewing (nadir) camera. North is toward the left. The orientation of the vortex street indicates that the wind direction is from lower left to upper right (northwest to southeast). The areas within the vortex centers tend to be clear because the rotating motions induce a vertical wind component that can break up the cloud deck.The lower view is a stereo picture generated from data acquired by MISR's fore- and aft-viewing 70-degree cameras. A 3-D effect is obtained by viewing the image with red/blue glasses and placing the red filter over your left eye. Note how the downwelling atmospheric motion (change in elevation from high to low) is accompanied by a clearing in the center of the first vortex. As the vortices propagate downstream, their rotational velocities weaken. As a consequence, the induced vertical motion and cloud-clearing effect weakens as well.Theodore von Karman was a Professor of Aeronautics at Caltech and Director of Caltech's Guggenheim Aeronautical Laboratory from 1930-1949. He was one of the principal founders of the Jet Propulsion Laboratory.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by

  16. Healthy Vision Tips

    Science.gov (United States)

    ... NEI for Kids > Healthy Vision Tips All About Vision About the Eye Ask a Scientist Video Series ... Links to More Information Optical Illusions Printables Healthy Vision Tips Healthy vision starts with you! Use these ...

  17. The TIPS Liquidity Premium

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Jens H.E.; Simon Riddell, Simon

    We introduce an arbitrage-free term structure model of nominal and real yields that accounts for liquidity risk in Treasury inflation-protected securities (TIPS). The novel feature of our model is to identify liquidity risk from individual TIPS prices by accounting for the tendency that TIPS, lik...

  18. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  19. Circulation Produced by a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  20. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  1. Chaotic vortical flows and their manifestations

    Directory of Open Access Journals (Sweden)

    Baznat M.

    2016-01-01

    Full Text Available We study vorticity and hydrodynamic helicity in semi-peripheral heavy-ion collisions using the kinetic model of Quark-Gluon Strings. The angular momentum, which is a source of P-odd observables, is preserved with a good accuracy. We observe formation of the specific toroidal structures of the vorticity field. Their existence, accompanied by the strange chemical potential, is mirrored in the polarization of hyperons of the percent order.

  2. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  3. Vortices and vortex lattices in quantum ferrofluids.

    Science.gov (United States)

    Martin, A M; Marchant, N G; O'Dell, D H J; Parker, N G

    2017-03-15

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  4. Generation and propagation of optical vortices

    Science.gov (United States)

    Rozas, David

    Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.

  5. Simultaneous Velocity and Vorticity Measurement in Turbulence

    Science.gov (United States)

    Wu, Huixuan; Xu, Haitao; Bodenschatz, Eberhard

    2013-11-01

    A new paradigm of simultaneous velocity and vorticity measurement is developed to study turbulence. Instead of deducing vorticity from velocities measured at neighboring points, this innovative approach detects the translations and rotations of micro-sized particles directly. These hydrogel particles are spherical, transparent, and encapsulate micro-mirrors. This method outstands conventional ones, e.g., hotwire arrays or PIV because its spatial resolution is much higher. It does not require a non-zero mean flow, and it can provide all three vorticity components, which is not available from planar PIV data. Its principle is to illuminate the mirror and utilize the variation of the reflection directions to deduce the local flow vorticity. Meanwhile, the particle position is recorded as in normal particle tracking. Therefore, the velocity and vorticity of a particle can be obtained simultaneously in Lagrangian framework. The authors have made benchmark experiments to evaluate this novel method in Taylor Couette flows. The results show that the instantaneous vorticity measurement is as accurate as 3%. We are now setting up a von Karman disk pair device to study the turbulent flow. This novel technique will provide unprecedented information of high Reynolds number turbulence. The first author thanks the Alexander von Humboldt Foundation.

  6. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    Science.gov (United States)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  7. Arctic climate tipping points.

    Science.gov (United States)

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  8. Inflatable Wing Deployment Sequence

    Science.gov (United States)

    2001-01-01

    The deployable, inflatable wing technology demonstrator aircraft's wings begin deploying following separation from its carrier aircraft during a flight experiment conducted by the NASA Dryden Flight Research Center, Edwards, California. Wing deployment time is typically on the order of a third of a second, almost faster than the human eye can see. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  9. History of Research on Lift-Generated Vortices

    Science.gov (United States)

    Rossow, Vernon J.; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    A theoretical and experimental program on the structure and possible modification of lift-generated vortices shed by subsonic aircraft has been underway at NASA Ames Research Center since the late 1960's. The objectives of the program were to first obtain a better understanding of the hazard posed by the vortex wakes of subsonic transports, and then to develop methods on how to modify or design the wake-generating aircraft in order to make the vortices less hazardous. Some effort was also expended on the development of methods to avoid vortex wakes. The seminar will present a brief history of the research program beginning with the nature of vortex wakes and their relationship to the span loading on the wake-generating wing. Examples will then be presented to show how span-loading changes were used to influence the dynamics of the vortex wakes shed by subsonic transport aircraft. Video tape segments will be shown to illustrate the dynamics of vortex wakes and the flight tests carried out by NASA to find out how configurations developed in wind tunnels would perform on flight vehicles. The presentation will then summarize some recent results obtained in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center on the vortex wakes that trail from 0.03 scale models of a B-747 and of a DC-10 at downstream distances of 81 ft and 162 ft behind the wake-generating model; i.e., at scale distances of 0.5 and 1.0 mile. Lastly, a proposed vortex avoidance scheme based on the Global Positioning System will be described. All of the material to be presented is publically available in technical journals.

  10. Dynamics of helical vortices behind a wind turbine in a stratified atmosphere

    Science.gov (United States)

    Mao, Xuerui; Hussain, Fazle

    2017-11-01

    The wind turbine wake features helical vortices, which are shed from the tips of blades and inflict undesirable fatigue loading on downstream turbines. Prior studies of helical vortices focused on their hydrodynamic instabilities and the following breakup in the neutrally stable, isothermal atmospheres in which the buoyancy force is balanced by gravity. However, the atmosphere is typically mostly unstable during the day and mostly stable at night, but is seldom neutral. The present numerical work addresses the development of helical vortices in a thermally stratified atmosphere and also concentrates on the stable condition which is typical for offshore applications. The Boussinesq approximation is invoked to account for the thermal stratification effect, and an actuator line model is adopted for the turbine blades. In our direct numerical simulations, the helical vortices are found to be increasingly elliptic downstream and subsequently interact with the hub vortex to produce a new mode of breakup into turbulence. Such elliptic structures increase the width of the wake and subsequently the interaction between aligned turbines in large-scale offshore wind farms.

  11. Dynamic manipulation of asymmetric forebody vortices to achieve linear control

    Science.gov (United States)

    Lee, Richard

    A wind tunnel experiment was performed to further investigate the potential of the dynamic manipulation of forebody vortices as a means of supplementing directional control of fighter aircraft at high angles of attack. Tests were conducted on a 65-deg delta-wing model fitted with a slender, pointed tangent-ogive forebody of circular cross-section and 12.8 deg semi-apex angle. Forward-blowing nozzles located near the apex of the forebody served as the means of manipulating the forebody vortices. As expected, forward blowing was very effective, i.e., little blowing effort was required to cause the forebody vortex on the blown side to assume the 'high' position. However, the magnitudes of yawing moment and side force developed by the slender forebody with blowing do not differ significantly from that of the no-blowing, baseline case. Moreover, blowing above a certain threshold value produced an unexpected reversal, with blowing causing the vortex on the blown side to assume the 'low' position instead and the yawing moment and side force to change sense. The results have shown that the dynamic manipulation scheme is very successful in producing a linear variation of time-average yawing moment with a duty-cycle parameter, even with sideslip, for the aircraft-like model. The results also show that, by switching the vortex pattern rapidly, the linearity can be maintained up to a reduced frequency of at least 0.32, which is expected to be very satisfactory for practical applications. A subsequent water tunnel experiment with the forebody alone was undertaken to conduct off-surface flow visualizations that confirmed the vortex reversal phenomenon. Based on the flow visualization studies, a hypothesis was formed regarding the cause of the reversal phenomenon; it postulates that at the reversal threshold the nozzle flux interrupts the formation of the high forebody vortex on the blowing side and encourages the shear layer to form a replacement vortex that lies close to the

  12. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    Science.gov (United States)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  13. A New Tip Correction Based on the Decambering Approach

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Dag, Kaya Onur; Ramos García, Néstor

    2014-01-01

    A limitation of the standard Blade Element Momentum (BEM) technique is that it represents the surface loading by an averaged value determined by locally computed airfoil characteristics. Thus, it does not take into account the chord wise distribution of the induction. Likewise, lifting line methods....... The correction is implemented as an additional correction to the Prandtl tip correction. Where the Prandtl tip correction serves to correct the axisymmetric momentum theory for a finite number of blades (see Goldstein, 1929), the new model further corrects the blade element model to represent the line...... suffer from the problem that the induction from the free wake vortices is only evaluated along a line representing the center of pressure. Hence, the effect from the chord wise distribution of the induction is neglected. As a consequence, the loading in the proximity of the tip is generally found...

  14. Seagull wing graft: a technique for the replacement of lower lateral cartilages.

    Science.gov (United States)

    Pedroza, Fernando; Anjos, Gustavo Coelho; Patrocinio, Lucas Gomes; Barreto, Jose M; Cortes, Jorge; Quessep, Suad H

    2006-01-01

    To present and evaluate outcomes with the seagull wing technique, which was designed to replace the lower lateral cartilages and to reconstruct the nasal tip. The seagull wing technique is illustrated and described in detail. Sixty patients who underwent surgery 1981 and 2002 were retrospectively evaluated. A preoperative diagnosis of tip deformities was made based on photographs, which were compared with the postoperative results. Patient satisfaction was subjectively evaluated. The postoperative results showed a significant statistical improvement in the following tip deformities: underprojected tip (P<.001), poorly defined tip (P<.001), alar retraction (P<.001), alar pinch (P<.001), overrotated tip (P<.001), and tip ptosis (P<.01). The average follow-up period was 14.6 months. Fifty-five patients (92%) stated that they were very satisfied with the surgical results; they required no additional revision surgery. The seagull wing technique is a safe and efficient reconstructive treatment for the aesthetic and functional problems that were caused by the overresection of the nasal tip cartilaginous framework. The outcomes were pleasing, and the results were stable during the follow-up period. Patient satisfaction was high.

  15. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  16. Dynamics of quantised vortices in superfluids

    CERN Document Server

    Sonin, Edouard B

    2016-01-01

    A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...

  17. Fractional Vortices in Multi-Gap Superconductors

    Science.gov (United States)

    Loh, Yen Lee; Kim, Monica; Kim, Ju H.

    2014-03-01

    Novel topological defects, known as fractional vortices, can occur in thin films of multi-gap superconductors. We study two-gap and three-gap superconducting films within a classical Ginzburg-Landau description, using numerical simulations and analytic approximations. In two-gap superconducting films, we find that the interband Josephson coupling J12 leads to an effective attraction between half-vortices, whereas the permeability parameter μ leads to an effective repulsion between half-vortices. We locate the phase boundary in (J12 , μ) space that marks the onset of spontaneous vortex fractionalization. We describe how the size of a fractional vortex increases as one goes deeper into the fractionalized phase. Our results suggest that coating a multi-gap superconducting film with a paramagnetic overlayer will enhance the tendency towards vortex fractionalization.

  18. Vorticity field measurement using digital inline holography

    Science.gov (United States)

    Mallery, Kevin; Hong, Jiarong

    2017-11-01

    We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.

  19. Stability of periodic arrays of vortices

    CERN Document Server

    Dauxois, T; Tuckerman, L S; Dauxois, Thierry; Fauve, Stephan; Tuckerman, Laurette

    1995-01-01

    The stability of periodic arrays of Mallier-Maslowe or Kelvin-Stuart vortices is discussed. We derive with the energy-Casimir stability method the nonlinear stability of this solution in the inviscid case as a function of the solution parameters and of the domain size. We exhibit the maximum size of the domain for which the vortex street is stable. By adapting a numerical time-stepping code, we calculate the linear stability of the Mallier-Maslowe solution in the presence of viscosity and compensating forcing. Finally, the results are discussed and compared to a recent experiment in fluids performed by Tabeling et al.~[Europhysics Letters {\\bf 3}, 459 (1987)]. Electromagnetically driven counter-rotating vortices are unstable above a critical electric current, and give way to co-rotating vortices. The importance of the friction at the bottom of the experimental apparatus is also discussed.

  20. Tip Studies using CFD and Comparison with Tip Loss Models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    2004-01-01

    The flow past a 95 kW Tellus rotor equipped with LM8.2 blades is computed using computational fluid dynamics for a standard tip and a swept tip. The difference in the near-tip flow for the two tips for various tip speed ratios is examined and 3D airfoil data are extracted. The radial distribution...

  1. Vortex Interactions on Plunging Airfoil and Wings

    Science.gov (United States)

    Eslam Panah, Azar; Buchholz, James

    2012-11-01

    The development of robust qualitative and quantitative models for the vorticity fields generated by oscillating foils and wings can provide a framework in which to understand flow interactions within groups of unsteady lifting bodies (e.g. shoals of birds, fish, MAV's), and inform low-order aerodynamic models. In the present experimental study, the flow fields generated by a plunging flat-plate airfoil and finite-aspect-ratio wing are characterized in terms of vortex topology, and circulation at Re=10,000. Strouhal numbers (St=fA/U) between 0.1 and 0.6 are investigated for plunge amplitudes of ho/c = 0.2, 0.3, and 0.4, resulting in reduced frequencies (k= π fc/U) between 0.39 and 4.71. For the nominally two-dimensional airfoil, the number of discrete vortex structures shed from the trailing edge, and the trajectory of the leading edge vortex (LEV) and its interaction with trailing edge vortex (TEV) are found to be primarily governed by k; however, for St >0.4, the role of St on these phenomena increases. Likewise, circulation of the TEV exhibits a dependence on k; however, the circulation of the LEV depends primarily on St. The growth and ultimate strength of the LEV depends strongly on its interaction with the body; in particular, with a region of opposite-sign vorticity generated on the surface of the body due to the influence of the LEV. In the finite-aspect-ratio case, spanwise flow is also a significant factor. The roles of these phenomena on vortex evolution and strength will be discussed in detail.

  2. Slow light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  3. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  4. On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings

    Science.gov (United States)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.

  5. Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-12-01

    Full Text Available We investigated the aerodynamic characteristics of a three-dimensional (3D wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE moved laterally to a greater extent than that of a wing-without-endplate (WOE. This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  6. Water waves interacting with a current of constant vorticity: estimating the vorticity of the wave field

    Science.gov (United States)

    Simon, Bruno; Seez, William; Abid, Malek; Kharif, Christian; Touboul, Julien

    2017-04-01

    During the last ten years, the topic of water waves interacting with sheared current has drawn a lot of attention, since the interaction of water waves with vorticity was recently found to be significant when modeling the propagation of water waves. In this framework, the configuration involving constantly sheared current (indeed a constant vorticity) is of special interst, since the equations remain tractable. In this framework, it is demonstrated that the flow related to water waves can be described by means of potential theory, since the source term in the vorticity equation is proportionnal to the curvature of the current profile (Nwogu, 2009). In the mean time, the community often wonders if this argument is valid, since the existence of a perfectly linearly sheared current is purely theoretical, and the presence of the vorticity within the wave field can be external (through wave generation mechanisms, for instance). Thus, this work is dedicated to investigate the magnitude of the vorticity related to the wave field, in conditions similar to this analytical case of constant vorticity. This approach is based on the comparison of experimental data, and three models. The first model is linear, supposing a constantly seared current and water waves described by potential theory. The second is fully nonlinear, but still supposing that water waves are potential, and finally, the third model is fully nonlinear, but solves the Euler equations, allowing the existence of vorticity related to the waves. The confrontation of these three approaches with the experimental data will allow to quantify the wave-related vorticity within the total flow, and analyze its importance as a function of nonlinearity and vorticity magnitude. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N°ANR-13-ASTR-0007.

  7. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  8. Hawkmoth flight performance in tornado-like whirlwind vortices.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  9. 10 Data Visualization Tips

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    1. 10 Data Visualization Tips. Data visualizations are an effective tool to communicate research. But to realize their potential, designers should follow these tips to help readers decode their visualizations. 1. Keep it simple! This is the golden rule. Always choose the simplest way to convey your information. 2. Have a specific ...

  10. Southwestern Pine Tip Moth

    Science.gov (United States)

    Daniel T. Jennings; Robert E. Stevens

    1982-01-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar), injures young ponderosa pines (Pinus ponderosa Dougl. ex Laws) in the Southwest, central Rockies, and midwestern plains. Larvae feed on and destroy new, expanding shoots, often seriously reducing terminal growth of both naturally regenerated and planted pines. The tip moth is especially damaging to trees on...

  11. ADHD: Tips to Try

    Science.gov (United States)

    ... Situations Talking to Your Parents - or Other Adults ADHD: Tips to Try KidsHealth > For Teens > ADHD: Tips to Try Print A A A en español TDAH: Consejos que puedes probar ADHD , short for attention deficit hyperactivity disorder , is a ...

  12. Vorticity-velocity formulation of the Navier-Stokes equations for aerodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.

    1994-05-01

    The aim of this Ph.D. thesis was to produce a numerical model to compute the flow past a wind turbine rotor. This thesis is divided into three separate reports. The first report is called Vorticity-Velocity Formulation of the Navier-Stokes Equations and is a feasibility study to see whether this formulation is suitable to compute three-dimensional, incompressible and unsteady viscous fluid flow. The vorticity-velocity formulation is discussed, and on this basis a numerical scheme is implemented to compute 3-D viscous flows. The velocity field is found by solving the Cauchy-Riemann equations, which turn out to give an overdetermined system of linear algebraic equations. Two iterative methods for solving this system is investigated: CGNR and the Kaczmarz algorithm. To advance the solution in time the ADI technique is applied on the vorticity transport equations. In the next report, Flow Simulation of a Wind Turbine Rotor by Numerical Solution of the Euler Equations, the governing equations are transformed into a general curvilinear coordinate system. As a test case the two-dimensional potential flow past a NACA0012 airfoil is computed for different angles of attack. For the attached flow, i.e. angles of attack below approximately 14 degrees, excellent agreement with measurements is found. Furthermore, qualitatively good results for the inviscid flow past the Nibe A turbine is computed. Finally, a model for the viscous flow past a wing is described in the report Navier-Stokes Solver for a Rotating Wing. To allow computations at realistic Reynolds numbers the algebraic Baldwin-Lomax turbulence model is implemented. (EG)

  13. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...

  14. Vorticity dynamics in an intracranial aneurysm

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.

  15. Bilinear Relative Equilibria of Identical Point Vortices

    DEFF Research Database (Denmark)

    Aref, H.; Beelen, Peter; Brøns, Morten

    2012-01-01

    . In particular, we show that, given q(z)=z 2+η 2, where η is real, there is a unique p(z) of degree n, and a unique value of η 2=A n , such that the zeros of q(z) and p(z) form a relative equilibrium of n+2 point vortices. We show that $A_{n} \\approx\\frac{2}{3}n + \\frac{1}{2}$, as n→∞, where the coefficient of n......A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, conveniently taken to be the x- and y-axes of a Cartesian coordinate system, is introduced and studied. In the general problem we have m vortices on the y......, obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n−m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail...

  16. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    ... realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  17. Vorticity Transport on a Rotating Blade

    Science.gov (United States)

    Wojcik, Craig; Buchholz, James

    2012-11-01

    The development of the leading-edge vortex (LEV) is investigated on the suction surface of a rectangular flat plate undergoing a starting rotation in a quiescent fluid for angles of attack between 25 and 45 degrees. For blade aspect ratios of 2 and 4, the LEV is shown to be compact and quasi-stationary at inboard regions of the blade, consistent with the results of some other recent investigations. A salient feature of this flow is a region of opposite-sign vorticity generated on the blade beneath the LEV which is observed to become partially entrained into the LEV. A detailed vorticity transport analysis on the LEV has revealed that the resulting annihilation of vorticity is an important mechanism regulating LEV circulation, and therefore its stability. A parametric study is discussed, which elucidates the roles of shear layer vorticity flux, spanwise flow, vortex tilting, and annihilation on the evolution of LEV circulation with changes in azimuthal position, blade aspect ratio, spanwise position, and Reynolds number. This work was supported by the National Science Foundation (EPSCoR grant EPS1101284), the Air Force Office of Scientific Research (grant FA9550-11-1-0019), and IIHR - Hydroscience & Engineering.

  18. Vortices in theories with flat directions

    NARCIS (Netherlands)

    Achucarro, A; Davis, AC; Pickles, M; Urrestilla, J

    2002-01-01

    In theories with flat directions containing vortices, such as supersymmetric QED, there is a vacuum selection effect in the allowed asymptotic configurations. We explain the role played by gauge fields in this effect and give a simple criterion for determining what vacua will be chosen, namely,

  19. Numerical simulation of pump-intake vortices

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2015-01-01

    Full Text Available Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  20. Numerical simulation of pump-intake vortices

    Science.gov (United States)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  1. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies.......Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  2. Cyclones and attractive streaming generated by acoustical vortices.

    Science.gov (United States)

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2014-07-01

    Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating "attractive streaming" with the flow directed toward the transducer. This opens perspectives for contactless vortical flow control.

  3. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors.

    Science.gov (United States)

    Kruyt, Jan W; Quicazán-Rubio, Elsa M; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2014-10-06

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the liver). Portal hypertension can also occur in children, although children are much less likely to require a TIPS. ... intentionally to solve the problem. Although extremely rare, children may also require a TIPS procedure. TIPS in ...

  5. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... pressure. top of page How does the procedure work? A TIPS reroutes blood flow in the liver ... intentionally to solve the problem. Although extremely rare, children may also require a TIPS procedure. TIPS in ...

  6. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... risks? What are the limitations of TIPS? What is a Transjugular Intrahepatic Portosystemic Shunt (TIPS)? A transjugular intrahepatic ... top of page What are some common uses of the procedure? A TIPS is used to treat ...

  7. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... What are the limitations of TIPS? What is a Transjugular Intrahepatic Portosystemic Shunt (TIPS)? A transjugular intrahepatic ... of page What are some common uses of the procedure? A TIPS is used to treat the ...

  8. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... vs. risks? What are the limitations of TIPS? What is a Transjugular Intrahepatic Portosystemic Shunt (TIPS)? A ... likely to require a TIPS. top of page What are some common uses of the procedure? A ...

  9. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  10. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  11. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... use of the Virtual Observatory (VO) tools to share the WINGS database (that will be updated regularly) with the community. In the database each object has one unique identification (WINGSID). Each subset of estimated properties is accessible using a cone search (including wide-field images). Results...

  12. Flight Test Results of Rocket-Propelled Buffet-Research Models Having 45 Degree Sweptback Wings and 45 Degree Sweptback Tails Located in the Wing Chord Plane

    Science.gov (United States)

    Mason, Homer P.

    1953-01-01

    Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.

  13. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.

    Science.gov (United States)

    Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L

    2015-03-06

    Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    Science.gov (United States)

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  15. Analysis of Kinematics of Flapping Wing UAV Using OptiTrack Systems

    Directory of Open Access Journals (Sweden)

    Matthew Ng Rongfa

    2016-07-01

    Full Text Available An analysis of the kinematics of a flapping membrane wing using experimental kinematic data is presented. This motion capture technique tracks the positon of the retroreflective marker(s placed on the left wing of a 1.3-m-wingspan ornithopter. The time-varying three-dimensional data of the wing kinematics were recorded for a single frequency. The wing shape data was then plotted on a two-dimensional plane to understand the wing dynamic behaviour of an ornithopter. Specifically, the wing tip path, leading edge bending, wing membrane shape, local twist, stroke angle and wing velocity were analyzed. As the three characteristic angles can be expressed in the Fourier series as a function of time, the kinematics of the wing can be computationally generated for the aerodynamic study of flapping flight through the Fourier coefficients presented. Analysis of the ornithopter wing showed how the ornithopter closely mimics the flight motions of birds despite several physical limitations.

  16. Lightplane Wing Design

    Science.gov (United States)

    1992-01-01

    Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.

  17. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    Science.gov (United States)

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  18. Eye Drop Tips

    Science.gov (United States)

    ... Involved News About Us Donate In This Section Eye Drop Tips en Español email Send this article ... the reach of children. Steps For Putting In Eye Drops: Start by tilting your head backward while ...

  19. Incontinence Treatment: Dietary Tips

    Science.gov (United States)

    ... well as some fruits). Some foods are gas producing (e.g., beans, cabbage, legumes, cauliflower, broccoli, lentils, ... supporting IFFGD with a small tax-deductible donation. Lifestyle Changes Dietary Tips Medication Bowel Management Biofeedback Surgical ...

  20. Tips from the Classroom.

    Science.gov (United States)

    Hess, Natalie; And Others

    1995-01-01

    Six classroom tips for language teachers focus on creating a congenial classroom environment, integrating listening and reading skills, teaching idioms from tabloid newspapers, cooperative learning in honors courses, grammar games, and teaching culture through personalized automobile license plate messages. (MDM)

  1. Tips for Chronic Pain

    Science.gov (United States)

    Patient Education Sheet Tips for Chronic Pain The SSF thanks Stuart S. Kassan, MD, FACP, Clinical Professor of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, for authoring ...

  2. Intensity of vortices: from soap bubbles to hurricanes.

    Science.gov (United States)

    Meuel, T; Xiong, Y L; Fischer, P; Bruneau, C H; Bessafi, M; Kellay, H

    2013-12-13

    By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones.

  3. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.

    Science.gov (United States)

    Debnath, M; Santoni, C; Leonardi, S; Iungo, G V

    2017-04-13

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  4. Dynamics of Micro-Air-Vehicle with Flapping Wings

    Directory of Open Access Journals (Sweden)

    K. Sibilski

    2004-01-01

    Full Text Available Small (approximately 6 inch long, or hand-held reconnaissance micro air vehicles (MAVs will fly inside buildings, and require hover for observation, and agility at low speeds to move in confined spaces. For this flight envelope insect-like flapping wings seem to be an optimal mode of flying. Investigation of the aerodynamics of flapping wing MAVs is very challenging. The problem involves complex unsteady, viscous flow (mainly laminar, with the moving wing generating vortices and interacting with them. At this early stage of research only a preliminary insight into the nature of the little known aerodynamics of MAVs has been obtained. This paper describes computational models for simulation of the controlled motion of a microelectromechanical flying insect – entomopter. The design of software simulation for entomopter flight (SSEF is presented. In particular, we will estimate the flight control algorithms and performance for a Micromechanical Flying Insect (MFI, a 80–100 mm (wingtip-to-wingtip device capable of sustained autonomous flight. The SSEF is an end-to-end tool composed of several modular blocks which model the wing aerodynamics and dynamics, the body dynamics, and in the future, the environment perception, control algorithms, the actuators dynamics, and the visual and inertial sensors. We present the current state of the art of its implementation, and preliminary results. 

  5. Mimicking graphene with polaritonic spin vortices

    Science.gov (United States)

    Gulevich, Dmitry R.; Yudin, Dmitry

    2017-09-01

    Exploring the properties of strongly correlated systems through quantum simulation with photons, cold atoms, or polaritons represents an active area of research. In fact, the latter sheds light on the behavior of complex systems that are difficult to address in the laboratory or to tackle numerically. In this study, we discuss an analog of graphene formed by exciton-polariton spin vortices arranged into a hexagonal lattice. We show how graphene-type dispersion at different energy scales arises for several types of exciton-polariton spin vortices. In contrast to previous studies of exciton polaritons in artificial lattices, the use of exciton-polariton spin vortex modes offers a richer playground for quantum simulations. In particular, we demonstrate that the sign of the nearest-neighbor coupling strength can be inverted.

  6. Statistical mechanics of vortices from field theory

    CERN Document Server

    Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K

    1999-01-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  7. Statistical mechanics of vortices from field theory

    Science.gov (United States)

    Kajantie, K.; Laine, M.; Neuhaus, T.; Rajantie, A.; Rummukainen, K.

    1999-10-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behavior of a large number of vortices in the three-dimensional U(1) gauge + Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength Hc, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of Hc, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  8. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  9. Flow structures in end-view plane of slender delta wing

    Science.gov (United States)

    Sahin, Besir; Oguz Tasci, Mehmet; Karasu, Ilyas; Akilli, Huseyin

    Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  10. Vortical and internal wave shear and strain

    OpenAIRE

    Pinkel, R.

    2014-01-01

    Depth-time records of isopycnal vertical strain have been collected from intensive CTD profiling programs on the research platform (R/P) Floating Instrument Platform (FLIP). The associated vertical wavenumber frequency spectrum of strain, when viewed in an isopycnal-following frame, displays a clear spectral gap at low vertical wavenumber, separating the quasigeostrophic (vortical) strain field and the superinertial internal wave continuum. This gap enables both model and linear-filter-based ...

  11. Driven motion of vortices in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa{sub 2}CU{sub 3}O{sub 7}). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order.

  12. Jovian Upheaval and its Impact on Vortices

    Science.gov (United States)

    de Pater, Imke

    2009-07-01

    We propose observations of Jupiter with global coverage at highresolution to quantify changes in its atmosphere during andfollowing the global upheaval. Only HST has the capability toobtain images with enough spatial resolution and contrast toextract velocity fields {we will use our newly developedtechnique to accomplish this}, and with WFC3 we can image Jupiterin its entirety in a single exposure. We are in particularinterested in the Red Oval BA: Will the Oval be long-lived,remain red, or turn white again, disappear? Both the merger ofits precursors, and change in color has never before beenwitnessed. The Great Red Spot: This storm system appears todecrease in size and has become rounder, both as derived from itsassociated cloud deck, but also from its potential vorticity, amore dynamically-relevant quantity. How will the GRS evolve? Willit swallow the new vortices detected in amateur images at thissame latitude band? How will this effect the potential vorticity?In addition, we hope to understand Disturbances and stagnationpoints, both of which were detected during the present globalupheaval: are these cyclonic regions, can they spawn anticyclones{as suggested by amateur images}?

  13. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  14. Theoretical studies in mesoscale jets and vortices

    Science.gov (United States)

    Radko, Timour

    1997-11-01

    Mesoscale vortices in the mid-ocean are known to move large distances without loss of coherence, preserving their speed and (usually westward) direction. Still open are the questions of how an eddy is able to preserve its structure during many turnaround times and what is the role in this process of the specific perturbations of the circular basic state. To investigate the effect of the rectilinear motion of the isolated eddies, we construct several analytical steady state models and examine the realizability in time of those solutions using the initial-value numerical calculations. To gain a preliminary understanding of the process, we first consider the barotropic f-plane model. It is demonstrated using linearized (about the circular basic state) calculations that for almost any eddy with compact basic velocity we can find a small amplitude disturbance of the first azimuthal harmonic (m=1 mode) that results in the rectilinear motion of an eddy. If such a disturbance is sufficiently small, the vortex can propagate many diameters away from its origin, as shown by a weak non-linear theory. This conclusion is confirmed by the spectral calculations using the full two dimensional vorticity equation. A more realistic representation of the ocean eddies is given by the equivalent-barotropic model, which includes effects of the passive lower layer and the ambient potential vorticity gradient (the beta-effect). Analytical theory is developed to construct a wide class of stable quasi-monopolar vortecies propagating in the westward direction with the supercritical (Usolutions in barotropic and equivalent-barotropic models for all values of the propagation velocity. The numerical spectral calculations, initiated by our analytical solutions, indicate that the (supercritical) vortices initially move with the predicted velocity, but later slow down to the speed of the long planetary waves. The period of time during which an eddy is propagating with its initial velocity is

  15. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  16. Mutual inductance instability of the tip vortices behind a wind turbine

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Dadfar, Reza; Mikkelsen, Robert Flemming

    2014-01-01

    calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific...

  17. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    Science.gov (United States)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  18. Visualization of vortical flows in computational fluid dynamics

    Science.gov (United States)

    Volkov, K. N.; Emel'yanov, V. N.; Teterina, I. V.; Yakovchuk, M. S.

    2017-08-01

    The concepts and methods of the visual representation of fluid dynamics computations of vortical flows are studied. Approaches to the visualization of vortical flows based on the use of various definitions of a vortex and various tests for its identification are discussed. Examples of the visual representation of solutions to some fluid dynamics problems related to the computation of vortical flows in jets, channels, and cavities and of the computation of separated flows occurring in flows around bodies of various shapes are discussed.

  19. SIMULATION OF AIRCRAFT CONDENSATION TRAILS AND WAKE VORTICES INTERACTION

    Directory of Open Access Journals (Sweden)

    T. O. Aubakirov

    2015-01-01

    Full Text Available A technique of calculation of aircraft condensation trails (contrails and wake vortices interaction is described. The technique is based on a suitable for real-time applications mathematical model of far wake utilizes the method of discrete vortices. The technique is supplemented by account of the influence of axial velocities in the vortex nucleus on contrail and wake vortex location. Results of calculations of contrails and wake vortices interaction for Il-76 and B-747 aircraft are presented.

  20. Phase shifting profilometry with optical vortices

    Science.gov (United States)

    Sokolenko, B.; Poletaev, D.; Halilov, S.

    2017-11-01

    In this work we review principles and applications of a method of phase shifting profilometry with using of optical vortices imbedded into the probe beam. High spatial resolution caused by vortex phase sensitivity is analysable to retrieve the 2D and 3D shape of optically transparent and reflecting surfaces with exceeding of optical diffraction limit. This method applicable for non-destructive testing of thin films, live cells and biological tissues in real-time regime. Automatic processing of vortex interferograms with vortex phase shift analysis allow to achieve a vertical resolution down to 1,75 nm.

  1. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    for the three eigenvalues determining the stability, including a new formula for the angular velocity of rotation of a collinear relative equilibrium. A graphical representation of the space of vortex circulations is introduced, and the resultants between various polynomials that enter the problem are used...... involved. The only comprehensive analysis available in the literature, by Tavantzis and Ting [Phys. Fluids 31, 1392 (1988)], is not easy to follow nor is it very physically intuitive. The symmetry between the three vortices is lost in this analysis. A different analysis is given based on explicit formulas...

  2. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime they poss......Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....

  3. Taxicab tipping and sunlight.

    Science.gov (United States)

    Devaraj, Srikant; Patel, Pankaj C

    2017-01-01

    Does the level of sunlight affect the tipping percentage in taxicab rides in New York City? We examined this question using data on 13.82 million cab rides from January to October in 2009 in New York City combined with data on hourly levels of solar radiation. We found a small but statistically significant positive relationship between sunlight and tipping, with an estimated tipping increase of 0.5 to 0.7 percentage points when transitioning from a dark sky to full sunshine. The findings are robust to two-way clustering of standard errors based on hour-of-the-day and day-of-the-year and controlling for day-of-the-year, month-of-the-year, cab driver fixed effects, weather conditions, and ride characteristics. The NYC cab ride context is suitable for testing the association between sunlight and tipping due to the largely random assignment of riders to drivers, direct exposure to sunlight, and low confounding from variation in service experiences.

  4. Tips for Energy Savers.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    According to 1986 U.S. Department of Energy data, 48% of our residential energy is used to heat and cool our homes, 16% goes for heating water, 12% is used to refrigerators and freezers, and the remaining 24% goes into lighting, cooking, and running appliances. This booklet contains tips for saving energy, including sections on: (1) draft-proof…

  5. Observations of Electron Vorticity in the Inner Plasma Sheet

    Science.gov (United States)

    Gurgiolo, C.; Goldstein, M. L.; Vinas, A. F.; Matthaeus, W. H.; Fazakerley, A. N.

    2011-01-01

    From a limited number of observations it appears that vorticity is a common feature in the inner plasma sheet. With the four Cluster spacecraft and the four PEACE instruments positioned in a tetrahedral configuration, for the first time it is possible to directly estimate the electron fluid vorticity in a space plasma. We show examples of electron fluid vorticity from multiple plasma sheet crossings. These include three time periods when Cluster passed through a reconnection ion diffusion region. Enhancements in vorticity are seen in association with each crossing of the ion diffusion region.

  6. Tipping: Is it ever OK to skip the tip?

    National Research Council Canada - National Science Library

    N'dea Yancey-Bragg

    2017-01-01

    ..., the minimum wage for tipped workers can be also low as $2. 13. Delivery Apps like UberEats and Postmates don't require tips, although some offer suggested gratuities on their checkout page. (Uber on Tuesday just added the option to tip. ) Grubhub founder and CEO Matt Maloney strongly encourages a 10-15% tip. After all, delivery drivers aren't salaried work...

  7. Temporal evolution of vorticity staircases in randomly strained two-dimensional vortices

    Science.gov (United States)

    Turner, M. R.

    2014-11-01

    The evolution of a Gaussian vortex subject to a weak-external-random n-fold multipolar strain field is examined using fully nonlinear simulations. The simulations show that at large Reynolds numbers, fine scale steps form at the periphery of the vortex, before merging, generally leaving one large step, which acts as a barrier between the vorticity within the coherent core and the surrounding, well mixed, "surf zone." It is shown for n = 2 that the width and the number of fine scale steps which initially form at the periphery of the vortex is dependent on the strain parameters, but that the range of radial values for which steps initially occur is only dependent on n and the amplitude of the strain field. A criteria is developed which can predict this range of radial values using the linear stability results of Le Dizès ["Non-axisymmetric vortices in two-dimensional flows," J. Fluid Mech. 406, 175 (2000)]. This criteria is based upon the perturbation vorticity needing to be larger than some fraction of the vorticity gradient to flatten the vortex profile. For n = 3 and 4, the radial step range is again predicted, and it is observed that for these higher wavenumbers the long lasting steps are narrower than the n = 2 case. For n = 4 the steps which form are so narrow that they do not persist very long before they are destroyed by the strain field and viscosity.

  8. Unsteady Structure of Leading-Edge Vortices on a Delta Wing

    Science.gov (United States)

    1994-03-22

    beyond that attainable with classical point measurement approaches. (iii) Development of PIV cinematography system. The evolution in time of patterns...allow the first cinematographic characterization of these types of flow patterns. In essence, each frame of a long spool (35 mm) film corresponds to a

  9. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  10. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    stability margin of the twisting dynamics sixteen fold. A tracking control law is derived for the wing tip displacement which uses motion planning and a novel two-stage perturbation observer. This work on PDE-based control of wing deformation allows for the use of highly flexible wings on MAVs. Put together, the thesis provides a comprehensive understanding of the flight dynamics of a robotic aircraft equipped with articulated wings, and provides a set of control laws for performing agile maneuvers and for honing the benefits of using highly flexible wings.

  11. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... What are the limitations of TIPS? What is a Transjugular Intrahepatic Portosystemic Shunt (TIPS)? A transjugular intrahepatic ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  12. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... TIPS. top of page What are some common uses of the procedure? A TIPS is used to ... the scanner by a cord. Some exams may use different transducers (with different capabilities) during a single ...

  13. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... or bypass, without the risks that accompany open surgery. TIPS is a minimally invasive procedure that typically has a shorter recovery time than surgery. Your TIPS should have less of an effect ...

  14. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... What are the limitations of TIPS? What is a Transjugular Intrahepatic Portosystemic Shunt (TIPS)? A transjugular intrahepatic ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  15. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  16. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  17. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  18. Observed Effect of Mesoscale Vertical Vorticity on Rotation Sense of Dust Devil-Like Vortices in an Urban Area

    OpenAIRE

    Fujiwara, Chusei; Yamashita, Kazuya; Fujiyoshi, Yasushi

    2012-01-01

    Dust devil-like vortices were detected by a three-dimensional scanning coherent Doppler lidar (3D-CDL) in an urban area of Sapporo, Japan, from April 2005 to July 2007. A total of 57 strong, dust devil-like vortices with vertical vorticity exceeding 0.1 s^[-1] were detected in 8 days of the observation period and were associated with a convective cell (fish net) pattern of wind fields detected by the 3D-CDL. The observed vortices had both rotation senses for 7 days. However, all of 7 dust dev...

  19. Energy conserving numerical methods for the computation of complex vortical flows

    Science.gov (United States)

    Allaneau, Yves

    One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our

  20. Economic Behavior of Restaurant Tipping

    OpenAIRE

    Tin-Chun Lin

    2007-01-01

    This paper offers a thoughtful discussion of social norms and alternative economic viewpoints and analysis of restaurant tipping behavior. A survey of Louisiana residents was conducted to collect public opinions about tipping. The analysis suggests that social norms are indeed the primary reason for diner tipping. As long as consumer behavior is guided by social norms, social norms will costs for diners. The conclusion suggests that if customer's tipping behavior were completely guided by soc...

  1. Method for solving an inverse problem of wing type by using a simple panel method; Kanbenna panel ho ni yoru yokugata gyaku mondai no ichikaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ando, J.; Matsumoto, D.; Maita, S.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes one method for solving an inverse problem of wing type based on the source and quasi continuous vortex lattice method (SQCM) in designing marine propellers and underwater wings. With the SQCM, vortices and control points are distributed on wing camber according to the QCM, and wing surface is divided into certain number of panels. This is the method to decide vortex intensity and blow-out intensity simultaneously from the condition that vertical speed on the camber and the wing surface is zero, upon having distributed blow-out with certain intensity inside the panel. The method solves the inverse problem with the following process: specific point distribution is so determined that the targeted velocity on the wing surface is satisfied when wing surface pressure distribution and uniform flow velocity are given; and then the panels are so rearranged as in parallel with direction of the flow on the surface of the wing calculated by using these specific points to derive the targeted wing shape. This paper describes the problem solving procedure in great detail. It also introduces examples of numerical calculations. It shows one method for solving the inverse problem in wing type using the SQCM as a simple panel method, whereas its good convergence and stability were verified. Considerations on effects of free surface and expansion of the method into three-dimensional problems will be implemented in the future. 11 refs., 8 figs.

  2. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... liver disease are at greater risk for worsening liver failure after TIPS. If your liver failure is severe, a TIPS may not be the best use and a different procedure may be needed to control your symptoms. ... ordinarily filtered out by the liver. The TIPS may cause too much of these ...

  3. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... of page What are the limitations of TIPS? Patients with more advanced liver disease are at greater risk for worsening liver failure after TIPS. If your liver failure is severe, a TIPS may not be the best use and a different procedure may be needed ...

  4. New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing

    Science.gov (United States)

    Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian

    2016-11-01

    Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.

  5. Attenuation of the tip vortex flow using a flexible thread

    Science.gov (United States)

    Lee, Seung-Jae; Shin, Jin-Woo; Arndt, Roger E. A.; Suh, Jung-Chun

    2018-01-01

    Tip vortex cavitation (TVC) is important in a number of practical engineering applications. The onset of TVC is a critical concern for navy surface ships and submarines that aim to increase their capability to evade detection. A flexible thread attachment at blade tips was recently suggested as a new method to delay the onset of TVC. Although the occurrence of TVC can be reduced using a flexible thread, no scientific investigation focusing on its mechanisms has been undertaken. Thus, herein, we experimentally investigated the use of the flexible thread to suppress TVC from an elliptical wing. These investigations were performed in a cavitation tunnel and involved an observation of TVC using high-speed cameras, motion tracking of the thread using image-processing techniques, and near-field flow measurements performed using stereoscopic particle image velocimetry. The experimental data suggested that the flexible thread affects the axial velocity field more than the circumferential velocity field around the TVC axis. Furthermore, we observed no clear dependence of the vortex core size, circulation, and flow unsteadiness on TVC suppression. However, the presence of the thread at the wing tip led to a notable reduction in the streamwise velocity field, thereby alleviating TVC.

  6. Wing kinematics and flexibility for optimal manoeuvring and escape

    Science.gov (United States)

    Wong, Jaime Gustav

    Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.

  7. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  8. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    Science.gov (United States)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  9. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes ...

  10. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    Abstract. In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and ther-.

  11. Diffused vorticity approach to the oscillations of a rotating Bose ...

    Indian Academy of Sciences (India)

    Abstract. The collective modes of a rotating Bose–Einstein condensate confined in an attractive quadratic plus quartic trap are investigated. Assuming the presence of a large number of vortices we apply the diffused vorticity approach to the system. We then use the sum rule technique for the calculation of collective ...

  12. Diffused vorticity approach to the oscillations of a rotating Bose ...

    Indian Academy of Sciences (India)

    The collective modes of a rotating Bose-Einstein condensate confined in an attractive quadratic plus quartic trap are investigated. Assuming the presence of a large number of vortices we apply the diffused vorticity approach to the system. We then use the sum rule technique for the calculation of collective frequencies, ...

  13. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  14. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    Abstract. We have investigated the vortex dynamics for the 'ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially ...

  15. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  16. Vorticity and helicity in relativistic heat-conducting fluid

    Science.gov (United States)

    Prasad, G.

    2017-12-01

    The evolution of heat-conducting fluid described by a pair of Maxwell-like equations is used to construct thermal-fluid helicity and thermal-helicity currents. These currents are found to be dissipative. It is shown that the magnetic part of the particle vorticity two-form is a thermal-fluid vorticity flux vector field composed of a linear combination of the fluid’s vorticity and a spacelike twist of heat flow lines. Heat flow lines are non-geodesic because of the interplay between gravitation and the entropy entrainment in a system composed of a heat-conducting fluid which is in state of rapid differential rotation and far from equilibrium. In general, alignment of the heat flux vector with that of the fluid’s vorticity leads to non-conservation of thermal-fluid vorticity flux in both a thermal-fluid flux tube and a stream tube. It is demonstrated that the twist of the fluid’s vortex lines is caused by the heat flow along the fluid’s vorticity vector in the case of an axisymmetric stationary differentially rotating heat-conducting fluid configuration. In this case, dissipation of thermal-fluid vorticity flux along the flux tube is caused by coupled effects of the fluid’s vorticity magnitude, thermal resistivity and entropy entrainment.

  17. Potential vorticity field in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.

    theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...

  18. Helical vortices: linear stability analysis and nonlinear dynamics

    Science.gov (United States)

    Selçuk, C.; Delbende, I.; Rossi, M.

    2018-02-01

    We numerically investigate, within the context of helical symmetry, the dynamics of a regular array of two or three helical vortices with or without a straight central hub vortex. The Navier–Stokes equations are linearised to study the instabilities of such basic states. For vortices with low pitches, an unstable mode is extracted which corresponds to a displacement mode and growth rates are found to compare well with results valid for an infinite row of point vortices or an infinite alley of vortex rings. For larger pitches, the system is stable with respect to helically symmetric perturbations. In the nonlinear regime, we follow the time-evolution of the above basic states when initially perturbed by the dominant instability mode. For two vortices, sequences of overtaking events, leapfrogging and eventually merging are observed. The transition between such behaviours occurs at a critical ratio involving the core size and the vortex-separation distance. Cases with three helical vortices are also presented.

  19. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  20. Cubic nonlinear Schroedinger equation with vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Caliari, M; Morato, L M; Zuccher, S [Dipartimento di Informatica, Universita di Verona, Ca' Vignal 2, Strada Le Grazie 15, 37134 Verona (Italy); Loffredo, M I [Dipartimento di Scienze Matematiche ed Informatiche, Universita di Siena, Pian dei Mantellini 44, 53100 Siena (Italy)], E-mail: marco.caliari@univr.it, E-mail: loffredo@unisi.it, E-mail: laura.morato@univr.it, E-mail: zuccher@sci.univr.it

    2008-12-15

    In this paper, we introduce a new class of nonlinear Schroedinger equations (NLSEs), with an electromagnetic potential (A,{phi}), both depending on the wavefunction {psi}. The scalar potential {phi} depends on |{psi}|{sup 2}, whereas the vector potential A satisfies the equation of magnetohydrodynamics with coefficient depending on {psi}. In Madelung variables, the velocity field comes to be not irrotational in general and we prove that the vorticity induces dissipation, until the dynamical equilibrium is reached. The expression of the rate of dissipation is common to all NLSEs in the class. We show that they are a particular case of the one-particle dynamics out of dynamical equilibrium for a system of N identical interacting Bose particles, as recently described within stochastic quantization by Lagrangian variational principle. The cubic case is discussed in particular. Results of numerical experiments for rotational excitations of the ground state in a finite two-dimensional trap with harmonic potential are reported.

  1. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  2. Potential vorticity patterns in Mediterranean "hurricanes"

    Science.gov (United States)

    Miglietta, M. M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V.

    2017-03-01

    The potential vorticity (PV) anomalies due to the intrusion of dry stratospheric air and those generated by the tropospheric diabatic latent heating are qualitatively analyzed for five Mediterranean tropical-like cyclones (also known as Medicanes). Model simulations show the presence of an upper level PV streamer in the early stages of the cyclone, located on the left exit of a jet stream, and a middle-low level PV anomaly generated by the convection developing around the low-level vortex. In the mature stage, the upper level PV anomaly around the cyclone evolves differently for each case and appears somehow dependent on the lifetime. Only for the 2006 Medicane, the PV anomalies form an intense PV tower extending continuously from the lower troposphere to the lower stratosphere.

  3. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    -averaged thrust, while the average aerodynamic power is increased. Furthermore, increasing the number of variables (i.e., providing the wing shape with greater degrees of spatial freedom) is observed to enable superior designs. To gain a better understanding of the reasons for which the obtained optimised shapes produce efficient flapping flights, the wake pattern and its vorticity strength are examined. This work described in this paper should facilitate better guidance for shape design of engineered flying systems.

  4. Supersonic aerodynamics of delta wings

    Science.gov (United States)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  5. Vortices and hysteresis in a rotating Bose-Einstein condensate with anharmonic confinement

    DEFF Research Database (Denmark)

    Jackson, A.D.; Kavoulakis, G.M.

    2004-01-01

    Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August......Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August...

  6. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  7. Vortical structures responsible for delayed stall in an idealized humpback whale flipper model

    Science.gov (United States)

    Kim, Heesu; Kim, Jooha; Choi, Haecheon

    2016-11-01

    In this study, we investigate how the tubercles on the leading edge of an idealized humpback whale flipper model delay the stall. Oil-surface visualization is performed to see the surface flow pattern on the suction surface, and PIV is conducted in several streamwise and crossflow planes at different attack angles (α). Without tubercles, leading edge separation first occurs near the tip region and progresses inboard with increasing α. With tubercles, however, two types of vortical motions are observed at the mid-span. The first is streamwise vortex arrays which are dominant at α 9° , and these structures appear near the trailing edge. These two types of vortical motions delay flow separation at the peak regions of the mid-span, eliminating the spanwise stall progression and resulting in delayed stall. At α = 16° at which the tubercle model stalls, a large-scale streamwise vortex is originated from flow separation near the root region. This structure delays flow separation at the mid-span, leading to higher lift coefficient. Supported by NRF-2014M3C1B1033848.

  8. Computation of streamwise vorticity in a compressible flow of a winglet nozzle-based COIL device

    Science.gov (United States)

    Singhal, Gaurav; Dawar, A. L.; Subbarao, P. M. V.; Endo, M.

    2008-02-01

    Chemical oxygen iodine laser (COIL) is a high-power laser with potential applications in both military as well as in the industry. COIL is the only chemical laser based on electronic transition with a wavelength of 1.315 μm, which falls in the near-infrared (IR) range. Thus, COIL beam can also be transported via optical fibers for remote applications such as dismantling of nuclear reactors. The efficiency of a supersonic COIL is essentially a function of mixing specially in systems employing cross-stream injection of the secondary lasing ( I2) flow in supersonic regime into the primary pumping (O 21Δ g) flow. Streamwise vorticity has been proven to be among the most effective manner of enhancing mixing and has been utilized in jet engines for thrust augmentation, noise reduction, supersonic combustion, etc. Therefore, a computational study of the generation of streamwise vorticity in the supersonic flow field of a COIL device employing a winglet nozzle with various delta wing angles of 5°, 10°, and 22.5° has been carried out. The study predicts a typical Mach number of approximately 1.75 for all the winglet geometries. The analysis also confirms that the winglet geometry doubles up both as a nozzle and as a vortex generator. The region of maximum turbulence and fully developed streamwise vortices is observed to occur close to the exit, at x/ λ of 0.5, of the winglets making it the most suitable region for secondary flow injection for achieving efficient mixing. The predicted length scale of the scalloped mixer formed by the winglet nozzle is 4 λ. Also, the winglet nozzle with 10° lobe angle is most suitable from the point of view of mixing developing cross-stream velocity of 120 m/s with acceptable pressure drop of 0.7 Torr. The winglet geometry with 5° lobe angle is associated with a low cross-stream velocity of 60 m/s, whereas the one with 22.5° lobe angle is associated with a large static and total pressure drop of 1.87 and 9.37 Torr, respectively

  9. Tipping point leadership.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2003-04-01

    When William Bratton was appointed police commissioner of New York City in 1994, turf wars over jurisdiction and funding were rife and crime was out of control. Yet in less than two years, and without an increase in his budget, Bratton turned New York into the safest large city in the nation. And the NYPD was only the latest of five law-enforcement agencies Bratton had turned around. In each case, he succeeded in record time despite limited resources, a demotivated staff, opposition from powerful vested interests, and an organization wedded to the status quo. Bratton's turnarounds demonstrate what the authors call tipping point leadership. The theory of tipping points hinges on the insight that in any organization, fundamental changes can occur quickly when the beliefs and energies of a critical mass of people create an epidemic movement toward an idea. Bratton begins by overcoming the cognitive hurdles that block organizations from recognizing the need for change. He does this by putting managers face-to-face with operational problems. Next, he manages around limitations on funds, staff, or equipment by concentrating resources on the areas that are most in need of change and that have the biggest payoffs. He meanwhile solves the motivation problem by singling out key influencers--people with disproportionate power due to their connections or persuasive abilities. Finally, he closes off resistance from powerful opponents. Not every CEO has the personality to be a Bill Bratton, but his successes are due to much more than his personality. He relies on a remarkably consistent method that any manager looking to turn around an organization can use to overcome the forces of inertia and reach the tipping point.

  10. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  11. Structures of the vorticity tube segment in turbulence

    Science.gov (United States)

    Wang, Lipo

    2012-04-01

    To address the geometrical properties of the turbulent velocity vector field, a new concept named streamtube segment has been developed recently [L. Wang, "On properties of fluid turbulence along streamlines," J. Fluid Mech. 648, 183-203 (2010), 10.1017/S0022112009993041]. According to the vectorial topology, the entire velocity field can be partitioned into the so-called streamtube segments, which are organized in a non-overlapping and space-filling manner. In principle, properties of turbulent fields can be reproduced from those of the decomposed geometrical units with relatively simple structures. A similar idea is implemented to study the turbulent vorticity vector field using the vorticity tube segment structure. Differently from the conventional vortex tubes, vorticity tube segments are space-filling and can be characterized by non-arbitrary parameters, which enables a more quantitative description rather than just an illustrative explanation of turbulence behaviors. From analyzing the direct numerical simulation data, the topological and dynamical properties of vorticity tube segments are explored. The characteristic parameters have strong influence on some conditional statistics, such as the enstrophy production and the probability density function of vorticity stretching. Consequently the common knowledge in turbulence dynamics that vorticity are more stretched than compressed need to be rectified in the vorticity tube segment context.

  12. Nonlinear aerodynamic wing design

    Science.gov (United States)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  13. Drag Performance of Twist Morphing MAV Wing

    OpenAIRE

    Ismail N.I.; Zulkifli A.H.; Talib R.J.; Zaini H.; Yusoff H.

    2016-01-01

    Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analy...

  14. The natural flow wing-design concept

    Science.gov (United States)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  15. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  16. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  17. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance

  18. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

    Science.gov (United States)

    Mountcastle, Andrew M; Alexander, Teressa M; Switzer, Callin M; Combes, Stacey A

    2016-06-01

    Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear. © 2016 The Author(s).

  19. Planar cell polarity and tissue design: Shaping the Drosophila wing membrane.

    Science.gov (United States)

    Valentine, Meagan; Collier, Simon

    2011-01-01

    Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.

  20. The evolution of avian wing shape and previously unrecognized trends in covert feathering.

    Science.gov (United States)

    Wang, Xia; Clarke, Julia A

    2015-10-07

    Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric-morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa. © 2015 The Author(s).

  1. Flutter Analysis of a Morphing Wing Technology Demonstrator: Numerical Simulation and Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Andreea KOREANSCHI

    2016-03-01

    Full Text Available As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing section situated at the tip of the wing; the first model corresponds to a traditional aluminium upper surface skin of constant thickness and the second model corresponds to a composite optimized upper surface skin for morphing capabilities. The two models were analyzed for flutter occurrence and effects on the aeroelastic behaviour of the wing were studied by replacing the aluminium upper surface skin of the wing with a specially developed composite version. The morphing wing model with composite upper surface was manufactured and fitted with three accelerometers to record the amplitudes and frequencies during tests at the subsonic wind tunnel facility at the National Research Council. The results presented showed that no aeroelastic phenomenon occurred at the speeds, angles of attack and aileron deflections studied in the wind tunnel and confirmed the prediction of the flutter analysis on the frequencies and modal displacements.

  2. Thermal Convection and Emergence of Isolated Vortices in Soap Bubbles

    Science.gov (United States)

    Seychelles, F.; Amarouchene, Y.; Bessafi, M.; Kellay, H.

    2008-04-01

    A novel thermal convection cell consisting of half a soap bubble heated at the equator is introduced to study thermal convection and the movement of isolated vortices. The soap bubble, subject to stratification, develops thermal convection at its equator. A particular feature of this cell is the emergence of isolated vortices. These vortices resemble hurricanes or cyclones and similarities between our observed structures and these natural objects are found. This is brought forth through a study of the mean square displacement of these objects showing signs of superdiffusion.

  3. Thermal convection and emergence of isolated vortices in soap bubbles.

    Science.gov (United States)

    Seychelles, F; Amarouchene, Y; Bessafi, M; Kellay, H

    2008-04-11

    A novel thermal convection cell consisting of half a soap bubble heated at the equator is introduced to study thermal convection and the movement of isolated vortices. The soap bubble, subject to stratification, develops thermal convection at its equator. A particular feature of this cell is the emergence of isolated vortices. These vortices resemble hurricanes or cyclones and similarities between our observed structures and these natural objects are found. This is brought forth through a study of the mean square displacement of these objects showing signs of superdiffusion.

  4. Synthesis and analysis of linear and nonlinear acoustical vortices.

    Science.gov (United States)

    Marchiano, Régis; Thomas, Jean-Louis

    2005-06-01

    Acoustical screw dislocations are synthesized in various configurations with a versatile experimental setup. The experimental setup is based on the inverse filter technique and allows one to synthesize one or more acoustical vortices with a chosen width, position, and topological charge. An interesting feature of this experimental facility to study screw dislocation behavior is the direct measurement in amplitude and phase. This characteristic is used to develop an original method of decomposition of an acoustical vortex field in order to analyze the acoustical vortices. Moreover, the behaviors of two acoustical vortices of the same or opposite charge have been studied experimentally and compared to theoretical laws.

  5. Experimental Study of the Interaction between Vortices in Electrolytic Solutions

    Science.gov (United States)

    Izaguirre, E. W.

    1996-11-01

    The interaction between vortices and their structure are analyzed in a system of three vortices in electrolytic solutions using crosed electric and magnetic fields in a square tray. The flow pattern and the speed field are obtained using image techniques and anemometry. The experiment is repeated for different strengths of the magnetic and electric fields, and thickness of the fluid layer. Self oscillations, coupling and competition between vortices are observed. A model of the system is presented and numerical results contrasted with the experimental data.

  6. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    lation viscosity is required. A wing is seen as a body that locally disturbs the otherwise uniform flow. The disturbances in veloc- ity and pressure caused are such that they aid to generate lift but damp down to zero far away from the wing. The momentum the- orem connects these ideas and explains how the reaction force to.

  7. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  8. Logistics Implications of Composite Wings

    Science.gov (United States)

    1993-12-01

    Stock Funding 59 Summary 60 Notes 60 5 DEPOT SUPPORT FOR COMPOSITE WINGS 63 Definition of Logistics 63 What Is a Depot? 63 Air Force...impacts of composite wings on the depot structure. Definition of Logistics Logistics is the foundation for sustaining all Air Force operations. The

  9. A study on forces acting on a flapping wing

    Directory of Open Access Journals (Sweden)

    Cetiner O.

    2013-04-01

    Full Text Available In order to study the forces acting on a flapping wing, an experimental investigation is performed in steady water flow. In this study, a SD7003 airfoil undergoes combined pitching and plunging motion which simulates the forward flight of small birds. The frequency of pitching motion is equal to the frequency of plunging motion and pitch leads the plunge by a phase angle of 90 degrees. The experiments are conducted at Reynolds numbers of 2500 ≤ Re ≤ 13700 and the vortex formation is recorded using the digital particle image velocimetry (DPIV technique. A prediction of thrust force and efficiency is calculated from the average wake deficit of DPIV data, the near-wake vorticity patterns and time dependent velocity vectors are determined to comment on the thrust and drag indication. Direct force measurements are attempted using a Force/Torque sensor which is capable of measuring forces and moments in three axial directions.

  10. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  11. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Shen, Lu; Wen, Chih-yung

    2017-06-01

    This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.

  12. Computation of spanwise distribution of circulation and lift coefficient for flapped wings of arbitrary planform

    Science.gov (United States)

    Razak, K.

    1980-01-01

    The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.

  13. Tipping: The Economics of a Social Norm

    OpenAIRE

    Ofer H. Azar

    2003-01-01

    Tipping illustrates the importance of social norms in motivating economic behavior. People tip because this is the social norm and disobeying norms results in social disapproval that creates emotional disutility. Tipping is also economically important: in the United States alone, millions of workers derive most of their income from tips, and annual tips amount to dozens of billions of dollars. I claim that tipping is not a single phenomenon; the economics of some tipping occasions is very dif...

  14. Equivariant Verlinde Formula from Fivebranes and Vortices

    Science.gov (United States)

    Gukov, Sergei; Pei, Du

    2017-10-01

    We study complex Chern-Simons theory on a Seifert manifold M 3 by embedding it into string theory. We show that complex Chern-Simons theory on M 3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology of the Grassmannian, (3) Chern-Simons theory on {Σ× S^1} and (4) index of a spin c Dirac operator on the moduli space of flat connections to a new set of relations between (1) the "equivariant Verlinde algebra" for a complex group, (2) the equivariant quantum K-theory of the vortex moduli space, (3) complex Chern-Simons theory on {Σ × S^1} and (4) the equivariant index of a spin c Dirac operator on the moduli space of Higgs bundles.

  15. Artificial ice using superconducting vortices (Conference Presentation)

    Science.gov (United States)

    Trastoy Quintela, Juan; Malnou, Maxime; Ulysse, Christian; Bernard, Rozenn; Bergeal, Nicolas; Faini, Giancarlo; Lesueur, Jerome; Briatico, Javier; Villegas, Javier E.

    2016-10-01

    We use magnetic flux quanta (superconducting vortices) on artificial energy landscapes (pinning arrays) to create a new type of artificial ice. This vortex ice shows unusual temperature effects that offer new possibilities in the study of ice systems. We have investigated the matching of the flux lattice to pinning arrays that present geometrical frustration. The pinning arrays are fabricated on YBCO films using masked O+ ion irradiation. The details of the magneto-resistance imply that the flux lattice organizes into a vortex ice. The absence of history-dependent effects suggests that the vortex ice is highly ordered. Due to the technique used for the artificial energy landscape fabrication, we have the ability to change the pinning array geometry using temperature as a control knob. In particular we can switch the geometrical frustration on and off, which opens the door to performing a new type of annealing absent in other artificial ice systems. * Work supported by the French ANR "MASTHER", and the Fundación Barrié (Galicia, Spain)

  16. Analytical BPS Maxwell-Higgs Vortices

    Directory of Open Access Journals (Sweden)

    R. Casana

    2014-01-01

    Full Text Available We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs models whose overall dynamics is controlled by two positive functions of the scalar field, namely, fϕ and wϕ. We have also determined a natural constraint between these functions and the Higgs potential Uϕ, allowing the existence of axially symmetric Bogomol'nyi-Prasad-Sommerfield (BPS solutions possessing finite energy. Furthermore, when the generalizing functions are chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the usual Abrikosov-Nielsen-Olesen (ANO solution. The overall conclusion is that the analytical self-dual vortices are well-behaved in all relevant sectors, strongly supporting the consistency of the respective generalized models. In particular, our results mimic well-known properties of the usual (numerical configurations, as localized energy density, while contributing to the understanding of topological solitons and their description by means of analytical methods.

  17. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  18. EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wen; Liang, Edison [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Li, Hui; Li, Shengtai [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lubow, Stephen, E-mail: wf5@rice.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2014-11-10

    We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10{sup –4}-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gas density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.

  19. On the definition of a moist-air potential vorticity

    CERN Document Server

    Marquet, Pascal

    2014-01-01

    A new potential vorticity is derived by using a specific entropy formulation expressed in terms of a moist-air entropy potential temperature. The new formulation is compared with Ertel's version and with others based on virtual and equivalent potential temperatures. The new potential vorticity is subject to conservative properties ensured by the Second Law applied to the moist-air material derivatives. It is shown that the upper tropospheric and stratospheric (dry) structures are nearly the same as those obtained with Ertel's component. Moreover, new structures are observed in the low troposphere, with negative values associated with moist frontal regions. The negative values are observed in the frontal regions where slantwise convection instabilities may take place, but they are smaller than those observed with the equivalent potential vorticity. The main purpose of the article is to diagnose the behaviour of the new potential vorticity from numerical output generated by the ARPEGE NWP model, with the help o...

  20. The decay of longitudinal vortices shed from airfoil vortex generators

    Science.gov (United States)

    Wendt, Bruce J.; Reichert, Bruce A.; Foster, Jeffry D.

    1995-01-01

    An experimental study is conducted to examine the crossplane structure and streamwise decay of vortices shed from airfoil-type vortex generators. The vortex generators are set in a counter-rotating array spanning the full circumference of a straight pipe. The span of the vortex generators above the duct surface, h, is approximately equal to the local turbulent boundary layer thickness, delta. Measurement of three-component mean flow velocity in downstream crossplanes are used to characterize the structure of the shed vortices. Measurements in adjacent crossplanes (closely spaced along the streamwise coordinate) characterize the interaction and decay of the embedded vortices. A model constructed by the superposition of Oseen vortices is compared to the data for one test case.

  1. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  2. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane......, connected by a horizontal flux-line in the plane, resembling a connecting Josephson vortex (JV) segment. Such structures may arise when a magnetic field is applied almost in the plane, and the line tension of the fluxon breaks down under its influence. The existence of kinked vortices was hinted in earlier...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  3. A Generalized Form of Lait's Modified Potential Vorticity.

    Science.gov (United States)

    Müller, Rolf; Günther, Gebhard

    2003-09-01

    Ertel's potential vorticity P is in widespread use as a diagnostic of dynamical processes in the stratosphere. For a variety of applications, however, the exponential increase of P with altitude is problematic. For this reason, Lait proposed a modified potential vorticity L, where a physically meaningful scaling is introduced that removes much of the altitude dependence of P. Here a generalized form of L is proposed by introducing an additional degree of freedom in the scaling. This generalized modified potential vorticity g possesses the same conservation properties as L itself and as the classic potential vorticity P but can be adjusted more closely to the specific situation under investigation. Comparison, over a large altitude range in the stratosphere, of fields of g with dynamical measures of the polar vortex edge and with observations of the long-lived trace gas N2O shows that g constitutes a more intuitively interpretable quantity than L.

  4. Insect wing membrane topography is determined by the dorsal wing epithelium.

    Science.gov (United States)

    Belalcazar, Andrea D; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character.

  5. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol

    2013-09-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.

  6. Fractional vortices in the XY model with $\\pi$ bonds

    OpenAIRE

    Kulkarni, R. V.; Almaas, E.; Fisher, K. D.; Stroud, D.

    2000-01-01

    We define a new set of excitations in the XY model which we call ``fractional vortices''. In the frustrated XY model containing $\\pi$ bonds, we make the ansatz that the ground state configurations can be characterized by pairs of oppositely charged fractional vortices. For a chain of $\\pi$ bonds, the ground state energy and the phase configurations calculated on the basis of this ansatz agree well with the results from direct numerical simulations. Finally, we discuss the possible connection ...

  7. Measurement of Entrained Air Bubbles and Vortices in Breaking Waves

    OpenAIRE

    大塚, 淳一; 渡部, 靖憲; Junichi, Otsuka; Yasunori, Watanabe; 北海道大学大学院工学研究科; School of Engineering, Hokkaido University

    2007-01-01

    Breaking waves produce numbers of vortices through a jet splashing process and also entrain many air bubbles, forming complicated air-water two-phase turbulent flow field in a surf zone. In this research, a simultaneous velocity measurement technique of water and bubble flows in breaking waves is developed for characterizing water-bubble interactions within vortices in a surf zone. The bubbles and neutral buoyant tracers are separately recorded by two different digital video cameras on the ba...

  8. Magneto-static vortices in two dimensional Abelian gauge theories

    OpenAIRE

    Bellazzini, J.; Bonanno, C.; Siciliano, G

    2008-01-01

    We study the existence of vortices of the Klein-Gordon-Maxwell equations in the two dimensional case. In particular we find sufficient conditions for the existence of vortices in the magneto-static case, i.e when the electric potential $\\phi=0$. This result, due to the lack of suitable embedding theorems for the vector potential $\\A$ is achieved with the help of a penalization method.

  9. Simulating living organisms with populations of point vortices

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The author has found that time-averaged images of small populations of point vortices can exhibit motions suggestive of the behavior of individual organisms. As an example, the author shows that collections of point vortices confined in a box and subjected to heating can generate patterns that are broadly similar to interspecies defense in certain sea anemones. It is speculated that other simple dynamical systems can be found to produce similar complex organism-like behavior.

  10. Secondary vortex formation in ring vortices in free jets

    Science.gov (United States)

    Schneider, E. M.

    1980-10-01

    Secondary vortex formation is examined as a basic component of the turbulent condition of vortex and laminar currents. Dyed fluid ring vortices are used to investigate formation moving against an object and in an unobstructed environment. Part of the vortex structure of jets can be explained by means of secondary vortices, and the sound spectrum both of a single turbulent vortex and of jets is influenced by secondary vortex formation.

  11. Onset of Vortices in Thin Superconducting Strips and Wires

    CERN Document Server

    Aranson, I S; Shapiro, B Y

    1994-01-01

    Spontaneous nucleation and the consequent penetration of vortices into thin superconducting films and wires, subjected to a magnetic field, can be considered as a nonlinear stage of primary instability of the current-carrying superconducting state. The development of the instability leads to the formation of a chain of vortices in strips and helicoidal vortex lines in wires. The boundary of instability was obtained analytically. The nonlinear stage was investigated by simulations of the time-dependent generalized Ginzburg-Landau equation.

  12. Quantum vortices in systems obeying a generalized exclusion principle.

    Science.gov (United States)

    Kaniadakis, G; Scarfone, A M

    2001-08-01

    The paper deals with a planar particle system obeying a generalized exclusion principle (EP) and governed, in the mean field approximation, by a nonlinear Schrödinger equation. We show that the EP involves a mathematically simple and physically transparent mechanism, which allows the genesis of quantum vortices in the system. We obtain in a closed form the shape of the vortices and investigate its main physical properties.

  13. On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics

    Science.gov (United States)

    Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.

    2015-01-01

    The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.

  14. Static and dynamic properties of heavily doped quantum vortices

    Science.gov (United States)

    Pshenichnyuk, I. A.

    2017-10-01

    Quantum vortices in superfluids may capture matter and deposit it inside their core. By doping vortices with foreign particles one can effectively visualize them and study them experimentally. To acquire a better understanding of the interaction between quantum vortices and matter, and clarify the details of recent experiments, the properties of doped vortices are investigated here theoretically in the regimes where the doping mass becomes close to the total mass of superfluid particles forming a vortex. Such formations are dynamically stable and, possessing both vorticity and enhanced inertia, demonstrate properties that are different from the pure vortex case. The goal of this paper is to define and investigate the universal aspects of heavily doped vortex behavior, which can be realized in different types of quantum mixtures. The proposed 3D model is based on a system of coupled semiclassical matter wave equations that are solved numerically in a wide range of physical parameters. The size, geometry and binding energy of dopants in different regimes are discussed. The coupled motion of a vortex–dopant complex and decoupling conditions are studied. The reconnection of vortices, taken as an example of a fundamental process responsible for the evolution of a quantum turbulent state, is modeled to illustrate the difference between the light and heavy doping cases.

  15. Orientation and circulation of vortices in a turbulent boundary layer

    Science.gov (United States)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  16. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... Images/Videos About Us News Physician Resources Professions Site Index A-Z Transjugular Intrahepatic Portosystemic Shunt (TIPS) Transjugular Intrahepatic Portosystemic Shunt or TIPS is a procedure that uses imaging guidance to connect the portal vein to the hepatic vein in the liver. ...

  17. TUBULARIZED INCISED PLATE (TIP) URETHROPLASTY:

    African Journals Online (AJOL)

    Objective: Recently, tubularized incised plate. (TIP) urethroplasty (Snodgrass repair) has gained popularity for the primary repair of distal and proximal hypospadias. This study was carried out to evaluate TIP urethro- plasty in the repair of failed and compli- cated hypospadias cases. Patients and Methods: This study was ...

  18. No-Fad Diet Tips

    Science.gov (United States)

    ... Works Healthy Workplace Food and Beverage Toolkit No-Fad Diet Tips Updated:Oct 18,2016 Tips - Think Smart: ... adapted with permission from American Heart Association No-Fad Diet: A Personal Plan for Healthy Weight Loss , Copyright © ...

  19. Choking and Strangulation Prevention Tips

    Science.gov (United States)

    ... Blog Videos Newsletter facebook twitter instagram pinterest gplus youtube Search Menu Why It Matters Who We Are What We Do Find Your Safe Kids Safe Kids Day Main menu Keeping All Kids Safe Safety Tips Get Involved 4 Star Charity Donate Safety Tips Age Group Babies 0–12 Months Little Kids 1– ...

  20. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... liver disease are at greater risk for worsening liver failure after TIPS. If your liver failure is severe, a TIPS may not be the ... children are more likely to be performed before liver transplant in those with ascites or variceal ... 08, 2017 Send us your feedback Did you find the ...

  1. A numerical study on helical vortices induced by a short twisted tape in a circular pipe

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2015-03-01

    Full Text Available Helical vortices, as one kind of secondary flows, are recently observed downstream of the short twisted tape. The behaviors of vortices, which have significant effects on the efficiency of twisted tape, are not well understood. As such, the formation and development of helical vortices induced by the short twisted tape are studied numerically. The results show that two symmetrical stable helical vortices are present downstream of the twisted tape. The values of radial velocities cannot be neglected due to the presence of the vortices. The vortices form in the twisted tape and remain the structure downstream of the twisted tape. Torsion promotes the formation of helical vortices. The intensities of helical vortices decay along the streamwise direction. With the increasing Reynolds numbers, the intensities of helical vortices increase, and the trend is in agreement with the swirl intensities. The intensities of helical vortices decay slowly compared with the intensities of swirling flow.

  2. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  3. An experimental study on the characteristics of transient deployment of hinged wing actuators within a boundary layer

    Science.gov (United States)

    Pierides, Alexis

    dynamic coefficients of up to 360%. (2) The higher the final angle a winglet deploys to, the higher the dynamic drag it creates. (3) Square winglets had higher maximum dynamic and static drag coefficient under all flow and deployment conditions. (4) Higher h/delta produced higher dynamic drag for all shapes and deployment conditions. After this dynamic phenomena were resolved in the time and magnitude domain, flow visualization experiments were obtained by using a video camera while seeding the flow with oil based smoke, and water vapor mist, and illuminating the flow using two different laser systems. Particle Image Velocimetry data were also used to further understand the underlying flow characteristics that lead to the quantitative results obtained with the aerodynamic balance. Through our visual experiments we established that, at steady state conditions, there is a complex vortex system in place, that results in the measured steady state values for the coefficients of drag and lift. This steady state flow system is comprised of the horseshoe vortex, the left and right alternating side vortices and a shear layer steaming from the tip of the winglet propagating downstream. The creation of this steady state vortex system is delayed when the winglet deploys dynamically, and this is one of the reasons for the increased transient drag and lift forces that were observed. Furthermore, a series of tip vortices, that are formed continuously and shed downstream during dynamic deployments, are also responsible for the increased transient forces.

  4. Complex Convective Thermal Fluxes and Vorticity Structure

    Science.gov (United States)

    Redondo, Jose M.; Tellez, Jackson; Sotillos, Laura; Lopez Gonzalez-Nieto, Pilar; Sanchez, Jesus M.; Furmanek, Petr; Diez, Margarita

    2015-04-01

    Local Diffusion and the topological structure of vorticity and velocity fields is measured in the transition from a homogeneous linearly stratified fluid to a cellular or layered structure by means of convective cooling and/or heating[1,2]. Patterns arise by setting up a convective flow generated by an array of Thermoelectric devices (Peltier/Seebeck cells) these are controlled by thermal PID generating a buoyant heat flux [2]. The experiments described here investigate high Prandtl number mixing using brine and fresh water in order to form density interfaces and low Prandtl number mixing with temperature gradients. The set of dimensionless parameters define conditions of numeric and small scale laboratory modeling of environmental flows. Fields of velocity, density and their gradients were computed and visualized [3,4]. When convective heating and cooling takes place the combination of internal waves and buoyant turbulence is much more complicated if the Rayleigh and Reynolds numbers are high in order to study entrainment and mixing. Using ESS and selfsimilarity structures in the velocity and vorticity fieds and intermittency [3,5] that forms in the non-homogeneous flow is related to mixing and stiring. The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or nonmixing front occurring at a density interface due to body forces [6]and gravitational acceleration are analyzed considering the fractal and spectral structure of the fronts like in removable plate experiments for Rayleigh-Taylor flows. The evolution of the turbulent mixing layer and its complex configuration is studied

  5. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    Science.gov (United States)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  6. Wing rotation and lift in SUEX flapping wing mechanisms

    Science.gov (United States)

    Mateti, Kiron; Byrne-Dugan, Rory A.; Tadigadapa, Srinivas A.; Rahn, Christopher D.

    2013-01-01

    This research presents detailed modeling and experimental testing of wing rotation and lift in the LionFly, a low cost and mass producible flapping wing mechanism fabricated monolithically from SUEX dry film and powered by piezoelectric bimorph actuators. A flexure hinge along the span of the wing allows the wing to rotate in addition to flapping. A dynamic model including aerodynamics is developed and validated using experimental testing with a laser vibrometer in air and vacuum, stroboscopic photography and high definition image processing, and lift measurement. The 112 mg LionFly produces 46° flap and 44° rotation peak to peak with 12° phase lag, which generates a maximum average lift of 71 μN in response to an applied sinusoidal voltage of 75 V AC and 75 V DC at 37 Hz. Simulated wing trajectories accurately predict measured wing trajectories at small voltage amplitudes, but slightly underpredict amplitude and lift at high voltage amplitudes. By reducing the length of the actuator, reducing the mechanism amplification and tuning the rotational hinge stiffness, a redesigned device is simulated to produce a lift to weight ratio of 1.5.

  7. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  8. Transonic transport wings - Oblique or swept

    Science.gov (United States)

    Jones, R. T.; Nisbet, J. W.

    1974-01-01

    A comparative evaluation of fixed-geometry and variable-sweep wing designs, a fixed delta wing, and oblique wings with a single body or two bodies suggests that an oblique wing is preferable in a transonic transport aircraft in terms of gross weight, fuel consumption, and aircraft noise, and also shows an acceptable aeroelastic stability. Further studies are, however, needed to develop the full potential of the oblique-wing concept, including its economic implications.

  9. Torsional Phacoemulsification and Tip Selection

    Directory of Open Access Journals (Sweden)

    Fırat Helvacıoğlu

    2014-10-01

    Full Text Available One of the recent advances in cataract surgery is torsional phacoemulsification. It was developed to increase the efficacy of ultrasonic emulsification. In torsional phacoemulsification, the torsional movement of the tip is translated to side-to-side cutting action with the aid of bent phaco tips. Lens material is cut in both directions, rather than only during a forward stroke. The efficiency of this technique is further enhanced by an improvement in followability provided by the inherent non-repulsive nature of the side-to-side motion. Tip selection is very important for the efficiency of torsional phacoemulsification. Theoretically, there are 2 ways to enhance the cutting efficiency of the tip. First is the stroke length; the 22-degree bent 30-degree Kelman mini-flared tip cuts longer than the 12-degree bent 30-degree mini-flared Kelman tip. Second is the angulation or bevel; the higher the degree (45 degrees, the better cutting efficiency. Retrospective analyses of the previously published clinical studies clearly demonstrated that the efficacy of the torsional phacoemulsification has positive correlation with both the aperture angles and neck angles of the tips. (Turk J Ophthalmol 2014; 44: 392-5

  10. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics

    Science.gov (United States)

    Zheng, Yue; Chen, W. J.

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  11. Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover

    Science.gov (United States)

    Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie

    2016-01-01

    This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.

  12. Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

    Science.gov (United States)

    Goodman, Alex; Fisher, Lewis R.

    1949-01-01

    A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.

  13. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  14. A Computational and Experimental Investigation of a Delta Wing with Vertical Tails

    Science.gov (United States)

    Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    2004-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  15. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  16. A novel substructure-based topology optimization method for the design of wing structure

    Directory of Open Access Journals (Sweden)

    Zhao Yu-bo

    2017-01-01

    Full Text Available The purpose of this paper is to demonstrate a substructure-based method dealing with the optimal material layout of the aircraft wing structure system. In this method, the topology optimization design domain of the aircraft wing is divided into multiple subordinate topological units which are called substructure. The material layout of each subordinate topology design unit is found for maximizing the total stiffness under a prescribed material usage constraint by using the Solid Isotropic Microstructures with Penalization (SIMP method. Firstly, the proposed method is implemented to find the optimal material layouts of a high aspect-ratio I-beam. Different division ways and material constraints of the substructure have proven important influence on the total stiffness. The design formulation is applied to the optimization of an aircraft wing. Compared with the traditional one, the proposed method can find a reasonable and clearer material layout of the wing, especially material piled up near the fixed end is pushed toward the tip or the middle of the wing. The optimized design indicates the proposed method can enhance the guidance of topology optimization in finding reasonable stiffener layouts of wing structure.

  17. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  18. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow

  19. Aerodynamic Design of Wing based on Humpback Whale Flipper

    Science.gov (United States)

    Akram, Saif; Baig, Faisal

    2013-11-01

    The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Wind tunnel tests at low speeds of model humpback flippers with leading-edge tubercles have demonstrated improvements tubercles make, such as a staggering 32% reduction in drag, 8% improvement in lift, and a 40% increase in angle of attack over smooth flippers before stalling. The tubercles on the leading edge act as a passive-flow control device that improves the performance and maneuverability of the flipper. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. In the present work, numerical investigation of a 3D wing with scalloped leading edge inspired by the humpback whale flipper is carried out at high subsonic speeds with variation in angle of attack from 0 to 25 degrees. The effect of using different turbulence models is also investigated in order to attain a better understanding of mechanism(s) responsible for improved aerodynamic performance. This new understanding of humpback whale flipper aerodynamics has strong implications for wing design.

  20. Dynamic, Thermodynamic and Vorticity Budget Analysis of a Simulated Tornado

    Science.gov (United States)

    Yin, Yue

    Data from a very high resolution (30m grid spacing) simulation of a long-lived EF5 tornado embedded in a supercell was used to examine the dynamic and thermodynamic quantities associated with the evolution of the simulated tornado. A Eulerian vertical vorticity budget analysis was performed in a volume bounding the lowest grid layer inside the tornado at various stages to better understand the possible vorticity sources for the low-level tornado, particularly the role of small-scale vortices present primarily along the forward-flank downdraft boundary. The dynamic and thermodynamic fields exhibit similar features to past studies such as slightly positive pressure perturbations along the rear-flank downdraft boundary, small-scale downdrafts with positive potential temperature perturbation to the southwest of the tornado, two-celled structure of the tornado, etc. The rear-flank downdraft in this simulation differs from the classic conceptual model because the vertical velocity was found to be either close to zero or slightly positive in a distinctive region wrapping partially around the major updraft, where previous studies often found a prominent rear-flank downdraft. The vertical vorticity budget analysis shows that the stretching term and the vertical flux term largely oppose each other with nearly the same magnitude throughout the analysis period. The tilting term is almost zero (though slightly positive) throughout the genesis stage, and makes a small and positive contribution in the mature and late mature phases of the tornado. The horizontal flux term makes the greatest contribution in the vertical vorticity source for the tornado during the genesis stage and a significant contribution during the maintenance period. This suggests that the small-scale vortices present along the forward-flank downdraft boundary flowing towards and merging with the tornado are the major vertical vorticity source for the development of the tornado. This, and the lack of a cohesive

  1. Vortical structures in pool fires: Observation, speculation, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Nicolette, V.F.; Gritzo, L.A.; Moya, J.L. [Sandia National Labs., Albuquerque, NM (United States); Holen, J.K. [SINTEF/NTH, Trondheim (Norway). Div. Thermodynamics; Murray, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1996-11-01

    While all fires are complex and involve many phenomena, this report is limited to large, turbulent liquid-hydrocarbon pool fires. Large, liquid-hydrocarbon pool fires present a risk in petrochemical storage and processing facilities and transportation systems that contain large amounts of liquid hydrocarbons. This report describes observations, speculations, and numerical simulations of vortical structures in pool fires. Vortical structures are observed in fires with length scales ranging from those that bend millimeter-thick flame zones to those that entrain air many meters from the edge of the fire to its centerline. The authors propose that baroclinic vorticity generation is primarily responsible for production of rotational motion at small scale and that amalgamation is responsible for the production of large-scale rotational structures from the myriad of small-scale structures. Numerical simulations show that vortical structures having time-mean definitions can be resolved with a Reynolds-Average Navier-Stokes (RANS) approach. However, for vortical structures without time-mean definition, RANS is inappropriate, and another technique, such as Large Eddy Simulation (LES), should be employed. 39 refs., 52 figs., 3 tabs.

  2. Pinned vorticity in rotating superfluids, with application to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Pines, D.; Shaham, J. (Illinois Univ., Urbana (USA). Dept. of Physics); Alpar, M.A.; Anderson, P.W.

    1981-06-01

    The dynamic consequences of the existence of pinned vorticity in a rotating superfluid are studied by means of a simple model: the behavior of a rotating cylinder which contains a uniform region of either weakly or strongly pinned vorticity and which is being spun up or spun down by an external torque. It is shown that in the case of strong pinning, spin down can lead to periodic jumps (glitches) in the rotation frequency of the cylinder, followed by quasi-oscillatory relaxation, while in the case of weak pinning no glitches occur unless the cylinder is shaken so violently that vortices unpin. We conclude that the giant glitches and post-glitch behavior observed in the Vela pulsar may be explained by the sudden release of some 10% of the strongly pinned vortices in the neutron crust every few years as a result of pulsar spin down. We further suggest that the post-glitch behavior observed in the Crab pulsar can be explained if the macroglitches represent vorticity jumps induced by small starquakes in the weakly pinned vortex region expected in the crust of a young neutron star, and that the differences in ''glitch'' behavior of the Crab, Vela, and older pulsars may be explained on evolutionary grounds.

  3. A generalised form of Lait's modified potential vorticity

    Science.gov (United States)

    Mueller, R.; Guenther, G.

    2003-04-01

    Ertel's potential vorticity P is in wide spread use as a diagnostic of dynamical processes in the stratosphere. For a variety of applications however, the exponential increase of P with altitude is problematic. For this reason, Lait, (JAS, 1994) proposed a modified potential vorticity Pi_L, where a physically meaningful scaling is introduced that removes much of the altitude dependence of P. % Here we propose a generalised form of Pi_L by introducing an additional degree of freedom in the scaling. Such a scaling may alternatively be derived by considering a more general form of potential vorticity, where polytropic temperature rather than potential temperature is used as a hydrodynamical invariant. This generalised form of Pi_L possesses the same conservation properties as Pi_L itself and as the classical potential vorticity P , but can be adjusted more closely to the specific situation under investigation. Comparison, over a large altitude range in the stratosphere, of fields of the generalised modified potential vorticity Pi_g with dynamical measures of the polar vortex edge and with observations of the long-lived trace gas N_2O show that Pi_g constitutes a more intuitively interpretable quantity than Pi_L.

  4. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation

    Science.gov (United States)

    DeVoria, Adam C.; Mohseni, Kamran

    2017-02-01

    This paper studies low-aspect-ratio (.org/1999/xlink" xlink:href="rspa20160760ie1"/>) rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The .org/1999/xlink" xlink:href="rspa20160760ie2"/> → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole (.org/1999/xlink" xlink:href="rspa20160760ie3"/> ≫ 1) to a streamwise vorticity dipole (.org/1999/xlink" xlink:href="rspa20160760ie4"/> ˜ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for .org/1999/xlink" xlink:href="rspa20160760ie5"/> ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°.

  5. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the TIPS. top of page Additional Information and Resources Society of Interventional Radiology (SIR) - Patient Center This ... here Images × Image Gallery Radiologist and patient consultation. View full size with caption Pediatric Content Some imaging ...

  6. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... who typically need a TIPS have portal hypertension , meaning they have increased pressure in the portal vein ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  7. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... that would ordinarily pass through the liver to bypass the liver entirely, reducing high blood pressure in ... same physiological results as a surgical shunt or bypass, without the risks that accompany open surgery. TIPS ...

  8. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... blood draining from the bowel back to the heart while avoiding the liver. TIPS may successfully reduce ... blood away from the liver back to the heart). A stent is then placed in this tunnel ...

  9. Dining Out Tips by Cuisine

    Science.gov (United States)

    ... Preschoolers Infographic How to Make a Healthy Home Dietary Recommendations for Healthy Children Top 10 Tips to Help Children Develop Healthy Habits Fruit and Veggie Toolkit for Kids Healthy Foods ...

  10. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... surgery. Your TIPS should have less of an effect than open surgical bypass on future liver transplantation ... Encephalopathy can be treated with certain medications, a special diet or, by revising the stent, but sometimes ...

  11. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... pressure. top of page How does the procedure work? A TIPS reroutes blood flow in the liver ... complications, reported in fewer than five percent of cases, may include: occlusion, or complete blockage, of the ...

  12. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the limitations of TIPS? Patients with more advanced liver disease are at greater risk for worsening liver failure ... patient who already has encephalopathy because of their liver disease may not be a good candidate for the ...

  13. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... local anesthetic medications, general anesthesia or to contrast materials containing iodine (sometimes referred to as "dye" or " ... the placement of the TIPS stent, a contrast material will be injected in the hepatic vein to ...

  14. Tips for Relieving Dry Skin

    Science.gov (United States)

    ... skin include lactic acid, urea, hyaluronic acid, dimethicone, glycerin, lanolin, mineral oil, and petrolatum. Tip: Carry a ... using: Deodorant soaps Skin care products that contain alcohol, fragrance, retinoids, or alpha-hydroxy acid (AHA) Avoiding ...

  15. Tips to Prevent Tick Bites

    Science.gov (United States)

    Using the right insect repellent and other preventive actions can discourage ticks, mosquitoes, and other biting insects from landing on you. Tips include avoiding tick habitats and minimizing exposed skin.

  16. Tips to Prevent Mosquito Bites

    Science.gov (United States)

    Using the right insect repellent and other preventive actions can discourage mosquitoes from landing on you. Tips include removing mosquito habitats such as standing water, minimizing exposed skin, and staying indoors while mosquitoes are most active.

  17. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... Patients who typically need a TIPS have portal hypertension , meaning they have increased pressure in the portal ... leading to cirrhosis (scarring of the liver). Portal hypertension can also occur in children, although children are ...

  18. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... pressure. top of page How does the procedure work? A TIPS reroutes blood flow in the liver ... physician will numb an area just above your right collarbone with a local anesthetic . A very small ...

  19. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... anti-inflammatory drugs (NSAIDs) or blood thinners several days prior to your procedure and instructed to not ... overnight at the hospital for one or more days. What is Transjugular Intrahepatic Portosystemic Shunt (TIPS)? What ...

  20. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... liver back to the heart. top of page How should I prepare? You should report to your ... heart beat and blood pressure. top of page How does the procedure work? A TIPS reroutes blood ...

  1. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the liver to the heart). A stent placed inside this pathway keeps it open and allows some ... keeps the shunt open (TIPS) is contained entirely inside the diseased liver, and is removed with it ...

  2. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... portal vein to the hepatic vein in the liver. A small metal device called a stent is ... bowel back to the heart while avoiding the liver. TIPS may successfully reduce internal bleeding in the ...

  3. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the skin is a rare complication (it may happen in complex and lengthy procedures requiring ... risk for worsening liver failure after TIPS. If your liver failure is severe, a ...

  4. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... TIPS may successfully reduce internal bleeding in the stomach and esophagus in patients with cirrhosis. Tell your ... the liver into the veins of the spleen, stomach, lower esophagus, and intestines, causing enlarged vessels, bleeding ...

  5. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... in creating the TIPS. top of page Additional Information and Resources Society of Interventional Radiology (SIR) - Patient ... Send us your feedback Did you find the information you were looking for? Yes No Please type ...

  6. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... in an hour or two but may take up to several hours depending on the complexity of ... normal activities in seven to 10 days. Follow-up ultrasounds will be performed frequently after the TIPS ...

  7. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... treatments. The greatest difference in performing TIPS in children is their tremendous variability in size, physiology, and medical diseases. This can result in significant challenges in creating ...

  8. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... through the TIPS. Pressure will be applied to prevent any bleeding and the opening in the skin ... are monitored in intensive care beforehand and during recovery. You should be able to resume your normal ...

  9. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... to the heart while avoiding the liver. TIPS may successfully reduce internal bleeding in the stomach and ... conditions, allergies and medications you’re taking. You may be advised to stop taking aspirin, nonsteroidal anti- ...

  10. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... while avoiding the liver. TIPS may successfully reduce internal bleeding in the stomach and esophagus in patients ... site. Using ultrasound, the doctor will identify your internal jugular vein , which is situated above your collarbone, ...

  11. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... necessary, precautions will be taken to minimize radiation exposure to the baby. See the Safety page for ... surgery. Your TIPS should have less of an effect than open surgical bypass on future liver transplantation ...

  12. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... pressure. top of page How does the procedure work? A TIPS reroutes blood flow in the liver ... blood pressure and pulse during the procedure. A nurse or technologist will insert an intravenous (IV) line ...

  13. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... you are pregnant and discuss any recent illnesses, medical conditions, allergies and medications you’re taking. You ... with ascites or variceal bleeding resistant to traditional medical treatments. The greatest difference in performing TIPS in ...

  14. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits A TIPS is designed to produce the ... skin that does not have to be stitched. Risks Any procedure where the skin is penetrated carries ...

  15. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... seen in adults, often as a result of chronic liver problems leading to cirrhosis (scarring of the ... limitations of TIPS? Patients with more advanced liver disease are at greater risk for worsening liver failure ...

  16. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... system. This pressure buildup can cause blood to flow backward from the liver into the veins of ... does the procedure work? A TIPS reroutes blood flow in the liver and reduces abnormally high blood ...

  17. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the hepatic vein in the liver. A small metal device called a stent is placed to keep ... open by the placement of a small, tubular metal device commonly called a stent . During a TIPS ...

  18. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... story about radiology? Share your patient story here Images × Image Gallery Radiologist and patient consultation. View full size ... X-Ray and CT Exams Contrast Materials Venography Images related to Transjugular Intrahepatic Portosystemic Shunt (TIPS) Sponsored ...

  19. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... X-Ray and CT Exams Contrast Materials Venography Images related to Transjugular Intrahepatic Portosystemic Shunt (TIPS) Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical ...

  20. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... procedure? A TIPS is used to treat the complications of portal hypertension, including: variceal bleeding , bleeding from ... is taken to mitigate these risks. Other possible complications of the procedure include: fever muscle stiffness in ...

  1. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... gained from the hepatic vein into the portal system using a TIPS needle (a special long needle ... may vary by geographic region. Discuss the fees associated with your prescribed ...

  2. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... wear during the procedure. top of page What does the equipment look like? In this procedure, x- ... beat and blood pressure. top of page How does the procedure work? A TIPS reroutes blood flow ...

  3. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Contrast Materials Venography Images related to Transjugular Intrahepatic Portosystemic Shunt (TIPS) Sponsored ...

  4. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... look like? In this procedure, x-ray or ultrasound equipment, a stent, and a balloon-tipped catheter ... over a table on which the patient lies. Ultrasound scanners consist of a console containing a computer ...

  5. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... functions properly. top of page Who interprets the results and how do I get them? Prior to ... TIPS is designed to produce the same physiological results as a surgical shunt or bypass, without the ...

  6. Search Tips: MedlinePlus

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/searchtips.html Search Tips To use the sharing features on this page, please enable JavaScript. How do I search MedlinePlus? The search box appears at the top ...

  7. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... TIPS. top of page Additional Information and Resources Society of Interventional Radiology (SIR) - Patient Center This page ... American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise ...

  8. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... liver. The shunt is kept open by the placement of a small, tubular metal device commonly called ... of the condition. To help plan for the placement of the TIPS stent, a contrast material will ...

  9. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... threatening and those patients are monitored in intensive care beforehand and during recovery. You should be able ... with ascites or variceal bleeding resistant to traditional medical treatments. The greatest difference in performing TIPS in ...

  10. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A TIPS is used to treat the ... during the procedure. top of page What does the equipment look like? In this procedure, x-ray ...

  11. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... waves), as well as the type of body structure and composition of body tissue through which the ... the placement of the TIPS stent, a contrast material will be injected in the hepatic vein to ...

  12. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... who typically need a TIPS have portal hypertension , meaning they have increased pressure in the portal vein ... of bleeding that can occur can sometimes be life threatening and those patients are monitored in intensive ...

  13. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    Science.gov (United States)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  14. Aerodynamic characteristics of scissor-wing geometries

    Science.gov (United States)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1991-01-01

    A scissor-wing configuration, consisting of two independently sweeping-wing surfaces, is compared with an equivalent fixed-wing geometry baseline over a wide Mach number range. The scissor-wing configuration is shown to have a higher total lift-to-drag ratio than the baseline in the subsonic region primarily due to the slightly higher aspect ratio of the unswept scissor wing. In the transonic region, the scissor wing is shown to have a higher lift-to-drag ratio than the baseline for values of lift coefficient greater than 0.35. It is also shown that, through the use of wing decalage, the lift of the two independent scissor wings can be equalized. In the supersonic regime, the zero lift wave drag of the scissor-wing at maximum sweep is shown to be 50 and 28 percent less than the zero lift wave drag of the baseline at Mach numbers 1.5 and 3.0, respectively. In addition, a pivot-wing configuration is introduced and compared with the scissor wing. The pivot-wing configuration is shown to have a slightly higher total lift-to-drag ratio than the scissor wing in the supersonic region due to the decreased zero lift wave drag of the pivot-wing configuration.

  15. On Chirality of the Vorticity of the Universe

    Directory of Open Access Journals (Sweden)

    Davor Palle

    2012-05-01

    Full Text Available The presence of dark energy in the Universe challenges the Einstein’s theory of gravity at cosmic scales. It motivates the inclusion of rotational degrees of freedom in the Einstein–Cartan gravity, representing the minimal and the most natural extension of the General Relativity. One can, consequently, expect the violation of the cosmic isotropy by the rotating Universe. We study chirality of the vorticity of the Universe within the Einstein–Cartan cosmology. The role of the spin of fermion species during the evolution of the Universe is studied by averaged spin densities and Einstein–Cartan equations. It is shown that spin density of the light Majorana neutrinos acts as a seed for vorticity at early stages of the evolution of the Universe. Its chirality can be evaluated in the vicinity of the spacelike infinity. It turns out that vorticity of the Universe has right-handed chirality.

  16. Pair interactions of heavy vortices in quantum fluids

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  17. Multicharged optical vortices induced in a dissipative atomic vapor system

    CERN Document Server

    Zhang, Yiqi; Wu, Zhenkun; Yuan, Chenzhi; Wang, Ruimin; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition on the medium. Linear, cubic, and quintic susceptibilities, considered simultaneously with the dressing effect, are included in the analysis. Generally, the beams slowly expand during propagation and new vortices are induced, commonly appearing in oppositely charged pairs. We demonstrate that not only the form and the topological charge of the incident beam, but also its growing size in the medium greatly affect the formation and evolution of vortices. We formulate common rules for finding the number of induced vortices and the corresponding rotation directions, stemming from the initial conditions of various incident beams, as well as from the dynamical aspects of their propagation. The net topological charge of the vortex is conserved during propagation, as it sh...

  18. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    CERN Document Server

    Pshenichnyuk, I A

    2016-01-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  19. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-09-15

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.

  20. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    Science.gov (United States)

    Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.

    2012-09-01

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C =-∂ ln B/∂x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.

  1. The Evaluation of the Boundary Vorticity by URANS and LES Methods

    Directory of Open Access Journals (Sweden)

    Ion MALAEL

    2015-12-01

    Full Text Available The role of concentrated vorticity in fluid dynamics phenomena, concerning both the vorticity creation at the boundary and the response to the flow field is not wholly understood. The Lighthill describes the vorticity production at a solid boundary as a slow diffusion of the vorticity similar to the Fourier heat conduction. In the paper it is shown that this mechanism associated to URANS method is not applied to the concentrated vorticity case, and the LES method better reproduces the flows involving concentrations vorticity.

  2. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  3. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    Science.gov (United States)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  4. DNS of turbulence around a wing section at moderate Reynolds number

    Science.gov (United States)

    Schlatter, Philipp; Hosseini, Seyed M.; Vinuesa, Ricardo; Hanifi, Ardeshir; Henningson, Dan S.

    2015-11-01

    We present the results of a large-scale simulation of the turbulent flow around a NACA-4412 wing section. The achieved Reynolds number is Rec = 400000 based on the chord length (Reθ = 3000 based on momentum thickness), at angle of attack of 5 degrees. The fully resolved direct numerical simulation is performed using the spectral-element code Nek5000 with 3.2 billion grid points. After discussing details of the setup, e.g. boundary conditions and flow tripping at the leading edge, the focus is on the turbulent boundary layers under favorable and adverse pressure gradient developing along the wing surfaces. A first question to address is the definition of boundary-layer thickness in curved geometries. The adverse pressure gradients (APG) remain fairly constant β < 4 for the most part of the wing's upper side, only towards the trailing edge, incipient separation and much higher β are observed. The mean profiles show typical characteristics of APG boundary layers, to which we will compare in detail. A distinct outer peak in the fluctuations can be seen. These observations will be complemented with spectral views of the growing outer-layer influence. Furthermore, visualizations of the vortical structures will be shown, both on the wing, but also in the wake region.

  5. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  6. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    Science.gov (United States)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  7. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzada, Ahmad [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  8. Unsteady flow structure and loading of a pitching low-aspect-ratio wing

    Science.gov (United States)

    Visbal, Miguel R.

    2017-02-01

    This study addresses the flow structure and unsteady loading arising over a pitching low-aspect-ratio rectangular wing under low-Reynolds-number conditions of interest in small unmanned aerial vehicle operation and gust interactions. Simulations are performed employing a high-fidelity computational approach capable of accurately capturing the complex unsteady transitional flows. The wing is pitched about its quarter-chord axis to a maximum incidence of 45∘ over time intervals ranging from four to 16 convective time scales. The Reynolds number based on the wing chord varied from 103 to 4 ×104 . For the highest pitch rate, good agreement between the computed three-dimensional (3D) flow structure and recent experimental measurements is demonstrated. The 3D dynamic stall process is characterized by the formation of an initially spanwise-oriented leading-edge vortex which evolves into an arch-type structure with legs anchored to the wing surface. The normal vorticity in the arch vortex legs establishes a low-pressure region and swirling pattern on the wing surface. A distinct characteristic of the arch vortex is its upstream propagation and persistence over the wing, postulated to be the result of the self-induced velocity of the vortex and its image underneath the plate. Increasing either pitch rate or Reynolds number promotes a more coherent arch vortex and circulation pattern, and delays the onset of stall to a higher angle of attack. Even for the lowest pitch rate considered, a significant increase in maximum lift is achieved relative to the static situation.

  9. Manipulation of pancake vortices by rotating a Josephson vortex lattice

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bending, S J [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Tamegai, T [Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2008-01-15

    Scanning Hall probe microscopy has been used to demonstrate the manipulation of pancake vortices by rotating the Josephson vortex lattice in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals in the interacting crossing lattices regime. Creation of one-dimensional pancake vortex chains trapped on Josephson vortices, and the subsequent rotation of the chains were realized by independently controlling magnetic fields in three orthogonal directions. The anisotropy parameter determined from the in-plane distances between vortex chains in various in-plane fields is consistent with commonly accepted values.

  10. (Non)-renormalization of the chiral vortical effect coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Siavash; Son, Dam T. [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,5640 South Ellis Ave., Chicago, IL 60637 (United States)

    2015-02-26

    We show using diagramtic arguments that in some (but not all) cases, the temperature dependent part of the chiral vortical effect coefficient is independent of the coupling constant. An interpretation of this result in terms of quantization in the effective 3 dimensional Chern-Simons theory is also given. In the language of 3D, dimensionally reduced theory, the value of the chiral vortical coefficient is related to the formula ∑{sub n=1}{sup ∞}n=−1/12. We also show that in the presence of dynamical gauge fields, the CVE coefficient is not protected from renormalization, even in the large N limit.

  11. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  12. Unfolding of vortices into topological stripes in a multiferroic material.

    Science.gov (United States)

    Wang, X; Mostovoy, M; Han, M G; Horibe, Y; Aoki, T; Zhu, Y; Cheong, S-W

    2014-06-20

    Multiferroic hexagonal RMnO(3) (R=rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  13. On the interaction between two oppositely signed, shielded, monopolar vortices

    DEFF Research Database (Denmark)

    Schmidt, M.R.; Beckers, M.; Nielsen, A.H.

    1998-01-01

    solutions of the two-dimensional Navier-Stokes equations. A comparative study between the laboratory experiments and numerical simulations is performed. The vorticity distribution measured in the early stage of the evolution in the laboratory is used as initial data for the simulations, and an additional...... damping term in the Navier-Stokes equations, that accounts for the vertical diffusion in the laboratory experiments, is used. The results show that, depending on the initial separation between the vortices, the shields of the monopoles are peeled off and indeed a compact dipole with a linear (omega...

  14. Vorticity Measurement using LG Laser Beams with Orbital Angular Momentum

    Science.gov (United States)

    Kooochesfahani, Manoochehr; Pouya, Shahram; Safaripour, Alireza; Ryabtsev, Anton; Dantus, Marcos

    2016-11-01

    We present direct measurement of vorticity in a fluid flow based on angular velocity measurement of microparticles contained in the fluid. The method uses Laguerre-Gaussian (LG) laser beams that possess orbital angular momentum (OAM), a spatial (azimuthal) modulation of the beam phase front, and takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Results are shown for the flow field of solid body rotation, where the flow vorticity is known precisely. This work was supported by AFOSR Award Number FA9550-14-1-0312.

  15. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    Science.gov (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  16. Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver

    Science.gov (United States)

    Olson, Erik D.; Albertson, Cindy W.

    2016-01-01

    This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.

  17. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  18. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The

  19. Fracture Scale-Invariance in Antarctic Shelf Ice: Wing and Comb Crevasses along Shear Faults within the Minna Bluff Region

    Science.gov (United States)

    Arcone, S. A.

    2016-12-01

    Wing and comb crevasses at the 0.1-10 km scale are associated with three of five large rifts presently off Minna Bluff on the western side of the Ross Ice Shelf, Antarctica. Their similarity to millimeter-scale parent-wing structures that grow from random fractures in biaxially compressed polycrystalline ice specimens demonstrates fracture scale-invariance for these phenomena, as previously shown for sea ice at multi-km scale. Historical WorldView and Landsat images show that these rifts, at least partially filled with marine ice, initiate in a small parent-double wing structure near the Bluff. The tip of the east wing then grows to multi-km lengths eastward into the shelf as it is wedged open by sea water and marine ice to form a rift. The northern edge of each rift is now a right lateral transform fault, with motion caused by expansion rather than by compression in the crystallographic case. RADARSAT imagery differentiates these shear faults from true crevasses. Because of this shear the north edge becomes a new parent. On its relatively faster north side, these new parents have acutely angled stick-slip crevasses. 25 m of movement along the fault relative to the south side occurred over a 20 month period from 2010 to 2011. On the relatively slower south side, as in the crystallographic case the shear has generated multi-km-long curvilinear wings starting at the fault tips, curvilinear wing mouth crevasses that eventually converge far to the east, and comb crevasses (known as teeth) that parallel the wings, all starting more nearly orthogonally to the fault direction. Wings and combs can be as long as parents. Wings are also characterized by a shear fault from which new combs grow. Such evidence for shear along wings has not been seen in SEM crystallographic images, so that the Minna Bluff scale appears to have revealed this new phenomenon. By late 2015 shear crevasses beneath the north parent edge of this one particular rift had virtually closed, which reflects

  20. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  1. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  2. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-02-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.

  3. A (dis)continuous finite element model for generalized 2D vorticity dynamics

    NARCIS (Netherlands)

    Bernsen, E.; Bokhove, Onno; van der Vegt, Jacobus J.W.; Wesseling, P.; Onate, E; Periaux, J.

    2006-01-01

    A mixed continuous and discontinuous Galerkin finite element discretization has been constructed for a generalized vorticity-streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport)

  4. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    It has long been noted that high temperature produces great variation in wing forms of the vestigial mutant of Drosophila. Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the presumptive wing blade or costal region of the wing disc.

  5. Structural Analysis of a Dragonfly Wing

    OpenAIRE

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans c...

  6. Shape and Structural Optimization of Flapping Wings

    OpenAIRE

    Stewart, Eric C

    2014-01-01

    This dissertation presents shape and structural optimization studies on flapping wings for micro air vehicles. The design space of the optimization includes the wing planform and the structural properties that are relevant to the wing model being analyzed. The planform design is parameterized using a novel technique called modified Zimmerman, which extends the concept of Zimmerman planforms to include four ellipses rather than two. Three wing types are considered: rigid, plate-like deformable...

  7. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2015-09-15

    The increasing interest in the development of small flying air vehicles has given rise to a strong need to thoroughly understand low-speed aerodynamics. The barn owl is a well-known example of a biological system that possesses a high level of adaptation to its habitat and as such can inspire future small-scale air vehicle design. The combination of the owl-specific wing geometry and plumage adaptations with the flexibility of the wing structure yields a highly complex flow field, still enabling the owl to perform stable and at the same time silent low-speed gliding flight. To investigate the effects leading to such a characteristic flight, time-resolved stereoscopic particle-image velocimetry (TR-SPIV) measurements are performed on a prepared natural owl wing in a range of angles of attack 0° ≤ α ≤ 6° and Reynolds numbers 40,000 ≤ Re(c) ≤ 120,000 based on the chord length at a position located at 30% of the halfspan from the owl's body. The flow field does not show any flow separation on the suction side, whereas flow separation is found on the pressure side for all investigated cases. The flow field on the pressure side is characterized by large-scale vortices which interact with the flexible wing structure. The good agreement of the shedding frequency of the pressure side vortices with the frequency of the trailing-edge deflection indicates that the structural deformation is induced by the flow field on the pressure side. Additionally, the reduction of the time-averaged mean wing curvature at high Reynolds numbers indicates a passive lift-control mechanism that provides constant lift in the entire flight envelope of the owl.

  8. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  9. The vorticity and angular momentum budgets of Asian summer ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. The vorticity and angular momentum ... The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger ...

  10. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    be thought of as arising from the rapidly changing strong pressure gradient near the leading edge due to its unsteady motion. Thus, even though the vorticity is produced by the unsteady surface motion, it appears that its subsequent convection through the boundary layer over the airfoil upper surface can only be managed ...

  11. Clustering of heavy particles in vortical flows: a selective review

    Indian Academy of Sciences (India)

    S Ravichandran

    Vortical flows; inertial particles; preferential clustering; sling caustics; particle collisions; warm rain initiation. ... The equation of motion for a small sphere in fluid flow was ... to a Magnus force. The terms with a factor a2Du are called. Faxen corrections, and account for changes in the flow over length scales of the particle size.

  12. Vortices in Bose–Einstein condensates: A review of the ...

    Indian Academy of Sciences (India)

    mode instability; but this is not the only mechanism; (b) the vortex lattice is perfectly triangular right up to the ... themselves in a lattice; this time appears to be independent of temperature; (d) the decay of vortices appears to ..... a state |1〉 to a state |2〉 at a Rabi frequency Ω by using electromagnetic radiation detuned by δ.

  13. The vorticity and angular momentum budgets of Asian summer ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1School of Geography and Geology, McMaster University, Hamilton, ON, Canada L8S 4K1. 2Centre for Atmospheric Sciences, Indian Institute of Technology-Delhi Hauz Khas, New Delhi 110 016, India. The study delineates the vorticity and angular momentum balances of Asian summer monsoon dur- ing the evolution and ...

  14. Generation of tripolar vortical structures on the beta plane

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Juul Rasmussen, J.

    1993-01-01

    A new feature of the long-time evolution of a strong vortex with initially monotonic potential vorticity is found by direct numerical solution of the quasigeostrophic equivalent barotropic equation. Two satellites, which emerge after splitting of an annulus, appear at the vortex periphery. Rotation...

  15. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  16. Vortices in Bose–Einstein condensates: A review of the ...

    Indian Academy of Sciences (India)

    Such vortices have been generated in BEC of alkali atoms by different techniques such as (a) wave function engineering of a two-component BEC, (b) decay of solitons, (c) rotation of a thermal cloud before cooling it below the ... Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India ...

  17. Comparing the dynamics of skyrmions and superconducting vortices

    Energy Technology Data Exchange (ETDEWEB)

    Olson Reichhardt, C.J., E-mail: cjrx@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lin, S.Z. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ray, D. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Reichhardt, C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-08-15

    Highlights: • We describe similarities and differences between skyrmion and vortex dynamics. • The Magnus force can dramatically alter skyrmion transport. • The pinning becomes very weak when the Magnus force is strong. - Abstract: Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order–disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties.

  18. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  19. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  20. Glitches and pinned vorticity in the Crab pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Alpar, M.A. (Bogazici Univ., Istanbul, Turkey); Anderson, P.W.; Pines, D.; Shaham, J.

    1981-09-01

    It is suggested that the glitch behavior observed in the Crab pulsar is associated with vorticity jumps induced by a starquake or a comparable external fluctuation in the weakly pinned vortex region expected in the crust of a young neutron star, and that the differences in the glitch behavior of the Crab, Vela, and older pulsars may be explained on evolutionary grounds.