WorldWideScience

Sample records for wing pressure measurements

  1. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  2. Pressure-Distribution Measurements of a Model of a Davis Wing Section with Fowler Flap Submitted by Consolidated Aircraft Corporation

    Science.gov (United States)

    Abbott, Ira H

    1942-01-01

    Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.

  3. Measurements in Flight of the Pressure Distribution on the Right Wing of a Pursuit-Type Airplane at Several Values of Mach Number

    Science.gov (United States)

    Clousing, Lawrence A; Turner, William N; Rolls, L Stewart

    1946-01-01

    Pressure-distribution measurements were made on the right wing of a pursuit-type airplane at values of Mach number up to 0.80. The results showed that a considerable portion of the lift was carried by components of the airplane other than the wings, and that the proportion of lift carried by the wings may vary considerably with Mach number, thus changing the bending moment at the wing root whether or not there is a shift in the lateral position of the center of pressure. It was also shown that the center of pressure does not necessarily move outward at high Mach numbers, even though the wing-thickness ratio decreases toward the wing tip. The wing pitching-moment coefficient increased sharply in a negative direction at a Mach lift-curve slope increased with Mach number up to values of above the critical value. Pressures inside the wing were small and negative.

  4. Pressure measurements on a forward-swept wing-canard configuration

    CSIR Research Space (South Africa)

    Lombardi, G

    1994-03-01

    Full Text Available In a previous analysis of the effect of a fore sweep in the subsonic and transonic regimes it was found that the flow on a forward-swept wing separates first in the root region, suggesting that the inclusion of an aerodynamic device such as a...

  5. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  6. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    Science.gov (United States)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  7. Determination of pressure and load characteristics of flexible revolving wings by means of tomographic PIV

    NARCIS (Netherlands)

    van de Meerendonk, R.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio wings. The pressure field and load characteristics are successfully reconstructed from the phase-locked tomographic measurements in three independently measured volumes along the span of the wing. The

  8. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  9. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  10. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  11. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  12. Tests of Round and Flat Spoilers on a Tapered Wing in the NACA 19-Foot Pressure Wind Tunnel

    Science.gov (United States)

    Wenzinger, Carl J; Bowen, John D

    1941-01-01

    Several arrangements of round and flat spanwise spoilers attached to the upper surface of a tapered wing were tested in the NACA 19-foot pressure wind tunnel to determine the most effective type, location, and size of spoiler necessary to reduce greatly the lift on the wings of large flying boats when moored. The effect of the various spoilers on the lift, the drag, and the pitching-moment characteristics of the tapered wing was measured over a range of angles of attack from zero to maximum lift. The most effective type of spoiler was found to be the flat type with no space between it and the wing surface. The chordwise location of such a spoiler was not critical within the range investigated, from 5 to 20 percent of the wing chord from the leading edge.

  13. INITIAL ASSESSMENT OF SURFACE PRESSURE CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    Science.gov (United States)

    Jones, Henry E.; Wong, Oliver D.; Watkins, A. Neal; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.; Ingram, Joanne L.

    2006-01-01

    This paper presents results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of fixed system pressure coefficient response to changes in configuration attitude and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect the magnitude of the response. Pressure coefficients were measured using both conventional pressure taps and via pressure sensitive paint. Comparisons between the two methods are presented and demonstrate that the pressure sensitive paint is a promising method; however, further work on the technique is required.

  14. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  15. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  16. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  17. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  18. PHOTOGRAMMETRIC MEASUREMENTS IN FIXED WING UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    E. Gülch

    2012-07-01

    Full Text Available Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a

  19. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  20. Wing motion measurement and aerodynamics of hovering true hoverflies.

    Science.gov (United States)

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  1. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  2. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  3. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  4. Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario

    Science.gov (United States)

    Tobias, Guillermo; Jesús García, Adrián

    2016-04-01

    The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of

  5. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  6. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  7. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  8. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  9. Morphometric measurements of dragonfly wings: the accuracy of pinned, scanned and detached measurement methods

    Directory of Open Access Journals (Sweden)

    Laura Johnson

    2013-03-01

    Full Text Available Large-scale digitization of museum specimens, particularly of insect collections, is becoming commonplace. Imaging increases the accessibility of collections and decreases the need to handle individual, often fragile, specimens. Another potential advantage of digitization is to make it easier to conduct morphometric analyses, but the accuracy of such methods needs to be tested. Here we compare morphometric measurements of scanned images of dragonfly wings to those obtained using other, more traditional, methods. We assume that the destructive method of removing and slide-mounting wings provides the most accurate method of measurement because it eliminates error due to wing curvature. We show that, for dragonfly wings, hand measurements of pinned specimens and digital measurements of scanned images are equally accurate relative to slide-mounted hand measurements. Since destructive slide-mounting is unsuitable for museum collections, and there is a risk of damage when hand measuring fragile pinned specimens, we suggest that the use of scanned images may also be an appropriate method to collect morphometric data from other collected insect species.

  10. PIV-based pressure measurement

    International Nuclear Information System (INIS)

    Van Oudheusden, B W

    2013-01-01

    The topic of this article is a review of the approach to extract pressure fields from flow velocity field data, typically obtained with particle image velocimetry (PIV), by combining the experimental data with the governing equations. Although the basic working principles on which this procedure relies have been known for quite some time, the recent expansion of PIV capabilities has greatly increased its practical potential, up to the extent that nowadays a time-resolved volumetric pressure determination has become feasible. This has led to a novel diagnostic methodology for determining the instantaneous flow field pressure in a non-intrusive way, which is rapidly finding acceptance in an increasing variety of application areas. The current review describes the operating principles, illustrating how the flow-governing equations, in particular the equation of momentum, are employed to compute the pressure from the material acceleration of the flow. Accuracy aspects are discussed in relation to the most dominating experimental influences, notably the accuracy of the velocity source data, the temporal and spatial resolution and the method invoked to estimate the material derivative. In view of its nature of an emerging technique, recently published dedicated validation studies will be given specific attention. Different application areas are addressed, including turbulent flows, aeroacoustics, unsteady wing aerodynamics and other aeronautical applications. (topical review)

  11. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  12. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    Science.gov (United States)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  13. Pressure measurements in harsh environments

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1979-01-01

    A fluid coupled plate (FCP) gage was designed which allows pressure measurements to be made in harsh environments (including debris) using conventional pressure transducers. The pressure transducer is isolated by means of a rigid force plate which is supported by a bellows having one corrugation. This portion of the gage is machined from a single piece of material. The interior of the gage is filled with a phenol fluid which has a low compressibility

  14. Differential pressure measurement using a free-flying insect-like ornithopter with an MEMS sensor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hidetoshi; Aoyama, Yuichiro; Ohsawa, Kazuharu; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao [Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tanaka, Hiroto, E-mail: isao@leopard.t.u-tokyo.ac.j [School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138 (United States)

    2010-09-15

    This paper presents direct measurements of the aerodynamic forces on the wing of a free-flying, insect-like ornithopter that was modeled on a hawk moth (Manduca sexta). A micro differential pressure sensor was fabricated with micro electro mechanical systems (MEMS) technology and attached to the wing of the ornithopter. The sensor chip was less than 0.1% of the wing area. The mass of the sensor chip was 2.0 mg, which was less than 1% of the wing mass. Thus, the sensor was both small and light in comparison with the wing, resulting in a measurement system that had a minimal impact on the aerodynamics of the wing. With this sensor, the 'pressure coefficient' of the ornithopter wing was measured during both steady airflow and actual free flight. The maximum pressure coefficient observed for steady airflow conditions was 1.4 at an angle of attack of 30{sup 0}. In flapping flight, the coefficient was around 2.0 for angles of attack that ranged from 25{sup 0} to 40{sup 0}. Therefore, a larger aerodynamic force was generated during the downstroke in free flight compared to steady airflow conditions.

  15. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    Science.gov (United States)

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  16. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.

    Science.gov (United States)

    Li, Chengyu; Dong, Haibo

    2017-02-03

    This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.

  17. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  18. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.

    Science.gov (United States)

    Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung

    2015-07-30

    A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model.

  19. Novel method for measuring a dense 3D strain map of robotic flapping wings

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  20. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  1. Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions

    Science.gov (United States)

    Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.

    2001-01-01

    The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.

  2. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  3. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    Science.gov (United States)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  4. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  5. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  6. Device for measuring bed pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, B.M.; Chubar, V.G.

    1979-03-05

    The invention refers to studies in wells and is designed for piezomeasurements for the processes of undergrond leaching out associated with the movement of fluids of variable density to the productive beds. The purpose of he invention is to increase the accuracy of measurements of bed pressure by reducing the influence of changes of fluid density in the well. The goal is achieved because the device is equipped with a piezometric pipe arranged in the well and filled with liquid whose density is less than the density of the solution, and the transformer of the level is installed in the pipe. The pipe can have a throttle. A drawing and description of the proposed device are presented.

  7. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  8. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  9. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  10. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  11. Ion temperature profile measurements using the far line wings of Hα

    International Nuclear Information System (INIS)

    Bengtson, R.D.; Boedo, J.; Rowan, W.L.

    1986-01-01

    This paper presents ion temperature profiles for the outer half of the TEXT plasma using the Doppler broadened far line wings of the H α line profile. The technique depends on the assumption that the hydrogen neutrals have equilibrated with the ions through charge exchange collisions. Data reduction depends upon going far enough out on the line wing that the intensity profile is characteristic of the hottest portion of the plasma along the line of sight, thus removing the need for an inversion procedure. A Fabry-Perot interferometer is used to measure the line profiles because of its superior instrumental profile. This technique is compared with the charge exchange technique and Doppler broadening of impurities. The application to ion temperature measurements using a diagnostic neutral beam is also discussed

  12. High Precision Pressure Measurement with a Funnel

    Science.gov (United States)

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  13. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  14. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation...

  15. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  16. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  17. New Vision Sensor to Measure Gas Pressure

    Directory of Open Access Journals (Sweden)

    Murawski Krzysztof

    2015-06-01

    Full Text Available The paper presents the construction and operation of a video sensor developed for video-manometer. In the publication the use of video-manometer for measuring gas pressure is presented. A characteristic feature of the device is pressure measurement based on diaphragm deformation and digital image processing. Presented measuring technique eliminates restrictions in the construction of the measuring apparatus arising from non-linear nature of diaphragm deformation. It also allows performing measurements of gas pressure, also of explosive gas, providing galvanic isolation between the factor measured and the measuring device. The paper presents the results of video-manometer calibration and measurements taken during the laboratory tests. It has been shown that the developed video-manometer, that is equipped with a flat silicone diaphragm, allows measuring the gas pressure in the range of 0 – 100 mbar with an error less than 2 %. In the experiments the CO2 pressure was measured.

  18. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    Science.gov (United States)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  19. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  20. PIV-based pressure measurement

    NARCIS (Netherlands)

    van Oudheusden, B.W.

    2013-01-01

    The topic of this article is a review of the approach to extract pressure fields from flow velocity field data, typically obtained with particle image velocimetry (PIV), by combining the experimental data with the governing equations. Although the basic working principles on which this procedure

  1. Commentary on differential-pressure measurements at high reference pressures

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  2. Effects of Canard on the Flowfield over a Wing

    Science.gov (United States)

    Nayebzadeh, Arash

    2015-11-01

    Surface and flowfield pressure measurements have been done over delta wing/canard configuration in a variety of canard vertical and horizontal locations and angles of attack. The experimental model consisted of wing, canard and a body to accommodate pressure tubing and canard rotation mechanism. All the tests have been performed at subsonic velocities and the effect of canard were analyzed through comparison between surface and flowfield pressure distributions. It was found that vortex flow pattern over the wing is dominated mainly by canard vertical position and in some cases, by merging of canard and wing vortices. In addition, the pressure loss induced by canard vortex on the wing surface moves the wing vortex toward the leading edge. In the mid canard configuration, canard and wing vortices merge at x/c greater than 0.5 and as a result of this phenomenon, abrupt pressure loss induces more stable vortex flow over the wing. It is also shown that canard plays a vital role in vortex break down over the wing.

  3. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  4. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...

  5. Various pressure measurement technologies in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori (Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors); Hosoma, Takashi; Kawa, Tsunemichi

    1993-02-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author).

  6. Various pressure measurement technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Hosoma, Takashi; Kawa, Tsunemichi.

    1993-01-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author)

  7. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    Science.gov (United States)

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  8. High precision pressure measurement with a funnel

    International Nuclear Information System (INIS)

    Lopez-Arias, T; Gratton, L M; Oss, S

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is placed, upside down, in a container filled with distilled water, placed on a scale. Our method provides a theoretical precision for the pressure measurement of the order of 0.01 Pa. Beyond this, the advantage of this method relies on the simplicity of the materials used and on the opportunity to discuss, at an undergraduate level, basic concepts regarding all those phenomena in which low or very low differential pressures are relevant

  9. Blade Tip Pressure Measurements Using Pressure Sensitive Paint

    Science.gov (United States)

    Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.

  10. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  11. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  12. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  13. Real-Time Wing-Vortex and Pressure Distribution Estimation on Wings Via Displacements and Strains in Unsteady and Transitional Flight Conditions

    Science.gov (United States)

    2016-09-07

    LES ) flow solver coupled with a linear elastic membrane wing model. The focus of the study was to evaluate the effect of aeroelastic cambering on...inverse problem that is not solvable, consider a rectangular membrane made of isotropic material, with Poisson coefficient ν = 0, and subjected to a

  14. Agreement between direct and indirect blood pressure measurements obtained from anesthetized Hispaniolan Amazon parrots.

    Science.gov (United States)

    Acierno, Mark J; da Cunha, Anderson; Smith, Julie; Tully, Thomas N; Guzman, David Sanchez-Migallon; Serra, Verna; Mitchell, Mark A

    2008-11-15

    To determine the level of agreement between direct and indirect blood pressure measurements obtained from healthy Hispaniolan Amazon parrots (Amazona ventralis) anesthetized with isoflurane. Validation study. 16 healthy adult Hispaniolan Amazon parrots. Parrots were anesthetized, and a 26-gauge, 19-mm catheter was placed percutaneously in the superficial ulnar artery for direct measurement of systolic, mean, and diastolic arterial pressures. Indirect blood pressure measurements were obtained with a Doppler ultrasonic flow detector and an oscillometric unit. The Bland-Altman method was used to compare direct and indirect blood pressure values. There was substantial disagreement between direct systolic arterial blood pressure and indirect blood pressure measurements obtained with the Doppler detector from the wing (bias, 24 mm Hg; limits of agreement, -37 to 85 mm Hg) and from the leg (bias, 14 mm Hg; limits of agreement, -14 to 42 mm Hg). Attempts to obtain indirect blood pressure measurements with the oscillometric unit were unsuccessful. Results suggested that there was substantial disagreement between indirect blood pressure measurements obtained with a Doppler ultrasonic flow detector in anesthetized Hispaniolan Amazon parrots and directly measured systolic arterial blood pressure.

  15. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  16. A gas thermometer for vapor pressure measurements

    Science.gov (United States)

    Rusin, A. D.

    2008-08-01

    The pressure of an inert gas over the range 400 1000 K was measured on a tensimetric unit with a quartz membrane pressure gauge of enhanced sensitivity. It was shown that a reactor with a membrane null gauge could be used as a gas thermometer. The experimental confidence pressure and temperature intervals were 0.07 torr and 0.1 K at a significance level of 0.05. A Pt-Pt/10% Rh thermocouple was calibrated; the results were approximated by a polynomial of degree five. The error in temperature calculations was 0.25 K.

  17. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  18. Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    Science.gov (United States)

    St.hilaire, A. O.; Carta, F. O.

    1983-01-01

    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.

  19. Identification of Muscidae (Diptera) of medico-legal importance by means of wing measurements.

    Science.gov (United States)

    Grzywacz, Andrzej; Ogiela, Jakub; Tofilski, Adam

    2017-05-01

    Cadavers attract numerous species and genera of Muscidae, both regular elements of carrion insect assemblages, and accidental visitors. Identification of adult Muscidae may be considered difficult, particularly by non-experts. Since species identification is a vital first step in the analysis of entomological material in any forensic entomology orientated experiment and real cases, various alternative methods of species identification have been proposed. We investigated possibility of semiautomated identification by means of wing measurements as an alternative for classic morphology and DNA-based approaches. We examined genus-level identification success for 790 specimens representing 13 genera of the most common European cadavers visiting Muscidae. We found 99.8% of examined specimens correctly identified to the genus-level. Without error, the following were identified: Azelia, Eudasyphora, Graphomya, Hydrotaea, Musca, Muscina, Mydaea, Neomyia, Polietes, Stomoxys and Thricops. Genus-level misidentifications were found only in Helina and Phaonia. Discrimination of examined material on the species level within Hydrotaea (318 specimens representing eight species) and Muscina (163 specimens representing four species) showed lower, yet still high average identification success, 97.2 and 98.8%, respectively. Our results revealed relatively high success in both genus and species identification of Muscidae of medico-legal importance. Semiautomated identification by means of wing measurements can be used by non-experts and does not require sophisticated equipment. This method will facilitate the identification of forensically relevant muscids in comparison to more difficult and more time-consuming identification approaches based on taxonomic keys or DNA-based methods. However, for unambiguous identification of some taxa, we recommend complementary use of identification keys.

  20. Measuring the osmotic pressure of active colloids

    Science.gov (United States)

    Wang, Michael; Soni, Vishal; Magkiriadou, Sofia; Ferrari, Melissa; Youssef, Mina; Driscoll, Michelle; Sacanna, Stefano; Chaikin, Paul; Irvine, William

    We study the behavior of a system of colloidal spinners, consisting of weakly magnetic colloids driven by a rotating magnetic field. First the particles are allowed to sediment to an equilibrium density profile in a gravitational field, from which we measure the equilibrium equation of state. By spinning the particles at various frequencies, we introduce activity into the system through the hydrodynamic interactions between particles. We observe that the activity expands the sedimentation profile to a new steady state, from which we measure the pressure as a function of the density and activity. We compare the effects of activity on the pressure and mean-squared displacement of spinners and tracer particles.

  1. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    characteristics. Flight mechanics analysis is primarily concerned with the aerodynamic data composed ... static data are the limiting case of unsteady flow pattern as time tends to infinity (or at least a few times the .... as the qualitative changes in the surface pressure model are independently confirmed by Roos. & Kegelman ...

  2. Optical pressure/density measuring means

    Science.gov (United States)

    Veligdan, J.T.

    1995-05-09

    An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.

  3. Pressure-dependent measurements in superconductors

    Science.gov (United States)

    Suresh, N.; Tallon, J. L.

    2008-07-01

    To evaluate the performance of a home-built miniature non-magnetic piston clamp cell we have carried out extensive low-temperature (1.5 to 10 K) measurements of the critical field, Hc, for the element Pb up to a pressure of P = 1.2 GPa. Surprisingly, such data has not previously been reported above 0.3 GPa. From this data the electronic entropy, specific heat, thermal expansion coefficient and compressibility is calculated as a function of temperature, pressure and magnetic field. The zero-field data is consistent with direct thermodynamic measurements and the P-dependence of Tc and specific heat coefficient, γ(T, P), allows the determination of the P-dependence of the pairing interaction. Using Pb as a manometer we investigated the pressure dependence of oxygen isotope effect on Tc for YBa2Cu4O8.

  4. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  5. Comparison of wind pressure measurements on Silsoe ...

    African Journals Online (AJOL)

    Comparison of wind pressure measurements on Silsoe experimental building from full-scale observation, wind-tunnel experiments and various CFD techniques. ... for anisotropic turbulence and curvature related strain effects and the same have been compared with the full-scale and wind-tunnel data for the present study.

  6. Measuring elevated intracranial pressure through noninvasive methods

    DEFF Research Database (Denmark)

    Kristiansson, Helena; Nissborg, Emelie; Bartek, Jiri

    2013-01-01

    Elevated intracranial pressure (ICP) is an important cause of secondary brain injury, and a measurement of ICP is often of crucial value in neurosurgical and neurological patients. The gold standard for ICP monitoring is through an intraventricular catheter, but this invasive technique...

  7. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  8. Nanoprobe measurements of materials at megabar pressures

    International Nuclear Information System (INIS)

    Wang, L.; Ding, Y.; Yang, W.; Liu, W.; Cai, Z.; Kung, J.; Shu, J.; Hemley, R.J.; Mao, W.L.; Mao, H.

    2010-01-01

    The use of nanoscale x-ray probes overcomes several key limitations in the study of materials up to multimegabar (> 200) pressures, namely, the spatial resolution of measurements of multiple samples, stress gradients, and crystal domains in micron to submicron size samples in diamond-anvil cells. Mixtures of Fe, Pt, and W were studied up to 282 GPa with 250-600 nm size synchrotron x-ray absorption and diffraction probes. The probes readily resolve signals from individual materials, between sample and gasket, and peak pressures, in contrast to the 5-(micro)m-sized x-ray beams that are now becoming routine. The use of nanoscale x-ray beams also enables single-crystal x-ray diffraction studies in nominally polycrystalline samples at ultrahigh pressures, as demonstrated in measurements of (Mg,Fe)SiO 3 postperovskite. These capabilities have potential for driving a push toward higher maximum pressures and further miniaturization of high-pressure devices, in the process advancing studies at extreme conditions.

  9. [Invasive blood pressure measurements. Factual safety].

    Science.gov (United States)

    Nielsen, L H

    1994-08-01

    Intra-arterial blood pressure measurement is often used in patients with unstable haemodynamics. The demand for accuracy in such measurements is high. Usually these demands are fulfilled, but situations can occur where the dynamic characteristics of the system are exceeded. In order to acknowledge this situation, one must be aware of these dynamic characteristics. The significance of the system's resonance frequency and damping is described. A method to control the usability of the system is described.

  10. Equipment for liquid metal pressure measurement

    International Nuclear Information System (INIS)

    Jung, J.

    1977-01-01

    Equipment is proposed for measuring liquid metal pressure in piping or a tank. An auxiliary piping is connected to the piping or tank at the measuring point. The auxiliary piping transports liquid metal to a container by means of an electromagnetic pump. The piping also houses an electromagnetic flow ratemeter connected to an electric comparator. The comparator and the electromagnetic pump are connected to the pump output generator. (Z.M.)

  11. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  12. Signal quality measures for unsupervised blood pressure measurement

    International Nuclear Information System (INIS)

    Abdul Sukor, J; Redmond, S J; Lovell, N H; Chan, G S H

    2012-01-01

    Accurate systolic and diastolic pressure estimation, using automated blood pressure measurement, is difficult to achieve when the transduced signals are contaminated with noise or interference, such as movement artifact. This study presents an algorithm for automated signal quality assessment in blood pressure measurement by determining the feasibility of accurately detecting systolic and diastolic pressures when corrupted with various levels of movement artifact. The performance of the proposed algorithm is compared to a manually annotated reference scoring (RS). Based on visual representations and audible playback of Korotkoff sounds, the creation of the RS involved two experts identifying sections of the recorded sounds and annotating sections of noise contamination. The experts determined the systolic and diastolic pressure in 100 recorded Korotkoff sound recordings, using a simultaneous electrocardiograph as a reference signal. The recorded Korotkoff sounds were acquired from 25 healthy subjects (16 men and 9 women) with a total of four measurements per subject. Two of these measurements contained purposely induced noise artifact caused by subject movement. Morphological changes in the cuff pressure signal and the width of the Korotkoff pulse were extracted features which were believed to be correlated with the noise presence in the recorded Korotkoff sounds. Verification of reliable Korotkoff pulses was also performed using extracted features from the oscillometric waveform as recorded from the inflatable cuff. The time between an identified noise section and a verified Korotkoff pulse was the key feature used to determine the validity of possible systolic and diastolic pressures in noise contaminated Korotkoff sounds. The performance of the algorithm was assessed based on the ability to: verify if a signal was contaminated with any noise; the accuracy, sensitivity and specificity of this noise classification, and the systolic and diastolic pressure

  13. Evaluation of unsteady aerodynamic forces and pressure in wings and turbines at low Reynolds number by combining particle image velocimetry and proper orthogonal decomposition

    Science.gov (United States)

    Villegas Vaquero, Arturo

    Aerodynamic unsteady forces in stationary and rotating wings are analyzed in this dissertation by using a combination of time-resolved particle image velocimetry (TR-PIV) and proper orthogonal decomposition (POD) techniques. Recent progress in experimental measurements has demonstrated the use of TR-PIV to calculate forces by applying the integral conservation of momentum equation in its different forms. However, a more accurate and robust method is needed for unsteady forces calculations. With this in mind, a modified pressure Poisson method is developed and applied in this work, showing its superior behavior compared to other methodologies described in the past. The independence of the calculated forces shows the robustness and stability of the method. Whereas force calculations have been recently considered, the role of flow structures in force fluctuations has not been revealed yet and it is the main focus of this study. To elucidate these relations, a hybrid PIV-POD analysis is applied to reconstruct the velocity field from the most energetic modes of the flow. A model describing the vortex-force relations is proposed in terms of lift and drag variations during the vortex shedding process. A spectral analysis of the calculated forces suggests symmetric periodic lift, drag and circulation variations at the shedding frequency. Moreover, lift, drag and circulation signals are in phase, which supports lift-circulation proportionality. However, non-symmetric drag fluctuations are found at double the shedding frequency within a shedding cycle. For instance, when a positive or negative circulation vortex detaches, different values in the maximum and minimum drag are obtained. The data and physical relations obtained in this work such as main frequencies, vortex-force fluctuations and behavior of reduced-order models can aid in the development of CFD applications at low Re. The methodology described can be applied to any moving or stationary wing at different Reynolds

  14. Comparison of pleural pressure measuring instruments.

    Science.gov (United States)

    Lee, Hans J; Yarmus, Lonny; Kidd, David; Ortiz, Ricardo; Akulian, Jason; Gilbert, Christopher; Hughes, Andrew; Thompson, Richard E; Arias, Sixto; Feller-Kopman, David

    2014-10-01

    The objective of this study was to compare the accuracy of a handheld digital manometer (DM) and U-tube (UT) manometer with an electronic transducer (ET) manometer during thoracentesis. Thirty-three consecutive patients undergoing thoracentesis were enrolled in the study. Pleural pressure (Ppl) measurements were made using a handheld DM (Compass; Mirador Biomedical), a UT water manometer, and an ET (reference instrument). End-expiratory Ppl was recorded after catheter insertion, after each aspiration of 240 mL, and prior to catheter removal. Volume of fluid removed, symptoms during thoracentesis, pleural elastance, and pleural fluid chemistry were also evaluated. A total of 594 Ppl measurements were made in 30 patients during their thoracenteses. There was a strong linear correlation coefficient between elastance for the DM and ET (r = 0.9582, P < .001). Correlation was poor between the UT and ET (r = 0.0448, P = .84). Among the 15 patients who developed cough, recorded ET pressures ranged from -9 to +9 cm H2O at the time of symptom development, with a mean (SD) of -2.93 (4.89) cm H2O. ET and DM measurements among those patients with cough had a low correlation between these measurements (R2 = 0.104, P = .24). Nine patients developed chest discomfort and had ET pressures that ranged from -26 to +6 cm H2O, with a mean (SD) of -7.89 (9.97) cm H2O. The handheld DM provided a valid and easy-to-use method to measure Ppl during thoracentesis. Future studies are needed to investigate its usefulness in predicting clinically meaningful outcomes.

  15. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    Stereoscopic particle image velocimetry measurements have been executed in a low speed wind tunnel in spanwise planes in the flow past a row of vortex generators, mounted on a bump in a fashion producing counter-rotating vortices. The measurement technique is a powerful tool which provides all...... to measure and resolve. The flow behaves as expected, in the sense that the vortices transport high momentum fluid into the boundary layer, making it thinner and more resistant to the adverse pressure gradient with respect to separation. The amount of reversed flow is significantly reduced when vortex...

  16. Polynomial analysis of ambulatory blood pressure measurements

    NARCIS (Netherlands)

    Zwinderman, A. H.; Cleophas, T. A.; Cleophas, T. J.; van der Wall, E. E.

    2001-01-01

    In normotensive subjects blood pressures follow a circadian rhythm. A circadian rhythm in hypertensive patients is less well established, and may be clinically important, particularly with rigorous treatments of daytime blood pressures. Polynomial analysis of ambulatory blood pressure monitoring

  17. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  18. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  19. Experimental Investigation of a Wing-in-Ground Effect Craft

    Science.gov (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  20. The Hydraulic Mechanism of the Unfolding of Hind Wings in Dorcus titanus platymelus (Order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2014-04-01

    Full Text Available In most beetles, the hind wings are thin and fragile; when at rest, they are held over the back of the beetle. When the hind wing unfolds, it provides the necessary aerodynamic forces for flight. In this paper, we investigate the hydraulic mechanism of the unfolding process of the hind wings in Dorcus titanus platymelus (Oder: Coleoptera. The wing unfolding process of Dorcus titanus platymelus was examined using high speed camera sequences (400 frames/s, and the hydraulic pressure in the veins was measured with a biological pressure sensor and dynamic signal acquisition and analysis (DSA during the expansion process. We found that the total time for the release of hydraulic pressure during wing folding is longer than the time required for unfolding. The pressure is proportional to the length of the wings and the body mass of the beetle. A retinal camera was used to investigate the fluid direction. We found that the peak pressures correspond to two main cross-folding joint expansions in the hind wing. These observations strongly suggest that blood pressure facilitates the extension of hind wings during unfolding.

  1. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    Science.gov (United States)

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  2. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  3. On-line pressure measurement using scanning systems

    International Nuclear Information System (INIS)

    Morss, A.G.; Watson, A.P.

    1978-08-01

    Data collection methods can be improved significantly by using pressure scanning systems in conjunction with transducers for the measurement of pressure distribution in fluid flow rigs. However, the response of pressure transducers to the slight random pressure fluctuations that occur in practice can cause some measurement problems, especially for accurate work. The nature of these pressure fluctuations is examined and suitable analysis techniques are recommended. Results obtained using these techniques are presented. It is concluded that by using the correct techniques pressure transducer systems can be used to measure pressure distributions accurately and are sufficiently sensitive to measure very small systematic effects with great precision. (author)

  4. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  5. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  6. [New device and technique to measure intra-abdominal pressure].

    Science.gov (United States)

    Castañón-González, Jorge Alberto; Satué-Rodríguez, Julián; Carrillo Rosales, Francisco; Polanco-González, Carlos; Miranda-Ruíz, Rogelio; Camacho-Juárez, Sergio

    2013-01-01

    sequential measurement of intra-abdominal pressure is of paramount importance for an early detection and appropriate therapeutic management of intra-abdominal hypertension and abdominal compartment syndrome. to validate a device and technique developed to measure intra-abdominal pressure (an innovation of the Foley urinary catheter named intra-abdominal pressure catheter). three different sets of measurements where done to test the intra-abdominal pressure catheter device: I. 50 measurements were done with the intra-abdominal pressure catheter device and compared against those measurements done using a manometer graded in cm H(2)O; II. Direct measurement of intra-abdominal pressure in five patients during elective laparoscopy vs the intraabdominal pressure catheter device; and III. Measurement of intra-abdominal pressure by the Kron method (Gold standard) vs intra-abdominal pressure catheter device in three patents with intra-abdominal hypertension/abdominal compartment syndrome. Measurements where compared with Pearson correlation test and Bland Altman statistics. I.Intra-abdominal pressure catheter vs graded manometer: r = 0.99, with a mean pressure difference of 0.27 ± 0.23 mmHg, CI (0.039 to 0.092 mmHg). II. Direct measurement of intra-abdominal pressure during laparoscopy vs intra-abdominal pressure catheter device: r = 0.93, with a mean pressure difference of 0.18 ± 0.84 mmHg, CI (-1.46 to 1.83 mmHg) and III. Measurement of intra-abdominal pressure by the Kron Method vs intra-abdominal pressure catheter device: r = 0.81, with a mean pressure difference of -0.41 ± 0.87, CI (-2.12 mmHg to 1.30 mmHg). the intra-abdominal pressure catheter device is a safe and reliable instrument for measuring intra-abdominal pressure.

  7. Development of Photographic Dynamic Measurements Applicable to Evaluation of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2011-12-01

    Selectable error plot from calib_gui.m……………………………………………… 27 Figure 16: O’Hara flapper ……………………………………………………………………….. 30 Figure 17: Record tab in Motion...Wing downstroke three dimensional point cloud, from the top of the wing stroke... 57 Figure 38: Deleón flapper with hightlighted reference points...purposes. One point is directly over the flapper mount and the other is placed near the mount. The two points can be considered rigid to one another

  8. Development and optimization of a device for diferencial pressure measurement

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1980-01-01

    The measurements of reduced values of diferencial pressure, are studied. Several situations are described where the diferencial pressure accurate measurement is necessary in routine works in the Thermohydraulic Laboratory, as well as, the major pressure measurement devices and their respective range are studied. The development of a device for diferencial pressure measurement followed by the design development of the calibration bench covering the foreseen range, start up tests realization, optimization, calibration, performance analysis and conclusions, is showed. (Author) [pt

  9. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  10. Organic electroluminescent sensor for pressure measurement.

    Science.gov (United States)

    Matsuda, Yu; Ueno, Kaori; Yamaguchi, Hiroki; Egami, Yasuhiro; Niimi, Tomohide

    2012-10-16

    We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS) based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED) with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II) octaethylporphine (PtOEP) doped into poly(vinylcarbazole) (PVK) as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate) (PEDOT:PSS) as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP), which is an optical pressure sensor based on photoluminescence.

  11. Blood Pressure Measurement: Clinic, Home, Ambulatory, and Beyond

    Science.gov (United States)

    Drawz, Paul E.; Abdalla, Mohamed; Rahman, Mahboob

    2014-01-01

    Blood pressure has traditionally been measured in the clinic setting using the auscultory method and a mercury sphygmomanometer. Technological advances have led to improvements in measuring clinic blood pressure and allowed for measuring blood pressures outside the clinic. This review outlines various methods for evaluating blood pressure and the clinical utility of each type of measurement. Home blood pressures and 24 hour ambulatory blood pressures have improved our ability to evaluate risk for target organ damage and hypertension related morbidity and mortality. Measuring home blood pressures may lead to more active participation in health care by patients and has the potential to improve blood pressure control. Ambulatory blood pressure monitoring enables the measuring nighttime blood pressures and diurnal changes, which may be the most accurate predictors of risk associated with elevated blood pressure. Additionally, reducing nighttime blood pressure is feasible and may be an important component of effective antihypertensive therapy. Finally, estimating central aortic pressures and pulse wave velocity are two of the newer methods for assessing blood pressure and hypertension related target organ damage. PMID:22521624

  12. Turbulent pressure fluctuations measured during CHATS

    Science.gov (United States)

    Steven P. Oncley; William J. Massman; Edward G. Patton

    2008-01-01

    Fast-response pressure fluctuations were included in the Canopy Horizontal Array of Turbulence Study (CHATS) at several heights within and just above the canopy in a walnut orchard. Two independent systems were intercompared and then separated. We present an evaluation of turbulence statistics - including the pressure transport term in the turbulence kinetic energy...

  13. Retention curves measured using pressure plate and pressure membrane apparatus

    DEFF Research Database (Denmark)

    Hansen, Morten Hjorslev

    This report presents a proposal for a test method for the measurement of the retention curve, especially in the high moisture content range, and the pore size distribution of building materials. The test method includes the measurement of apparent density, solid density, and open porosity...

  14. [An integrated system of blood pressure measurement with bluetooth communication].

    Science.gov (United States)

    Wang, Wei; Wang, Jing; Sun, Hongyang; Xu, Zuyang; Chai, Xinyu

    2012-07-01

    The development of the integrated blood pressure system with bluetooth communication function is introduced. Experimental results show that the system can complete blood pressure measurement and data transmission wireless effectively, which can be used in m-Health in future.

  15. Auscultatory versus oscillometric measurement of blood pressure in octogenarians

    DEFF Research Database (Denmark)

    Rosholm, Jens-Ulrik; Pedersen, Sidsel Arnspang; Matzen, Lars

    2012-01-01

    Auscultatory measurement using a sphygmomanometer has been the predominant method for clinical estimation of blood pressure, but it is now rapidly being replaced by oscillometric measurement.......Auscultatory measurement using a sphygmomanometer has been the predominant method for clinical estimation of blood pressure, but it is now rapidly being replaced by oscillometric measurement....

  16. [Measurement of blood pressure variability and the clinical value].

    Science.gov (United States)

    Kékes, Ede; Kiss, István

    2014-10-19

    Authors have collected and analyzed literature data on blood pressure variability. They present the methods of blood pressure variability measurement, clinical value and relationships with target organ damages and risk of presence of cardiovascular events. They collect data about the prognostic value of blood pressure variability and the effects of different antihypertensive drugs on blood pressure variability. They underline that in addition to reduction of blood pressure to target value, it is essential to influence blood pressure fluctuation and decrease blood pressure variability, because blood pressure fluctuation presents a major threat for the hypertensive subjects. Data from national studies are also presented. They welcome that measurement of blood pressure variability has been included in international guidelines.

  17. Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy

    CERN Document Server

    Takebe, H; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T

    2002-01-01

    We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO sub 2 (Y sub 2 O sub 3 -ZrO sub 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure.

  18. Lumbar puncture opening pressure is not a reliable measure of intracranial pressure in children.

    Science.gov (United States)

    Cartwright, Cathy; Igbaseimokumo, Usiakimi

    2015-02-01

    There is very little data correlating lumbar puncture pressures to formal intracranial pressure monitoring despite the widespread use of both procedures. The hypothesis was that lumbar puncture is a single-point measurement and hence it may not be a reliable evaluation of intracranial pressure. The study was therefore carried out to compare lumbar puncture opening pressures with the Camino bolt intracranial pressure monitor in children. Twelve children with a mean age of 8.5 years who had both lumbar puncture and intracranial pressure monitoring were analyzed. The mean lumbar puncture opening pressure was 22.4 mm Hg versus a mean Camino bolt intracranial pressure of 7.8 mm Hg (P intracranial pressure in children. There were no complications from the intracranial pressure monitoring, and the procedure changed the treatment of all 12 children avoiding invasive operative procedures in most of the patients. © The Author(s) 2014.

  19. Automated measurement of pressure injury through image processing.

    Science.gov (United States)

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure

  20. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  1. Pneumatic artificial muscle and its application on driving variable trailing-edge camber wing

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Liu, Yanju; Leng, Jinsong

    2010-04-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, the experimental setup to measure the static output force of pneumatic artificial muscle was designed and the relationship between the static output force and the air pressure was investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. A variable camber wing based on the pneumatic artificial muscle was developed and the variable camber wing model was manufactured to validate the variable camber concept. Wind tunnel tests were conducted in the low speed wind tunnel. Experimental result shows that the wing camber increases with increasing air pressure.

  2. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  3. Miniature uniaxial pressure cells for magnetic measurements

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Mihalik, M.; Sechovský, V.; Arnold, Zdeněk

    2008-01-01

    Roč. 28, č. 4 (2008), s. 633-636 ISSN 0895-7959 R&D Projects: GA ČR GA202/06/0178 Institutional research plan: CEZ:AV0Z10100521 Keywords : uniaxial compression * anisotropy * CuBe pressure cell Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.852, year: 2008

  4. Blood pressure and anthropometric measurements in healthy ...

    African Journals Online (AJOL)

    Treatment of High Blood Pressure (JNC-7),8 with the subjects sitting quietly and the right arm on a table at the level of the heart. An appropriately sized cuff, covering at least two-thirds of the upper arm with the lower border not less than 2.5 cm from the cubital fossa, was applied after restricting clothing had been removed.

  5. Clinical value of blood pressure measurement in the community pharmacy.

    Science.gov (United States)

    Sabater-Hernández, Daniel; Azpilicueta, Inés; Sánchez-Villegas, Pablo; Amariles, Pedro; Baena, María I; Faus, María J

    2010-10-01

    To investigate whether the measurement of blood pressure in the community pharmacy is a valuable method to diagnose hypertension, to assess the need and the effectiveness of anti-hypertensive treatments, or, in general, to make clinical decisions. Information has been extracted from articles published in English and in Spanish, from January 1989 to December 2009, in indexed magazines in MEDLINE and EMBASE. To perform the search, multiple and specified terms related to the community pharmacy setting, to blood pressure measurement and to the comparison and agreement between blood pressure measurement methods were used. Selected articles were those that: (1) compared and/or measured the agreement (concordance) between community pharmacy blood pressure measurements obtained in repeated occasions, or (2) compared and/or measured the agreement between the community pharmacy blood pressure measurement method and other measurement methods used in clinical practice for decision-making purposes: blood pressure measurement by a physician, by a nurse and home or ambulatory blood pressure monitoring. Articles were included and analyzed by two investigators independently, who essentially extracted the main results of the manuscripts, emphasizing the assessment of the blood pressure measurement methods used and the completed statistical analysis. Only three studies comparing the community pharmacy blood pressure measurement method with other methods and one comparing repeated measurements of community pharmacy blood pressure were found. Moreover, these works present significant biases and limitations, both in terms of method and statistical analysis, which make difficult to draw consistent conclusions. Further research of high quality is needed, which results can guide the clinical decision-making based on the community pharmacy blood pressure measurement method.

  6. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  7. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    Science.gov (United States)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2017-08-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  8. Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint

    Science.gov (United States)

    Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.

    2012-01-01

    This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.

  9. Reproducibility of repeated measurements with the Kikuhime pressure sensor under pressure garments in burn scar treatment.

    Science.gov (United States)

    Van den Kerckhove, Eric; Fieuws, Steffen; Massagé, Patrick; Hierner, Robert; Boeckx, Willy; Deleuze, Jean-Paul; Laperre, Jan; Anthonissen, Mieke

    2007-08-01

    This study investigated the reproducibility of repeated measurements with the Kikuhime pressure sensor under two different types of pressure garments used in the treatment and prevention of scars after burns. Also efficiency of garments was assessed in clinical circumstances by assessing pressure loss and residual pressure after 1 month. Intra- and inter-observer reproducibility and repeated measurements with 1-month time lapse were examined on 55 sites in 26 subjects by means of intra-class correlation coefficients and standard error of measurements. Results showed good to excellent ICC and low SEMs in the two conditions. There was a significant difference in pressure after 1 month between elastic tricot and weft knit garments, although evolution of pressure loss after 1 month was similar. Concerning different locations, there was a significant difference in pressure loss after 1 month between gloves and sleeves with the largest pressure loss for sleeves. Considering these results we concluded that the Kikuhime pressure sensor provides valid and reliable information and can be used in comparative clinical trials to evaluate pressure garments used in burn scar treatment. Secondly, elastic tricot garments in our study tended to have higher clinical pressures but both types of garments had similar pressure loss over time.

  10. Measurement of earthworm radial pressures during peristaltic motion

    Science.gov (United States)

    Ruiz, Siul; Or, Dani

    2017-04-01

    Earthworm activity and formation of burrowing networks are important for soil structure formation and transport processes. We developed models for earthworm penetration cavity expansion that consider soil hydration and mechanical status. A key parameter is the maxima axial and radial pressure exerted by the earthworm hydroskeleton (presently estimated at 200 kPa). To test a range of pressures exerted by moving earthworms we developed a coaxial chamber consisting of Plexiglas tube fitted with a thin and inflatable silicon tubing that hosts the earthworm. We pressurize the gap between the Plexiglas and flexible tubing using an incompressible liquid linked to a pressure transducer. Earthworm motion and concurrent pressure were recorded by the transducer and a dedicated video camera. The instrument was calibrated using a cardiac catheter resulting in close agreement between the catheter and chamber pressures. Measurements using anecic earthworms passing across the cylinder show mean radial pressures of 70 kPa, consistent with earlier findings of anecic earthworm pressure measurements using different measurement techniques. Analyses are underway to resolve local pressures induced during peristaltic motion. The study delineates mechanical constraints to soil bioturbation by earthworms for different mechanical conditions including compaction. Tests are underway for direct measurement of plant root pressures during growth.

  11. The optimal scheme of self blood pressure measurement as determined from ambulatory blood pressure recordings

    NARCIS (Netherlands)

    Verberk, Willem J.; Kroon, Abraham A.; Kessels, Alfons G. H.; Lenders, Jacques W. M.; Thien, Theo; van Montfrans, Gert A.; Smit, Andries J.; de Leeuw, Peter W.

    Objective To determine how many self-measurements of blood pressure (BP) should be taken at home in order to obtain a reliable estimate of a patient's BP. Design Participants performed self blood pressure measurement (SBPM) for 7 days (triplicate morning and evening readings). In all of them, office

  12. Linewidth pressure measurement: a new technique for high vacuum characterization.

    Science.gov (United States)

    Jones, Chad A; Dearden, David V

    2015-02-01

    Pressure measurement is often the limiting factor in the accuracy of quantitative ion-molecule experiments. We present a new method for pressure measurement based on analysis of pressure-limited Fourier transform ion cyclotron resonance (FTICR) linewidths for well-characterized collisions of Ar(+) with Ar. The kinetic energy dependence of Ar(+)/Ar collision cross sections is well-described using a single-parameter fitting procedure, which results in pressure measurements in good agreement with those from a cold cathode tube and from measurement of total ion signal following electron impact ionization. The new method avoids problems inherent in ionization-based methods, such as those arising from differences in ionization potential or perturbations to the pressure that occur during electron ionization of the gas to be measured, and should be applicable in the trapping cells of FTICR and Orbitrap mass spectrometers.

  13. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  14. Comparison of three types of tongue pressure measurement devices.

    Science.gov (United States)

    Yoshikawa, Mineka; Yoshida, Mitsuyoshi; Tsuga, Kazuhiro; Akagawa, Yasumasa; Groher, Michael E

    2011-09-01

    A new tongue pressure device consisting of a simple and safe disposable probe and manometer has been developed. This report describes a study that examined the validity of the new device, comparing it to a widely used tongue pressure manometer, the Iowa Oral Performance Instrument (IOPI), and to the stable adhered three air-filled bulbs manometry system. The first test compared maximum tongue pressure measured with the new device and the IOPI (13 male, 9 female, 25.0 years). The second test compared maximum tongue pressure and swallowing tongue pressure measured with the new device and the three-bulb device (13 male, 9 female, 31.0 years). Significant correlations of maximum tongue pressure were found between the new device and the IOPI in the first test (p pressure were found between the new device at the anterior and middle sensors (p pressure between the new device and the three-bulb device were found (p pressure device are closely equivalent to those of the IOPI and three-bulb devices, demonstrating that the new device is capable of accurately measuring the pressure generated by the whole tongue.

  15. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  16. Combined NMR moisture, temperature and pressure measurements during heating

    Directory of Open Access Journals (Sweden)

    Pel L.

    2013-09-01

    Full Text Available For model validation, quantitative measurements of the evolution of moisture, temperature, and pressure distributions in time are needed. For this purpose, we have developed an NMR setup to measure the moisture transport in heated building materials. The measured combined moisture content and temperature profiles give a unique insight in the moisture transport and dehydration kinetics inside concrete during fire. These measurements give the first quantitative proof for the build-up of a moisture peak due to the vapor pressure build-up. In this study we have also combined for the first time the measurement of the moisture and temperature profiles with the measurement of the pressure at one position, which show that the pressure build up is directly related to the moisture profiles.

  17. Experimental and computational study of transonic flow about swept wings

    Science.gov (United States)

    Bertelrud, A.; Bergmann, M. Y.; Coakley, T. J.

    1980-01-01

    An experimental investigation of NACA 0010 and 10% circular arc wing models, swept at 45 deg, spanning a channel, and at zero angle of attack is described. Measurements include chordwise and spanwise surface pressure distributions and oil-flow patterns for a range of transonic Mach numbers and Reynolds numbers. Calculations using a new three-dimensional Navier-Stokes code and a two-equation turbulence model are included for the circular-arc wing flow. Reasonable agreement between measurements and computations is obtained.

  18. Comparison of ambulatory blood pressure monitoring and office blood pressure measurements in obese children and adolescents.

    Science.gov (United States)

    Renda, Rahime

    2018-04-01

    Obesity in adults has been related to hypertension and abnormal nocturnal dipping of blood pressure, which are associated with poor cardiovascular and renal outcomes. Here, we aimed to resolve the relationship between the degree of obesity, the severity of hypertension and dipping status on ambulatory blood pressure in obese children. A total 72 patients with primary obesity aged 7 to 18 years (mean: 13.48 ± 3.25) were selected. Patients were divided into three groups based on body mass index (BMİ) Z-score. Diagnosis and staging of ambulatory hypertension based on 24-h blood pressure measurements, obtained from ambulatory blood pressure monitoring. Based on our ambulatory blood pressure data, 35 patients (48.6%) had hypertension, 7 (20%) had ambulatory prehypertension, 21 (60%) had hypertension, and 7 patients (20%) had severe ambulatory hypertension. There was a significant relationship between severity of hypertension and the degree of obesity (p lood pressure results and loads were similar between groups. Diastolic and mean arterial blood pressure levels during the night, diastolic blood pressure loads, and heart rate during the day were significantly higher in Group 3 (p lood pressure at night, mean arterial pressure at night, diastolic blood pressure loads and heart rate at day. Increase in BMI Z-score does not a significant impact on daytime blood pressure and nocturnal dipping status.

  19. CO2Explorer: Conducting Greenhouse-Gas Measurements of Landfills using a Small Fixed-wing UAV

    Science.gov (United States)

    Hollingsworth, Peter; Allen, Grant; Kabbabe, Khristopher; Pitt, Joseph

    2017-04-01

    Quantifying inventories of Greenhouse gas emissions, primarily Methane and Carbon Dioxide, from distributed sources such as a landfill has historically been undertaken using one of several ground based measurement techniques. These methods are either time and/or resource intensive. As a result regulatory agencies have started looking at the potential of using small-unmanned aircraft to supplement or supplant the current methods. The challenge of using a UAV to perform these tasks is the trade-off between accuracy, operational flexibility and operational productivity. This is driven by the state-of-the-art in measurement instruments, the operating environment at landfills and the regulatory/safety environment surrounding UAV operations. This work describes the development of the operational concept, and associated UAV measurement platform for the CO2Explorer. It looks at the scientific, engineering and possible policy trades and compares the use of small rotary and fixed-wing UAVs from both an operational and measurement perspective. This work also makes recommendations on system development and operation for users lacking in both systems engineering and operational experience.

  20. A Graphene-Based Flexible Pressure Sensor with Applications to Plantar Pressure Measurement and Gait Analysis.

    Science.gov (United States)

    Lou, Cunguang; Wang, Shuo; Liang, Tie; Pang, Chenyao; Huang, Lei; Run, Mingtao; Liu, Xiuling

    2017-09-11

    In the present study, we propose and develop a flexible pressure sensor based on the piezoresistive effect of multilayer graphene films on polyester textile. The pressure response results from the deformation of graphene conductive network structure and the changes in resistance. Here, we show that the graphene pressure sensor can achieve a sensitivity value of 0.012 kPa - 1 , the measurement range can be as high as 800 kPa, and the response time can reach to 50 ms. Subsequently, a stable in-shoe wireless plantar pressure measurement system is developed and dynamic pressure distribution is acquired in real-time. Overall, the graphene textile pressure sensor has the advantage of wide dynamic range, flexibility and comfort, which provides the high possibility for footwear evaluation, clinical gait analysis and pathological foot diagnosis.

  1. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  2. TREATMENT OF HYPERTENSION USING TELEMEDICAL HOME BLOOD PRESSURE MEASUREMENTS

    DEFF Research Database (Denmark)

    Hoffmann-Petersen, N; Lauritzen, T; Bech, J N

    2015-01-01

    OBJECTIVE: Telemonitoring of home blood pressure measurements (TBPM) is a new and promising supplement to diagnosis, control and treatment of hypertension. We wanted to compare the outcome of antihypertensive treatment based on TBPM and conventional monitoring of blood pressure. DESIGN AND METHOD...... of the measurements and subsequent communication by telephone or E-mail. In the control group, patients received usual care. Primary outcome was reduction in daytime ambulatory blood pressure measurements (ABPM) from baseline to 3 months' follow-up. RESULTS: In both groups, daytime ABPM decreased significantly....../181), p = 0.34. Blood pressure reduction in the TBPM group varied with the different practices. CONCLUSIONS: No further reduction in ABPM or number of patients reaching blood pressure targets was observed when electronic transmission of TBPM was applied in the treatment of hypertension by GPs. Thus...

  3. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells...

  4. Association between blood pressure, measures of body composition ...

    African Journals Online (AJOL)

    Risk factors for development of cardiovascular disease develop early in life and track into adulthood. This study investigated the relationship between blood pressure (BP) and measures of body composition in adolescents. The study participants were 307 adolescents. Blood pressure (BP) and anthropometric parameters: ...

  5. New Technique of Direct Intra-abdominal Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Elena Risin

    2006-10-01

    Conclusion: Direct measurement of intra-abdominal pressure using 14-Fr PVC round drain is a newly described technique that is simple, fast and credible. Future investigation will be needed to confirm the reliability of this method during postoperative follow-up of intra-abdominal pressures in selected patients.

  6. Definition-consistent measurement of exchange market pressure

    NARCIS (Netherlands)

    Klaassen, F.; Jager, H.

    2011-01-01

    Currencies can be under severe pressure, but in a managed exchange rate regime that is not fully visible via the change in the exchange rate. The literature has proposed a way to measure such exchange market pressure (EMP) indirectly, by adding interest rate changes and forex interventions to the

  7. Endotracheal tube cuff pressure: need for precise measurement

    Directory of Open Access Journals (Sweden)

    José Reinaldo Cerqueira Braz

    1999-11-01

    Full Text Available CONTEXT: High compliance endotracheal tubes cuffs are used to prevent gas leak and also pulmonary aspiration in mechanically ventilated patients. However, the use of the usual cuff inflation volumes may cause tracheal damage. OBJECTIVE: We tested the hypothesis that endotracheal tube cuff pressures are routinely high (above 40 cmH2O in the Post Anesthesia Care Unit (PACU or Intensive Care Units (ICU. DESIGN: Cross-sectional study. SETTING: Post anesthesia care unit and intensive care unit. PARTICIPANTS: We measured endotracheal tubes cuff pressure in 85 adult patients, as follows: G1 (n = 31 patients from the ICU; G2 (n = 32 patients from the PACU, after anesthesia with nitrous oxide; G3 (n = 22 patients from the PACU, after anesthesia without nitrous oxide. Intracuff pressure was measured using a manometer (Mallinckrodt, USA. Gas was removed as necessary to adjust cuff pressure to 30 cmH2O. MAIN MEASUREMENTS: Endotracheal tube cuff pressure. RESULTS: High cuff pressure (> 40 cmH2O was observed in 90.6% patients of G2, 54.8% of G1 and 45.4% of G3 (P < 0.001. The volume removed from the cuff in G2 was higher than G3 (P < 0.05. CONCLUSION: Endotracheal tubes cuff pressures in ICU and PACU are routinely high and significant higher when nitrous oxide is used. Endotracheal tubes cuff pressure should be routinely measured to minimize tracheal trauma.

  8. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    Science.gov (United States)

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  9. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  10. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography

    Directory of Open Access Journals (Sweden)

    Glik Zehava

    2009-10-01

    Full Text Available Abstract Background Automatic measurement of arterial blood pressure is important, but the available commercial automatic blood pressure meters, mostly based on oscillometry, are of low accuracy. Methods In this study, we present a cuff-based technique for automatic measurement of systolic blood pressure, based on photoplethysmographic signals measured simultaneously in fingers of both hands. After inflating the pressure cuff to a level above systolic blood pressure in a relatively slow rate, it is slowly deflated. The cuff pressure for which the photoplethysmographic signal reappeared during the deflation of the pressure-cuff was taken as the systolic blood pressure. The algorithm for the detection of the photoplethysmographic signal involves: (1 determination of the time-segments in which the photoplethysmographic signal distal to the cuff is expected to appear, utilizing the photoplethysmographic signal in the free hand, and (2 discrimination between random fluctuations and photoplethysmographic pattern. The detected pulses in the time-segments were identified as photoplethysmographic pulses if they met two criteria, based on the pulse waveform and on the correlation between the signal in each segment and the signal in the two neighboring segments. Results Comparison of the photoplethysmographic-based automatic technique to sphygmomanometry, the reference standard, shows that the standard deviation of their differences was 3.7 mmHg. For subjects with systolic blood pressure above 130 mmHg the standard deviation was even lower, 2.9 mmHg. These values are much lower than the 8 mmHg value imposed by AAMI standard for automatic blood pressure meters. Conclusion The photoplethysmographic-based technique for automatic measurement of systolic blood pressure, and the algorithm which was presented in this study, seems to be accurate.

  11. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography.

    Science.gov (United States)

    Nitzan, Meir; Patron, Amikam; Glik, Zehava; Weiss, Abraham T

    2009-10-26

    Automatic measurement of arterial blood pressure is important, but the available commercial automatic blood pressure meters, mostly based on oscillometry, are of low accuracy. In this study, we present a cuff-based technique for automatic measurement of systolic blood pressure, based on photoplethysmographic signals measured simultaneously in fingers of both hands. After inflating the pressure cuff to a level above systolic blood pressure in a relatively slow rate, it is slowly deflated. The cuff pressure for which the photoplethysmographic signal reappeared during the deflation of the pressure-cuff was taken as the systolic blood pressure. The algorithm for the detection of the photoplethysmographic signal involves: (1) determination of the time-segments in which the photoplethysmographic signal distal to the cuff is expected to appear, utilizing the photoplethysmographic signal in the free hand, and (2) discrimination between random fluctuations and photoplethysmographic pattern. The detected pulses in the time-segments were identified as photoplethysmographic pulses if they met two criteria, based on the pulse waveform and on the correlation between the signal in each segment and the signal in the two neighboring segments. Comparison of the photoplethysmographic-based automatic technique to sphygmomanometry, the reference standard, shows that the standard deviation of their differences was 3.7 mmHg. For subjects with systolic blood pressure above 130 mmHg the standard deviation was even lower, 2.9 mmHg. These values are much lower than the 8 mmHg value imposed by AAMI standard for automatic blood pressure meters. The photoplethysmographic-based technique for automatic measurement of systolic blood pressure, and the algorithm which was presented in this study, seems to be accurate.

  12. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  13. Home blood pressure measurement in elderly patients with cognitive impairment: comparison of agreement between relative-measured blood pressure and automated blood pressure measurement.

    Science.gov (United States)

    Plichart, Matthieu; Seux, Marie-Laure; Caillard, Laure; Chaussade, Edouard; Vidal, Jean-Sébastien; Boully, Clémence; Hanon, Olivier

    2013-08-01

    Home blood pressure measurement (HBPM) is recommended by guidelines for hypertension management. However, this method might be difficult to use in elderly individuals with cognitive disorders. Our aim was to assess the agreement and the feasibility of HBPM by a relative as compared with 24-h ambulatory blood pressure monitoring (ABPM) in elderly patients with dementia. Sixty outpatients with dementia aged 75 years and older with office hypertension (≥140/90 mmHg) were subjected successively to HBPM by a trained relative and 24-h ABPM. The order of the two methods was randomized. Current guidelines' thresholds for the diagnosis of hypertension were used. The mean (SD) age of the patients was 80.8 (6.1) years (55% women) and the mean (SD) mini-mental state examination score was 20.1 (6.9). The feasibility of relative-HBPM was very high, with a 97% success rate (defined by ≥12/18 measurements reported). The blood pressure measurements were highly correlated between the two methods (r=0.75 and 0.64 for systolic blood pressure and diastolic blood pressure, respectively; Pmethods for the diagnosis of sustained hypertension and white-coat hypertension was excellent (overall agreement, 92%; κ coefficient, 0.81; 95% CI, 0.61-0.93). Similar results were found for daytime-ABPM. In cognitively impaired elderly patients, HBPM by a relative using an automated device was a good alternative to 24-h ABPM.

  14. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  15. 21 CFR 890.1600 - Intermittent pressure measurement system.

    Science.gov (United States)

    2010-04-01

    ... evaluative device intended for medical purposes, such as to measure the actual pressure between the body surface and the supporting media. (b) Classification. Class I (general controls). The device is exempt...

  16. Measurement of the differential pressure of liquid metals

    Science.gov (United States)

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  17. Measurement of the differential pressure of liquid metals

    International Nuclear Information System (INIS)

    Metz, H.J.

    1975-01-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed

  18. Indications for portal pressure measurement in chronic liver disease

    DEFF Research Database (Denmark)

    Hobolth, Lise; Bendtsen, Flemming; Møller, Søren

    2012-01-01

    Portal hypertension leads to development of serious complications such as esophageal varices, ascites, renal and cardiovascular dysfunction. The importance of the degree of portal hypertension has been substantiated within recent years. Measurement of the portal pressure is simple and safe...... and the hepatic venous pressure gradient (HVPG) independently predicts survival and development of complications such as ascites, HCC and bleeding from esophageal varices. Moreover, measurements of HVPG can be used to guide pharmacotherapy for primary and secondary prophylaxis for variceal bleeding. Assessment...

  19. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    Science.gov (United States)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  20. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  1. Blood pressure measurements in the ankle are not equivalent to ...

    African Journals Online (AJOL)

    Background. Blood pressure (BP) is often measured on the ankle in the emergency department (ED), but this has never been shown to be an acceptable alternative to measurements performed on the arm. Objective. To establish whether the differences between arm and ankle non-invasive BP measurements were clinically ...

  2. Use of an Ethanol-Driven Pressure Cell to Measure Hydrostatic Pressure Response of Protein-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2016-01-01

    ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure...ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure Response of...DATES COVERED (From - To) May 2014–September 2014 4. TITLE AND SUBTITLE Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure

  3. Deformation measurement in the wind tunnel for an UAV leading edge with a morphing mechanism

    NARCIS (Netherlands)

    Radestock, M.; Riemenschneider, J.; Monner, H.P.; Huxdorf, O.; Werter, N.P.M.; De Breuker, R.

    2016-01-01

    In a wind tunnel experiment a morphing wing with span extension and camber morphing was investigated. The considered aircraft is an unmanned aerial vehicle (UAV) with a span of 4 m. During the investigations a half wing model was analysed with pressure and structural measurement. The half wing model

  4. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  5. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  6. Hepatic venous pressure gradients measured by duplex ultrasound

    International Nuclear Information System (INIS)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.

    2002-01-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  7. Validating Center-of-Pressure Balance Measurements Using the MatScan® Pressure Mat.

    Science.gov (United States)

    Goetschius, John; Feger, Mark A; Hertel, Jay; Hart, Joseph M

    2018-01-24

    Measurements of center-of-pressure (COP) excursions during balance are common practice in clinical and research settings to evaluate adaptations in postural control due to pathological or environmental conditions. Traditionally measured using laboratory force plates, pressure-mat devices may be a suitable option for clinicians and scientist to measure COP excursions. Compare COP measures and changes during balance between MatScan® pressure mat and force plate. Validation study. Laboratory. 30 healthy, young adults (19 female, 11 male, 22.7 ± 3.4 y, 70.3 ± SD kg, 1.71 ± 0.09 m). COP excursions were simultaneously measured using pressure-mat and force-plate devices. Participants completed 3 eyes-open and 3 eyes-closed single-leg balance trials (10 s). Mean of the 3 trials was used to calculate 4 COP variables: medial-lateral and anterior-posterior excursion, total distance, and area with eyes open and eyes closed. Percent change and effect sizes were calculated between eyes-open to eyes-closed conditions for each variable and for both devices. All COP variables were highly correlated between devices for eyes-open and eyes-closed conditions (all r > .92, P COP measurements were smaller than those of the force-plate, and the differences between devices appeared to increase as the measurement magnitude increased. Percent change in COP variables was highly correlated between devices (r > .85, P  2.25) and similar in magnitude between devices. COP measures were correlated between devices, but values tended to be smaller using the pressure mat. The pressure mat and force plate detected comparable magnitude changes in COP measurements between eyes-open and eyes-closed. Pressure mats may provide a viable option for detecting large magnitude changes in postural control during short-duration testing.

  8. A human cadaver fascial compartment pressure measurement model.

    Science.gov (United States)

    Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee

    2013-10-01

    Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p measurable fascial compartment pressure measurement model in a fresh human cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Optimal Approaches for Measuring Tongue-Pressure Functional Reserve

    Directory of Open Access Journals (Sweden)

    Catriona M. Steele

    2013-01-01

    Full Text Available Tongue-palate pressure is a parameter of considerable interest in the field of dysphagia. Maximum isometric tongue-palate pressures (MIPs decline in healthy aging and in dysphagia. Functional reserve (FR is the difference between MIPs and swallowing pressures. Reduced FR is thought to constitute a risk for developing functional swallowing impairments. We compare different approaches for calculating FR and recommend an optimal approach. Tongue-palate pressure data were collected from 78 healthy adults (4060 during anterior and posterior MIPs, regular (RESS and effortful (ESS saliva swallows, and water swallows (4 repetitions per task. Six different measures of reserve were calculated using maximum anterior MIPs or ESS pressures at the top, and mean or maximum RESS or water swallow pressures at the bottom of the range. Correlations with age and MIPs were explored to confirm suitability for measuring FR. The impact of normalization to maximum MIP range was explored. We conclude that an optimal measure of FR involves the comparison of maximum MIP with mean saliva swallowing pressures. This parameter declines with age, but when normalized to an individual’s MIP range, the relationship is no longer evident. This suggests that FR does not necessarily decline in healthy aging.

  10. MEASUREMENT OF FRICTIONAL PRESSURE DIFFERENTIALS DURING A VENTILATION SURVEY

    International Nuclear Information System (INIS)

    B.S. Prosser, PE; I.M. Loomis, PE, PhD

    2003-01-01

    During the course of a ventilation survey, both airflow quantity and frictional pressure losses are measured and quantified. The measurement of airflow has been extensively studied as the vast majority of ventilation standards/regulations are tied to airflow quantity or velocity. However, during the conduct of a ventilation survey, measurement of airflow only represents half of the necessary parameters required to directly calculate the airway resistance. The measurement of frictional pressure loss is an often misunderstood and misapplied part of the ventilation survey. This paper compares the two basic methods of frictional pressure drop measurements; the barometer and the gauge and tube. Personal experiences with each method will be detailed along with the authors' opinions regarding the applicability and conditions favoring each method

  11. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  12. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  13. A technique for measuring absolute toe pressures: evaluation of pressure-sensitive film techniques.

    Science.gov (United States)

    Tuckman, A S; Werner, F W; Fortino, M D; Spadaro, J A

    1992-05-01

    Although a number of pathologies of the forefoot in ballet dancers on pointe have been described, pressures and deforming forces have not been adequately measured. To evaluate the possible use of pressure-sensitive film (PSF) in measuring the pressures on the external soft tissues in such a confined space as the dancer's toe shoe, it was tested and calibrated with 20 cadaver toes. Each cadaver toe was internally stabilized and loaded longitudinally against PSF on a flat surface. The resultant films were analyzed with a video imaging system and the pressures and total forces were determined. Results showed that the linearity of the PSF to pressure had a regression value of 0.98. By using two sensitivity ranges of films, the total force measured by the PSF was found to be within 10% of the known applied force on each toe. The PSF, therefore, may very well be a useful and accurate method of measuring external soft tissue pressures on the forefoot.

  14. MRI measurements of intracranial pressure in the upright posture: The effect of the hydrostatic pressure gradient.

    Science.gov (United States)

    Alperin, Noam; Lee, Sang H; Bagci, Ahmet M

    2015-10-01

    To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.

  15. Blood pressure self-measurement in the obstetric waiting room

    DEFF Research Database (Denmark)

    Wagner, Stefan; Kamper, Christina H.; Toftegaard, Thomas Skjødeberg

    2013-01-01

    Background: Pregnant diabetic patients are often required to self- measure their blood pressure in the waiting room before consulta- tion. Currently used blood pressure devices do not guarantee valid measurements when used unsupervised. This could lead to misdi- agnosis and treatment error. The aim...... of this study was to investigate current use of blood pressure self-measurement in the waiting room in order to identify challenges that could influence the resulting data quality. Also, we wanted to investigate the potential for addressing these challenges with e-health and telemedicine technology. Subjects...... and Methods: We observed 81 pregnant diabetics’ ability to correctly self-measure in the waiting room during a 4-week observational descriptive study. Specifically, we investigated the level of patient adherence to six recommendations with which patients are in- structed to comply in order to obtain...

  16. Measurement of rock properties at elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Pincus, H.J.; Hoskins, E.R.

    1985-01-01

    The papers in this volume were presented at an ASTM symposium held on 20 June 1983 in conjunction with the 24th Annual Rock Mechanics Symposium at Texas A and M University, College Station, TX. The purpose of these papers is to present recent developments in the measurement of rock properties at elevated pressures and temperatures, and to examine and interpret the data produced by such measurement. The need for measuring rock properties at elevated pressures and temperatures has become increasingly important in recent years. Location and design of nuclear waste repositories, development of geothermal energy sites, and design and construction of deep excavations for civil, military, and mining engineering require significantly improved capabilities for measuring rock properties under conditions substantially different from those prevailing in most laboratory and in situ work. The development of high-pressure, high-temperature capabilities is also significant for the analysis of tectonic processes

  17. Invasive v. non-invasive blood pressure measurements the ...

    African Journals Online (AJOL)

    A reasonable correlation exists between invasive and noninvasive methods of measuring systemic blood pressure. However, there are frequent individual differences between these methods and these variations have often caused the validity of the non-invasive measurement to be questioned. The hypothesis that certain ...

  18. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  19. Wing-vortex interaction: unraveling the flowfield of a hovering rotor

    Science.gov (United States)

    Bhagwat, Mahendra J.; Caradonna, Francis X.; Ramasamy, Manikandan

    2015-01-01

    This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.

  20. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Guodong Zhang

    2018-03-01

    Full Text Available With the development of energetic materials (EMs and microelectromechanical systems (MEMS initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  1. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement.

    Science.gov (United States)

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Wei, Xueyong; Ren, Wei; Li, Hui; Zhao, You

    2018-03-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor's sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa -1 . The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  2. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  3. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  4. A Computer Controlled Precision High Pressure Measuring System

    Science.gov (United States)

    Sadana, S.; Yadav, S.; Jha, N.; Gupta, V. K.; Agarwal, R.; Bandyopadhyay, A. K.; Saxena, T. K.

    2011-01-01

    A microcontroller (AT89C51) based electronics has been designed and developed for high precision calibrator based on Digiquartz pressure transducer (DQPT) for the measurement of high hydrostatic pressure up to 275 MPa. The input signal from DQPT is converted into a square wave form and multiplied through frequency multiplier circuit over 10 times to input frequency. This input frequency is multiplied by a factor of ten using phased lock loop. Octal buffer is used to store the calculated frequency, which in turn is fed to microcontroller AT89C51 interfaced with a liquid crystal display for the display of frequency as well as corresponding pressure in user friendly units. The electronics developed is interfaced with a computer using RS232 for automatic data acquisition, computation and storage. The data is acquired by programming in Visual Basic 6.0. This system is interfaced with the PC to make it a computer controlled system. The system is capable of measuring the frequency up to 4 MHz with a resolution of 0.01 Hz and the pressure up to 275 MPa with a resolution of 0.001 MPa within measurement uncertainty of 0.025%. The details on the hardware of the pressure measuring system, associated electronics, software and calibration are discussed in this paper.

  5. Dynamic pressure measurement of cartridge operated vole captive bolt devices.

    Science.gov (United States)

    Frank, M; Philipp, K P; Franke, E; Frank, N; Bockholdt, B; Grossjohann, R; Ekkernkamp, A

    2009-01-10

    Vole captive bolt devices are powder actuated spring guns that are used as a pest control mean. After having triggered the explosion of the blank cartridge by touching a metal ring around the muzzle, the vole is killed by the massive propulsion of the gas jet. Improper use and recklessness while handling these devices may cause severe injuries with the hand of the operator at particular risk. Currently, there are no experimental investigations on the ballistic background of these devices. An experimental test set-up was designed for measurement of the firing pressure and the dynamic force of the gas jet of a vole captive bolt device. Therefore, a vole captive bolt device was prepared with a pressure take-off channel and a piezoelectric transducer for measurement of the firing pressure. For measurement of the dynamic impact force of the gas jet an annular quartz force sensor was installed on a test bench. Each three simultaneous measurements of the cartridges' firing pressure and the dynamic force of the blast wave were taken at various distances between muzzle and load washer. The maximum gas pressure in the explosion chamber was up to 1100 bar. The shot development over time showed a typical gas pressure curve. Flow velocity of the gas jet was up to 2000 m/s. The maximum impact force of the gas jet at the target showed a strong inverse ratio to the muzzle's distance and was up to 11,500 N for the contact shot distance. Energy density of the gas jet for the close contact shot was far beyond the energy density required for skin penetration. The unique design features (short tube between cartridge mouth and muzzle and narrow diameter of the muzzle) of these gadgets are responsible for the high firing pressure, velocity and force of the gas jet. These findings explain the trauma mechanics of the extensive tissue damage observed in accidental shots of these devices.

  6. An electronic manometer for blood-pressure measurement.

    Science.gov (United States)

    Burke, M J

    1999-01-01

    This article reports the development of an electronic manometer for use in the measurement of blood pressure. It is intended to act as a replacement gauge for the mercury and aneroid manometers used in conventional sphygmomanometers. It measures pressure in the range 0-300 mm Hg (0-40 kPa) with a resolution of 1 mm Hg (0.13 kPa) and an accuracy of +/- 1 mm Hg (+/- 0.13 kPa) which is displayed on a liquid crystal display. It operates from a 9 V PP3 battery over a temperature range of 10-50 degrees C.

  7. Waterproof and translucent wings at the same time: problems and solutions in butterflies

    Science.gov (United States)

    Perez Goodwyn, Pablo; Maezono, Yasunori; Hosoda, Naoe; Fujisaki, Kenji

    2009-07-01

    Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered “super-hydrophobic” because the contact angle (CA) with a water drop exceeds 150°. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160°, whereas P. glacialis did not (CA = 100-135°). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30°, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long life and migration

  8. A novel approach to office blood pressure measurement: 30-minute office blood pressure vs daytime ambulatory blood pressure

    NARCIS (Netherlands)

    Wel, M.C. van der; Buunk, I.E.; Weel, C. van; Thien, Th.; Bakx, J.C.

    2011-01-01

    PURPOSE: Current office blood pressure measurement (OBPM) is often not executed according to guidelines and cannot prevent the white-coat effect. Serial, automated, oscillometric OBPM has the potential to overcome both these problems. We therefore developed a 30-minute OBPM method that we compared

  9. Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micro-pressure measurement

    Science.gov (United States)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.

  10. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  11. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  12. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  13. Transient pressure measurements at part load operating condition of ...

    Indian Academy of Sciences (India)

    Rahul Goyal

    hydraulic energy or demand of market. The turbine expe- riences unstable flow conditions during .... gate the pressure loading inside the turbine at a similar load. No measurements have been reported in the .... speed factor (nED) and discharge factor (qED) are 0.18 and. 0.15, respectively. The operating point selected for ...

  14. Combination of phlebography and sanguinous measurement of venous blood pressure

    International Nuclear Information System (INIS)

    Weber, J.

    1988-01-01

    Phlebographic visualisation offers the highest spatial resolution of all imaging methods both in respect of veins of the leg and pelvis and of the abdomen. Phlebography offers optimal conditions for assessing morphological changes at the veins and in their direct neighbourhood. No quantitative information is available via phlebography if haemodynamics are disturbed; qualitative information is yielded merely to a restricted extent (by assessing flow velocity and collaterals). Direct sanguinous measurement of venous blood pressure is particularly suitable for the quantitative and qualitative assessment of disturbed haemodynamic conditions; in this respect it stands out among the function tests based on the employment of apparatures. If it is combined with phlebography, it is possible not only to optimise the diagnostic yield in the hands of one investigator, but also to reduce the invasiveness of both methods to one single puncture, since the puncture needle is at the same time also an instrument to measure the pressure. The article points out the possibilities and limitations of combining a) ascending phlebography of the leg and pelvis with peripheral venous pressure measurement (phlebodynamometry) and b) visualisation of the veins of the pelvis and vena cava inferior with central sanguinous venous pressure measurement (CP). Indicatious and technical execution are described. (orig.) [de

  15. Measuring the local pressure amplitude in microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2010-01-01

    A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads in straight water-filled silicon/gla...

  16. When and how should we measure intra-abdominal pressure ...

    African Journals Online (AJOL)

    A sustained increase in intra-abdominal pressure (IAP) may result in abdominal compartment syndrome (ACS). This is a well documented complication in critically ill patients, but there appears to be a reluctance to routinely measure IAP in patients at high risk of developing intra-abdominal hypertension (IAH) and ACS.

  17. A study of dynamic foot pressure measurement in diabetic patients

    Directory of Open Access Journals (Sweden)

    Milka D Madhale

    2017-01-01

    Full Text Available Introduction: Diabetic foot ulcer is a major source of morbidity and a leading cause of hospitalization. It is estimated that approximately 20% of hospital admissions among patients with diabetes mellitus are due to diabetic foot ulcer. It can lead to infection, gangrene, amputation, and even death if appropriate care is not provided. Overall, the lower limb amputation in diabetic patients is 15 times higher than in non-diabetics. In the majority of cases, the cause for the foot ulcer is the altered architecture of the foot due to neuropathy resulting in abnormal pressure points on the soles. Purpose: The aim of this study is to develop low cost, lightweight foot pressure scanner and check its reliability and validity which can help to prevent foot ulceration. Design/Methodology/Approach: In the present study, a low cost, lightweight foot pressure scanner is developed, and dynamic plantar pressures in a group of 110 Indian patients with diabetes with or without neuropathy and foot ulcers are measured. Practical Implications: If these pressure points can be detected, ulcers can be prevented by providing offloading footwear. Originality/Value: Differences are found in dynamic foot pressures in different study groups, namely, diabetic patients, patients with diabetic peripheral neuropathy, patients with foot ulcers, and nondiabetics. The differences are significant (P < 0.01, which showed the validity of the tool. Reliability and consistency of the tool was checked by test–retest method. Paper Type: Original Research work. Conclusion: Based on the results of the present study, it is concluded that the scanner is successfully developed and it can measure foot pressures. It is a novel device to proactively monitor foot health in diabetics in an effort to prevent and reduce diabetic foot complications.

  18. Invasively Measured Aortic Systolic Blood Pressure and Office Systolic Blood Pressure in Cardiovascular Risk Assessment

    DEFF Research Database (Denmark)

    Laugesen, Esben; Knudsen, Søren Tang; Hansen, Klavs Würgler

    2016-01-01

    Aortic systolic blood pressure (BP) represents the hemodynamic cardiac and cerebral burden more directly than office systolic BP. Whether invasively measured aortic systolic BP confers additional prognostic value beyond office BP remains debated. In this study, office systolic BP and invasively m...

  19. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  20. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  1. Static Pressure Measurements of a Low Power Arcjet

    Science.gov (United States)

    1991-12-01

    AFIT/GA/ENY/91D-6 AD-A243 898 DTICS EL E CT E JAN 0 3 1992 j STATIC PRESSURE MEASUREMENTS OF A LOW POWER ARCJET THESIS Kevin P. Talley, Captain...SUBTITLE 5. FUNDING NUMBERS STATIC PRESSURE MEASUREMVENTS OF A LOW POWER ARCJET 6. AUTHOR(S) Kevin P. Talley, Captain, USAF 7. PERFORMING ORGANIZATION...deliver 30 kW were on the drawing board and power available on commercial communications satellites had become large enough that low power arcjet thrusters

  2. A comparison of methods for detonation pressure measurement

    Science.gov (United States)

    Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J.

    2018-03-01

    Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of 1.66 g cm^{-3} were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.

  3. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  4. Intraoperative Sac Pressure Measurement During Endovascular Abdominal Aortic Aneurysm Repair

    International Nuclear Information System (INIS)

    Ishibashi, Hiroyuki; Ishiguchi, Tsuneo; Ohta, Takashi; Sugimoto, Ikuo; Iwata, Hirohide; Yamada, Tetsuya; Tadakoshi, Masao; Hida, Noriyuki; Orimoto, Yuki; Kamei, Seiji

    2010-01-01

    PurposeIntraoperative sac pressure was measured during endovascular abdominal aortic aneurysm repair (EVAR) to evaluate the clinical significance of sac pressure measurement.MethodsA microcatheter was placed in an aneurysm sac from the contralateral femoral artery, and sac pressure was measured during EVAR procedures in 47 patients. Aortic blood pressure was measured as a control by a catheter from the left brachial artery.ResultsThe systolic sac pressure index (SPI) was 0.87 ± 0.10 after main-body deployment, 0.63 ± 0.12 after leg deployment (P < 0.01), and 0.56 ± 0.12 after completion of the procedure (P < 0.01). Pulse pressure was 55 ± 21 mmHg, 23 ± 15 mmHg (P < 0.01), and 16 ± 12 mmHg (P < 0.01), respectively. SPI showed no significant differences between the Zenith and Excluder stent grafts (0.56 ± 0.13 vs. 0.54 ± 0.10, NS). Type I endoleak was found in seven patients (15%), and the SPI decreased from 0.62 ± 0.10 to 0.55 ± 0.10 (P = 0.10) after fixing procedures. Type II endoleak was found in 12 patients (26%) by completion angiography. The SPI showed no difference between type II endoleak positive and negative (0.58 ± 0.12 vs. 0.55 ± 0.12, NS). There were no significant differences between the final SPI of abdominal aortic aneurysms in which the diameter decreased in the follow-up and that of abdominal aortic aneurysms in which the diameter did not change (0.53 ± 0.12 vs. 0.57 ± 0.12, NS).ConclusionsSac pressure measurement was useful for instant hemodynamic evaluation of the EVAR procedure, especially in type I endoleaks. However, on the basis of this small study, the SPI cannot be used to reliably predict sac growth or regression.

  5. Refinement of Telemetry for Measuring Blood Pressure in Conscious Rats

    Science.gov (United States)

    Braga, Valdir A; Prabhakar, Nanduri R

    2009-01-01

    Although considered the ‘gold standard’ for measuring blood pressure in laboratory animals, telemetry would benefit from refinement. In the present study, we tested the hypothesis that the small telemetric device used for blood pressure recording in mice would work for rats as well and would serve as an alternative for those studies where abdominal cavity space is quite limited (such as in young animals and pregnant females). Here we report that the use of a smaller and lighter telemetric device implanted in the abdominal aorta of rats led to acquisition of stable and high-quality blood pressure and heart rate data, similar to those obtained by using a larger telemetric device developed for rats. The use of smaller transmitters represents an alternative telemetry technique, especially for those cases in which space in the abdominal cavity is particularly limited such as during pregnancy. PMID:19476715

  6. Modified AC Wheatstone Bridge Network for Accurate Measurement of Pressure Using Strain Gauge Type Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2012-01-01

    Full Text Available In order to achieve high quality of products at lesser cost, accurate measurement of different process variables is of vital importance in any industry. There are different well-established techniques of measurement and control instrumentations of these variables. In the resistive transducer like strain gauge, the small resistance generally changes linearly with a process variable like pressure but their measurement by usual AC Wheatstone bridge circuit may suffer from errors due to the effect of stray capacitance between bridge nodal points and ground and stray inductance on the strain gauge grid respectively. Though the conventional Wagner-Earth technique may be used to reduced the error but not suitable for continuous measurement. In the present paper, a modified operational amplifier based AC Wheatstone bridge measurement technique has been proposed in which the effect of stray capacitance and inductance is minimized. This bridge performance has been studied experimentally with the strain gauge type pressure transducer. The linear characteristics over a wide range of pressure with good repeatability, linearity and variable sensitivity have been described.

  7. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  8. Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements

    Science.gov (United States)

    Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.

    2014-01-01

    Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when

  9. Measurement of rabbit intraocular pressure with the Tono-Pen.

    Science.gov (United States)

    Mermoud, A; Baerveldt, G; Minckler, D S; Lee, M B; Rao, N A

    1995-01-01

    A Tono-Pen-1 (TP-1) and a Tono-Pen-2 (TP-2) were calibrated against direct manometry in the eyes of living rabbits to determine the accuracy of the Tono-Pen. Eighteen normal eyes of 10 rabbits were cannulated and connected to a pressure transducer with a chart recorder. Intraocular pressure (IOP) was increased from 5 to 40 mm Hg in 5-mm-Hg increments and from 40 to 80 mm Hg in 10-mm-Hg increments. After each incremental increase, IOP was measured first with a TP-1 and then with a TP-2. Plotting the mean Tono-Pen readings for each eye against the transducer pressure produced the following two regression line formulas: y = -0.613+0.790x (r2 = 0.97) for TP-1, and y = -1.45+0.824x (r2 = 0.97) for TP-2. Neither regression line was statistically different; p = 0.2 for the two slopes, and p = 0.24 for the y-axis intersection. The TP-1 and TP-2 can be used to rapidly and accurately measure the IOP in normal rabbit eyes. Tono-Pen readings do, however, significantly underestimate pressures in the range of 5-80 mm Hg. A table with 95% confidence intervals for corrected IOP readings obtained with the TP-1 or -2 is provided.

  10. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  11. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement?

    Science.gov (United States)

    Zheng, Dingchang; Amoore, John N; Mieke, Stephan; Murray, Alan

    2011-10-01

    Cuff pressure deflation rate influences blood pressure (BP) measurement. However, there is little quantitative clinical evidence on its effect. Oscillometric pulses recorded from 75 subjects at the recommended deflation rate of 2-3 mmHg per second were analyzed. Some pulses were removed to realize six faster rates (2-7 times faster than the original). Systolic, diastolic, and mean arterial blood pressures (SBP, DBP, MAP) were determined from the original and six reconstructed oscillometric waveforms. Manual measurement was based on the appearance of oscillometric pulse peaks, and automatic measurement on two model envelopes (linear and polynomial) fitted to the sequence of oscillometric pulse amplitudes. The effects of deflation rate on BP determination and within-subject BP variability were analyzed. For SBP and DBP determined from the manual measurement, different deflation rates resulted in significant changes (both p deflation rate effect (all p > 0.3). Faster deflation increased the within-subject BP variability (all p deflation rate, and for the automatic model-based techniques, the deflation rate had little effect.

  12. Effect of canard deflection on close-coupled canard-wing-body aerodynamics

    Science.gov (United States)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  13. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts. The resu......Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts....... The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as a detailed knowledge of the behaviour of the signal...... from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour...

  14. Skin perfusion pressure on the legs measured as the external pressure required for skin reddening after blanching

    DEFF Research Database (Denmark)

    Holstein, P; Nielsen, P.E.; Lund, P

    1980-01-01

    The skin perfusion on the calf was measured photo-electrically and by isotope washout technique using external counter pressure by a blood pressure cuff. By the photocell the skin blanching threshold external pressure (BTEP) was recorded on histamine flared red skin. By isotope washout technique......Hg (SD 8.7). As compared to the intra-arterial blood pressure the BTEP was found to lie close to the mean blood pressure in normal subjects as well as in hypertensive subjects. The present data indicate that the skin perfusion pressure on the legs can be measured by the rapid photo-electric technique...

  15. Cardiovascular Risk in Hypertension in Relation to Achieved Blood Pressure Using Automated Office Blood Pressure Measurement.

    Science.gov (United States)

    Myers, Martin G; Kaczorowski, Janusz; Dolovich, Lisa; Tu, Karen; Paterson, J Michael

    2016-10-01

    The SPRINT (Systolic Blood Pressure Intervention Trial) reported that some older, higher risk patients might benefit from a target systolic blood pressure (BP) of <120 versus <140 mm Hg. However, it is not yet known how the BP target and measurement methods used in SPRINT relate to cardiovascular outcomes in real-world practice. SPRINT used the automated office BP technique, which requires the patient to be resting quietly and alone, with multiple readings being recorded automatically using an electronic oscillometric sphygmomanometer. We studied the relationship between achieved automated office BP at baseline and cardiovascular events in 6183 community-dwelling residents of Ontario aged ≥66 years who were receiving antihypertensive therapy and followed for a mean of 4.6 years. Adjusted hazard ratios (95% confidence intervals) were computed for 10 mm Hg increments in achieved automated office BP at baseline using Cox proportional hazards regression and the BP category with the lowest event rate as the reference category. Based on 904 fatal and nonfatal cardiovascular events, the nadir of cardiovascular events was at the systolic pressure category of 110 to 119 mm Hg, which was lower than the next highest category of 120 to 129 mm Hg (hazard ratio 1.30 [1.01, 1.66]). The hazard ratio for diastolic pressure was relatively unchanged above 60 mm Hg. Pulse pressure exhibited an increase in hazard ratio (1.33 [1.02, 1.72]) at ≥80 mm Hg. These results using automated office BP measurement in a usual treatment setting extend the finding in SPRINT of an optimum target systolic BP of <120 mm Hg to routine clinical practice. © 2016 American Heart Association, Inc.

  16. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas

    2005-01-01

    the output from the transducer, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material between transducer and roll. Aluminum, cupper...... and steel strips with a width of 40 mm was rolled with reduction varying from 2.7% to 29%, in a pilot mill. For evaluating the transducer, the measured contact forces are compared with external measurements of roll separating forces and torque. The determined friction coefficients are compared with values...

  17. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  18. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  19. Measurement of digital blood pressure after local cooling

    DEFF Research Database (Denmark)

    Nielsen, S L; Lassen, N A

    1977-01-01

    A double-inlet plastic cuff was designed for local cooling and systolic blood pressure measurement on the middle phalanx of the fingers. With a tourniquet on the proximal phalanx of one finger, cooling for 5 min made the digital artery temperature equal the skin temperature. The difference between...... the systolic pressure in a control finger and in the cooled finger give the reopening pressure in the digital arteries. At 30, 25, 20, 15, and 10 degrees C, respectively the percent decrease of the finger pressure was 0.2 (0.2), 1.5 (2.5), 8.5 (3.7), 11.4 (3.4), and 15.3 (3.1) in normal young women....... In patients with primary or secondary Raynaud's phenomenon, the arterial tone showed an abrupt increase that most often led to complete closure of the digital arteries. The pathological response was expressed as an increased threshold temperature or a well-defined closing temperature that showed only small...

  20. Measurement of digital blood pressure after local cooling

    DEFF Research Database (Denmark)

    Nielsen, S L; Lassen, N A

    1977-01-01

    the systolic pressure in a control finger and in the cooled finger give the reopening pressure in the digital arteries. At 30, 25, 20, 15, and 10 degrees C, respectively the percent decrease of the finger pressure was 0.2 (0.2), 1.5 (2.5), 8.5 (3.7), 11.4 (3.4), and 15.3 (3.1) in normal young women......A double-inlet plastic cuff was designed for local cooling and systolic blood pressure measurement on the middle phalanx of the fingers. With a tourniquet on the proximal phalanx of one finger, cooling for 5 min made the digital artery temperature equal the skin temperature. The difference between....... In patients with primary or secondary Raynaud's phenomenon, the arterial tone showed an abrupt increase that most often led to complete closure of the digital arteries. The pathological response was expressed as an increased threshold temperature or a well-defined closing temperature that showed only small...

  1. Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Using the Inverse Finite Element Method

    Science.gov (United States)

    Miller, Eric J.; Manalo, Russel; Tessler, Alexander

    2016-01-01

    A study was undertaken to investigate the measurement of wing deformation and internal loads using measured strain data. Future aerospace vehicle research depends on the ability to accurately measure the deformation and internal loads during ground testing and in flight. The approach uses the inverse Finite Element Method (iFEM). The iFEM is a robust, computationally efficient method that is well suited for real-time measurement of real-time structural deformation and loads. The method has been validated in previous work, but has yet to be applied to a large-scale test article. This work is in preparation for an upcoming loads test of a half-span test wing in the Flight Loads Laboratory at the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California). The method has been implemented into an efficient MATLAB® (The MathWorks, Inc., Natick, Massachusetts) code for testing different sensor configurations. This report discusses formulation and implementation along with the preliminary results from a representative aerospace structure. The end goal is to investigate the modeling and sensor placement approach so that the best practices can be applied to future aerospace projects.

  2. Prospective blood pressure measurement in renal transplant recipients.

    Science.gov (United States)

    David, V G; Yadav, B; Jeyaseelan, L; Deborah, M N; Jacob, S; Alexander, S; Varughese, S; John, G T

    2014-05-01

    Blood pressure (BP) control at home is difficult when managed only with office blood pressure monitoring (OBPM). In this prospective study, the reliability of BP measurements in renal transplant patients with OBPM and home blood pressure monitoring (HBPM) was compared with ambulatory blood pressure monitoring (ABPM) as the gold standard. Adult patients who had living-related renal transplantation from March 2007 to February 2008 had BP measured by two methods; OBPM and ABPM at pretransplantation, 2(nd), 4(th), 6(th), and 9(th) months and all the three methods: OBPM, ABPM, and HBPM at 6 months after transplantation. A total of 49 patients, age 35 ± 11 years, on prednisolone, tacrolimus, and mycophenolate were evaluated. A total of 39 were males (79.6%). Systolic BP (SBP) and diastolic BP (DBP) measured by OBPM were higher than HBPM when compared with ABPM. When assessed using OBPM and awake ABPM, both SBP and DBP were significantly overestimated by OBPM with mean difference of 3-12 mm Hg by office SBP and 6-8 mm Hg for office DBP. When HBPM was compared with mean ABPM at 6 months both the SBP and DBP were overestimated by and 7 mm Hg respectively. At 6 months post transplantation, when compared with ABPM, OBPM was more specific than HBPM in diagnosing hypertension (98% specificity, Kappa: 0.88 vs. 89% specificity, Kappa: 0.71). HBPM was superior to OBPM in identifying patients achieving goal BP (89% specificity, Kappa: 0.71 vs. 50% specificity Kappa: 0.54). In the absence of a gold standard for comparison the latent class model analysis still showed that ABPM was the best tool for diagnosing hypertension and monitoring patients reaching targeted control. OBPM remains an important tool for the diagnosis and management of hypertension in renal transplant recipients. HBPM and ABPM could be used to achieve BP control.

  3. Prospective blood pressure measurement in renal transplant recipients

    Directory of Open Access Journals (Sweden)

    V G David

    2014-01-01

    Full Text Available Blood pressure (BP control at home is difficult when managed only with office blood pressure monitoring (OBPM. In this prospective study, the reliability of BP measurements in renal transplant patients with OBPM and home blood pressure monitoring (HBPM was compared with ambulatory blood pressure monitoring (ABPM as the gold standard. Adult patients who had living-related renal transplantation from March 2007 to February 2008 had BP measured by two methods; OBPM and ABPM at pretransplantation, 2 nd , 4 th , 6 th , and 9 th months and all the three methods : OBPM, ABPM, and HBPM at 6 months after transplantation. A total of 49 patients, age 35 ± 11 years, on prednisolone, tacrolimus, and mycophenolate were evaluated. A total of 39 were males (79.6%. Systolic BP (SBP and diastolic BP (DBP measured by OBPM were higher than HBPM when compared with ABPM. When assessed using OBPM and awake ABPM, both SBP and DBP were significantly overestimated by OBPM with mean difference of 3-12 mm Hg by office SBP and 6-8 mm Hg for office DBP. When HBPM was compared with mean ABPM at 6 months both the SBP and DBP were overestimated by and 7 mm Hg respectively. At 6 months post transplantation, when compared with ABPM, OBPM was more specific than HBPM in diagnosing hypertension (98% specificity, Kappa : 0.88 vs. 89% specificity, Kappa : 0.71. HBPM was superior to OBPM in identifying patients achieving goal BP (89% specificity, Kappa : 0.71 vs. 50% specificity Kappa : 0.54. In the absence of a gold standard for comparison the latent class model analysis still showed that ABPM was the best tool for diagnosing hypertension and monitoring patients reaching targeted control. OBPM remains an important tool for the diagnosis and management of hypertension in renal transplant recipients. HBPM and ABPM could be used to achieve BP control.

  4. TREATMENT OF HYPERTENSION USING TELEMEDICAL HOME BLOOD PRESSURE MEASUREMENTS

    DEFF Research Database (Denmark)

    Hoffmann-Petersen, N; Lauritzen, T; Bech, J N

    2015-01-01

    of the measurements and subsequent communication by telephone or E-mail. In the control group, patients received usual care. Primary outcome was reduction in daytime ambulatory blood pressure measurements (ABPM) from baseline to 3 months' follow-up. RESULTS: In both groups, daytime ABPM decreased significantly....... The decrease in daytime ABPM in the intervention group was systolic/diastolic, -8  ± 12/-4 ± 7 mmHg. This did not differ significantly from the control group's -8 ± 13/-4 ± 8 mmHg. An equal number of participants obtained normal daytime ABPM, in the intervention group 17% (31/175) versus control 21% (37....../181), p = 0.34. Blood pressure reduction in the TBPM group varied with the different practices. CONCLUSIONS: No further reduction in ABPM or number of patients reaching blood pressure targets was observed when electronic transmission of TBPM was applied in the treatment of hypertension by GPs. Thus...

  5. Intrauterine Telemetry to Measure Mouse Contractile Pressure In Vivo

    Science.gov (United States)

    Rada, Cara C.; Pierce, Stephanie L.; Grotegut, Chad A.; England, Sarah K.

    2015-01-01

    A complex integration of molecular and electrical signals is needed to transform a quiescent uterus into a contractile organ at the end of pregnancy. Despite the discovery of key regulators of uterine contractility, this process is still not fully understood. Transgenic mice provide an ideal model in which to study parturition. Previously, the only method to study uterine contractility in the mouse was ex vivo isometric tension recordings, which are suboptimal for several reasons. The uterus must be removed from its physiological environment, a limited time course of investigation is possible, and the mice must be sacrificed. The recent development of radiometric telemetry has allowed for longitudinal, real-time measurements of in vivo intrauterine pressure in mice. Here, the implantation of an intrauterine telemeter to measure pressure changes in the mouse uterus from mid-pregnancy until delivery is described. By comparing differences in pressures between wild type and transgenic mice, the physiological impact of a gene of interest can be elucidated. This technique should expedite the development of therapeutics used to treat myometrial disorders during pregnancy, including preterm labor. PMID:25867820

  6. Measurement of the pressure pulse from a detonating explosive

    International Nuclear Information System (INIS)

    Bourne, N K; Milne, A M; Biers, R A

    2005-01-01

    A series of experiments has been carried out to determine the pressure pulse exiting from a polymethylmethacrylate (PMMA) plate, of varying thickness, subject to the shock pulse exerted by a detonating charge of fixed mass. This calibration will define a new donor explosive and inert gap material for use in one of the qualification tests for energetic materials, the large scale gap test. The peak pressure was recorded on the central axis of the attenuator using calibrated piezoresistive manganin gauges as a function of the quantity of PMMA applied to the output of the donor charge. The stress history within the PMMA was measured as a function of run distance and the peak pressure plotted against thickness as a calibration. The shock front was known to have curvature and a measurement of this was attempted. The behaviour of the transmitted shock at small gap thicknesses was shown to be anomalous since the front was partially in a reactive and partially within an inert medium

  7. A user's guide to intra-abdominal pressure measurement.

    LENUS (Irish Health Repository)

    Sugrue, Michael

    2015-01-01

    The intra-abdominal pressure (IAP) measurement is a key to diagnosing and managing critically ill medical and surgical patients. There are an increasing number of techniques that allow us to measure the IAP at the bedside. This paper reviews these techniques. IAP should be measured at end-expiration, with the patient in the supine position and ensuring that there is no abdominal muscle activity. The intravesicular IAP measurement is convenient and considered the gold standard. The level where the mid-axillary line crosses the iliac crest is the recommended zero reference for the transvesicular IAP measurement; moreover, marking this level on the patient increases reproducibility. Protocols for IAP measurement should be developed for each ICU based on the locally available tools and equipment. IAP measurement techniques are safe, reproducible and accurate and do not increase the risk of urinary tract infection. Continuous IAP measurement may offer benefits in specific situations in the future. In conclusion, the IAP measurement is a reliable and essential adjunct to the management of patients at risk of intra-abdominal hypertension.

  8. Low-speed pressure measurements using a luminescent coating system

    Science.gov (United States)

    Brown, Owen Clayton

    In this work, the history of the development of the Pressure Sensitive Paint (PSP) technique in both the United States and Russia is first discussed in detail. A review of the various PSP tests conducted to date is given. A thorough discussion of the physics and chemistry of luminescent coatings is provided. The processes of converting intensity signals in digital data values are described; image processing procedures used to remove noise sources and convert intensity data into pressure measurements are reviewed. A general uncertainty analysis of the technique is then conducted. A baseline series of low-speed tests at M Fowler flap, the deck of a Navy amphibious helicopter landing ship model, and a NASCAR racing model at various drafting orientations.

  9. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  10. A batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement

    Science.gov (United States)

    Maleki, Teimour; Fogle, Benjamin; Ziaie, Babak

    2011-05-01

    In this paper, we present the design, fabrication and test of a batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement. The sensor is composed of 12 µm thick single crystalline silicon membrane and a 3 µm gap, hermetically sealed through silicon-glass anodic bonding. A novel batch scale method for creating electrical feed-throughs inside the sealed capacitor chamber is developed. The Guyton capsule consists of an array of 10 µm diameter access holes etched onto a silicon back-plate separated from the silicon sensing membrane by a gap of 5 µm. The presence of the Guyton capsule (i.e. plates with access holes plus the gap separating them from the sensing membrane) allows for the ingress of interstitial fluid inside the 5 µm gap following the implantation, thus, providing an accurate measurement of interstitial fluid pressure. The fabricated sensor is 3 × 2 × 0.42 mm3 in dimensions and has a maximum sensitivity of 10 fF mmHg-1.

  11. Comparison of three protocols for measuring the maximal respiratory pressures

    Directory of Open Access Journals (Sweden)

    Isabela Maria B. Sclauser Pessoa

    Full Text Available Introduction To avoid the selection of submaximal efforts during the assessment of maximal inspiratory and expiratory pressures (MIP and MEP, some reproducibility criteria have been suggested. Criteria that stand out are those proposed by the American Thoracic Society (ATS and European Respiratory Society (ERS and by the Brazilian Thoracic Association (BTA. However, no studies were found that compared these criteria or assessed the combination of both protocols. Objectives To assess the pressure values selected and the number of maneuvers required to achieve maximum performance using the reproducibility criteria proposed by the ATS/ERS, the BTA and the present study. Materials and method 113 healthy subjects (43.04 ± 16.94 years from both genders were assessed according to the criteria proposed by the ATS/ERS, BTA and the present study. Descriptive statistics were used for analysis, followed by ANOVA for repeated measures and post hoc LSD or by Friedman test and post hoc Wilcoxon, according to the data distribution. Results The criterion proposed by the present study resulted in a significantly higher number of maneuvers (MIP and MEP – median and 25%-75% interquartile range: 5[5-6], 4[3-5] and 3[3-4] for the present study criterion, BTA and ATS/ERS, respectively; p < 0.01 and higher pressure values (MIP – mean and 95% confidence interval: 103[91.43-103.72], 100[97.19-108.83] and 97.6[94.06-105.95]; MEP: median and 25%-75% interquartile range: 124.2[101.4-165.9], 123.3[95.4-153.8] and 118.4[95.5-152.7]; p < 0.05. Conclusion The proposed criterion resulted in the selection of pressure values closer to the individual’s maximal capacity. This new criterion should be considered in future studies concerning MIP and MEP measurements.

  12. Skin perfusion pressure on the legs measured as the external pressure required for skin reddening after blanching

    DEFF Research Database (Denmark)

    Holstein, P; Nielsen, P.E.; Lund, P

    1980-01-01

    the skin blood flow cessation external pressure (FCEP) was recorded using intra-dermal [131I-]-antipyrine mixed with histamine in estimating the skin blood flow. The external pressure was measured with an airfilled plastic cushion connected to a mercury manometer. Over a wide range of pressures as obtained...

  13. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure

    NARCIS (Netherlands)

    Imholz, B. P.; Settels, J. J.; van der Meiracker, A. H.; Wesseling, K. H.; Wieling, W.

    1990-01-01

    The aim of the study was to evaluate whether invasive blood pressure responses to orthostatic stress can be replaced by non-invasive continuous finger blood pressure responses. DESIGN - Intrabrachial and Finapres blood pressures were simultaneously measured during passive head up tilt and during

  14. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  15. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  16. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Milos R. Popovic

    2007-04-01

    Full Text Available The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applica- tions, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pul- ley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with minitur- ized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  17. Out-of-office blood pressure: from measurement to control

    Directory of Open Access Journals (Sweden)

    Baguet JP

    2012-05-01

    Full Text Available Jean-Philippe Baguet1,21Department of Cardiology, University Hospital, 2Bioclinic Radiopharmaceutics Laboratory, INSERM U1039, Joseph Fourier University, Grenoble, FranceAbstract: Hypertension is an important risk factor for the development of cardiovascular disease, and is a major cause of morbidity and mortality worldwide. Traditionally, hypertension diagnosis and treatment and clinical evaluations of antihypertensive efficacy have been based on office blood pressure (BP measurements; however, there is increasing evidence that office measures may provide inadequate or misleading estimates of a patient’s true BP status and level of cardiovascular risk. The introduction, and endorsement by treatment guidelines, of 24-hour ambulatory BP monitoring and self (or home BP monitoring has facilitated more reliable and reproducible estimations of true BP, including the identification of white-coat and masked hypertension, and evaluation of BP variability. In addition, ambulatory BP monitoring enables accurate assessment of treatment effectiveness over 24 hours and both ambulatory and self BP monitoring may lead to better tailoring of therapy according to BP profile and concomitant disease. This review describes the clinical benefits and limitations of out-of-office assessments and their applications for effective management of hypertension and attainment of BP control.Keywords: ambulatory, ABPM, SBPM, blood pressure measurement, hypertension

  18. Prospective Comparative Analysis of 4 Different Intraocular Pressure Measurement Techniques and Their Effects on Pressure Readings.

    Science.gov (United States)

    Berk, Thomas A; Yang, Patrick T; Chan, Clara C

    2016-10-01

    To compare intraocular pressure (IOP) measurement using the Goldmann applanation tonometry (GAT) without fluorescein, with fluorescein strips, with fluorescein droplets, and IOP measurement with Tono-Pen Avia (TPA). This was a prospective comparative clinical analysis. It was performed in clinical practice. The study population consisted of 40 volunteer patients, 1 eye per patient. All patients who were 18 years and older having routine ophthalmological examination were eligible to participate. Active corneal abrasions and/or ulcers, previous glaucoma surgery, or prostheses interfering with GAT measurement were excluded. GAT IOP was measured first without fluorescein, then with fluorescein strip, then with fluorescein droplet, and finally with the TPA device. The main outcome measure was central corneal IOP. Mean±SD IOP measurements for GAT without fluorescein, with fluorescein strip, with fluorescein droplet, and for TPA groups were 12.65±3.01, 14.70±2.82, 15.78±2.64, and 16.33±3.08 mm Hg, respectively. Repeated-measures analysis of variance corrected with the Greenhouse-Geisser estimate ([Latin Small Letter Open E]=0.732) showed that measuring technique had a significant effect on IOP measurements (F2.20,85.59=34.66, P<0.001). The pairwise post hoc testing showed statistically significant mean differences (P≤0.001) between all techniques except when GAT with fluorescein droplet was compared with TPA (P=0.222). The Bland-Altman analyses showed 95% limits of agreement maximum potential discrepancies in measurement ranging from 5.89 mm Hg in the GAT with fluorescein strip versus droplet compared with 11.83 mm Hg in the GAT with fluorescein strip versus TPA comparison. IOP measurement technique significantly impacted the values obtained. The ophthalmologist should ensure consistent measurement technique to minimize variability when following patients.

  19. Sea surface cooling in the Northern South China Sea observed using Chinese Sea-wing Underwater Glider measurements

    Science.gov (United States)

    Qiu, C.; Mao, H.; Wu, J.

    2016-02-01

    Based on 26 days of Chinese Seawing underwater Glider measurements and satellite microwave data, we documented cooling of the upper mixed layer of the ocean in response to changes in the wind in the Northern South China Sea (NSCS) from September 19, 2014, to October 15, 2014. The Seawing underwater glider measured 177 profiles of temperature, salinity, and pressure within a 55 km נ55 km area, and reached a depth of 1000 m at a temporal resolution of 4 h. The study area experienced two cooling events, Cooling I and Cooling II, according to their timing. During Cooling I, water temperature at 1m depth (T1) decreased by 1.0°C, and the corresponding satellitederived surface winds increased locally by 4.2 m/s. During Cooling II, T1 decreased sharply by 1.7°C within a period of 4 days; sea surface winds increased by 7 m/s and covered the entire NSCS. The corresponding mixed layer depth (MLD) deepened sharply from 30 m to 60 m during Cooling II, and remained steady during Cooling I. We estimated temperature tendencies using a ML model. High resolution Seawing underwater glider measurements provided an estimation of MLD migration, allowing us to obtain the temporal entrainment rate of cool sub thermocline water. Quantitative analysis confirmed that the entrainment rate and latent heat flux were the two major components that regulated cooling of the ML, and that the Ekman advection and sensible heat flux were small.

  20. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  1. Fast pressure measurements for the TMX-U fusion experiment

    International Nuclear Information System (INIS)

    Hunt, A.L.; Coffield, F.E.; Pickles, W.L.

    1982-01-01

    The pressure on the boundary of the Lawrence Livermore National Laboratory's (LLNL) tandem mirror (TMX-U) plasma experiment is difficult to trace for several reasons: (1) the TMX-U boundary is in the high vacuum range (10 -5 to 10 -6 Pa) and requires an ionization gauge; (2) the boundary includes high-energy neutral particles and radiation, so the gauge must be optically baffled from the plasma; (3) the gauge must be shielded from the magnetic flux density of 0.03 T; (4) maximum conductance to the gauge must be preserved so that the time response remains about 1 ms; (5) a fast electrical circuit is required to measure the small ion-current changes at a rate consistent with the geometrical and experimental time constant of 1 ms. We have developed solutions to these limitations, including fast ionization gauge (FIG) circuitry for the remote gauge operation and the CAMAC system for recording the pressure-time history in the TMX-U computer data base. We also give some examples of actual fast pressure histories during plasma operation

  2. Modeling of an implantable device for remote arterial pressure measurement

    Science.gov (United States)

    Miguel, J. A.; Lechuga, Y.; Mozuelos, R.; Martinez, M.

    2013-05-01

    Cardiovascular diseases are the leading causes of illness and death in Europe, having a major impact on healthcare costs. An intelligent stent (e-stent), capable of obtaining and transmitting measurements of physiological parameters, can be a useful tool for real-time monitorization of arterial blockage without patient hospitalization. In this paper, a behavioral model of a pressure sensing-based e-stent is proposed and simulated under several restenosis conditions. Special attention has been given to the need of an accurate fault model, obtained from realistic finite-element simulations, to ensure long-term reliability; particularly for those faults whose behavior cannot be described by usual analytical models.

  3. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    Science.gov (United States)

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  4. Measurement component technology. Volume 1: Cryogenic pressure measurement technology, high pressure flange seals, hydrogen embrittlement of pressure transducer material, close coupled versus remote transducer installation and temperature compensation of pressure transducers

    Science.gov (United States)

    Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.

    1972-01-01

    The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.

  5. Measurements and modeling of VLLE at elevated pressures

    DEFF Research Database (Denmark)

    Laursen, Torben

    and pure component calibration. Samples from the different liquid phases in the high-pressure cell is taken using a moveable needle. The systems investigated have been a combination of the components: CO2, N2, di-methyl ether (DME), water, methanol, ethanol and 1-propanol. 41 isotherms have been measured...... has traditionally been considered very time consuming. This work aims at developing and operating an equipment which allows routine measurements of both VLE and VLLE, in the temperature range of 25-45°C and pressure range of 1-100 bar. This has been done by taking advantage of on-line sampling...... and of these 18 were VLLE systems and 32 have not previously been published. Some of the experimental results have been modelled using an equation of state, SRK combined with the MHV1 mixing rule for the a-parameter and the NRTL model for the Gibbs excess energy. The Mathias-Copeman model was used...

  6. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  7. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  8. Measurements of intraperitoneal pressure and the development of a feedback control valve for regulating pressure during flexible transgastric surgery (NOTES).

    Science.gov (United States)

    Bergström, Maria; Swain, Paul; Park, Per-Ola

    2007-07-01

    High intraabdominal pressures during laparoscopy (greater than 15 mm Hg) are dangerous. Pressures developed during translumenal endosurgery when using flexible endoscopes without feed-back regulation are unknown. To measure and control intraabdominal pressures during transgastric endosurgery. In a blinded study, intraabdominal pressures during unregulated transgastric cholecystectomy and tubal ligation were measured by using Veress needles in 5 pigs (group 1). The accessory channel valve of a double-channel gastroscope was modified to allow measurement and control of intraabdominal pressures with a laparoscopic insufflator. This was tested prospectively in another blinded study in 5 pigs (group 2) that underwent identical procedures to those in group 1, with independent Veress needle pressure measurements. This ethically approved study was performed in an experimental surgical operating theater. Transgastric cholecystectomy (n=4) and tubal resection (n=6). Intraabdominal pressure measurements during transgastric endosurgery, with and without feed-back control. The mean (standard deviation) number of pressure measurements per procedure greater than 20 mm Hg was 11+/-1.41 in group 1 and 0+/-0 in group 2 (PFeedback pressure regulation through a modified valve prevented overinflation.

  9. Evaluation of pancreatic tissue fluid pressure measurements intraoperatively and by sonographically guided fine-needle puncture

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    pressure measurements via direct puncture. Furthermore, no significant difference was seen between pancreatic duct and tissue fluid pressure. The technical evaluation was performed by repeated pressure measurements in human pancreatic autopsy specimens and living rats in a pressure chamber at various...

  10. Gaseous Multiplication factor measurements on low pressure ethylene

    International Nuclear Information System (INIS)

    Hevia Vives, Alberto

    2008-01-01

    The present investigation consists of a study of a Proportional Counter considered as a fundamental part of an Absolute Neutron Dosimeter developed for the Chilean Nuclear Energy Commission. The proportional counter consists of a Polyethylene Cathode of approximately 5 cm in diameter and an Anode consisting of a central wire of 5 μm in diameter. The proportional counter is biased at 650 V. The gas pressure ranges from 12 to 36 Torr of pure Ethylene. The work comes up as a need to obtain gas gain curves (Gas Multiplication Factors) for the proportional counter operated in the conditions as mentioned. This is a consequence of the scarcity of the existing information referred to Ethylene for the range of bias and gas pressure required in this case. Likewise, the research involved in this study contributed with useful information for the institution involved in the design and construction of the neutron dosimeter, as well as for the scientific community through the publication of this work. The results were obtained by using the above-mentioned Neutron Dosimeter but instead of using recoil protons by fast neutrons, the measurements were completed by directly using a 241 Am alpha particle source installed inside the dosimeter. The analysis of results as well as a detailed study of the pulse shapes provided by the proportional counter was performed by using the well-known MathCAD software. This software contains a text interface that includes symbolic and numeric calculations. Results of the research show that for the high Reduced Electric Fields ( Sa > 1500 Volts/cmTorr) used throughout the present work, Townsend law is still valid. This law states that the Multiplication Factors may be considered as dependent on the Reduced Electric Field instead of depending on the bias and gas pressure separately

  11. Reliable intraocular pressure measurement using automated radio-wave telemetry

    Directory of Open Access Journals (Sweden)

    Paschalis EI

    2014-01-01

    Full Text Available Eleftherios I Paschalis,* Fabiano Cade,* Samir Melki, Louis R Pasquale, Claes H Dohlman, Joseph B CiolinoMassachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA*These authors contributed equally to this workPurpose: To present an autonomous intraocular pressure (IOP measurement technique using a wireless implantable transducer (WIT and a motion sensor.Methods: The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline IOP.Results: On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.08±2.2 mmHg and mean vehicle IOP (13.27±2.1 mmHg (P=0.45, suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.3±3.54 mmHg; P<0.001, and dorzolamide by 5% (0.62±2.22 mmHg; P<0.001. Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001. Repeatability was ±1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (≤1 minute, during which the IOP is not expected to change.Conclusion: IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results.Keywords: IOP, pressure transducer, wireless, MEMS, implant, intraocular

  12. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    International Nuclear Information System (INIS)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase

  13. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  14. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  15. Extraction of airfoil data using PIV and pressure measurements

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    A newly developed technique for determining the angle of attack (AOA) on a rotating blade is used to extract AOAs and airfoil data from measurements obtained during the MEXICO (Model rotor EXperiments in COntrolled conditions) rotor experiment. Detailed surface pressure and Particle Image...... airfoil data are compared to 2D data from wind tunnel experiments and XFOIL computations. The comparison suggests that the rotor is subject to severe 3D effects originating from the geometry of the rotor, and explains why the Blade Element Momentum technique with 2D airfoil data over‐predicts the loading...... is a reliable tool to extract airfoil data from experimental data. Copyright © 2010 John Wiley & Sons, Ltd....

  16. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  17. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  18. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  19. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt

  20. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  1. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  2. Blood pressure measurement in epidemiological investigations in teenagers

    International Nuclear Information System (INIS)

    Coppieters, Yves; Parent, Florence; Berghmans, Luc; Godin, Isabelle; Leveque, Alain

    2001-01-01

    Background: The use of sphygmomanometers may lead to problems in investigations on health of young people. The purpose of this paper is to present the validation of the blood pressure (BP) collected during the survey 'Youth Heart Health' in Hainaut by using second sample of young people in Hainaut for which BP was measured by a manual taking of tension and by an electronic device. Methods: Validation was done with a control sample of 343 young with five successive BP measures: twice with the mercury sphygmomanometer and three with DXL. We compared the manual and the electronic measures in order to study the correlation between the two methods. The control sample was used in order to compare the BP measurements with the results of the survey on the health of young people in Hainaut. Results: The differences between manual systolic BP and Dinamap measures are significant (differences in averages 3.6 mmHg; d.s. 7.8; 95% CI: 2.8-4.4 mmHg; p < 0.001) and the regression coefficient is -0.015. Diastolic BP is significantly higher with the manual method than with Dinamap (differences in means: 8.2 mmHg; d.s. 7.0; 95% CI: 7.4-8.9 mmHg; p < 0.001) and the coefficient of regression is 0.096. We observe a difference in BP between the general survey and the control group (10.3 mmHg for systolic manual control and of 10.9 mmHg for systolic electronic control; 3.3 mmHg for diastolic manual control and of 11.5 mmHg for diastolic electronic control). Conclusions: The values of BP of the 'Youth Heart Health' are significantly higher. These observations indicate the difficulties in the choice of the tool for measurements of BP in epidemiological investigations in the teenagers. In order to decrease skews of observations in the measurement of BP, it is recommended to use a valid electronic instrument. Dinamap XL is an instrument of choice in such studies of young people. Environmental and organisational factors may also explain the observed difference, which means that survey

  3. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressures...... to the polyurethane-bag and thereby opened and closed the urethra. Sound waves were continually sent into the polyurethane-bag and the cross-sectional area (CA) of the bag (urethra) could be measured from the reflections with Acoustic Reflectometry. The CA of the bag was measured for each mm of the bag and 10 times...

  4. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    exceptional value to the experiment, which exceeded expectations. The results of this test will directly inform the planning for the first of a series of instrumented-model tests at the same Reynolds number. These tests will be performed on a slightly larger-scale model with the selected wing, and will include off-body measurements with LDV and PIV, steady and unsteady pressure measurements, and the flow-visualization techniques that are discussed in this report.

  5. Context-aware patient guidance during blood pressure self-measurement

    DEFF Research Database (Denmark)

    Sandager, Puk; Lindahl, Camilla; Schlütter, Jacob Mørup

    2013-01-01

    The importance of accurate measurement of blood pressure in the screening and management of hypertension during pregnancy is well established. Blood pressure levels can be measured manually by healthcare staff or by using a blood pressure self-measurement device, either at home or in the clinic. ...... the blood pressure self-measurement process. Preliminary results indicate that such active and context-aware guidance leads to more reliable measurements by inhibiting non-adherent patient behavior......The importance of accurate measurement of blood pressure in the screening and management of hypertension during pregnancy is well established. Blood pressure levels can be measured manually by healthcare staff or by using a blood pressure self-measurement device, either at home or in the clinic...

  6. CARS Diagnostics of High Pressure Combustion - 2. Measurements of NO, H2O and High Pressure Flames

    Science.gov (United States)

    1985-12-01

    R85-956328-F CARS DIAGNOSTICS OF r HIGH PRESSURE COMBUSTION -I MEASUREMENTS OF NO, H 0 AND HIGH PRESSURE FLAMES Final Report J.H. Stufflebeam DTIC I7...High Pressure Flames Final Report ~ 5%~ J. H. Stufflebeam J. A. Shirley December 1985 𔃿** U. S. Army Research Office Contract: DAAG29-83-C-OOO1...ClaIiation, CARS Diagnostics of High Pressure Combustion II 12. PERSONAL AUTHOR(S) Stufflebeam , 7. H., ShirleyJA 113a. TYPE OF REPORT 13b. TIME COVERED

  7. Measurement of residual stresses in alloy 600 pressurizer penetrations

    International Nuclear Information System (INIS)

    Hall, J.F.; Molkenthin, J.P.; Prevey, P.S.; Pathania, R.S.

    1994-01-01

    Alloy 600 penetrations in several pressurized water reactors have experienced primary water stress corrosion cracking near the partial penetration J-welds between the Alloy 600 and the cladding on the inside diameter of the components. The microstructure and tensile properties indicated that the Alloy 600 was susceptible to primary water stress corrosion cracking (PWSCC) providing that a high tensile stress (applied + residual) was present. The residual stress distributions at the inside diameter surface and at different depths below the surface were measured in Alloy 600 nozzle and heater sleeve mockups. Surface residual stresses on the nozzle mockup ranged from -350 to +830 MPa. For the heater sleeve mockup, the surface residual stresses ranged from -330 to +525 MPa. In the areas of high tensile residual stress, for the most part, the residual stresses decreased with increasing depth below the surface. For the nozzle and heater sleeve mockups, the percent cold-world and yield strength as a function of depth were determined. (authors). 12 figs., 4 refs

  8. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  9. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    A non-invasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. The method relies on in-plane vector velocity fields acquired using the Transverse Oscillation method. The pressure gradients are estimated by applying the Navier-Stokes equations...

  10. Reliability of blood pressure measurement and cardiovascular risk prediction

    NARCIS (Netherlands)

    van der Hoeven, N.V.

    2016-01-01

    High blood pressure is one of the leading risk factors for cardiovascular disease, but difficult to reliably assess because there are many factors which can influence blood pressure including stress, exercise or illness. The first part of this thesis focuses on possible ways to improve the

  11. Measuring gait pattern in elderly individuals by using a plantar pressure measurement device.

    Science.gov (United States)

    Nakajima, Kanako; Anzai, Emi; Iwakami, Yumi; Ino, Shuichi; Yamashita, Kazuhiko; Ohta, Yuji

    2014-01-01

    Hip fracture in the elderly is a serious problem, and solutions to prevent falls are needed. This study focused on elucidating data critical to fall prevention by evaluating ambulatory function, and we achieved this by developing a plantar pressure measurement device to determine gait function. Our device enables measurement of gait function in the unrestrained state by transmitting wireless data. In this study, we applied the device to field experiments involving 98 subjects (39 healthy individuals, 44 elderly non-fallers, and 15 elderly fallers). Gait features were determined by measuring the pressure values and foot contact patterns used as gait function parameters in previous studies. In particular, decreased peak pressure values were noted at heel strike and toe off during walking in elderly fallers compared with elderly non-fallers. In addition, compared with healthy subjects, elderly fallers also showed extension of the double support phase, and differences in individual gait pattern features were observed between the groups. Experiments confirmed that our device can be used to obtain the gait features of a diverse group of elderly individuals. Moreover, our device enables objective and quantitative evaluation of gait function and thus may be useful for evaluating gait function in the elderly.

  12. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    Science.gov (United States)

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  13. A comparison of blood pressure measurements in newborns.

    LENUS (Irish Health Repository)

    O'Shea, Joyce

    2012-02-01

    Blood pressure monitoring is an essential component of neonatal intensive care. We compared invasive and noninvasive (Dinamap, Marquette, and Dash) recordings in newborns and also noninvasive values obtained from upper and lower limbs. Infants\\' blood pressure was recorded every 6 hours for 72 hours using three noninvasive devices and compared with invasive readings taken simultaneously. Twenty-five babies were enrolled in the study, with birth weights of 560 to 4500 g and gestation 24 + 1 to 40 + 5 weeks. Three hundred thirty-two recordings were obtained. Comparison between invasive and noninvasive readings revealed that all three noninvasive monitors overread mean blood pressure. There was no significant difference between the cuff recordings obtained from the upper or lower limbs. All three noninvasive devices overestimated mean blood pressure values compared with invasive monitoring. Clinicians may be falsely reassured by noninvasive monitoring. Mean blood pressure values obtained from the upper and lower limb are similar.

  14. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer...... to measure normal pressure has been available....

  15. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  16. Level of Mercury Manometer With Respect to Heart: Does it Affect Blood Pressure Measurement?

    Science.gov (United States)

    Kapoor, Raj; Roy, V K; Manna, S; Bhattacharjee, M

    2015-01-01

    Measurement of blood pressure is an integral part of clinical examination. Over the years various types of instruments have been used to measure blood pressure but till date the mercury sphygmomanometer is regarded as the gold standard. However, there is a myth prevalent among health professionals regarding the level of the manometer in relation to heart at the time of measuring of blood pressure. Many professionals insist that it has to be placed at the level of the heart. We argue that the limb from which pressure is measured must be at the heart level rather than the manometer. We conducted a study in which we measured the blood pressure in adults by placing the manometer at three different levels with respect to the heart. The values of blood pressure obtained at all levels were similar and did not show any statistically significant difference. We therefore conclude that the level of sphygmomanometer per se does not affect blood pressure measurement.

  17. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  18. Highway-railway at-grade crossing structures : trackbed and surface pressure measurements and assessments.

    Science.gov (United States)

    2009-05-01

    Techniques are described for installing instrumentation within highway/railway crossings - to measure vertical pressures under moving highway and railway loadings - using earth pressure cells. Also, techniques are described for installing instrumenta...

  19. Does the position or contact pressure of the stethoscope make any difference to clinical blood pressure measurements: an observational study.

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-12-01

    This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP.

  20. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system

    Science.gov (United States)

    Perry, B., III

    1981-01-01

    Comparisons are presented analytically predicted and experimental turbulence responses of a wind tunnel model of a DC-10 derivative wing equipped with an active control system. The active control system was designed for the purpose of flutter suppression, but it had additional benefit of alleviating gust loads (wing bending moment) by about 25%. Comparisions of various wing responses are presented for variations in active control system parameters and tunnel speed. The analytical turbulence responses were obtained using DYLOFLEX, a computer program for dynamic loads analyses of flexible airplanes with active controls. In general, the analytical predictions agreed reasonably well with the experimental data.

  1. High pressure cells for magnetic measurements - destruction and functional tests

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Machátová, Zuzana; Arnold, Zdeněk

    2004-01-01

    Roč. 75, č. 11 (2004), s. 5022-5025 ISSN 0034-6748 R&D Projects: GA ČR GA202/02/0739; GA AV ČR IAA1010315 Institutional research plan: CEZ:AV0Z1010914 Keywords : pressure cells * pressure transmitting media * CuBe * MP35N Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.226, year: 2004

  2. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    Science.gov (United States)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  3. Design, Development and Tests in Real Time of Control Methodologies for a Morphing Wing in Wind Tunnel =

    Science.gov (United States)

    Tchatchueng Kammegne, Michel Joel

    In order to leave a cleaner environmental space to future generations, the international community has been mobilized to find green solutions that are effective and feasible in all sectors. The CRIAQ MDO505 project was initiated to test the morphing wingtip (wing and aileron) technology as one of these possible solutions. The main objectives of this project are: the design and manufacturing of a morphing wing prototype, the extension and control of the laminar region over the extrados, and to compare the effects of morphing and rigid aileron in terms of lift, drag and pressure distributions. The advantage of the extension of the laminar region over a wing is the drag reduction that results by delaying the transition towards its trailing edge. The location of the transition region depends on the flight case and it is controlled, for a morphing wing, via the actuators positions and displacements. Therefore, this thesis work focuses on the control of the actuators positions and displacements. This thesis presents essentially the modeling, instrumentation and wind tunnel testing results. Three series of wind tunnel tests with different values of aileron deflection angle, angle of attack and Mach number have been performed in the subsonic wind tunnel of the IAR-NRC. The used wing airfoil consisted of stringers, ribs, spars and a flexible upper surface mad of composite materials (glass fiber carbon), a rigid aileron and flexible aileron. The aileron was able to move between +/-6 degrees. The demonstrator's span measures 1.5 m and its chord measures 1.5 m. Structural analyses have been performed to determine the plies orientation, and the number of fiberglass layers for the flexible skin. These analyses allowed also to determine the actuator's forces to push and pull the wing upper surface. The 2D XFoil and 3D solvers Fluent were used to find the optimized airfoil and the optimal location of the transition for each flight case. Based on the analyses done by the

  4. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model.

    Science.gov (United States)

    Chopra, Sascha Santosh; Wolf, Stefan; Rohde, Veit; Freimann, Florian Baptist

    2015-01-01

    Introduction. Intra-abdominal pressure (IAP) measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic) for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was -0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  5. Pilot study: Assessing repeatability of the EcoWalk platform resistive pressure sensors to measure plantar pressure during barefoot standing

    International Nuclear Information System (INIS)

    Zequera, Martha; Perdomo, Oscar; Wilches, Carlos; Vizcaya, Pedro

    2013-01-01

    Plantar pressure provides useful information to assess the feet's condition. These systems have emerged as popular tools in clinical environment. These systems present errors and no compensation information is presented by the manufacturer, leading to uncertainty in the measurements. Ten healthy subjects, 5 females and 5 males, were recruited. Lateral load distribution, antero-posterior load distribution, average pressure, contact area, and force were recorded. The aims of this study were to assess repeatability of the EcoWalk system and identify the range of pressure values observed in the normal foot. The coefficient of repeatability was less than 4% for all parameters considered.

  6. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressures...... the hysteresis were decreased in stress urinary incontinent (SUI) women compared to continent women. Thus the parameters seem to be relevant regarding SUI. UPR examination was performed before and after urethral bulking and from these examinations a mechanism of action of the bulking procedure was proposed...

  7. Pilot study: Assessing repeatability of the EcoWalk platform resistive pressure sensors to measure plantar pressure during barefoot standing

    Science.gov (United States)

    Zequera, Martha; Perdomo, Oscar; Wilches, Carlos; Vizcaya, Pedro

    2013-06-01

    Plantar pressure provides useful information to assess the feet's condition. These systems have emerged as popular tools in clinical environment. These systems present errors and no compensation information is presented by the manufacturer, leading to uncertainty in the measurements. Ten healthy subjects, 5 females and 5 males, were recruited. Lateral load distribution, antero-posterior load distribution, average pressure, contact area, and force were recorded. The aims of this study were to assess repeatability of the EcoWalk system and identify the range of pressure values observed in the normal foot. The coefficient of repeatability was less than 4% for all parameters considered.

  8. Ultra-sensitive graphene sensor for measuring high vacuum pressure.

    Science.gov (United States)

    Il Ahn, Sung; Ra Jung, Ju; Young Choi, So; Hwa Son, Min; Jin Hong, Yu; Park, Jung-Chul

    2017-10-03

    We demonstrate here that several different graphene nanoribbon (GNR) samples can be separated from the GNR mixture synthesized by conventional methods. The sheet resistance of the purified GNR gradually decreased with decreasing pressure at 30 °C, whereas it increased at 100 °C. A hypothesis based on van der Waals attractive interactions between GNR sheets was introduced to explain this finding. This hypothesis verified by the shifted main peaks in vacuum X-ray diffraction spectra: 0.022 nm and 0.041 nm shifts were observed for reduced graphene oxide (RGO) and GNR, respectively. Theoretical calculations indicated that, for RGO, the shifted distance was similar to the calculated distance. The response of the GNR sensor to pressure changes occurred rapidly (in seconds). The normalized response time of each sample indicated that sensor using GNR reduced the tailing of the response time by shortening the diffusion path of gas molecules. The sensitivity of the GNR sensor was three times that of RGO in the given pressure range. Moreover, the sensitivity of GNR was much larger than those of the most popularly studied pressure sensors using Piezoresistivity, and the sensor could detect vacuum pressures of 8 × 10 -7  Torr.

  9. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model.

    Science.gov (United States)

    Babbs, Charles F

    2012-08-22

    The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.

  10. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model

    Directory of Open Access Journals (Sweden)

    Babbs Charles F

    2012-08-01

    Full Text Available Abstract Background The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. Methods A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. Results The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. Conclusions A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.

  11. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  12. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  13. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  14. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter.

    Science.gov (United States)

    Iwata, Yusaku; Koseki, Hiroshi

    2008-11-15

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP.

  15. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter

    International Nuclear Information System (INIS)

    Iwata, Yusaku; Koseki, Hiroshi

    2008-01-01

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP

  16. Unsteady Surface Pressure Measurements on a Pitching Airfoil

    Science.gov (United States)

    1985-03-12

    through 8 Dynamics 7512B amplifiers. The pitching motions of the airfoil were generated by 6°jN\\! 920O/_ a PDP 11/03 computer controlling a Control...acquisition system. The pressure data were used to calculate pressure 2 coefficients which were in turn integrated to compute lift coefficients. Both...Airfoils," AIAA J., Vol. 13, No. 1, 17. Gormont, R.E., "A Mathenatical Model pp 71-79, Jan 1975. of Unsteady Aerodynamics and Radial 4. McAlister, K.W

  17. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  18. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    Science.gov (United States)

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  19. Study on storage and measurement system of shock-wave pressure

    International Nuclear Information System (INIS)

    Fan Zehui; Tian Zhong; Tang Jian; Yang Jian; Wei Xiangwen; Wang Lihua

    1998-12-01

    The principle, systematic structure of the storage and measurement system of shock-wave pressure and the calibration and application measurement of the system are introduced. The measured results show that the measuring system can be used as a substitute of the traditional pressure measurement system and used for storage and measurement of pressure wave shape of the shock-wave resulted from explosion. It has the following advantages: free of lead-wire, resistant against bad conditions, anti-interference, high reliability, easy calibration and simple measurement procedure, easy to carry, direct communication with micro-computer

  20. Turbulence investigation of the NASA common research model wing tip vortex

    Directory of Open Access Journals (Sweden)

    Čantrak Đorđe S.

    2017-01-01

    Full Text Available The paper presents high-speed stereo particle image velocimetry investigation of the NASA Common Research Model wing tip vortex. A three-percent scaled semi–span model, without nacelle and pylon, was tested in the 32- by 48-inch Indraft tunnel, at the Fluid Mechanics Laboratory at the NASA Ames Research Center. Turbulence investigation of the wing tip vortex is presented. Measurements of the wing-tip vortex were performed in a vertical cross-stream plane three tip-chords downstream of the wing tip trailing edge with a 2 kHz sampling rate. Experimental data are analyzed in the invariant anisotropy maps for three various angles of attack (0°, 2°, and 4° and the same speed generated in the tunnel (V∞ = 50 m/s. This corresponds to a chord Reynolds number 2.68x105, where the chord length of 3” is considered the characteristic length. The region of interest was x = 220 mm and y = 90 mm. The 20 000 particle image velocimetry samples were acquired at each condition. Velocity fields and turbulence statistics are given for all cases, as well as turbulence structure in the light of the invariant theory. Prediction of the wing tip vortices is still a challenge for the computational fluid dynamics codes due to significant pressure and velocity gradients. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  1. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  2. High Resolution Cluster Pressure Profile Measurements with MUSTANG and Bolocam

    Science.gov (United States)

    Romero, Charles; Mason, Brian S.; Sayers, Jack; Young, Alexander; Dicker, Simon; Mroczkowski, Tony; Reese, Erik D.; Sarazin, Craig L.; Czakon, Nicole G.; Devlin, Mark J.; Korngut, Phillip

    2015-01-01

    Accurate high-resolution intracluster medium (ICM) pressure profiles will help further constrain cosmological parameters as well as baryonic physics in the cores of clusters of galaxies. MUSTANG, a 90 GHz bolometer array on the Green Bank Telescope (GBT) is among the highest resolution (9' FWHM) instruments at 90 GHz, and is among the best instruments to observe the ICM given its sensitivity. We present results from a sub-sample of the Cluster Lensing And Supernova with Hubble (CLASH) clusters of galaxies observed with both MUSTANG and Bolocam. Bolocam, a 150 GHz bolometer array on the CSO with 58' FWHM, and MUSTANG data probe different, and highly complementary, angular (size) scales. We jointly fit spherical electron pressure profiles to the two datasets and find that the addition of the high resolution MUSTANG data can considerably improve constraints on the pressure profiles. A major asset of our fitting algorithm is the ability to uniquely fit for contaminants such as point sources, and thus allowing us to determine the signal from the underlying ICM. We compare our best fit profiles to X-ray determined pressure profiles (provided by ACCEPT), where we find good agreement. Finally we investigate the implications of our results and describe ongoing work to extend this analysis to the full set of CLASH clusters viewable by the GBT, and to obtain even better results with the MUSTANG-1.5 camera

  3. Transient pressure measurements at part load operating condition of ...

    Indian Academy of Sciences (India)

    Hydraulic turbines are operating at part load conditions depending on availability of hydraulic energy or to meet the grid requirements. The turbine experiences ... The present paper focuses on the investigation of a high head model Francis turbine operating at 50% load.Pressure ... University of Technology, Lulea ., Sweden ...

  4. Measures of blood pressure and cognition in dialysis patients

    Science.gov (United States)

    There are few reports on the relationship of blood pressure with cognitive function in maintenance dialysis patients. The Cognition and Dialysis Study is an ongoing investigation of cognitive function and its risk factors in six Boston area hemodialysis units. In this analysis, we evaluated the rela...

  5. Simultaneously Measured Interarm Blood Pressure Difference and Stroke: An Individual Participants Data Meta-Analysis.

    Science.gov (United States)

    Tomiyama, Hirofumi; Ohkuma, Toshiaki; Ninomiya, Toshiharu; Mastumoto, Chisa; Kario, Kazuomi; Hoshide, Satoshi; Kita, Yoshikuni; Inoguchi, Toyoshi; Maeda, Yasutaka; Kohara, Katsuhiko; Tabara, Yasuharu; Nakamura, Motoyuki; Ohkubo, Takayoshi; Watada, Hirotaka; Munakata, Masanori; Ohishi, Mitsuru; Ito, Norihisa; Nakamura, Michinari; Shoji, Tetsuo; Vlachopoulos, Charalambos; Yamashina, Akira

    2018-04-09

    We conducted individual participant data meta-analysis to examine the validity of interarm blood pressure difference in simultaneous measurement as a marker to identify subjects with ankle-brachial pressure index blood pressure difference >5 mm Hg as being associated with a significant odds ratio for the presence of ankle-brachial pressure index blood pressure difference >15 mm Hg was associated with a significant Cox stratified adjusted hazard ratio for subsequent stroke (hazard ratio, 2.42; 95% confidence interval, 1.27-4.60; P blood pressure differences, measured simultaneously in both arms, may be associated with vascular damage in the systemic arterial tree. These differences may be useful for identifying subjects with an ankle-brachial pressure index of blood pressure in both arms at the first visit. © 2018 American Heart Association, Inc.

  6. Real-time measurement of needle forces and acute pressure changes during intravitreal injections.

    Science.gov (United States)

    Christensen, Logan; Cerda, Ashlee; Olson, Jeffrey L

    2017-11-01

    The purpose of this study was to use a physiological pressure transducer to measure real-time, continuous pressure changes in an ex vivo study model of porcine eyes to record the amount of force needed for scleral penetration and to measure acute intraocular pressure rise during intravitreal injections. A pressure transducer was inserted into the anterior chamber of 30 fresh porcine eyes, and intraocular pressure was measured 2 s prior to intravitreal injection until 2 s after. A force transducer plate was used to insert various gauge needles into the vitreous cavity and the amount of force in Newtons (N) required for scleral penetration was recorded. For scleral perforation, 32- and 30-gauge needles required 0.44 N and 0.45 N, significantly less than larger gauge needles (P time continuous recordings of pressure reveal that an instantaneous intraocular pressure spike occurs during intravitreal injection and appears to be separate from the intraocular pressure spike that occurs during needle insertion. This pressure spike is transient and has not been captured by previous methods of intraocular pressure measurement, which rely on single time point measurements. The clinical significance of this brief intraocular pressure spike is unclear and warrants further investigation. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  7. Measurement of vapor pressure of organophosphorous compounds by gas chromatography

    International Nuclear Information System (INIS)

    Panneerselvam, K.; Brahmmananda Rao, C.V.S.; Antony, M.P.

    2016-01-01

    Dialkylalkyl phosphonates have been developed as an alternative solvent to TBP at our laboratory for separation of actinides. Several dialkylalkylphosphonates have been synthesized and the vapor pressure of all of them was determined using Gas Chromatography (GC) technique. In this technique, individual dialkylalkylphosphonates have been separated from a mixture using GC. Gas chromatography has been utilized as a successful technique in determining vapor pressure of homologous series and structurally similar compounds. GC retention time (t a ) is inversely proportional to the vapor pressure of the solute in solution of the stationary phase. This technique strongly depends on the linear correlation observed between 1n(p/p 0 ) of a reference compound and a target sample under investigation, where p is the vapor pressure for reference compound, p 0 = 101.325 kPa, and 1n(t 0 /t a ) where t 0 = 1 minute and t a = difference in retention times of the target compound and a nonretained compound, CH 2 Cl 2 , added. The retention time of reference (trialkyl phosphate) and target (dibutylalkyl phosphonates) compounds along with CH 2 Cl 2 has been obtained by gas chromatograph using a 4 m 10 % XE-60 packed column under isothermal conditions. Helium was used as carrier gas. As expected, the vapor pressure of reference as well as target compounds decreases with increasing molecular weight of organophosphorous compounds. The merits of this technique are its speed, accuracy and tiny volume of sample. Requirement of high purity sample in contrast to the conventional technique is also done away with this technique. (author)

  8. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  9. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  10. Pressure drop measurement for flow-measuring dummy fuel assemblies in HANARO core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Taek; Chung, Heung June [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In order to characterize the flow distribution of HANARO core, flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies) were to be used in the HANARO commissioning. To do this instrumented dummy fuel assemblies were developed and the calibration tests were conducted in the thermal-hydraulic laboratory. Through this experiment the correlations for 6 instrumented dummy fuel assemblies were derived. The measured total pressure drop for the 36-element dummy fuel assembly was 211 kPa, which meets the design requirement, 209 kPa {+-} 5%. The form loss coefficients for the spacers were re-evaluated and the new correlation was obtained. 7 tabs., 13 figs., 2 refs. (Author).

  11. Proposal to Measure Hadron Scattering with a Gaseous High Pressure TPC for Neutrino Oscillation Measurements

    CERN Document Server

    Andreopoulos, C; Bordoni, S; Boyd, S; Brailsford, D; Brice, S; Catanesi, G; Chen-Wishart, Z; Denner, P; Dunne, P; Giganti, C; Gonzalez Diaz, D; Haigh, J; Hamacher-Baumann, P; Hallsjo, S; Hayato, Y; Irastorza, I; Jamieson, B; Kaboth, A; Korzenev, A; Kudenko, Y; Leyton, M; Luk, K-B; Ma, W; Mahn, K; Martini, M; McCauley, N; Mermod, P; Monroe, J; Mosel, U; Nichol, R; Nieves, J; Nonnenmacher, T; Nowak, J; Parker, W; Raaf, J; Rademacker, J; Radermacher, T; Radicioni, E; Roth, S; Saakyan, R; Sanchez, F; Sgalaberna, D; Shitov, Y; Sobczyk, J; Soler, F; Touramanis, C; Valder, S; Walding, J; Ward, M; Wascko, M; Weber, A; Yokoyama, M; Zalewska, A; Ziembicki, M

    2017-01-01

    We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement.

  12. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  13. Field measurement of local ice pressures on the ARAON in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Lee Tak-Kee

    2014-12-01

    Full Text Available This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel “ARAON” in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of 0.28 m2. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

  14. Field measurement of local ice pressures on the ARAON in the Beaufort Sea

    Science.gov (United States)

    Lee, Tak-Kee; Lee, Jong-Hyun; Kim, Heungsub; Rim, Chae Whan

    2014-12-01

    This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of 0.28 m2. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

  15. Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump

    Science.gov (United States)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1987-01-01

    Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.

  16. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  17. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  18. Flow Field Analysis of Fully Coupled Computations of a Flexible Wing undergoing Stall Flutter

    Science.gov (United States)

    2016-01-01

    instantaneously measure the wing deformation . Clearly, these sensors rely upon the structural deformation for determining the extent of the defor...Torsion Figure 3. Modal structural model containing both bending and torsional modes. which can be simplified to Cµ = U2j A j U2∞Are f (6) since the...orthogonal decomposition (POD) was used on the pressure in the flow field.? Because the mesh is deforming due to the fluid-structure coupling and the

  19. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Felker, Fort F.

    1991-01-01

    A test of a 0.658-scale V-22 rotor and wing was conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The principal objectives of the test were to measure the wing download in hover for a variety of test configurations, and rotor performance in forward flight. Also, a limited amount of data on rotor performance in vertical climb were acquired. This paper presents the results from the test with predictions from appropriate analytical methods. A new method for presenting and interpreting wing surface pressure data in hover is described, and this method shows that the wing flap can produce substantial lift loads in hover. The rotor performance in vertical climb was underpredicted by CAMRAD/JA and by the free wake analysis EHPIC. A simple momentum theory is presented which provides good predictions of rotor performance in forward flight.

  20. The measurement of digital systolic blood pressure by strain gauge technique

    DEFF Research Database (Denmark)

    Nielsen, P E; Bell, G; Lassen, N A

    1972-01-01

    The systolic blood pressure on the finger, toe, and ankle has been measured by a strain gauge technique in 10 normal subjects aged 17-31 years and 14 normal subjects aged 43-57 years. The standard deviation in repeated measurements lies between 2 and 6 mm Hg. The finger pressure in the younger gr...

  1. The position of the arm during blood pressure measurement in sitting position.

    NARCIS (Netherlands)

    Adiyaman, A.; Verhoeff, R.; Lenders, J.W.M.; Deinum, J.; Thien, Th.

    2006-01-01

    OBJECTIVE: Determining the influence of the position of the arm on blood pressure measurement in the sitting position. METHODS: Blood pressure of 128 individuals (the majority being treated hypertensive patients) visiting the outpatient clinic was measured simultaneously on both arms with arms in

  2. Accuracy of non-invasive blood pressure measurements in obese patients.

    Science.gov (United States)

    Arnold, Abigail; McNaughton, Amanda

    2018-01-11

    This article describes an evidence-based literature review, comparing upper arm and forearm blood pressure measurements using non-invasive devices on obese patients. The focus on blood pressure monitoring was in response to regularly witnessing inappropriately applied blood pressure cuffs on obese patient's upper arms in practice. An inaccurately obtained blood pressure measurement can result in the misdiagnosis and treatment of hypertension. As the prevalence of obesity grows worldwide, healthcare settings need to ensure they have the necessary equipment and trained staff to accurately measure obese patients' blood pressure. The aim of this review was to identify whether a forearm measurement provided a suitable alternative to upper arm measurements. The article discusses the development and execution of a search strategy, as well as the critical appraisal of a selected article. The results of the review demonstrated that forearm blood pressure measurements in obese patients do not replace upper arm blood pressure measurements taken with an appropriate cuff. It is recommended that further research is undertaken in order to identify suitable alternatives for obtaining an accurate non-invasive blood pressure measurement in obese patients.

  3. Measuring the collateral network pressure to minimize paraplegia risk in thoracoabdominal aneurysm resection.

    Science.gov (United States)

    Etz, Christian D; Zoli, Stefano; Bischoff, Moritz S; Bodian, Carol; Di Luozzo, Gabriele; Griepp, Randall B

    2010-12-01

    To minimize paraplegia during thoracoabdominal aortic aneurysm repair, the concept of the collateral network was developed. That is, spinal cord perfusion is provided by an interconnecting complex of vessels in the intraspinal, paraspinous, and epidural space and in the paravertebral muscles, including intercostal and lumbar segmental as well as subclavian and hypogastric arteries. Collateral network pressure was measured with a catheter in the distal end of a ligated segmental artery in pigs and human beings. In the pig, collateral network pressure was 75% of the simultaneous mean aortic pressure. With complete segmental arterial ligation, it fell to 27% of baseline, recovering to 40% at 24 hours and 90% at 120 hours. Spinal cord injury occurred in approximately 50% of animals. When all segmental arteries were taken in 2 stages a week apart, collateral network pressure fell only to 50% to 70% of baseline, and spinal cord injury was rare. In human beings, baseline collateral network pressure also was 75% of mean aortic pressure, fell in proportion to the number of segmental arteries ligated, and began recovery within 24 hours. Collateral network pressure was lower with nonpulsatile distal bypass than with pulsatile perfusion. After subtraction of a measure of spinal cord outflow pressure (cerebrospinal fluid pressure or central venous pressure), collateral network pressure provides a clinically useful estimate of spinal cord perfusion pressure. Copyright © 2010. Published by Mosby, Inc.

  4. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  5. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    Science.gov (United States)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Akhbari, Sina; Ding, Jianjun; Zhao, Yihe; Zhao, Yulong; Lin, Liwei

    2015-12-01

    Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM) simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa) was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  6. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  7. The measurement for level of marine high-temperature and high-pressure vessels

    International Nuclear Information System (INIS)

    Lin Jie.

    1986-01-01

    The various error factors in measurement for level of marine high-temperature and high-pressure vessels are anslysed. The measuring method of error self compensation and its simplification for land use are shown

  8. Arterial pressure measurement: Is the envelope curve of the oscillometric method influenced by arterial stiffness?

    International Nuclear Information System (INIS)

    Gelido, G; Angiletta, S; Pujalte, A; Quiroga, P; Cornes, P; Craiem, D

    2007-01-01

    Measurement of peripheral arterial pressure using the oscillometric method is commonly used by professionals as well as by patients in their homes. This non invasive automatic method is fast, efficient and the required equipment is affordable with a low cost. The measurement method consists of obtaining parameters from a calibrated decreasing curve that is modulated by heart beats witch appear when arterial pressure reaches the cuff pressure. Diastolic, mean and systolic pressures are obtained calculating particular instants from the heart beats envelope curve. In this article we analyze the envelope of this amplified curve to find out if its morphology is related to arterial stiffness in patients. We found, in 33 volunteers, that the envelope waveform width correlates to systolic pressure (r=0.4, p<0.05), to pulse pressure (r=0.6, p<0.05) and to pulse pressure normalized to systolic pressure (r=0.6, p<0.05). We believe that the morphology of the heart beats envelope curve obtained with the oscillometric method for peripheral pressure measurement depends on arterial stiffness and can be used to enhance pressure measurements

  9. Intraocular pressure measurement with the Tono-Pen through soft contact lenses.

    Science.gov (United States)

    Panek, W C; Boothe, W A; Lee, D A; Zemplenyi, E; Pettit, T H

    1990-01-15

    We evaluated a miniaturized digital and electronic tonometer, the Tono-Pen, for accuracy of intraocular pressure measurement in the presence of a contact lens. In the manometric study, the Tono-Pen was used to measure a known intraocular pressure, ranging from 10 mm Hg to 60 mm Hg in a cadaver eye over soft contact lenses with different powers and a plano-T bandage lens. There was significant bias in pressure measurement over all contact lenses except for the plano-T, which had no bias at any level. In the clinical study, the intraocular pressures of 40 eyes in 20 normal patients were measured with and without a plano-T contact lens in place. Analysis of variance showed no significant interactive effect between the right and left eyes, with or without the lens. There was no significant difference in the Tono-Pen measurement of intraocular pressure over a plano-T contact lens compared with no lens.

  10. Handcrafted cuff manometers do not accurately measure endotracheal tube cuff pressure.

    Science.gov (United States)

    Annoni, Raquel; de Almeida Junior, Antonio Evanir

    2015-01-01

    To test the agreement between two handcrafted devices and a cuff-specific manometer. The agreement between two handcrafted devices adapted to measure tracheal tube cuff pressure and a cuff-specific manometer was tested on 79 subjects. The cuff pressure was measured with a commercial manometer and with two handcrafted devices (HD) assembled with aneroid sphygmomanometers (HD1 and HD2). The data were compared using Wilcoxon and Spearman tests, the intraclass correlation coefficient (ICC) and limit-of-agreement analysis. Cuff pressures assessed with handcrafted devices were significantly different from commercial device measurements (pressures were higher when measured with HD1 and lower with HD2). The ICCs between the commercial device and HD1 and HD2 were excellent (ICC = 0.8 p manometers do not provide accurate cuff pressure measurements when compared to a cuff-specific device and should not be used to replace the commercial cuff manometers in mechanically ventilated patients.

  11. Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory

    Science.gov (United States)

    Carmer, Carl F. v.; Heider, André; Schröder, Andreas; Konrath, Robert; Agocs, Janos; Gilliot, Anne; Monnier, Jean-Claude

    Multiple-vortex systems of aircraft wakes have been investigated experimentally in a unique large-scale laboratory facility, the free-flight B20 catapult bench, ONERA Lille. 2D/2C PIV measurements have been performed in a translating reference frame, which provided time-resolved crossvelocity observations of the vortex systems in a Lagrangian frame normal to the wake axis. A PIV setup using a moving multiple-camera array and a variable double-frame time delay has been employed successfully. The large-scale quasi-2D structures of the wake-vortex system have been identified using the QW criterion based on the 2D velocity gradient tensor ∇H u, thus illustrating the temporal development of unequal-strength corotating vortex pairs in aircraft wakes for nondimensional times tU0/b≲45.

  12. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  13. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    2016-01-01

    Full Text Available The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV and scala tympani (ST is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures.

  14. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Science.gov (United States)

    Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  15. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  16. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  17. When and how should we measure intra- abdominal pressure?

    African Journals Online (AJOL)

    2008-11-11

    Nov 11, 2008 ... IAH is graded from I to IV according to severity, with grade IV being an IAP. ≥25 mmHg. ACS is defined as an IAP >20 mmHg associated with acute organ ... proactive detection by measuring IAP is not common .... Table I. Procedure for measurement of IAP via a urinary catheter using a water manometer.

  18. The number of visits and blood pressure measurements influence the prevalence of high blood pressure in adolescents.

    Science.gov (United States)

    de Oliveira, Luciano Machado Ferreira Tenório; da Silva, Alison Oliveira; Diniz, Paula Rejane Beserra; Farah, Breno Quintella; Pirauá, André Luiz Torres; de Lima Neto, Antônio José; Feitosa, Wallacy Milton do Nascimento; Tassitano, Rafael Miranda; Ritti-Dias, Raphael M

    2017-06-01

    The aim of this study was to analyze the influence of the number of visits and the number of blood pressure (BP) measurements on the prevalence of high blood pressure (HBP) in adolescents. A cross-sectional epidemiologic study with 481 adolescents (14-19 years old) selected using a random cluster sampling strategy. We measured the BP three times in a first visit. Adolescents with HBP performed subsequent visits. The final calculation of BP followed four strategies: the 1st measure, mean of 1st and 2nd measurements, mean of all three measurements, and averaging the 2nd and 3rd measurements. The prevalence of HBP in the first and second visits was 6.4% and 1.9%, and the prevalence of hypertension (after three visits) was 1.7%. The prevalence of HBP varied from 8.6%-18.6% for boys and 4.6%-9.2% for girls, using the average 2nd and 3rd measurements and the 1st measurement, respectively. In all strategies, HBP and hypertension were more prevalent in boys and students attending the nocturnal shift. The number of visits and number of measurements affect the prevalence of HBP and hypertension in adolescents. Thus, clinicians and researchers should consider these aspects when assessing BP in adolescents aged 14-19 years old. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  19. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  20. Prediction of Pneumonia in Acute Stroke Patients Using Tongue Pressure Measurements.

    Science.gov (United States)

    Nakamori, Masahiro; Hosomi, Naohisa; Ishikawa, Kenichi; Imamura, Eiji; Shishido, Takeo; Ohshita, Tomohiko; Yoshikawa, Mineka; Tsuga, Kazuhiro; Wakabayashi, Shinichi; Maruyama, Hirofumi; Matsumoto, Masayasu

    2016-01-01

    Swallowing dysfunction caused by stroke is a risk factor for aspiration pneumonia. Tongue pressure measurement is a simple and noninvasive method for evaluating swallowing dysfunction. We have hypothesized that low tongue pressure may be able to predict pneumonia occurrence in acute stroke patients. Tongue pressure was measured using balloon-type equipment in 220 acute stroke patients. The modified Mann Assessment of Swallowing Ability (MASA) score was evaluated independently on the same day. Tongue pressure was measured every week thereafter. An improvement in tongue pressure was observed within the first 2 weeks. Receiver operating curve analysis was performed to determine the ability of tongue pressure to predict modified MASA score tongue pressure was 21.6 kPa (χ2 = 45.82, ptongue pressure was significantly lower in patients with pneumonia than in those without pneumonia. Using a Cox proportional hazard model for pneumonia onset with a cutoff tongue pressure value of 21.6 kPa and adjustment for age, sex, and National Institutes of Health Stroke Scale score at admission, the tongue pressure had additional predictive power for pneumonia onset (hazard ratio, 7.95; 95% confidence interval, 2.09 to 52.11; p = 0.0013). In the group with low tongue pressure, 27 of 95 patients showed improvement of tongue pressure within 2 weeks. Pneumonia occurred frequently in patients without improvement of tongue pressure, but not in patients with improvement (31/68 and 2/27, pTongue pressure is a sensitive indicator for predicting pneumonia occurrence in acute stroke patients.

  1. A family of fiber-optic based pressure sensors for intracochlear measurements

    Science.gov (United States)

    Olson, Elizabeth S.; Nakajima, Hideko H.

    2015-02-01

    Fiber-optic pressure sensors have been developed for measurements of intracochlear pressure. The present family of transducers includes an 81 μm diameter sensor employing a SLED light source and single-mode optic fiber, and LED/multi-mode sensors with 126 and 202 μm diameter. The 126 μm diameter pressure sensor also has been constructed with an electrode adhered to its side, for coincident pressure and voltage measurements. These sensors have been used for quantifying cochlear mechanical impedances, informing our understanding of conductive hearing loss and its remediation, and probing the operation of the cochlear amplifier.

  2. Strain measurement in and analysis for hydraulic test of CPR1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Zhou Dan; Zhuang Dongzhen

    2013-01-01

    The strain measurement in hydraulic test of CPR1000 reactor pressure vessel performed in Dongfang Heavy Machinery Co., Ltd. is introduced. The detail test scheme and method was introduced and the measurement results of strain and stress was given. Meanwhile the finite element analysis was performed for the pressure vessel, which was generally matched with the measurement results. The reliability of strain measurement was verified and the high strength margin of vessel was shown, which would give a good reference value for the follow-up hydraulic tests and strength analysis of reactor pressure vessel. (authors)

  3. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling.

    Science.gov (United States)

    De Swaef, Tom; Hanssens, Jochen; Cornelis, Annelies; Steppe, Kathy

    2013-02-01

    Upward water movement in plants via the xylem is generally attributed to the cohesion-tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion-tension principles. Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model.

  4. Measurement of blood pressure, ankle blood pressure and calculation of ankle brachial index in general practice

    DEFF Research Database (Denmark)

    Nexøe, Jørgen; Damsbo, Bent; Lund, Jens Otto

    2012-01-01

    BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values......BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values...

  5. Proportion and characteristics of patients who measure their blood pressure at home: Nationwide survey in Slovenia

    Directory of Open Access Journals (Sweden)

    Petek-Šter Marija

    2009-01-01

    Full Text Available Introduction. Home blood pressure monitoring has several advantages over blood pressure monitoring at a physician's office, and has become a useful instrument in the management of hypertension. Objective. To explore the rate and characteristics of patients who measure their blood pressure at home. Methods. A sample of 2,752 patients with diagnosis of essential arterial hypertension was selected from 12596 consecutive office visitors. Data of 2,639 patients was appropriate for analysis. The data concerning home blood pressure measurement and patients' characteristics were obtained from the patients' case histories. Results 1,835 (69.5% out of 2,639 patients measured their blood pressure at home. 1,284 (70.0% of home blood pressure patients had their own blood pressure measurement device. There were some important differences between these two groups: home blood pressure patients were more frequently male, of younger age, better educated, from urban area, mostly non-smokers, more likely to have diabetes mellitus and ischemic heart disease and had higher number of co-morbidities and were on other drugs beside antihypertensive medication. Using the logistic regression analysis we found that the most powerful predictors of home blood pressure monitoring had higher education level than primary school OR=1.80 (95% CI 1.37-2.37, non-smoking OR=2.16 (95% CI 1.40-3.33 and having a physician in urban area OR=1.32 (95% CI 1.02-1.71. Conclusion. Home blood pressure monitoring is popular in Slovenia. Patients who measured blood pressure at home were different from patients who did not. Younger age, higher education, non-smoking, having a physician in urban area and longer duration of hypertension were predictors of home blood pressure monitoring.

  6. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  7. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Science.gov (United States)

    Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.

  8. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    Science.gov (United States)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  9. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  10. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  11. Effect of pressure on the α relaxation in glycerol and xylitol

    Science.gov (United States)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  12. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  13. Dynamic response of liquid-filled catheter systems for measurement of blood pressure: precision of measurements and reliability of the Pressure Recording Analytical Method with different disposable systems.

    Science.gov (United States)

    Romagnoli, Stefano; Romano, Salvatore Mario; Bevilacqua, Sergio; Lazzeri, Chiara; Gensini, Gian Franco; Pratesi, Carlo; Quattrone, Diego; Dini, Daniele; De Gaudio, Angelo Raffaele

    2011-08-01

    We aimed to compare the effects of a blood pressure transducer system specifically manufactured to limit underdamping artifacts with those of a standard system on hemodynamic parameter estimation and accuracy. Forty-three consecutive patients undergoing vascular surgery at the University of Florence, Italy, were included. Arterial blood pressure signal was simultaneously registered with 2 MostCare monitors, connected to the artery either by a standard transducer or a specific transducer manufactured to avoid underdamping artifacts (Resonance Over-Shoot Eliminator [R.O.S.E.]; Becton Dickinson, Becton Drive, NJ). Patients were divided into 2 groups: absence (C group) or presence (R group) of underdamping/resonance artifacts of blood pressure signal. Systolic blood pressure, cardiac index, maximal pressure/time ratio (dP/dt(MAX)), and cardiac cycle efficiency were recorded every 30 seconds for 30 minutes. A total of 2675 measurements were performed with 34.9% incidence of underdamping/resonance artifacts. All hemodynamic parameters showed clinically acceptable differences in the C group; in contrast, the results differed greatly in the R group between standard and R.O.S.E. transducer (systolic blood pressure bias, 16.7 mm Hg; cardiac index bias, 0.24 L min(-1) m(-2); dP/dt(MAX) bias, 0.92 mm Hg/ms; cardiac cycle efficiency bias, 0.018 units). Underdamping/resonance artifacts frequently affect blood pressure measurement in operating rooms and intensive care units and cause severe overestimation of systolic blood pressure and incorrect estimation of hemodynamic parameters when the pulse contour method is used. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    Science.gov (United States)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  16. Effect of instantaneous rotational speed on the analysis of measured diesel engine cylinder pressure data

    International Nuclear Information System (INIS)

    Antonopoulos, Antonis K.; Hountalas, Dimitrios T.

    2012-01-01

    Highlights: ► The effect of in-cycle speed fluctuation on cylinder pressure measurement is investigated. ► A phasing error is introduced when sampling cylinder pressure at constant time intervals. ► The phasing error increases with the increase of engine load and decrease of engine speed. ► Measurement using constant sampling rate affects estimation of HRR, ignition angle etc. - Abstract: Diesel engine cylinder pressure measurements are widely used in field and lab applications to support among other control, monitoring and diagnostic applications. There are two methods to measure cylinder pressure, the use of a crank angle encoder, which guarantees pressure samples at fixed crank angles, and the use of constant time sampling rate. The last is frequently used due to its simplicity or because of practical restrictions. However, in order to perform thermodynamic calculations it is necessary to attribute a crank angle value to each measured pressure value. But if the in-cycle rotational speed fluctuates and this is neglected, an error will result in the values derived from the processing of the measured cylinder pressure. For this reason in the present work an experimental investigation is conducted on a single cylinder diesel test engine to identify the aforementioned problem. During the tests cylinder pressure and instantaneous speed were recorded using an accurate crank angle reference. These where then used to simulate the measurement of cylinder pressure digitized using a fixed time step. The comparison of the two cylinder pressure traces and the thermodynamic parameters derived from them, reveals the introduction of an error which depends on engine load and speed.

  17. Development and application of the condom catheter method for non-invasive measurement of bladder pressure

    Directory of Open Access Journals (Sweden)

    R van Mastrigt

    2009-01-01

    Full Text Available Objectives: A non-invasive method to measure the bladder pressure in males using a condom catheter has been developed. The measurement technique, its validation and limitations, a diagnostic nomogram to non-invasively diagnose bladder outlet obstruction (BOO, and results of large-scale application are discussed. Methods: Modified incontinence condoms are attached to the penis. During voiding the flow of urine is mechanically interrupted. The subsequent maximum pressure in the condom reflects the isovolumetric bladder pressure. The method was validated in a group of 46 patients with lower urinary tract symptoms who were simultaneously studied invasively and non-invasively. Subsequently it was applied in a non-invasive epidemiological study in 1020 healthy males. Results: The reproducibility of the measured isovolumetric bladder pressure is comparable to that of conventional pressure-flow parameters. The measured pressure can be used to diagnose bladder outlet obstruction with a diagnostic accuracy (Area Under receiver operator characteristic curve of 0.98, which compares most favorably with the area under the curve of 0.79 of Q max in the same population. During condom catheter measurements, both the involuntary interruption of voiding and the forced diuresis increase post-void residual volume. This increase does not affect the accuracy of the pressure measurements. Conclusions: We conclude that in males bladder pressure can successfully be measured non-invasively using the condom catheter method. By combining the measured volumetric bladder pressure with a separately measured free flow rate, BOO can non-invasively and accurately be diagnosed.

  18. Shock-compression measurements at pressures greater than 1 TPa

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Precise Hugoniot data were obtained for samples of aluminum, quartz, iron, molybdenum, and low-density molybdenum (rho 0 = 8.29 g-cm -3 ) using the impedance-matching technique. An underground nuclear explosion drove a nearly planar, 5-TPa shock into a molybdenum standard. Shock velocities were measured with 1.5% to 2.5% accuracies

  19. Measurement error in pressure-decay leak testing

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1979-04-01

    The effect of measurement error in presssure-decay leak testing is considered, and examples are presented to demonstrate how it can be properly accomodated in analyzing data from such tests. Suggestions for more effective specification and conduct of leak tests are presented

  20. Clinical aviation medicine research : comparison of simultaneous measurements of intra-aortic and auscultatory blood pressures with pressure-flow dynamics during rest and excercise.

    Science.gov (United States)

    1966-10-01

    The study provides correlative information with respect to the comparative accuracy of the traditional 'cuff' clinical method of obtaining blood pressure and the laboratory catheterization procedure which measures actual blood pressure. The informati...

  1. Comparing Pore-scale and Macro-scale Capillary Pressure Measurements Using a Two- dimensional Micromodel

    Science.gov (United States)

    Brown, K. I.; Porter, M. L.; Wildenschild, D.

    2007-12-01

    Capillary pressure plays a critical role in multiphase flow and transport in porous media. At the pore scale, capillary pressure is defined by Laplace's law which states that capillary pressure is a function of surface tension, contact angle and curvature. This study focuses on imaging and estimating pore scale properties that determine capillary pressure. Drainage and imbibition experiments for a NAPL-water system are conducted in a two-dimensional micro-scale porous medium. High resolution images of the phase distributions and associated interfaces within the pores are collected during the experiments. Images are taken at a rate of approximately 50 frames per second with a resolution between 1-10 ìm per pixel. In addition, the pressure in each phase is measured with a transducer outside the porous medium, and pressure-saturation curves are plotted from the data. We will attempt to use Laplace's Law to estimate the average pressure inside the porous medium based on measured curvatures. The two pressure values (measured outside the system versus calculated via Laplace's Law) will be compared. The images will allow for investigation of pore scale properties during dynamic flow conditions, as well as static conditions, and importantly, allow for comparison among the two situations. Specifically, relaxation of menisci interfaces and resulting changes in interface curvature, and thus capillary pressure, will be correlated to variations in system properties such as fluid-fluid viscosities and flow rates.

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  3. Pico Gauges for Minimally Invasive Intracellular Hydrostatic Pressure Measurements1[C][W][OPEN

    Science.gov (United States)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare H.; Knoblauch, Michael

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods. PMID:25232014

  4. Measurement of hepatic venous pressure gradient revisited: Catheter wedge vs balloon wedge techniques

    Directory of Open Access Journals (Sweden)

    S Timothy Chelliah

    2011-01-01

    Full Text Available Aims: To evaluate the accuracy of measurement of hepatic venous pressure gradient by catheter wedge as compared to balloon wedge (the gold standard. Materials and Methods: Forty-five patients having a clinical diagnosis of intrahepatic portal hypertension were subjected to the two different types of pressure measurements (catheter wedge and balloon wedge during transjugular liver biopsy under fluoroscopic guidance. Statistical Analysis: Spearman′s rank correlation coefficient, Bland-Altman plot for agreement, and single measure intraclass correlation were used for analysis of data. Results: There was a close correlation between the results obtained by both the techniques, with highly significant concordance (P < 0.0001. Hepatic venous pressure gradients as measured by the catheter wedge technique were either equal to or less than those obtained by the balloon wedge technique. Conclusions: The difference in hepatic venous pressure gradients measured by the two techniques is insignificant.

  5. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.

    Science.gov (United States)

    Du, Gang; Sun, Mao

    2012-05-07

    We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    Science.gov (United States)

    Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.

    1998-01-01

    An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.

  7. Highly sensitive contact pressure measurements using FBG patch in endotracheal tube cuff

    Science.gov (United States)

    Correia, R.; Blackman, O. R.; Hernandez, F. U.; Korposh, S.; Morgan, S. P.; Hayes-Gill, B. R.; James, S. W.; Evans, D.; Norris, A.

    2016-05-01

    A method for measuring the contact pressure between an endotracheal tube cuff and the trachea was designed and developed by using a fibre Bragg grating (FBG) based optical fibre sensor. The FBG sensor is encased in an epoxy based UV-cured cuboid patch and transduces the transversely loaded pressure into an axial strain that induces wavelength shift of the Bragg reflection. The polymer patch was created by using a PTFE based mould and increases tensile strength and sensitivity of the bare fibre FBG to pressure to 2.10×10-2 nm/kPa. The characteristics of the FBG patch allow for continuous measurement of contact pressure. The measurement of contact pressure was demonstrated by the use of a 3D printed model of a human trachea. The influence of temperature on the measurements is reduced significantly by the use of a second FBG sensor patch that is not in contact with the trachea. Intracuff pressure measurements performed using a commercial manometer agreed well with the FBG contact pressure measurements.

  8. Blood pressure measurement of all five fingers by strain gauge plethysmography

    DEFF Research Database (Denmark)

    Hirai, M; Nielsen, S L; Lassen, N A

    1976-01-01

    The aim of the present paper was to study the methodological problems involved in measuring systolic blood pressure in all five fingers by the strain gauge technique. In 24 normal subjects, blood pressure at the proximal phalanx of finger I and both at the proximal and the intermediate phalanx of...

  9. Including Pressure Measurements in Supervision of Energy Efficiency of Wastewater Pump Systems

    DEFF Research Database (Denmark)

    Larsen, Torben; Arensman, Mareike; Nerup-Jensen, Ole

    2016-01-01

    energy). This article presents a method for a continuous supervision of the performance of both the pump and the pipeline in order to maintain the initial specific energy consumption as close as possible to the original value from when the system was commissioned. The method is based on pressure...... measurements only. The flow is determined indirectly from pressure fluctuations during pump run-up....

  10. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold

    NARCIS (Netherlands)

    de Graaff, Jurgen C.; Ubbink, Dirk Th; Lagarde, Sjoerd M.; Jacobs, Michael J. H. M.

    2002-01-01

    Capillary blood pressure is an essential parameter in the study of the (patho-)physiology of microvascular perfusion. Currently, capillary pressure measurements in humans are performed using a servo-nulling micropressure system containing an oil-water interface, which suffers some drawbacks. In

  11. Nurse-measured or ambulatory blood pressure in routine hypertension care

    NARCIS (Netherlands)

    Veerman, D. P.; van Montfrans, G. A.

    1993-01-01

    Nurses are considered to evoke less white-coat hypertension, and might therefore be able to estimate average blood pressure as well as and more conveniently than ambulatory monitoring. The objective of the present study was to determine the correspondence between blood pressure measured by a doctor

  12. Pressure/cross-sectional area probe in the assessment of urethral closure function. Reproducibility of measurement

    DEFF Research Database (Denmark)

    Lose, G; Schroeder, T

    1990-01-01

    -pressure zone and distally in the urethra. The in vitro study showed that cross sectional areas of 13-79 mm2 were determined with a SD of 1.4 mm2. In vivo measurements revealed that the urethral parameters: elastance, hysteresis, pressure and power of contraction during coughing and squeezing were fairly...

  13. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    Science.gov (United States)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  14. A new method to normalize plantar pressure measurements for foot size and foot progression angle.

    NARCIS (Netherlands)

    Keijsers, N.L.; Stolwijk, N.M.; Nienhuis, B.; Duysens, J.E.J.

    2009-01-01

    Plantar pressure measurement provides important information about the structure and function of the foot and is a helpful tool to evaluate patients with foot complaints. In general, average and maximum plantar pressure of 6-11 areas under the foot are used to compare groups of subjects. However,

  15. Femoral artery pressure measurement to predict the outcome of arterial surgery in patients with multilevel disease

    DEFF Research Database (Denmark)

    Faris, I; Tønnesen, K H; Agerskov, K

    1982-01-01

    Direct measurement of the femoral artery pressure before operation has been used to predict the postoperative change in ankle and toe pressure in 102 limbs (83 patients) that underwent aortoiliac surgery for the treatment of atherosclerotic occlusion or stenosis affecting both the aortoiliac and ...

  16. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  17. [Measurement of external pressure of peroneal nerve tract coming in contact with lithotomy leg holders using pressure distribution measurement system BIG-MAT®].

    Science.gov (United States)

    Mizuno, Ju; Namba, Chikara; Takahashi, Toru

    2014-10-01

    We investigated external pressure on peroneal nerve tract coming in contact with two kinds of leg holders using pressure distribution measurement system BIG- MAT® (Nitta Corp., Osaka) in the lithotomy position Peak contact (active) pressure at the left fibular head region coming in contact with knee-crutch-type leg holder M® (Takara Belmont Corp., Osaka), which supports the left popliteal fossa, was 78.0 ± 26.4 mmHg. On the other hand, peak contact pressure at the left lateral lower leg region coming in contact with boot-support-type leg holder Bel Flex® (Takara Belmont Corp., Osaka), which supports the left lower leg and foot was 26.3±7.9 mmHg. These results suggest that use of knee-crutch-type leg holder is more likely to induce common peroneal nerve palsy at the fibular head region, but use of boot-support-type leg holder dose not easily induce superficial peroneal nerve palsy at the lateral lower leg region, because capillary blood pressure is known to be 32 mmHg. Safer holders for positioning will be developed to prevent nerve palsy based on the analysis of chronological change in external pressure using BIG-MAT® system during anesthesia.

  18. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    Science.gov (United States)

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  19. Relevance to Home Blood Pressure Monitoring Protocol of Blood Pressure Measurements Taken Before First- Morning Micturition and in the Afternoon

    Directory of Open Access Journals (Sweden)

    Antonio Eduardo Monteiro de Almeida

    2014-10-01

    Full Text Available Background: The importance of measuring blood pressure before morning micturition and in the afternoon, while working, is yet to be established in relation to the accuracy of home blood pressure monitoring (HBPM. Objective: To compare two HBPM protocols, considering 24-hour ambulatory blood pressure monitoring (wakefulness ABPM as gold-standard and measurements taken before morning micturition (BM and in the afternoon (AM, for the best diagnosis of systemic arterial hypertension (SAH, and their association with prognostic markers. Methods: After undergoing 24-hour wakefulness ABPM, 158 participants (84 women were randomized for 3- or 5-day HBPM. Two variations of the 3-day protocol were considered: with measurements taken before morning micturition and in the afternoon (BM+AM; and with post-morning-micturition and evening measurements (PM+EM. All patients underwent echocardiography (for left ventricular hypertrophy - LVH and urinary albumin measurement (for microalbuminuria - MAU. Result: Kappa statistic for the diagnosis of SAH between wakefulness-ABPM and standard 3-day HBPM, 3-day HBPM (BM+AM and (PM+EM, and 5-day HBPM were 0.660, 0.638, 0.348 and 0.387, respectively. The values of sensitivity of (BM+AM versus (PM+EM were 82.6% × 71%, respectively, and of specificity, 84.8% × 74%, respectively. The positive and negative predictive values were 69.1% × 40% and 92.2% × 91.2%, respectively. The comparisons of intraclass correlations for the diagnosis of LVH and MAU between (BM+AM and (PM+EM were 0.782 × 0.474 and 0.511 × 0.276, respectively. Conclusions: The 3 day-HBPM protocol including measurements taken before morning micturition and during work in the afternoon showed the best agreement with SAH diagnosis and the best association with prognostic markers.

  20. Second-harmonic-generation measurements on ZnSe under high pressure

    CERN Document Server

    Jin Ming Xing; Mukhtar, E; Ding Da Jun

    2002-01-01

    Second-harmonic-generation (SHG) measurements on ZnSe at high pressure, up to 7 GPa, have been reported. The zinc-blende-rock-salt transition pressure has been determined at room temperature from the SHG in ZnSe using a femtosecond laser. The pressure required to induce transformation from a zinc-blende to a rock-salt structure decreases from 11.5 to 1.07 GPa in a femtosecond laser field. SHG can be used to monitor structural changes under pressure of some materials with nonlinear optical properties.

  1. Correlation of Insulin Resistance with Anthropometric Measures and Blood Pressure in Adolescents

    Science.gov (United States)

    de Morais, Polyana Resende Silva; Sousa, Ana Luiza Lima; Jardim, Thiago de Souza Veiga; Nascente, Flávia Miquetichuc Nogueira; Mendonça, Karla Lorena; Povoa, Thaís Inácio Rolim; Carneiro, Carolina de Souza; Ferreira, Vanessa Roriz; de Souza, Weimar Kunz Sebba Barroso; Jardim, Paulo César Brandão Veiga

    2016-01-01

    Background Blood pressure is directly related to body mass index, and individuals with increased waist circumference have higher risk of developing hypertension, insulin resistance, and other metabolic changes, since adolescence. Objective to evaluate the correlation of blood pressure with insulin resistance, waist circumference and body mass index in adolescents. Methods Cross-section study on a representative sample of adolescent students. One group of adolescents with altered blood pressure detected by casual blood pressure and/or home blood pressure monitoring (blood pressure > 90th percentile) and one group of normotensive adolescents were studied. Body mass index, waist circumference were measured, and fasting glucose and plasma insulin levels were determined, using the HOMA-IR index to identify insulin resistance. Results A total of 162 adolescents (35 with normal blood pressure and 127 with altered blood pressure) were studied; 61% (n = 99) of them were boys and the mean age was 14.9 ± 1.62 years. Thirty-eight (23.5%) adolescents had altered HOMA-IR. The group with altered blood pressure had higher values of waist circumference, body mass index and HOMA-IR (pHOMA-IR than boys (pHOMA-IR in the group with altered blood pressure (ρ = 0.394; p HOMA-IR in both groups (ρ = 0.345; p HOMA-IR was as predictor of altered blood pressure (odds ratio - OR = 2.0; p = 0.001). Conclusion There was a significant association of insulin resistance with blood pressure and the impact of insulin resistance on blood pressure since childhood. The correlation and association between markers of cardiovascular diseases was more pronounced in adolescents with altered blood pressure, suggesting that primary prevention strategies for cardiovascular risk factors should be early implemented in childhood and adolescence. PMID:27007222

  2. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  3. Temporal variation of wing geometry in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Paloma Oliveira Vidal

    2012-12-01

    Full Text Available Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010 in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  4. Temporal variation of wing geometry in Aedes albopictus.

    Science.gov (United States)

    Vidal, Paloma Oliveira; Carvalho, Eneas; Suesdek, Lincoln

    2012-12-01

    Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010) in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean) and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  5. Effect of body temperature on peripheral venous pressure measurements and its agreement with central venous pressure in neurosurgical patients.

    Science.gov (United States)

    Sahin, Altan; Salman, M Alper; Salman, A Ebru; Aypar, Ulka

    2005-04-01

    Previous studies suggest a correlation of central venous pressure (CVP) with peripheral venous pressure (PVP) in different clinical settings. The effect of body temperature on PVP and its agreement with CVP in patients under general anesthesia are investigated in this study. Fifteen American Society of Anesthesiologists I-II patients undergoing elective craniotomy were included in the study. CVP, PVP, and core (Tc) and peripheral (Tp) temperatures were monitored throughout the study. A total of 950 simultaneous measurements of CVP, PVP, Tc, and Tp from 15 subjects were recorded at 5-minute intervals. The measurements were divided into low- and high-Tc and -Tp groups by medians as cutoff points. Bland-Altman assessment for agreement was used for CVP and PVP in all groups. PVP measurements were within range of +/-2 mm Hg of CVP values in 94% of the measurements. Considering all measurements, mean bias was 0.064 mm Hg (95% confidence interval -0.018-0.146). Corrected bias for repeated measurements was 0.173 +/- 3.567 mm Hg (mean +/- SD(corrected)). All of the measurements were within mean +/- 2 SD of bias, which means that PVP and CVP are interchangeable in our setting. As all the measurements were within 1 SD of bias when Tc was > or = 35.8 degrees C, even a better agreement of PVP and CVP was evident. The effect of peripheral hypothermia was not as prominent as core hypothermia. PVP measurement may be a noninvasive alternative for estimating CVP. Body temperature affects the agreement of CVP and PVP, which deteriorates at lower temperatures.

  6. In-Situ Rolling Element Bearing Temperature and/or Pressure Measurement

    National Research Council Canada - National Science Library

    Nickel, David

    1999-01-01

    ... attitude-control wheels. Thin-film deposition and patterning processes have been formulated for the production of thin-film resistive sensors for in-situ measurement of pressure and temperature transients in lubricated contacts...

  7. The Pathway-Flow Relative Permeability of CO2: Measurement by Lowered Pressure Drops

    Science.gov (United States)

    Zhang, Yi; Nishizawa, Osamu; Park, Hyuck; Kiyama, Tamotsu; Lei, Xinglin; Xue, Ziqiu

    2017-10-01

    We introduce a simple method to measure the relative permeability of supercritical CO2 in low-permeability rocks. The method is built on the assumption of the stability of formed CO2 percolation pathway under lowered pressure drops. Initially, a continuous CO2 flow pathway is created under a relatively high-pressure drop. Then, several subsequent steps of lowered pressure drops are performed while monitoring the associated flow rates. When the pressure drop is lower than a threshold value, the created flow pathway is assumed to be adequately stable and does not vary significantly during successive flows, with the average saturation and flow rate achieving a quasi steady state. The relative permeability of CO2 is then calculated from the relationship between the pressure drop and flow rate at several lowered pressure drops according to the extended form of Darcy's law. We demonstrate this method using both numerical modeling and an experimental test using X-ray CT imaging. The results indicate the validity of the assumption for the stability of flow pathway under lowered pressure drops. A linear relationship between the lowered pressure drops and the corresponding CO2 flow rate is found. Furthermore, the measurement results suggest that the relative permeability of CO2 can still be high in low-permeability rocks if the CO2 saturation is higher than the threshold value required to build a flow pathway. The proposed method is important for measuring the pathway-flow relative permeability of nonwetting fluids in low-permeability rocks.

  8. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  9. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel...... of healing correlated significantly with the three distal blood pressure parameters investigated, the closest correlation being with the SDBP measured at the final examination, i.e. just after healing of the ulcer or just before an inevitable major amputation. Of the 22 cases with SDBP below 20 mmHg only two...... and peripheral neuropathy were frequent in the diabetic group. The data show that the systolic digital blood pressure is a particularly valuable prognostic parameter....

  10. Validity of a wrist digital monitor for blood pressure measurement in comparison to a mercury sphygmomanometer.

    Science.gov (United States)

    Menezes, Ana M B; Dumith, Samuel C; Noal, Ricardo B; Nunes, Ana Paula; Mendonça, Fernanda I; Araújo, Cora L P; Duval, Marta A; Caruso, Paulo E; Hallal, Pedro C

    2010-03-01

    Valid measurements of blood pressure, both at clinical and community settings, are essential for monitoring this variable at the population level. To evaluate the validity of a wrist digital monitor for measuring blood pressure among adolescents in comparison to a mercury sphygmomanometer. A validation study was carried out in the city of Pelotas, Southern Brazil. Blood pressure was measured twice using two different sphygmomanometers; an OMRON wrist digital and a desktop BD mercury one. Half of the sample was measured first with the digital manometer and subsequently with the mercury one, whereas the remaining half was evaluated in the opposite order. Agreement between both measures was evaluated using the Bland and Altman method. 120 adolescents aged 14 to 15 years were included (50% of each sex). Mean systolic blood pressure among boys was 113.7 mmHg (SD 14.2) when using the mercury manometer and 115.5 mmHg (SD 15.2) when using the digital one. Equivalent values for diastolic blood pressure were 61.5 mmHg (SD 9.9) and 69.6 mmHg (10.2), respectively. Among girls, the mean systolic blood pressure was 104.7 mmHg (SD 10.1) when using the mercury manometer and 102.4 mmHg (SD 11.9) when using the digital device. Values for diastolic blood pressure were 60.0 mmHg (SD 10.4) and 65.7 mmHg (SD 7.7), respectively. The digital device showed a high level of agreement with the mercury manometer when measuring systolic blood pressure. The level of agreement was lower for diastolic blood pressure. The use of correction equations may be an alternative for studies using this wrist digital monitor in adolescent patients.

  11. Simultaneous Infrared And Pressure Measurements Of Crossflow Instability Modes For HIFiRE 5 (POSTPRINT)

    Science.gov (United States)

    2017-07-01

    Since the shell has a high emissivity and low thermal conductivity, it is also well-suited for infrared (IR) thermography . The use of IR thermography was...AFRL-RQ-WP-TP-2017-0099 SIMULTANEOUS INFRARED AND PRESSURE MEASUREMENTS OF CROSSFLOW INSTABILITY MODES FOR HIFiRE-5 (POSTPRINT) Matthew...Postprint 01 April 2015 – 01 January 2016 4. TITLE AND SUBTITLE SIMULTANEOUS INFRARED AND PRESSURE MEASUREMENTS OF CROSSFLOW INSTABILITY MODES FOR

  12. Thermodynamic properties of the liquid Hg-Tl alloys determined from vapour pressure measurements

    Directory of Open Access Journals (Sweden)

    Gierlotka W.

    2002-01-01

    Full Text Available The partial vapour pressure of mercury over liquid Hg-Tl liquid solutions were determined in the temperature range from 450 to 700 K by direct vapour pressure measurements carried out with the quartz gauge. From the measured ln pHg vs. T relationships activities of mercury were determined. Using Redlich-Kister formulas logarithms of the activity coefficients were described with the following equations: From which all thermodynamic functions in the solutions can be derived.

  13. Measuring and predicting head space pressure during retorting of thermally processed foods.

    Science.gov (United States)

    Ghai, Gaurav; Teixeira, Arthur A; Welt, Bruce A; Goodrich-Schneider, Renee; Yang, Weihua; Almonacid, Sergio

    2011-04-01

    Traditional metal cans and glass jars have been the mainstay in thermally processed canned foods for more than a century, but are now sharing shelf space with increasingly popular flexible pouches and semi-rigid trays. These flexible packages lack the strength of metal cans and glass jars, and need greater control of external retort pressure during processing. Increasing internal package pressure without counter pressure causes volumetric expansion, putting excessive strain on package seals that may lead to serious container deformation and compromised seal integrity. The primary objective of this study was to measure internal pressure build-up within a rigid air-tight container (module) filled with various model food systems undergoing a retort process in which internal product temperature and pressure, along with external retort temperature and pressure, were measured and recorded at the same time. The pressure build-up in the module was compared with the external retort pressure to determine the pressure differential that would cause package distortion in the case of a flexible package system. The secondary objective was to develop mathematical models to predict these pressure profiles in response to known internal temperature and initial and boundary conditions for the case of the very simplest of model food systems (pure water and aqueous saline and sucrose solutions), followed by food systems of increasing compositional complexity (green beans in water and sweet peas in water). Results showed that error between measured and predicted pressures ranged from 2% to 4% for water, saline, and green beans, and 7% to 13% for sucrose solution and sweet peas.   Flexible packages have limited strength, and need more accurate and closer control of retort pressure during processing. The package becomes more flexible as it heats and might expand with increasing internal pressure that may cause serious deformation or rupture if not properly controlled and

  14. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    Directory of Open Access Journals (Sweden)

    Zhikang Li

    2015-12-01

    Full Text Available Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  15. Value, Impact, and the Transcendent Library: Progress and Pressures in Performance Measurement and Evaluation

    Science.gov (United States)

    Town, J. Stephen

    2011-01-01

    Libraries are under pressure to prove their worth and may not have achieved this fully successfully. There is a resultant growing requirement for value and impact measurement in academic and research libraries. This essay reviews the natural history of library performance measurement and suggests that proof of worth will be measured by the…

  16. Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech

    Science.gov (United States)

    Švec, Jan G.; Granqvist, Svante

    2018-01-01

    Purpose: Sound pressure level (SPL) measurement of voice and speech is often considered a trivial matter, but the measured levels are often reported incorrectly or incompletely, making them difficult to compare among various studies. This article aims at explaining the fundamental principles behind these measurements and providing guidelines to…

  17. Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies

    NARCIS (Netherlands)

    I. Dielemans (Ida); J.R. Vingerling (Hans); A. Hofman (Albert); D.E. Grobbee (Diederick); P.T.V.M. de Jong (Paulus)

    1994-01-01

    textabstractThe reproducibility of intraocular pressure (IOP) measurement with the Goldmann applanation tonometer was investigated as part of a population-based epidemiological study. Sixty-two subjects were examined in a first measurement session. The IOP was measured three times consecutively in

  18. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    In vitro measurement of ambient pressure changes using a realistic clinical setup Klaus Scheldrup Andersen and Jørgen Arendt Jensen Motivation and objective: Many attempts to find a non-invasive procedure to measure the local blood pressure have been made. In the last decade independent experiments...... cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...

  19. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  20. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  1. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  2. DETERMINATION OF COMMERCIAL AIRCRAFT WING GEOMETRY DURING THE FLIGHT

    Directory of Open Access Journals (Sweden)

    V. I. Shevyakov

    2015-01-01

    Full Text Available The article deals with the task of determination of wing shape for sub-sonic commercial aircraft by photogrammetric method. It provides the procedure for measurements taken on ground and in flight. It also provides the outcome of wing twist for commercial aircraft at cruise.

  3. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  4. Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis: a systematic review.

    Science.gov (United States)

    Yavin, Daniel; Luu, Judy; James, Matthew T; Roberts, Derek J; Sutherland, Garnette R; Jette, Nathalie; Wiebe, Samuel

    2014-09-01

    Because clinical examination and imaging may be unreliable indicators of intracranial hypertension, intraocular pressure (IOP) measurement has been proposed as a noninvasive method of diagnosis. The authors conducted a systematic review and meta-analysis to determine the correlation between IOP and intracranial pressure (ICP) and the diagnostic accuracy of IOP measurement for detection of intracranial hypertension. The authors searched bibliographic databases (Ovid MEDLINE, Ovid EMBASE, and the Cochrane Central Register of Controlled Trials) from 1950 to March 2013, references of included studies, and conference abstracts for studies comparing IOP and invasive ICP measurement. Two independent reviewers screened abstracts, reviewed full-text articles, and extracted data. Correlation coefficients, sensitivity, specificity, and positive and negative likelihood ratios were calculated using DerSimonian and Laird methods and bivariate random effects models. The I(2) statistic was used as a measure of heterogeneity. Among 355 identified citations, 12 studies that enrolled 546 patients were included in the meta-analysis. The pooled correlation coefficient between IOP and ICP was 0.44 (95% CI 0.26-0.63, I(2) = 97.7%, p intracranial hypertension were 81% (95% CI 26%-98%, I(2) = 95.2%, p intracranial hypertension. Given the significant heterogeneity between included studies, further investigation is required prior to the adoption of IOP in the evaluation of intracranial hypertension into routine practice.

  5. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    Science.gov (United States)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research

  6. Measurements of blood pressure with various techniques in daily practice: uncertainty in diagnosing office hypertension with short-term in-hospital registration of blood pressure

    NARCIS (Netherlands)

    Braun, H. J.; Rabouw, H.; Werner, H.; van Montfrans, G. A.; de Stigter, C.; Zwinderman, A. H.

    1999-01-01

    To predict blood pressure outside the clinic from a short-term in-hospital registration for patients referred for ambulatory blood pressure monitoring (ABPM) with special attention to office hypertension. A series of measurements of blood pressure was performed by the same technician for 187

  7. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Jaeger, Matthias; Khoo, Angela K; Conforti, David A; Cuganesan, Ramesh

    2016-11-01

    Phase contrast cine MRI with determination of pulsatile aqueductal cerebrospinal fluid (CSF) stroke volume and flow velocity has been suggested to assess intracranial pulsations in idiopathic normal pressure hydrocephalus (iNPH). We aimed to compare this non-invasive measure of pulsations to intracranial pressure (ICP) pulse wave amplitude from continuous ICP monitoring. We hypothesised that a significant correlation between these two markers of intracranial pulsations exists. Fifteen patients with suspected iNPH had continuous computerised ICP monitoring with calculation of mean ICP pulse wave amplitude (MWA) from time-domain analysis. MRI measured CSF aqueductal stroke volume and peak flow velocity. Mean MWA was 5.4mmHg (range 2.3-12.4mmHg). Mean CSF stroke volume and peak flow velocity were 65μl (range 3-195μl) and 9.31cm/s (range 1.68-15.0cm/s), respectively. No significant correlation between the invasive and non-invasive measures of pulsations existed (Spearman r=-0.30 and r=-0.27, respectively; p>0.05). We observed marked intra-individual fluctuation of MWA during continuous ICP monitoring of an average of 6.0mmHg (range 2.8-12.2mmHg). The results suggest a complex interplay between measures of pulsations derived from snapshot MRI measurements and continuous computerised ICP measurements, as no significant relationship existed in our data. Further study is needed to better understand the temporal profile of CSF MRI flow studies, as substantial variation in MWA over the course of several hours of ICP monitoring is common, suggesting that these physiologic fluctuations might obscure MRI snapshot measures of intracranial pulsations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel...... (SPPH) as measured with a photocell. Thirty-two patients (35 feet with ulcerations) had diabetes mellitus. The treatment was conservative. In 42 feet the ulcers healed after an average period of 5.8 months; in 24 feet major amputation became necessary after an average of 4.3 months. The frequency...... of healing correlated significantly with the three distal blood pressure parameters investigated, the closest correlation being with the SDBP measured at the final examination, i.e. just after healing of the ulcer or just before an inevitable major amputation. Of the 22 cases with SDBP below 20 mmHg only two...

  9. Development of the CARS method for measurement of pressure and temperature gradients in centrifuges

    International Nuclear Information System (INIS)

    Zeltmann, A.H.; Valentini, J.J.

    1983-12-01

    These experiments evaluated the feasibility of applying the CARS technique to the measurement of UF 6 concentrations and pressure gradients in a gas centrifuge. The resultant CARS signals were properly related to system parameters as suggested by theory. The results have been used to guide design of an apparatus for making CARS measurements in a UF 6 gas centrifuge. Ease of measurement is expected for pressures as low as 0.1 torr. Temperature gradients can be measured by this technique with changes in the data acquisition method. 16 references, 8 figures, 2 tables

  10. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  11. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    Science.gov (United States)

    McCoy, Chad A.; Knudson, Marcus D.; Root, Seth

    2017-11-01

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurements of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. Combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.

  12. Adjusting adiposity and body weight measurements for height alters the relationship with blood pressure in children

    Science.gov (United States)

    Willig, Amanda L.; Casazza, Krista; Dulin-Keita, Akilah; Franklin, Frank A.; Amaya, Michelle; Fernandez, Jose R.

    2010-01-01

    BACKGROUND Adiposity measures are associated with increased pediatric blood pressure. However, this correlation can be confounded by the relationship of both variables to height. We evaluated whether adiposity and anthropometric measures were associated with pediatric blood pressure before and after adjusting each value for height. METHODS Participants included 281 African-American, European-American, and Hispanic-American children aged 7–12 years. Blood pressure percentiles were calculated according to pediatric guidelines using the average of four measurements. Total fat mass was determined using dual-energy x-ray absorptiometry. Socioeconomic status was calculated with the Hollingshead index. Adiposity measures were indexed for height using log-log regression analysis. Partial correlations identified measures associated with blood pressure. Linear regression was used to test the association of those measures with absolute blood pressure, while logistic regression was used to evaluate the odds for hypertension. RESULTS More African-Americans (16.3%) presented with potential hypertension than European-American (5.1%) or Hispanic-American (2.7%) children. After adjusting for covariates, fat mass, body mass index, and waist circumference were positively significantly associated with absolute blood pressure and hypertension in African-American and European-American children (P < 0.05). When these measures were height-indexed, only waist remained significantly positively associated with hypertension risk in these two groups. No measures were significantly associated with blood pressure among Hispanic-American children. CONCLUSIONS In this multiethnic pediatric population, waist circumference was the strongest significant adiposity predictor of hypertension risk among African-American and European-American children. Additional research is needed to determine which environmental and genetic factors contribute to pediatric hypertension, particularly among Hispanic

  13. A method to measure paddle and detector pressures and footprints in mammography

    International Nuclear Information System (INIS)

    Hogg, Peter; Szczepura, Katy; Darlington, Alison; Maxwell, Anthony

    2013-01-01

    Purpose: Compression is necessary in mammography to improve image quality and reduce radiation burden. Maximizing the amount of breast in contact with the image receptor (IR) is important. To achieve this, for the craniocaudal projection, there is no consensus within the literature regarding how the IR should be positioned relative to the inframammary fold (IMF). No information exists within the literature to describe how pressure balancing between IR and paddle, and IR breast footprint, might be optimized. This paper describes a novel method for measuring the respective pressures applied to the breast from the IR and the paddle and a method to simultaneously measure the breast footprints on the IR and the paddle. Methods: Using a deformable breast phantom and electronic pressure-sensitive mat, area and pressure readings were gathered from two mammography machines and four paddles at 60, 80, and 100 N with the IR positioned at −2, −1, 0, +1, and +2 cm relative to the IMF (60 combinations in total). Results: Paddle and IR footprints were calculated along with a uniformity index (UI). For all four paddle/machine/pressure combinations the greatest IR footprint was achieved at IMF +2 cm. The UI indicates that the best pressure/footprint balance is achieved at IMF +1 cm. Conclusions: The authors’ method appears to be suited to measuring breast footprints and pressures on IR and paddle and a human female study is planned.

  14. Assessment on shock pressure acquisition from underwater explosion using uncertainty of measurement

    Directory of Open Access Journals (Sweden)

    Seok-Jun Moon

    2017-11-01

    Full Text Available This study aims to verify experimentally the specifications of the data acquisition system required for the precise measurement of signals in an underwater explosion (UNDEX experiment. The three data acquisition systems with different specifications are applied to compare their precision relatively on maximum shock pressures from UNDEX. In addition, a method of assessing the acquired signals is suggested by introducing the concept of measurement uncertainty. The underwater explosion experiments are repeated five times under same conditions, and assessment is conducted on maximum quantities acquired from underwater pressure sensors. It is confirmed that the concept of measurement uncertainty is very useful method in accrediting the measurement results of UNDEX experiments. Keywords: Naval ship, Underwater explosion (UNDEX experiment, Shock pressure, Data acquisition system, Uncertainty of measurement

  15. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  16. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  17. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry.

    Science.gov (United States)

    Segreti, Jason A; Polakowski, James S; Blomme, Eric A; King, Andrew J

    2016-01-01

    Comprehensive cardiovascular assessment in conscious rodents by utilizing telemetry has been limited by the restriction of current devices to one pressure channel. The purpose of this study was to test and validate a dual pressure transmitter that allows the simultaneous measurement of arterial pressure (AP) and left ventricular pressure (LVP) in conscious freely moving rats. Six rats were surgically implanted with dual pressure transmitters. Baseline hemodynamics and circadian rhythm were observed to return within 7days. AP, heart rate (HR), LVP and indices of left ventricular contractility were stable and demonstrated a prominent circadian rhythm over a two-week period of uninterrupted recordings. Administration of the vasodilator nifedipine produced the anticipated dose-dependent decrease in AP which was accompanied by a baroreflex mediated increase in HR and cardiac contractility. The negative inotrope verapamil produced the expected dose-dependent decreases in AP and cardiac contractility. Finally, a terminal validation of the dual pressure transmitter was performed under anesthesia by measuring AP and LVP simultaneously via telemetry and from a fluid filled arterial catheter and an intraventricular Millar catheter, respectively. A range of pressures and cardiac contractility were studied by administering sequential intravenous infusions of the positive inotrope dobutamine followed by verapamil. Linear regression analysis revealed a high level of agreement between pressures measured by the dual pressure transmitter and the exteriorized catheters. Histopathologic analysis of the heart revealed mild peri-catheter fibrosis. In conclusion, the simultaneous measurement of AP and LVP offers the potential for more detailed cardiovascular assessment in conscious rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. MEASUREMENTS OF PRESSURE DISTRIBUTIONS ON A ROTOR BLADE USING PSP TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Kidong Kim

    2011-12-01

    Full Text Available Surface pressure distributions on a rotating blade were measured by using pressure sensitive paint (PSP to understand aerodynamic characteristics of a rotor blade. The present study was conducted to investigate the PSP techniques for measuring the pressure distributions on a rotor blade. In order to perform the experiment, the PSP was required to response very fast due to rapid pressure fluctuations on a rotor blade. High energy excitation light source was also needed to acquire proper intensity images in a short excitation time. The techniques were based on a lifetime method. Qualitative pressure distributions on an upper surface of small scale rotor in hovering condition were measured as a preliminary experiment prior to forward flight conditions in the KARI low speed wind tunnel laboratory. From measured pressure distributions, striking pressure gradient was observed on an upper surface of rotor blade and the resulting pressure showed expected gradient depending on different collective pitch angles. ABSTRAK : Pengagihan tekanan permukaan ke atas berbilah putar disukat menggunakan cat sensitive tekanan (pressure sensitive paint (PSP untuk memahami sifat-sifat aerodinamik suatu berbilah putar. Kajian telah dijalankan untuk menyelidik teknik-teknik PSP dengan mengukur agihan tekanan ke atas suatu berbilah putar. Agar eksperimen dapat dijalankan dengan baik, PSP harus bertindak cepat kerana tekanan naik turun dengan pantas ke atas berbilah putar. Sumber cahaya ujaan tenaga tinggi diperlukan untuk mendapatkan imej keamatan wajar dalam jangka masa ujaan yang pendek. Teknik-teknik tersebut terhasil daripada kajian semasa hayat. Agihan tekanan kualitatif ke permukaan atas berskala kecil pemutar dalam keadaan mengapung diukur sebagai permulaan eksperimen, sebelum penerbangan kehadapan dalam makmal terowong angin laju rendah KARI. Daripada agihan tekanan yang disukat, kecerunan tekanan yang ketara diperolehi daripada permerhatian terhadap permukaan

  19. Measurements of peripherical static pressure and pressure drop in a rod bundle with helical wire wrap spacers

    International Nuclear Information System (INIS)

    Ballve, H.; Graca, M.C.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-07-01

    The fuel element of a LMFBR nuclear reactor consists of a wire wrapped rod bundle with triangular array with the coolant flowing parallel to the rods. Using this type of element with seven rods conected to an air open loop. The hydrodinamics behavior of the flow for p/d = 1.20 and l/d = 15.0, was simulated. Several measurements were performed in order to obtain the static pressure distribution at the walls of the hexagonal duct, for Reynolds number from 4.4x10 3 to 48.49x10 3 and for different axial and transverse positions, in a wire wrap lead. The axial pressure drop was obtained and determined the friction factor dependence with the Reynolds number. From the obtained results, it was observed the non-dependency of the non-dimensionalized axial and transverse local static pressure distribution at the wall of the hexagonal duct, with the Reynolds number. The obtained friction factor is compared to the results of previous works. (Author) [pt

  20. In the aftermath of SPRINT: further comparison of unattended automated office blood pressure measurement and 24-hour blood pressure monitoring.

    Science.gov (United States)

    Seidlerová, Jitka; Gelžinský, Julius; Mateřánková, Markéta; Ceral, Jiří; König, Petr; Filipovský, Jan

    2018-03-22

    Several papers reported that unattended automated office blood pressure (uAutoOBP) is closely related to daytime ambulatory blood pressure monitoring (ABPM). In the present study, we aim to study uAutoOBP and its relation to 24-hour ABPM and ABPM variability. Stable treated hypertensive subjects were examined in two Czech academic hypertension centres. uAutoOBP was measured with the BP Tru device; attended BP three times with auscultatory method (AuscOBP) by the physician. ABPM was performed within one week from the clinical visit. Data on 98 subjects aged 67.7 ± 9.3 years with 24-hour ABPM 120.3 ± 10.6/72.7 ± 7.9 mm Hg are reported. uAutoOBP was lower than 24-hour (by -5.2 ± 11.3/-0.5 ± 6.9 mm Hg) and daytime (by -6.7 ± 12.82.4 ± 8.0 mm Hg) ABPM and the individual variability of the difference was very large (up to 30 mm Hg). The correlation coefficients between ABPM and uAutoOBP were similar compared to AuscOBP (p ≥ .17). Variability of uAutoOBP, but not AuscOBP, readings during one clinical visit was related to short-term blood pressure variability of ABPM. The difference between AuscOBP and uAutoOBP was larger in patients with white-coat effect compared to other blood pressure control groups (25.1 ± 7.0 vs. 2.2 ± 10.3 mm Hg; p = .0036). Our study shows that uAutoOBP is not good predictor of ambulatory blood pressure monitoring, not even of the daytime values. It might, however, indicate short-term blood pressure variability and, when compared with AuscOBP, also detect patients with white-coat effect.

  1. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  2. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  3. Review on recent research progress on laser power measurement based on light pressure

    Science.gov (United States)

    Lai, WenChang; Zhou, Pu

    2018-03-01

    Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.

  4. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone

    Science.gov (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji

    2017-07-01

    Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.

  5. Prognostic significance of distal blood pressure measurements in patients with severe ischaemia

    DEFF Research Database (Denmark)

    Paaske, William; Tønnesen, K H

    1980-01-01

    The clinical course was followed and the ankle and toe blood pressures were measured with the strain gauge technique on 5 occasions during 2 years in 43 patients with pain at rest and/or ischaemic ulceration due to severe ischaemia of the legs on the basis of occlusive arterial disease. Although...... arteriosclerosis of the legs in non-diabetic patients is generally considered a benign disease from the standpoint of limb survival, the critical level of TPI (systolic toe blood pressure/systolic arm blood pressure) was found to be 0.07 as a TPI below this value was associated with an overall 82% risk...... of amputation. With TPI above 0.07, the chance of successful conservative therapy was about 40%. Diabetics with severe ischaemia must be regarded as a high risk group in respect of amputation (64%) and lethality (64%). A variance analysis was made on the pressure data: In patients with low pressure peripheral...

  6. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  7. DAC Measurement of High-Pressure Yield Strength of Vanadium using In-Situ Thickness Determination

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, J P; Cynn, H; Evans, W J; Rudd, R E; Yang, L H; Liermann, H P; Yang, W

    2009-07-16

    The pressure-dependence of the quasi-static yield strength of vanadium in polycrystalline foils and powders has been measured up to 80 GPa at room temperature using an implementation of a non-hydrostatic diamond anvil cell technique [C. Meade and R. Jeanloz, J. Geophys. Res. 93, 3261 (1988)]. A new feature of this work is the use of an in-situ determination of the sample thickness. Following an initial increase in the strength with pressure, a decrease in the strength of vanadium was observed beginning at 40-50 GPa. We have measured the yield strength of vanadium up to 80 GPa under nonhydrostatic conditions. In this study, we used x-ray diffraction and absorption techniques to make in-situ measurements of the pressure gradient and the sample thickness. These measurements were used to evaluate the pressure-dependence of the material strength. We observed a decease in the yield strength of vanadium over the pressure range of 40-50 GPa. We propose that this change in the yieldstrength pressure-dependence is an indicator of the phase transition from bcc to rhombohedral.

  8. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range

    Directory of Open Access Journals (Sweden)

    Hou-Zhen Wei

    2018-03-01

    Full Text Available A novel fiber-optic based earth pressure sensor (FPS with an adjustable measurement range and high sensitivity is developed to measure earth pressures for civil infrastructures. The new FPS combines a cantilever beam with fiber Bragg grating (FBG sensors and a flexible membrane. Compared with a traditional pressure transducer with a dual diaphragm design, the proposed FPS has a larger measurement range and shows high accuracy. The working principles, parameter design, fabrication methods, and laboratory calibration tests are explained in this paper. A theoretical solution is derived to obtain the relationship between the applied pressure and strain of the FBG sensors. In addition, a finite element model is established to analyze the mechanical behavior of the membrane and the cantilever beam and thereby obtain optimal parameters. The cantilever beam is 40 mm long, 15 mm wide, and 1 mm thick. The whole FPS has a diameter of 100 mm and a thickness of 30 mm. The sensitivity of the FPS is 0.104 kPa/με. In addition, automatic temperature compensation can be achieved. The FPS’s sensitivity, physical properties, and response to applied pressure are extensively examined through modeling and experiments. The results show that the proposed FPS has numerous potential applications in soil pressure measurement.

  9. Measurements of endotracheal tube cuff contact pressure using fibre Bragg gratings

    Science.gov (United States)

    Hernandez, F. U.; Correia, R.; Korposh, S.; Morgan, S. P.; Hayes-Gill, B. R.; James, S. W.; Evans, D.; Norris, A.

    2015-09-01

    An optical fibre Bragg grating (FBG) was used to measure local strain (due to contact pressure) at the interface of a cuffed endotracheal tube (ETT) tested in a tracheal model. The tracheal model consisted of a corrugated tube. Two FBG sensors written in a single optical fibre were attached to the outside wall of the cuff of the ETT. Intracuff endotracheal pressure was measured using a digital manometer, while the contact pressure between the model trachea and the ETT was measured using Flexiforce sensors. Changes in the Bragg wavelengths in response to the inflation of the cuff of the ETT, and concomitant pressure increase, were observed to be dependent on the location of the FBGs at the corrugations, i.e., the annular peaks and troughs of the corrugated tube. The performance of both contact pressure sensors FBG and Flexiforce suggests that FBG technology is better suited to this application as it allows the measurement of contact pressures on non-uniform surfaces such as in the tracheal model.

  10. The calibration of a cylindrical pressure probe for recirculating flow measurements

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-06-01

    The use of the pressure distribution around a cylinder in cross-flow to indicate the magnitude and direction of the velocity vector is discussed in the context of making measurements in highly turbulent recirculating flows. The intended application is the measurement of the flow between the ribs on the large-scale model of the AGR fuel-pin surface. Results from a number of calibration experiments in boundary layers are used to provide a correlation for the positions at which local static pressure is measured on the cylinder surface. After appropriate corrections, the dynamic pressure is deduced from the pressure at the stagnation point. Corrections are also necessary in deducing the direction of flow from the bisector of the static pressure positions, when the cylinder is in a shear flow or near a wall, and these too are evaluated from the results of the calibration experiments. Measurements in two recirculating flows are then presented as an illustration both of the validity and limitations of the technique. In the first case, comparison is made with the measurements of a pulsed-wire anemometer behind a surface-mounted cube and, in the second, the continuity is used to provide an overall check on measurements behind a transverse plate. It is concluded that useful results can be obtained in many turbulent flow situations. (author)

  11. [Practices and effects of different measures for blood pressure control in hypertension patients in Beijing, 2014].

    Science.gov (United States)

    Li, H; Dong, Z; Ma, A J; Dong, J; Fang, K; Xie, C; Qi, K; Xie, J; Zhou, Y; Zhao, Y

    2016-09-10

    Objective: To understand the practices and effects of different measures for blood pressure control in hypertension patients. Methods: Patients who have known hypertension from the subjects of "2014 Beijing adult (aged 18-79 years) chronic diseases and risk factors survey" were selected. The choices of different hypertension control measures, the relationship between the measures and demographic characteristics of hypertension patients, and the effects of different control measures were analyzed. Results: A total of 2 229 known hypertension patients were included, the analysis was conducted through a questionnaire survey. Those who answered "never taking any measures" , "taking medication according to doctor's instructions" and "taking medication when blood pressure rose" accounted for 7.0%, 79.8% and 8.3%, respectively. Those who had "diet control" , "physical exercises" and "blood pressure monitoring" accounted for 22.4%, 23.7% and 22.1%, respectively. In terms of "taking medicine according to doctor's instructions" , women (84.3%), those aged ≥60 years (87.6%), those living in urban area (81.5%), those living alone (83.8%), and Beijing local residents (82.3%) had higher compliance rates. As for "diet control" , women (24.4%), those aged ≥60 years (25.8%) and those with educational level of college or above (29.5%) had better practices. In terms of "physical exercise" , those aged ≥60 years (27.9%), those living in urban area (25.3%), those with educational level of college or above (32.5%) had better practice. Women (24.2%) and those aged ≥60 years (28.4%) had higher "blood pressure monitoring" rate. More men (9.7%), those aged 18-44 years (14.7%), those with educational level of high school (9.3%), the unmarried (18.2%), and non-Beijing local residents (14.7%) answered "never taking any measure" , and in terms of "taking medication when blood pressure rose" , non-Beijing local residents (12.8%) had higher rate. In the field survey, more patients who

  12. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  13. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Single-phase pressure-drop measurements over low void reactivity fuel

    International Nuclear Information System (INIS)

    Senaratne, U.P.M.; Leung, L.K.H.; Doria, F.J.; Lau, J.H.

    2006-01-01

    An experiment has been performed to obtain pressure-drop measurements over Low Reactivity Fuel (LVRF) bundles in Refrigerant-134a flow. Production LVRF bundles inserted into the test station with either an uncrept or a 5.1% crept flow channel. For comparison purposes, several production Bruce 37-element bundles were also included in the test string. Overall, the single-phase pressure drop of the LVRF bundle is slightly higher than that Bruce 37-element bundle. Pressure-drop measurements were used to derive bundle and loss coefficients for hydraulic calculations in safety analyses. Applying these loss coefficients, an assessment showed that the overall pressure drop over a string of 12 LVRF bundles (after conversion) remains less than that over a string of 13 Bruce 37-element fuel bundles (before conversion) at the Bruce Nuclear Generating Station. (author)

  15. [The research in a foot pressure measuring system based on LabVIEW].

    Science.gov (United States)

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  16. Improvement of the accuracy of vapor pressure measurements by quartz membrane manometers

    Science.gov (United States)

    Rusin, A. D.

    2008-06-01

    The sensitivity of and instrumental errors in high-temperature vapor pressure measurements by two quartz crescent-shaped manometers of enhanced sensitivity were determined; the thermal drift of their zero pints was studied. The contributions of instrumental errors and thermal drift to the total sample variance of pressure were found. The main source of the total error in pressure was shown to be zero point thermal drift and errors in the determination of the position of the membrane pin. Compared with the usual design of these membrane manometers, sensitivity was higher 14.7 and 21.3 times, and measurement errors were lower 5.4 and 19 times, respectively. The two manometers studied gave pressure errors of 0.13 and 0.32 torr, respectively, at a 0.95 confidence probability.

  17. Spectral measurement of atmospheric pressure plasma by means of digital camera

    International Nuclear Information System (INIS)

    Ge Yuanjing; Zhang Guangqiu; Liu Yimin; Zhao Zhifa

    2002-01-01

    A digital camera measuring system has been used successfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure. The experimental results showed that: (1) The uniformity of electron temperature in space depends on discharge condition and structure of web electrode. For a certain web electrode the higher the discharge voltage is, the more uniform distribution of electron temperature in space will be. For a certain discharge the finer and denser the holes on web electrode are, the more uniform distribution of electron temperature in space will be. (2) Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure

  18. Reliable blood pressure self-measurement in the obstetric waiting room

    DEFF Research Database (Denmark)

    Wagner, Stefan; Kamper, C. H.; Rasmussen, Niels H

    2014-01-01

    Background: Patients often fail to adhere to clinical recommendations when using current blood pressure self-measurement (BPSM) methods and equipment. As existing BPSM equipment is not able to detect non-adherent behavior, this could result in misdiagnosis and treatment error. To overcome...... patients scheduled for self-measuring their blood pressure (BP) in the waiting room at an obstetrics department's outpatient clinic to perform an additional BPSM using ValidAid. We then compared the automatically measured and classified values from ValidAid with our manual observations. Results: We found...

  19. Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction

    DEFF Research Database (Denmark)

    Paige, Ellie; Barrett, Jessica; Pennells, Lisa

    2017-01-01

    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data...... encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary...... improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction....

  20. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  1. Direct measurement of gas solubilities in polymers with a high-pressure microbalance

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Nielsen, Johannes Kristoffer; Hassager, Ole

    2004-01-01

    Solubility and diffusion data are presented for methane and carbon dioxide gases in high-density polyethylene. The polymer was cut from extruded piping intended for use in offshore oil and gas applications. The measurements were carried out with a high-pressure microbalance. The properties were...... determined from 25 to 50degreesC and from 50 to 150 bar for methane and from 20 to 40 bar for carbon dioxide. In general, a good agreement was obtained with similar measurements reported in the literature. The solubility followed Henry's law (linear) dependence with pressure, except at high pressures...... for methane, for which negative deviations from Henry's law behavior were observed. The diffusion coefficients for each of the gases in the polymer were also measured with the balance, although the uncertainty was greater than for the solubility measurements. (C) 2003 Wiley Periodicals, Inc. J Appl Polyrn Sci...

  2. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  3. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement.

    Science.gov (United States)

    Høyer, Christian; Sandermann, Jes; Paludan, Jens Peder D; Pavar, Susanne; Petersen, Lars J

    2013-12-01

    To assess the diagnostic accuracy of laser Doppler flowmetry (LDF) with mercury-in-silastic strain gauge plethysmography (SGP) as a reference test for measuring the toe and ankle pressures in patients with known or suspected peripheral arterial disease (PAD). This was a prospective, randomized, blinded diagnostic accuracy study. Toe and ankle pressures were measured using both methods in 200 consecutive patients, who were recruited at our vascular laboratory over a period of 30 working days. Classification of PAD and critical limb ischemia (CLI) was made in accordance with TASC-II criteria. The LDF method demonstrated 5.8 mm Hg higher mean toe pressures than the SGP method for the right limb and 7.0 mm Hg for the left limb (both P pressures (both P > .129). The limits of agreement for the differences (SGP - LDF) were -31.7 to 20.2 mm Hg for right toe pressures, -28.0 to 14.0 mm Hg for left toe pressures, -25.5 to 22.8 mm Hg for right ankle pressures, and -26.9 to 24.6 mm Hg for left ankle pressures. A correlation analysis of the absolute pressures using the two methods showed an intraclass correlation coefficient of 0.902 (95% confidence interval [CI], 0.835-0.938) for right toe pressures, 0.919 (95% CI, 0.782-0.960) for the left toe pressures, 0.953 (95% CI, 0.937-0.965) for right ankle pressures, and 0.952 (95% CI, 0.936-0.964) for left ankle pressures. Cohen's Kappa showed an agreement in the diagnostic classification of κ = 0.775 (95% CI, 0.631-0.919) for PAD and κ = 0.780 (95% CI, 0.624-0.936) for CLI. LDF showed a good correlation with SGP over a wide range of toe and ankle pressures, as well as substantial agreement for the diagnostic classification of PAD including CLI. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  4. Diabetic foot ulcer incidence in relation to plantar pressure magnitude and measurement location.

    Science.gov (United States)

    Ledoux, William R; Shofer, Jane B; Cowley, Matthew S; Ahroni, Jessie H; Cohen, Victoria; Boyko, Edward J

    2013-01-01

    We prospectively examined the relationship between site-specific peak plantar pressure (PPP) and ulcer risk. Researchers have previously reported associations between diabetic foot ulcer and elevated plantar foot pressure, but the effect of location-specific pressures has not been studied. Diabetic subjects (n=591) were enrolled from a single VA hospital. Five measurements of in-shoe plantar pressure were collected using F-Scan. Pressures were measured at 8 areas: heel, lateral midfoot, medial midfoot, first metatarsal, second through fourth metatarsal, fifth metatarsal, hallux, and other toes. The relationship between incident plantar foot ulcer and PPP or pressure-time integral (PTI) was assessed using Cox regression. During follow-up (2.4years), 47 subjects developed plantar ulcers (10 heel, 12 metatarsal, 19 hallux, 6 other). Overall mean PPP was higher for ulcer subjects (219 vs. 194kPa), but the relationship differed by site (the metatarsals with ulcers had higher pressure, while the opposite was true for the hallux and heel). A statistical analysis was not performed on the means, but hazard ratios from a Cox survival analysis were nonsignificant for PPP across all sites and when adjusted for location. However, when the metatarsals were considered separately, higher baseline PPP was significantly associated with greater ulcer risk; at other sites, this relationship was nonsignificant. Hazard ratios for all PTI data were nonsignificant. Location must be considered when assessing the relationship between PPP and plantar ulceration. © 2013.

  5. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  6. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  7. Development and application of the condom catheter method for non-invasive measurement of bladder pressure

    NARCIS (Netherlands)

    R. van Mastrigt (Ron); J.J.M. Pel (Johan); J.W.N.C. Huang Foen Chung (John); P.A. de Zeeuw (Sandra)

    2009-01-01

    textabstractObjectives: A non-invasive method to measure the bladder pressure in males using a condom catheter has been developed. The measurement technique, its validation and limitations, a diagnostic nomogram to non-invasively diagnose bladder outlet obstruction (BOO), and results of large-scale

  8. A pitfall in the measurement of arterial blood pressure in the ischaemic limb during elevation

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf

    1987-01-01

    In order to evaluate if elevation of the ischaemic limb above heart level is an alternative to the conventionally applied method with external counterpressure for estimation of skin perfusion pressure, femoral and popliteal artery pressures were measured directly in eight patients with occlusion ...... extremity cannot be determined non-invasively by elevation of the extremity, probably due to collapse of segments of the vascular bed increasing the vascular resistance considerably....

  9. [SIMULTANEOUS MEASUREMENT OF INTRAVENTRICULAR AND PARENCHYMAL INTRACRANIAL PRESSURE IN PATIENTS WITH SEVERE TRAUMA BRAIN INJURY].

    Science.gov (United States)

    Oshorov, A V; Popugaev, K A; Savin, I A; Potapov, A A

    2016-01-01

    "Standard" assessment of ICP by measuring liquor ventricular pressure recently questioned. THE OBJECTIVE OF THE STUDY: Compare the values of ventricular and parenchymal ICP against the closure of open liquor drainage and during active CSF drainage. Examined 7 patients with TBI and intracranial hypertension syndrome, GCS 5.6 ± 1.2 points, 4.2 ± age 33 years. Compared parenchymal and ventricular ICP in three time periods: 1--during closure of ventricular drainage, 2--during of the open drains and drainage at the level of 14-15 mmHg, 3--during the period of active drainage. When comparing two methods of measurement used Bland-Altman method. 1. During time period of the closed drainage correlation coefficient was r = 0.83, p intracranial pressure is reduced. 3. During the active CSF drainage correlation between the two methods of measuring intracranial pressure can be completely lost. Under these conditions, CSF pressure is not correctly reflect the ICP 4. For an accurate and continuous measurement of intracranial pressure on the background of the active CSF drainage should be carried out simultaneous parenchymal ICP measurement.

  10. System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure.

    Directory of Open Access Journals (Sweden)

    Max A Stockslager

    Full Text Available Pathologic changes in intracranial pressure (ICP are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.

  11. Effect of patient positioning on toe pressure measurement using noninvasive vascular testing.

    Science.gov (United States)

    Sansosti, Laura E; Berger, Michael D; Gerrity, Michael A; Kelly, Patrick; Meyr, Andrew J

    2015-09-01

    Interpretation of digital pressure in the assessment of healing potential for diabetic foot disease has become common because of the potential for false elevation with the ankle-brachial index. However, the specific testing protocol for segmental Doppler examinations and photoplethysmography require patients to be in the supine position, with the lower limbs at heart level, in order to minimise the effect of hydrostatic pressure. This may be difficult in many patients with lower extremity pathology, particularly those who are nonambulatory, with painful wounds, or with orthopnea. In these situations, the noninvasive vascular test may be performed with the patient in a more comfortable position, which may include sitting in a wheelchair with the leg in a dependent position. The objective of this investigation was to evaluate the effect of patient positioning on measurement of the digital pressure. Hallux pressures were measured in 20 healthy volunteers in 3 variable positions of limb dependency. The mean±standard deviation of digital pressure for subjects while lying supine with the limb at heart level was 103.5±26.0 mmHg (the recommended position for performance of the test), while sitting upright with the limb level on the table was 130.6±27.9 mmHg (+26.2%, pposition was 169.8±30.8 mmHg (+64.1%, ppositioning has a significant effect on measurement of digital pressure.

  12. In situ gas analysis for high pressure applications using property measurements

    Science.gov (United States)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  13. [Measurement of tube cuff pressure levels in intensive care unit: considerations on the benefits of training].

    Science.gov (United States)

    Juliano, Silvia Renata Rezek; Juliano, Maria Cecília Rezek; Cividanes, Jose Paulo; Houly, João Geraldo Simões; Gebara, Otavio Celso Eluf; Cividanes, Gil Vicente L; Catão, Elaine C

    2007-09-01

    The tube cuff pressure directly transmitted on the tracheal wall in an irregular form can cause injuries and lead to bronchoaspiration. The aim of this study was to demonstrate that the implementation of routine tube cuff pressure measurements result in a reliable control to maintain the measurements within the parameters considered safe, thus preventing the described complications. A total of 3,195 tube cuff measurements were obtained from 1,194 male and female patients admitted at the Intensive Care Unit (ICU) and Coronary Unit (CU), who were undergoing mechanical ventilation with endotracheal prosthesis and tracheotomy cannula, during the morning and afternoon periods. From March to August 2005 the follow-up of the measurements obtained by the physical therapy professionals was carried out and it was observed that the measurements were irregular, on average, in 80% of the cases. Thus, a training program was established, which was focused on the Nursing Teams of the ICU and CU, consisting in providing directions for the adequate procedures performed at the bedside (in loco training). The training procedures were carried out at two different periods (morning and afternoon) in order to include the whole team. It is suggested that it is necessary to monitor tube cuff pressure through the implementation of routine measurements in the morning, afternoon and evening periods as a prophylactic measure, in order to prevent the possible complications of tracheal prosthesis balloon pressure.

  14. Wave Shape and Impact Pressure Measurements at a Rock Coast Cliff

    Science.gov (United States)

    Varley, S. J.; Rosser, N. J.; Brain, M.; Vann Jones, E. C.

    2016-02-01

    Rock coast research focuses largely on wave behaviour across beaches and shore platforms but rarely considers direct wave interaction with cliffs. Hydraulic action is one of the most important drivers of erosion along rock coasts. The magnitude of wave impact pressure has been shown by numerical and laboratory studies to be related to the wave shape. In deep water, a structure is only subjected to the hydrostatic pressure due to the oscillating clapotis. Dynamic pressures, related to the wave celerity, are exerted in shallower water when the wave is breaking at the point of impact; very high magnitude, short duration shock pressures are theorised to occur when the approaching wavefront is vertical. As such, wave shape may directly influence the potential of the impact to weaken rock and cause erosion. Measurements of impact pressure at coastal cliffs are limited, and the occurrence and influence of this phenomenon is currently poorly constrained. To address this, we have undertaken a field monitoring study on the magnitude and vertical distribution of wave impact pressures at the rocky, macro-tidal coastline of Staithes, North Yorkshire, UK. A series of piezo-resistive pressure transducers and a camera were installed at the base of the cliff during low tide. Transducers were deployed vertically up the cliff face and aligned shore-normal to capture the variation in static and dynamic pressure with height during a full spring tidal cycle. Five minute bursts of 5 kHz pressure readings and 4 Hz wave imaging were sampled every 30 minutes for six hours during high tide. Pressure measurements were then compensated for temperature and combined with wave imaging to produce a pressure time series and qualitative wave shape category for each wave impact. Results indicate the presence of a non-linear relationship between pressure impact magnitude, the occurrence of shock pressures, wave shape and tidal stage, and suggest that breaker type on impact (and controls thereof) may

  15. A new transducer for local load measurements of friction and roll pressure in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, J.; Wanheim, Tarras; Precz, W.

    2006-01-01

    selected from a steady state with no disturbance from the material flow. The transducer was able to simultaneously measure both the normal pressure and the friction stress. An estimation of the coefficient of friction was accordingly performed. The new transducer works very well, it was seen to be robust......The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, in order to overcome problems in previous measurements in the past 70 years. The new idea is to increase...... and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and showed good reproducibility, together with a proven agreement between recorded and simulated signals....

  16. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  17. The corrosion rate measurement of Inconel 690 on high temperature and pressure by using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Febrianto; Hidayati, N R; Arifal; Sumarno, Ady; Handoyo, Ismu; Prasetjo, Joko

    1999-01-01

    The corrosion rate measurement of Inconel 690 on high temperature and pressure had been done. By using an Autoclave, and temperature can be simulated. For reducing the pressure on Autoclave so its can be measure by Corrosion Measurement System 100(CMS100), the electrodes placement had designed and fabrication on the cover of Autoclave. The electrodes of CMS100 are reference electrode, working electrodes and counter electrodes. The electrodes placement are made and and designed on two packages, these are Salt bridge and Counter-specimen placement. From the result of testing these both of placement are able to 90 bar (pressure) and 280 C (temperature) operation rate measurement was done on temperature variation from 150 0C, 190 0C, 200 0C, 210 0C, 220 0C and 230 0C, and the solution is 0.1 ppm chloride. The pressure experiment is the pressure, which occurred in Autoclave. From the Tafel analysis, even through very little The corrosion current increased from 150 C to 230 C it is 2,54x10-10 a/cm2 to 1,62x10-9 A/cm2, but the the corrosion rate is still zero

  18. Measuring method and device for thickness of pad welded joint of reactor pressure vessel

    International Nuclear Information System (INIS)

    Ara, Katsuyuki; Nakajima, Nobuya; Ebine, Noriya.

    1995-01-01

    A magnetic yoke having an optional magnetic path length and a magnetic path cross section is disposed in close contact with or adjacent to the surface of the pad welded joint of a reactor pressure vessel, to form a magnetic path by the magnetic yoke and the reactor pressure vessel. Then, the magnetic path yoke is magnetized to measure a distribution of a magnetic field generated on the surface of the pad welded joint or its vicinity to which the magnetic yoke is adapted to be in close contact or come close. Since the geometrical dimensions and the magnetic performances of a material of the magnetic yoke and the pressure vessel are previously determined and, the measured magnetic distribution changes only by the thickness of the pad welded joint, the thickness of the pad welded joint of the pressure vessel can be determined. Accordingly, the measuring method of the present invention can measure the thickness of the pad welded joint of the pressure vessel at a desired practical accuracy and at a resolution power of, for example, 0.1mm relative to the thickness of the seat welded joint of 5 to 10mm. (N.H.)

  19. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  20. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.

    Science.gov (United States)

    Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D

    2010-01-01

    Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.

  1. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  2. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  3. Measurement of response time and detection of degradation in pressure sensor/sensing-line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Kerlin, T.W.; Ragan, G.; March-Leuba, J.; Thie, J.A.

    1985-01-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis method that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants. (orig.)

  4. Measurement of response time and detection of degradation in pressure sensor/sensing line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Thie, J.A.; Kerlin, T.W.; Ragan, G.E.; March-Leuba, J.

    1985-09-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis methods that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants

  5. Comparison of pressure reconstruction approaches based on measured and simulated velocity fields

    Directory of Open Access Journals (Sweden)

    Manthey Samuel

    2017-09-01

    Full Text Available The pressure drop over a pathological vessel section can be used as an important diagnostic indicator. However, it cannot be measured non-invasively. Multiple approaches for pressure reconstruction based on velocity information are available. Regarding in-vivo data introducing uncertainty these approaches may not be robust and therefore validation is required. Within this study, three independent methods to calculate pressure losses from velocity fields were implemented and compared: A three dimensional and a one dimensional method based on the Pressure Poisson Equation (PPE as well as an approach based on the work-energy equation for incompressible fluids (WERP. In order to evaluate the different approaches, phantoms from pure Computational Fluid Dynamics (CFD simulations and in-vivo PC-MRI measurements were used. The comparison of all three methods reveals a good agreement with respect to the CFD pressure solutions for simple geometries. However, for more complex geometries all approaches lose accuracy. Hence, this study demonstrates the need for a careful selection of an appropriate pressure reconstruction algorithm.

  6. Pressure measurements of TO-phonon anharmonicity in isotopic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, R.E.; Weinstein, B.A. [SUNY at Buffalo, Department of Physics, Buffalo, NY 14260 (United States); Ritter, T.M. [Dept. of Chemistry and Physics, UNC Pembroke, NC 28372 (United States); Cantarero, A. [Dept. of Physics and Institute of Materials Science, University of Valencia (Spain); Serrano, J.; Lauck, R.; Cardona, M. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)

    2004-03-01

    We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of {beta}-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, {sup 68}Zn{sup 32}S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Adapting optical technologies for low pressure measurements in the marine industry (1-10 bar)

    Science.gov (United States)

    Sanmartin, D. Rodriguez; Lawal, A.; Awcock, G.; Busbridge, S.; Cooper, P.; Spenceley, J.

    2013-05-01

    Optical sensing is a very attractive technology option to design transducers for applications, such as the measurement of liquid level in oil fuel tanks, which require intrinsic safety and electromagnetic compatibility. PSM Instrumentation Ltd., an UK firm specialised in instrumentation for liquid level measurement for the marine industry and the University of Brighton are currently collaborating in a 2 year research programme funded by the UK government scheme Knowledge Transfer Partnerships. This paper evaluates how optical technologies could be used in pressure transducers, and their potential benefits, such as intrinsic safety compliance and low cost cabling, for low pressure applications such as fuel tank gauging for applications in the marine industry.

  8. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  9. In-situ measurement of response time of RTDs and pressure transmitters in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Riner, J.L.

    1993-01-01

    Response time measurements are performed once every fuel cycle on most safety-related temperature and pressure sensors in a majority of nuclear power plants in the US. This paper provides a review of the methods that are used for these measurements. The methods are referred to as the Loop Current Step Response (LCSR) test, which is used for response time testing of temperature sensors, and noise analysis and power interrupt (PI) tests, which are used for response time testing of pressure, level, and flow transmitters

  10. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    Science.gov (United States)

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  11. [Effect of decreased ocular perfusion pressure on iris blood flow measured by laser Doppler flowmetry].

    Science.gov (United States)

    Chamot, S R; Movaffaghy, A; Petrig, B L; Riva, C E

    1999-05-01

    To determine whether iris blood flow (IBF) is regulated in response to an acute decrease in mean ocular perfusion pressure (PPm = MOAP-IOP, MOAP = mean ophthalmic arterial pressure) induced by increasing the intraocular pressure (IOP). Iris blood flow was measured using a slit lamp incorporating a laser Doppler flowmetry (LDF) module. The study was conducted on 12 normal volunteers (14 to 59 years old). IOP was raised using a scleral suction cup. In Exp. #1, the suction pressure was successively raised in steps of 50 to 100 mm Hg, each lasting about 10 sec, until IOP reached the MOAP level. In Exp. #2, the suction was raised to 200 mm Hg in 4 successive steps of 2 min duration. In Exp. #1, no significant change of IBF was observed for small decreases of PPm ( 23%).

  12. Pressure measurements in the AGS Booster ultra-high vacuum system

    International Nuclear Information System (INIS)

    Gabusi, J.; Geller, J.; Hseuh, H.C.; Mapes, M.; Stattel, P.

    1992-01-01

    An average pressure of mid 10 -11 Torr has been achieved and maintained in the AGS Booster ring vacuum system during its first year of operation. This ultra-high vacuum system is monitored through remote controlled Bayard-Alpert Gauges (BAGs). The characteristics of the pressure measurements with BAGs over the long cable lengths (up to 200 m) and under various accelerator operating conditions will be described. Two types of noise in the pressure readouts have been identified; the electromagnetic interference (EMI) associated with the acceleration cycles of the Booster and the environment noise associated with the temperature of the collector cables. The magnitude of the noise pickup depends on the routing of the collector cables and reaches the equivalent pressure of low 10 -9 Torr

  13. An Experimental Study into Pylon, Wing, and Flap Installation Effects on Jet Noise Generated by Commercial Aircraft

    Science.gov (United States)

    Perrino, Michael

    A pylon bottom bifurcation and a wing with variable flaps were designed and built to attach to a scaled model of a coaxial exhaust nozzle system. The presence of the pylon bifurcation, wing, and flaps modify the characteristics of the exhaust flow forc- ing asymmetric flow and acoustics. A parametric study was carried out for assessing and relating the flow field characteristics to the near-field pressure and far-field acous- tic spectra. The flow field was investigated experimentally using both stream-wise and cross-stream PIV techniques where the near-field pressure and far-field acoustic spectra were measured using microphone arrays. Contour mapping of the flow field characteristics (e.g. mean velocity and turbulence kinetic energy levels) and near-field acoustics with and without installation effects were used to explain the changes in the far-field acoustics.

  14. Cuffed endotracheal tubes in infants and children: should we routinely measure the cuff pressure?

    Science.gov (United States)

    Tobias, Joseph D; Schwartz, Lawrence; Rice, Julie; Jatana, Kris; Kang, D Richard

    2012-01-01

    Over the past 5 years, there has been a change in the clinical practice of pediatric anesthesiology with a transition to the use of cuffed instead of uncuffed endotracheal tubes in infants and children. However, there are few studies evaluating the current practices of inflation of these cuffs and the intracuff pressures. There was no change dictated in clinical practice for these patients. During the first 30 min of the case, the pressure in the cuff was measured using a hand held manometer. Additional data collected included the patient's demographic data (age, weight, and gender), the size of the ETT, whether nitrous oxide was in use, whether the patient was breathing spontaneously or undergoing positive pressure ventilation, and the type of anesthesia provider (resident, fellow, CRNA or SRNA). The cohort for the study included 200 patients ranging in age from 1 month to 17 years and in weight from 3.5 to 99.1 kg. The average cuff pressure was 23 ± 22 cmH(2)O in the total cohort of 200 patients. The cuff pressure was ≥ 30 cmH(2)O in 47 of the 200 patients (23.5%). The average cuff pressure was significantly higher in patients who were 8 years of age or greater compared to younger patients. Additionally, there were significantly more patients with a cuff pressure ≥ 30 cmH(2)O in the ≥ 8 year old age group. Although no difference in the mean cuff pressure was noted when comparing staff anesthesia providers (pediatric anesthesiologist or CRNA) versus trainees (SRNA, anesthesiology resident, medical student or pediatric anesthesiology fellow), the incidence of significantly excessive cuff pressures (≥ 60 cmH(2)O) was higher in the trainee group versus the faculty group (12 of 99 versus 2 of 101, ppressure greater than the generally recommended upper limit of 30 cmH(2)O. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature.

    Science.gov (United States)

    Chahine, Nadeen O; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2005-09-01

    Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.

  16. A Cuffless Blood Pressure Measurement Based on the Impedance Plethysmography Technique

    Directory of Open Access Journals (Sweden)

    Shing-Hong Liu

    2017-05-01

    Full Text Available In the last decade, cuffless blood pressure measurement technology has been widely studied because it could be applied to a wearable apparatus. Electrocardiography (ECG, photo-plethysmography (PPG, and phonocardiography are always used to detect the pulse transit time (PTT because the changed tendencies of the PTT and blood pressure have a negative relationship. In this study, the PPG signal was replaced by the impedance plethysmography (IPG signal and was used to detect the PTT. The placement and direction of the electrode array for the IPG measurement were discussed. Then, we designed an IPG ring that could measure an accurate IPG signal. Twenty healthy subjects participated in this study. The changes in blood pressure after exercise were evaluated through the changes of the PTT. The results showed that the change of the systolic pressure had a better relationship with the change of the PTTIPG than that of the PTTPPG (r = 0.700 vs. r = 0.450. Moreover, the IPG ring with spot electrodes would be more suitable to develop with the wearable cuffless blood pressure monitor than the PPG sensor.

  17. Noninvasive measurement of rat intraocular pressure with the Tono-Pen.

    Science.gov (United States)

    Moore, C G; Milne, S T; Morrison, J C

    1993-02-01

    The purpose of this study was to evaluate the Tono-Pen 2 tonometer for measuring intraocular pressure (IOP) in the living rat eye. One eye from each of 20 adult, anesthetized brown Norway rats (group 1) was cannulated and simultaneously connected to a syringe and a pressure transducer with a chart recorder. We increased IOP from 15 to 45 mmHg in 5-mmHg increments and obtained 15 consecutive readings (ignoring instrument-generated averages) at each pressure increment with a Tono-Pen 2 tonometer. To test the tonopen's ability to measure unknown IOP, transducer pressures were varied randomly in 20 additional animals (group 2), and tonopen readings were obtained in masked fashion. Plotting the mean tonopen readings for each animal against transducer IOP produced a regression formula of y = 4.54 + 0.79x (r = 0.98). Mean group 2 tonopen values plotted against transducer IOP yielded a regression formula of y = 4.75 + 0.78x (r = 0.94). A method comparison analysis showed that the tonopen significantly overestimates pressures at low IOP ( or = 30 mmHg). Using two-way analysis of variance, it was determined that the group 2 data did not differ significantly from the group 1 data (P > or = 0.76). Because of this consistency, we generated a correction factor with 95% prediction intervals for Tono-Pen readings. The Tono-Pen 2 can be used reliably to measure IOP in the normal rat eye.

  18. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  19. Abstract of report on advances in measuring, regulation, and automatic control of operations in high pressure plants

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-17

    The topics of this report are temperature measurements, pressure and differential-pressure measurements, and liquid level measurement. The section on temperature measurements discusses increasing accuracy of measurements by counter-connecting a constant tension (potential) or using resistance thermometers, increasing speed of measurements, and automatic temperature control. The pressure measurements section discusses an increase in time of use by using a spring manometer and an increase in accuracy by using a piston manometer. The differential-pressure measurements section discusses a piston differential manometer that permitted measurement of the pressure drop in all high pressure stalls daily from point to point so that irregularities caused by clogging of preheater tubes or closing of heat exchangers could be corrected by proper measures. The Oppau liquid level measurement and the Leuna liquid level measurement are mentioned but no discussion or any information is given. The increase in accuracy of pressure and temperature measurement meant that pressures could be measured within a fraction of an atmosphere and temperatures could be measured within about half of a degree C (actually measured as fractions of a tenth-millivolt by thermocouple elements). Additional developments included the use of photoelectric temperature measurement methods and the use of automatic devices for checking in regular rotation all of the thermocouple elements for indications of excessive temperature rise.

  20. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Pressure drop and arterial compliance - Two arterial parameters in one measurement.

    Science.gov (United States)

    Rotman, Oren M; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2017-01-04

    Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Human gallbladder pressure and volume: validation of a new direct method for measurements of gallbladder pressure in patients with acute cholecystitis

    DEFF Research Database (Denmark)

    Borly, L; Højgaard, L; Grønvall, S

    1996-01-01

    Increased gallbladder (GB) pressure is probably a part of the pathogenesis of acute cholecystitis, and measurements of GB pressure might therefore be of interest. The aim of this study was to validate a microtip pressure transducer for intraluminal GB pressure measurements. In vitro precision...... and accuracy was within 0.2 mmHg, (SD) and 0.6 +/- 0.1 mmHg (mean +/- SD), respectively. Pressure rise rate was 24.8 +/- 5.5 mmHg s-1. Zero drift was in the range 0.3 +/- 0.4 to 0.8 +/- 0.9 mmHg (mean +/- SD). GB pressure was investigated in 16 patients with acute cholecystitis treated with percutaneous...

  3. LB03.04: SPHYGMOMANOMETER CUFF CONSTRUCTION AND MATERIALS AFFECT TRANSMISSION OF PRESSURE FROM CUFF TO ARTERIAL WALL. FINITE ELEMENT ANALYSIS OF HUMAN PRESSURE MEASUREMENTS AND DICOM DATA.

    Science.gov (United States)

    Lewis, P; Naqvi, S; Mandal, P; Potluri, P

    2015-06-01

    Sphygmomanometer cuff pressure during deflation is assumed to equal systolic arterial pressure at the point of resumption of flow. Previous studies demonstrated that pressure decreases with increasing depth of soft tissues whilst visco-elastic characteristics of the arm tissue cause spatial and temporal variation in pressure magnitude. These generally used non-anatomical axisymmetrical arm simulations without incorporating arterial pressure variation. We used data from a volunteer's Magnetic Resonance (MR) arm scan and investigated the effect of variations in cuff materials and construction on the simulated transmission of pressure from under the cuff to the arterial wall under sinusoidal flow conditions. Pressure was measured under 8 different cuffs using Oxford Pressure Monitor Sensors placed at 90 degrees around the mid upper arm of a healthy male. Each cuff was inflated 3 times to 155 mmHg and then deflated to zero with 90 seconds between inflations. Young's modulus, flexural rigidity and thickness of each cuff was measured.Using DICOM data from the MR scan of the arm, a 3D model was derived using ScanIP and imported into Abaqus for Finite Element Analysis (FEA). Published mechanical properties of arm tissues and geometric non-linearity were assumed. The measured sub-cuff pressures were applied to the simulated arm and pressure was calculated around the brachial arterial wall. which was loaded with a sinusoidal pressure of 125/85 mmHg. FEA estimates of pressure around the brachial artery cuffs varied by up to 27 mmHg SBP and 17 mmHg DBP with different cuffs. Pressures within the cuffs varied up to 27 mmHg. Pressure transmission from the cuff to the arterial surface achieved a 95% transmission ratio with one rubber-bladdered cuff but varied between 76 and 88% for the others. Non-uniform pressure distribution around the arterial wall was strongly related to cuff fabric elastic modulus. Identical size cuffs with a separate rubber bladder produced peri

  4. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  5. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  6. Pressurizer level measurement inside PWR nuclear plant using resistance type heat sensors

    International Nuclear Information System (INIS)

    El Moussaoui, Ahmed.

    1982-06-01

    The accident that occured in 1979 to the PWR type nuclear reactor, Three-Mile Island 2, has drawn attention to the maladjustement of the differentiel pressure level detector installed in nuclear plants on the market. A system is presented here for measuring the level in pressurizers based on measurements of the heat resistance of the boundary layer existing between the heated sensor and the fluid mass in the vessel. The sensor consists of a 3 cm diameter cylindrical insulator support around which a 0.1 mm diameter platinum filament is wound. This filament simultaneously fulfills heating and transducer functions. To verify the feasibility of the resistant type heat sensor a test system, which provides water and steam under pressure was realised. Static and dynamic tests have shown that the principle of the resistant heat sensor is viable and can be used to obtain level informations [fr

  7. Proving diamonds under ultra-high pressure with sound velocity measurements

    Science.gov (United States)

    Shigemori, Keisuke; Shimizu, Katsuya; Asakura, Yasuhiro; Sakaiya, Tatsuhiro; Kondo, Tadashi; Hironaka, Yoichiro; Irifune, Tetsuo; Sumiya, Hitoshi; Kadono, Toshihiko; Azechi, Hiroshi

    2014-10-01

    Diamond under terapascal (TPa) regime is of great interest on its phase transition to a post diamond phase. Many experimental works have been done on the diamond at the TPa regime by measuring the shock parameters (shock velocity, particle velocity). We measured sound velocities of shock-compressed diamond under several pressures by means of x-ray backlighting technique. Experiments were done on GEKKO-HIPER laser irradiation facility at Institute of Laser Engineering, Osaka University. We obtained sound velocities at a pressure of 0.4 - 2.0 TPa by changing the laser intensity. The experimental sound velocity suggests that a clear discontinuity at around 0.7 TPa where the melting of the diamond starts. The sound velocity drops then slightly increases with increasing pressure. The slope of the sound velocity over 1 TPa is lower than that under 0.7 TPa, indicating the melting of the diamond.

  8. Analysis of body imbalance in various writing sitting postures using sitting pressure measurement.

    Science.gov (United States)

    Lee, Dong-Eun; Seo, Sang-Min; Woo, Hee-Soon; Won, Sung-Yun

    2018-02-01

    [Purpose] This study set out to substantiate the importance of the right sitting posture by measuring the sitting pressure. It also described the influence of an imbalanced sitting posture on the body. [Subjects and Methods] The subjects included 30 healthy adults. A pressure mapping system was used to measure the sitting pressure in the right, one side prone, chin propped, and slumped sitting positions. [Results] The WDI (X AP ) showed a statistically significant difference between the 3 incorrect postures (one side prone, chin propped, and slumped sitting) and the right sitting posture. With regard to the WDI (X LR ), there was a statistically significant difference between the right sitting posture and the one side prone sitting posture only. [Conclusion] One side prone sitting was found to affect the body balance most adversely. This imbalanced posture may have an indirect effect on chronic diseases. The results prove that it is important to assume a proper posture to maintain body balance.

  9. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: brian.mccarthy@tyndall.ie [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-08-17

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  10. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  11. Pressure measurement of the synchrotron light source PF-AR by cold cathode gauges

    CERN Document Server

    Tanimoto, Y; Hori, Y

    2003-01-01

    Synchrotron light source PF-AR was improved to realize higher performance in 2001. This improvement involved the renewal of the entire vacuum system to attain lower vacuum pressure for required beam lifetime. Thermal cathode ionization gauges, the most suitable gauges for the pressure measurement in the new system, were unacceptable because of both possible radiation damage to the controllers and the restriction of the budget. Cold cathode gauges (CCGs) were then chosen for the new system, while they usually have instability in the pressure range of 10 sup - sup 7 Pa and lower. For the solution of this problem, we adopted the improved cold cathode gauges that hold the Penning discharge even at 10 sup - sup 8 Pa and acquired calibration data with a pre-calibrated B-A gauge. We have originally designed CCG controllers using the calibration data, which enabled the reliable measurement in 10 sup - sup 8 Pa range. (author)

  12. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    OBJECTIVE: To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. METHODS: We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention...... in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included...... pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...

  13. Drop break-up and pressure measurements in a microfluidic device

    Science.gov (United States)

    Protiere, Suzie; Stone, Howard A.; Weitz, David A.

    2008-11-01

    We study experimentally the flow of an emulsion passing through one or a few constrictions placed in a microfluidic channel. Using a high-speed differential manometer placed in the same device (M. Abkarian et al. PNAS 200:16407104 (2006)) we have measured the dynamic pressure as a drop breaks up when it meets one or several constrictions. We can then study how a global measurement of the pressure drop indicates the sequence of phenomena occurring in the channel (breakup, trapped and squeezed drops etc.). In a separate set of experiments with a microfluidic model of a two-dimensional porous medium through which drops flow we can observe the various phenomena and thus correlate the pressure fluctuations to single events at the pore scale.

  14. Pressure transducer used for measuring close-in shock waves of nuclear explosions in the atmosphere

    International Nuclear Information System (INIS)

    Lin, J.; Zhou, Z.

    1985-01-01

    This paper introduces a variable reluctance pressure transducer. It has been successfully used for the measurement of close-in shock waves of nuclear explosions in the atmosphere. This transducer's highest pressure range is 100kg/cm 2 and its response rise time for all ranges is lms. It uses a specially made oil-filled pressure which allows the transducer to be able to realize underground installation. In this way, it can endure the intense nuclear radiation of nuclear explosions without losing its fast speed response characteristics. This transducer has undergone a series of environmental tests and dynamic standardizations. Therefore, it was used to measure the complete waveform of shock wave overpressure in areas near the fire ball of nuclear explosions. This paper lists the test data of a group of nuclear explosion tests

  15. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2003-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  16. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood.

    Science.gov (United States)

    Oikonen, Mervi; Nuotio, Joel; Magnussen, Costan G; Viikari, Jorma S A; Taittonen, Leena; Laitinen, Tomi; Hutri-Kähönen, Nina; Jokinen, Eero; Jula, Antti; Cheung, Michael; Sabin, Matthew A; Daniels, Stephen R; Raitakari, Olli T; Juonala, Markus

    2016-01-01

    Hypertension may be predicted from childhood risk factors. Repeated observations of abnormal blood pressure in childhood may enhance prediction of hypertension and subclinical atherosclerosis in adulthood compared with a single observation. Participants (1927, 54% women) from the Cardiovascular Risk in Young Finns Study had systolic and diastolic blood pressure measurements performed when aged 3 to 24 years. Childhood/youth abnormal blood pressure was defined as above 90th or 95th percentile. After a 21- to 31-year follow-up, at the age of 30 to 45 years, hypertension (>140/90 mm Hg or antihypertensive medication) prevalence was found to be 19%. Carotid intima-media thickness was examined, and high-risk intima-media was defined as intima-media thickness >90th percentile or carotid plaques. Prediction of adulthood hypertension and high-risk intima-media was compared between one observation of abnormal blood pressure in childhood/youth and multiple observations by improved Pearson correlation coefficients and area under the receiver operating curve. When compared with a single measurement, 2 childhood/youth observations improved the correlation for adult systolic (r=0.44 versus 0.35, Phypertension in adulthood (0.63 for 2 versus 0.60 for 1 observation, P=0.003). When compared with 2 measurements, third observation did not provide any significant improvement for correlation or prediction (P always >0.05). A higher number of childhood/youth observations of abnormal blood pressure did not enhance prediction of adult high-risk intima-media thickness. Compared with a single measurement, the prediction of adult hypertension was enhanced by 2 observations of abnormal blood pressure in childhood/youth. © 2015 American Heart Association, Inc.

  17. Cardiovascular pressure measurement in safety assessment studies: technology requirements and potential errors.

    Science.gov (United States)

    Sarazan, R Dustan

    2014-01-01

    In the early days of in vivo nonclinical pressure measurement, most laboratories were required to have considerable technical/engineering expertise to configure and maintain pressure transducers, amplifiers, tape recorders, chart recorders, etc. Graduate students and postdoctoral fellows typically had some training in the requirements and limitations of the technology they used and were closely engaged in the collection and evaluation of data from their own experiments. More recently, pressure sensing telemetry and data acquisition/analysis systems are provided by vendors as turnkey systems, often resulting in a situation where users are less familiar with the technicalities of their operation. Also, investigators are now more likely to be absent and rely on technical staff for the collection of raw in vivo pressure data from their experiments than in the past. Depending on the goals of an experiment, an investigator may require the measurement of a variety of different pressure parameters, over varying periods of time. A basic understanding of the requirements and limitations that can affect the accuracy and precision of these parameters is important to ensure that the results and conclusions from an experiment are reliable. Factors to consider include the possibility of hydrostatic pressure effects from blood inside the vasculature of the animal, depending on the location of the sensor, as well as from fluid inside a fluid-filled catheter system; long-term stability (lack of drift) of a sensor over time, which can affect the interpretation of absolute pressure changes over a prolonged experiment; frequency response of the sensor and associated electronics; and the phase shift that occurs depending on location of the sensor in the vasculature or because of a fluid-filled catheter system. Each of these factors is discussed, and the particular requirements of frequency response as applied to the measurement of cardiac left ventricular pressure are emphasized. When

  18. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    Science.gov (United States)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  19. Study of a pressure measurement method using laser ionization for extremely-high vacuum

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    A method of measuring pressures in the range of extremely-high vacuum (XHV) using the laser ionization has been studied. For this purpose, nonresonant multiphoton ionization of various kinds of gases has been studied, and highly-sensitive ion-detection systems and an extremely-high vacuum equipment were fabricated. These results are presented in detail. Two ion-detection systems were fabricated and tested: the one is based on the pulse-counting method, and the other utilizes the image-processing technique. The former is superior in detecting a few ions or less. The latter was processing technique. The former is superior in detecting a few ions or less. The latter was verified to able to count accurately the number of ions in the range of a few to several hundreds. To obtain the information on residual gases and test our pressure measurement system, an extremely-high vacuum system was fabricated in our own fashion, attained a pressure lower than 1 x 10 -10 Pa, measured with an extractor gauge. The outgassing rate of this vacuum vessel was measured to be 7.8 x 10 -11 Pa·m 3 /s·m 2 . The surface structures and the surface compositions of the raw material, the machined material, and the machined-and-outgased material were studied by SEM and AES. Besides, the pumping characteristics and the residual gases of the XHV system were investigated in detail at each pumping stage. On the course of these studies, the method of pressure measurement using the laser-ionization has been verified to be very effective for measuring pressures in XHV. (J.P.N.)

  20. A Direct inverse model to determine permeability fields from pressure and flow rate measurements

    NARCIS (Netherlands)

    Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.

    2008-01-01

    The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard