WorldWideScience

Sample records for wing pigment evolution

  1. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    Science.gov (United States)

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  2. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    Science.gov (United States)

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  3. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    Directory of Open Access Journals (Sweden)

    Hines Heather M

    2012-06-01

    Full Text Available Abstract Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.

  4. Colors and pterin pigmentation of pierid butterfly wings

    NARCIS (Netherlands)

    Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G.

    2007-01-01

    The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We

  5. Butterfly wing colors : glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Giraldo, Marco A.; Leertouwer, Hein L.

    2010-01-01

    The wings of the swordtail butterfly Graphium sarpedon nipponum contain the bile pigment sarpedobilin, which causes blue/green colored wing patches. Locally the bile pigment is combined with the strongly blue-absorbing carotenoid lutein, resulting in green wing patches and thus improving camouflage.

  6. Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies

    NARCIS (Netherlands)

    Giraldo, M. A.; Stavenga, D. G.

    2007-01-01

    The beads in the wing scales of pierid butterflies play a crucially important role in wing coloration as shown by spectrophotometry and scanning electron microscopy (SEM). The beads contain pterin pigments, which in Pieris rapae absorb predominantly in the ultraviolet (UV). SEM demonstrates that in

  7. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.

    Science.gov (United States)

    Bybee, Seth M; Yuan, Furong; Ramstetter, Monica D; Llorente-Bousquets, Jorge; Reed, Robert D; Osorio, Daniel; Briscoe, Adriana D

    2012-01-01

    Mimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry. © 2011 by The University of Chicago.

  8. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    2008-12-23

    Dec 23, 2008 ... the different components of phenotypic variation of a complex trait: the wing. ... of Drosophila wing variation in. Evolution Canyon. J. Genet. 87, 407–419]. Introduction ..... identify the effect of slope on wing shape (figure 2,c). All.

  9. Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids

    NARCIS (Netherlands)

    Wilts, Bodo D.; Trzeciak, Tomasz M.; Vukusic, Peter; Stavenga, Doekele G.

    The wings of four papilionid butterfly species of the nireus group, Papilio bromius, P. epiphorbas, P. nireus and P. oribazus, are marked by blue-green coloured bands surrounded by black margins. The cover scales in the coloured bands contain a violet-absorbing, blue-fluorescing pigment. The

  10. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development.

    Science.gov (United States)

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-03-31

    Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all

  11. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    NARCIS (Netherlands)

    Saksens, N.T.; Krebs, M.P.; Schoenmaker, F.E.; Hicks, W.; Yu, M.; Shi, L.; Rowe, L.; Collin, G.B.; Charette, J.R.; Letteboer, S.J.; Neveling, K.; Moorsel, T.W. van; Abu-Ltaif, S.; Baere, E. De; Walraedt, S.; Banfi, S.; Simonelli, F.; Cremers, F.P.; Boon, C.J.; Roepman, R.; Leroy, B.P.; Peachey, N.S.; Hoyng, C.B.; Nishina, P.M.; Hollander, A.I. den

    2016-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding alpha-catenin 1) in three families with butterfly-shaped pigment

  12. Morphogenesis in bat wings: linking development, evolution and ecology.

    Science.gov (United States)

    Adams, Rick A

    2008-01-01

    The evolution of powered flight in mammals required specific developmental shifts from an ancestral limb morphology to one adapted for flight. Through studies of comparative morphogenesis, investigators have quantified points and rates of divergence providing important insights into how wings evolved in mammals. Herein I compare growth,development and skeletogenesis of forelimbs between bats and the more ancestral state provided by the rat (Rattus norvegicus)and quantify growth trajectories that illustrate morphological divergence both developmentally and evolutionarily. In addition, I discuss how wing shape is controlled during morphogenesis by applying multivariate analyses of wing bones and wing membranes and discuss how flight dynamics are stabilized during flight ontogeny. Further, I discuss the development of flight in bats in relation to the ontogenetic niche and how juveniles effect populational foraging patterns. In addition, I provide a hypothetical ontogenetic landscape model that predicts how and when selection is most intense during juvenile morphogenesis and test this model with data from a population of the little brown bat, Myotis lucifugus. (c) 2007 S. Karger AG, Basel

  13. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    OpenAIRE

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we scre...

  14. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  17. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    Science.gov (United States)

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  18. Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera).

    Science.gov (United States)

    Fukutomi, Yuichi; Matsumoto, Keiji; Agata, Kiyokazu; Funayama, Noriko; Koshikawa, Shigeyuki

    2017-06-01

    Various organisms have color patterns on their body surfaces, and these color patterns are thought to contribute to physiological regulation, communication with conspecifics, and signaling with the environment. An adult fly of Drosophila guttifera (Insecta: Diptera: Drosophilidae) has melanin pigmentation patterns on its body and wings. Though D. guttifera has been used for research into color pattern formation, how its pupal development proceeds and when the pigmentation starts have not been well studied. In this study, we defined the pupal stages of D. guttifera and measured the pigment content of wing spots from the pupal period to the period after eclosion. Using a transgenic line which carries eGFP connected with an enhancer of yellow, a gene necessary for melanin synthesis, we analyzed the timing at which the yellow enhancer starts to drive eGFP. We also analyzed the distribution of Yellow-producing cells, as indicated by the expression of eGFP during pupal and young adult periods. The results suggested that Yellow-producing cells were removed from wings within 3 h after eclosion, and wing pigmentation continued without epithelial cells. Furthermore, the results of vein cutting experiments showed that the transport of melanin precursors through veins was necessary for wing pigmentation. These results showed the importance of melanin precursors transported through veins and of extracellular factors which were secreted from epithelial cells and left in the cuticle.

  19. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    Science.gov (United States)

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Origin, development, and evolution of butterfly eyespots.

    Science.gov (United States)

    Monteiro, Antónia

    2015-01-07

    This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits.

  1. Structural colours of nickel bioreplicas of butterfly wings

    Science.gov (United States)

    Tolenis, Tomas; Swiontek, Stephen E.; Lakhtakia, Akhlesh

    2017-04-01

    The two-angle conformally evaporated-film-by-rotation technique (TA-CEFR) was devised to coat the wings of the monarch butterfly with nickel in order to form a 500-nm thick bioreplica thereof. The bioreplica exhibits structural colours that are completely obscured in actual wings by pigmental colours. Thus, the TA-CEFR technique provides a way to replicate, study and exploit hidden morphologies of biological surfaces.

  2. Structure, morphogenesis and evolutional transformation of winged fruits in representatives of the family Celastraceae R. Br.

    Directory of Open Access Journals (Sweden)

    I. A. Savinov

    2015-05-01

    Full Text Available Structure, peculiarities of morphogenesis and evolutional transformation of winged fruits in representatives of the family Celastraceae R. Br. are considered. Four types of such fruits are distinguished: I – winged fruits – fruits, outgrowths of which are formed due to radial expansion of the pericarp in the dorsal side of the carpel along the axis of the fruit (Tripterygioideae, subgenus Kalonymus genus Euonymus; II – the fruits with winged perianth – fruits, alar outgrowths of which are formed by elements of the perianth (Monimopetalum; III – divided winged fruit – divided fruits-capsules, wingshaped blades of which are formed from proliferating in the axial plane of the carpels (Hippocrateoideae; IV – winged schizocarpium – divided fruit, each mericarpium of which is provided by 3 alar vascularized outgrowths emerging due to the radial expansion of the pericarp from places of carpels fusion and in the dorsal side of the carpel along the axis of fruit (Stackhousioideae. We demonstrated that winged fruits appeared in different subfamilies and tribes.

  3. Coloration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking.

    Science.gov (United States)

    Stavenga, Doekele G; Leertouwer, Hein L; Wilts, Bodo D

    2014-06-15

    The coloration of the common butterflies Aglais urticae (small tortoiseshell), Aglais io (peacock) and Vanessa atalanta (red admiral), belonging to the butterfly subfamily Nymphalinae, is due to the species-specific patterning of differently coloured scales on their wings. We investigated the scales' structural and pigmentary properties by applying scanning electron microscopy, (micro)spectrophotometry and imaging scatterometry. The anatomy of the wing scales appears to be basically identical, with an approximately flat lower lamina connected by trabeculae to a highly structured upper lamina, which consists of an array of longitudinal, parallel ridges and transversal crossribs. Isolated scales observed at the abwing (upper) side are blue, yellow, orange, red, brown or black, depending on their pigmentation. The yellow, orange and red scales contain various amounts of 3-OH-kynurenine and ommochrome pigment, black scales contain a high density of melanin, and blue scales have a minor amount of melanin pigment. Observing the scales from their adwing (lower) side always revealed a structural colour, which is blue in the case of blue, red and black scales, but orange for orange scales. The structural colours are created by the lower lamina, which acts as an optical thin film. Its reflectance spectrum, crucially determined by the lamina thickness, appears to be well tuned to the scales' pigmentary spectrum. The colours observed locally on the wing are also due to the degree of scale stacking. Thin films, tuned pigments and combinations of stacked scales together determine the wing coloration of nymphaline butterflies. © 2014. Published by The Company of Biologists Ltd.

  4. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853

  5. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Haley Johnson

    Full Text Available In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus, a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width, which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%. Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  6. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Science.gov (United States)

    Johnson, Haley; Solensky, Michelle J; Satterfield, Dara A; Davis, Andrew K

    2014-01-01

    In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  7. Does Skipping a Meal Matter to a Butterfly's Appearance? Effects of Larval Food Stress on Wing Morphology and Color in Monarch Butterflies

    Science.gov (United States)

    Johnson, Haley; Solensky, Michelle J.; Satterfield, Dara A.; Davis, Andrew K.

    2014-01-01

    In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success. PMID:24695643

  8. The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus.

    Science.gov (United States)

    Liu, Jin; Lemonds, Thomas R; Popadić, Aleksandar

    2014-09-01

    Variations in body pigmentation, encompassing both the range of specific colors as well as the spatial arrangement of those colors, are among the most noticeable and lineage-specific insect features. However, the genetic mechanisms responsible for generating this diversity are still limited to several model species that are primarily holometabolous insects. To address this lack of knowledge, we utilize Oncopeltus fasciatus, an aposematic hemimetabolous insect, as a new model to study insect pigmentation. First, to determine the genetic regulation of black pigment production in Oncopeltus, we perform an RNAi analysis on three core genes involved in the melanin pathway, tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and laccase 2 (lac2). The black pigmentation is affected in all instances, showing that the black pigments in this species are derived from the melanin pathway. The results of the DDC RNAi are particularly informative because they reveal that it is Dopamine melanin, not DOPA melanin, which is the predominant component of black pigments in Oncopeltus. Second, we test whether pigmentation follows a two-step model where the spatial pre-mapping of enzymatic activity is followed by vein-dependent transportation of melanin substances. We confirm the existence of the first step by observing that premature wings develop black pigmentation when exposed to melanin precursors. In addition, we provide evidence for the second step by showing that wing melanin patterning is disrupted when vein transportation is halted. These findings bring novel insights from a hemimetabolous species and establish a framework for subsequent studies on the mechanisms of pigment production and patterning responsible for variations in insect coloration. © 2014 Wiley Periodicals, Inc.

  9. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae.

    Directory of Open Access Journals (Sweden)

    Ming Bai

    Full Text Available This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded. Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5. Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic

  10. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  11. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    Science.gov (United States)

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  12. Wing coloration and pigment gradients in scales of pierid butterflies

    NARCIS (Netherlands)

    Giraldo, Marco A.; Stavenga, Doekele G.

    Depending on the species, the individual scales of butterfly wings have a longitudinal gradient in structure and reflectance properties, as shown by scanning electron microscopy and microspectrophotometry. White scales of the male Small White, Pieris rapae crucivora, show a strong gradient in both

  13. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship.

    Directory of Open Access Journals (Sweden)

    Jessica Cande

    Full Text Available In Drosophila, male flies perform innate, stereotyped courtship behavior. This innate behavior evolves rapidly between fly species, and is likely to have contributed to reproductive isolation and species divergence. We currently understand little about the neurobiological and genetic mechanisms that contributed to the evolution of courtship behavior. Here we describe a novel behavioral difference between the two closely related species D. yakuba and D. santomea: the frequency of wing rowing during courtship. During courtship, D. santomea males repeatedly rotate their wing blades to face forward and then back (rowing, while D. yakuba males rarely row their wings. We found little intraspecific variation in the frequency of wing rowing for both species. We exploited multiplexed shotgun genotyping (MSG to genotype two backcross populations with a single lane of Illumina sequencing. We performed quantitative trait locus (QTL mapping using the ancestry information estimated by MSG and found that the species difference in wing rowing mapped to four or five genetically separable regions. We found no evidence that these loci display epistasis. The identified loci all act in the same direction and can account for most of the species difference.

  14. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  15. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Science.gov (United States)

    Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M

    2014-01-01

    Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living

  16. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  17. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  18. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene

    Directory of Open Access Journals (Sweden)

    Rathjen Tina

    2011-01-01

    Full Text Available Abstract Background Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~ 2.5 Mb did not reveal any other miRNAs and no novel miRNAs were predicted. Conclusions Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in

  19. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene.

    Science.gov (United States)

    Surridge, Alison K; Lopez-Gomollon, Sara; Moxon, Simon; Maroja, Luana S; Rathjen, Tina; Nadeau, Nicola J; Dalmay, Tamas; Jiggins, Chris D

    2011-01-26

    Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the Hm

  20. Dissecting historical changes of selective pressures in the evolution of human pigmentation

    OpenAIRE

    Huang, Xin; Wang, Sijia; Jin, Li; He, Yungang

    2018-01-01

    Human pigmentation is a highly diverse trait among populations, and has drawn particular attention from both academic and non-academic investigators for thousands of years. To explain the diversity of human pigmentation, researchers have proposed that human pigmentation is adapted for ultraviolet radiation and driven by natural selection. Although studies have detected signals of natural selection in several human pigmentation genes, none have quantitatively investigated the historical select...

  1. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    Science.gov (United States)

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  2. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    Science.gov (United States)

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.

  3. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    Science.gov (United States)

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological

  4. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies.

    Science.gov (United States)

    Finkbeiner, Susan D; Briscoe, Adriana D; Mullen, Sean P

    2017-04-01

    Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly.

    Science.gov (United States)

    Outomuro, David; Söderquist, Linus; Nilsson-Örtman, Viktor; Cortázar-Chinarro, María; Lundgren, Cecilia; Johansson, Frank

    2016-07-01

    Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow-based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade-off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species' mating systems and mating behaviors. © 2016 The Author(s).

  6. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  7. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  8. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Within-wing isotopic (δ2H, δ13C, δ15N variation of monarch butterflies: implications for studies of migratory origins and diet

    Directory of Open Access Journals (Sweden)

    Hobson Keith A.

    2017-02-01

    Full Text Available Increasingly, stable isotope measurements are being used to assign individuals to broad geographic origins based on established relationships between animal tissues and tissue-specific isoscapes. In particular, the eastern North American population of the monarch butterfly (Danaus plexippus has been the subject of several studies using established δ2H and δ13C wingtissue isoscapes to infer natal origins of migrating and overwintering individuals. However, there has been no study investigating potential variance that can derive from subsampling different regions of the wings, especially those regions differing in pigmentation (orange versus black. Within-wing isotopic (δ2H, δ13C, δ15N variance of 40 monarch butterflies collected from natural overwinter mortality on Mexican roost sites were split evenly into two groups: unwashed samples and those washed in a 2:1 chloroform:methanol solvent. Isotopic variance in δ2H and δ13C was related to pigment (within-wing range 5‰ and 0.5‰, respectively, but not region of subsampling. This variance was reduced 3 to 4 fold through solvent washing that removed pigmented surface scales and any adhered oils. Wing δ15N was similarly influenced by pigment (range 0.3‰, but this effect was not reduced through washing. We recommend future isotopic studies of monarchs and other butterflies for migration research to use the same region for subsampling consistently and to wash samples with solvent to reduce isotopic variance related to uncontrolled variance in discrimination (δ2H, δ13C, δ15N and/or adsorbed water vapor (δ2H. These data also need to be included in description of methods.

  10. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  11. Temporal evolution of intraocular pressure elevation after pupillary dilation in pigment dispersion syndrome.

    Science.gov (United States)

    Jewelewicz, Daniel A; Radcliffe, Nathan M; Liebmann, Jeffrey; Ritch, Robert

    2009-03-01

    To report 4 patients with pigment dispersion syndrome (PDS) who had delayed intraocular pressure (IOP) spikes after pharmacologic pupillary dilation. Four patients with a diagnosis of PDS with documented IOP spike after pharmacologic pupillary dilation were included. Study patients were examined before and after pupillary dilation. The amount of pigment present in the anterior chamber and the IOP were measured at hourly intervals. Although maximal pigment liberation occurred immediately after maximal dilation, the IOP continued to elevate for at least 1.5 hours. The increase in IOP after pupillary dilation may not occur simultaneously with maximal pigment liberation but may follow it after the pigment has settled out of the anterior chamber. This has implications for monitoring patients with PDS after dilation to detect and treat rises in IOP.

  12. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  13. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly.

    Science.gov (United States)

    Yoshioka, Shinya; Kinoshita, Shuichi

    2006-01-22

    A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.

  14. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  15. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  16. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    In this study, using Drosophila melanogaster isofemale lines derived from wild flies collected on both slopes of the canyon, we investigated the effect of developmental temperature upon the different components of phenotypic variation of a complex trait: the wing. Combining geometric and traditional morphometrics, we find ...

  17. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  18. Wing shape variation associated with mimicry in butterflies.

    Science.gov (United States)

    Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu

    2013-08-01

    Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America.

    Science.gov (United States)

    Hauser, Frances E; Ilves, Katriina L; Schott, Ryan K; Castiglione, Gianni M; López-Fernández, Hernán; Chang, Belinda S W

    2017-10-01

    Cichlids encompass one of the most diverse groups of fishes in South and Central America, and show extensive variation in life history, morphology, and colouration. While studies of visual system evolution in cichlids have focussed largely on the African rift lake species flocks, Neotropical cichlids offer a unique opportunity to investigate visual system evolution at broader temporal and geographic scales. South American cichlid colonization of Central America has likely promoted accelerated rates of morphological evolution in Central American lineages as they encountered reduced competition, renewed ecological opportunity, and novel aquatic habitats. To investigate whether such transitions have influenced molecular evolution of vision in Central American cichlids, we sequenced the dim-light rhodopsin gene in 101 Neotropical cichlid species, spanning the diversity of the clade. We find strong evidence for increased rates of evolution in Central American cichlid rhodopsin relative to South American lineages, and identify several sites under positive selection in rhodopsin that likely contribute to adaptation to different photic environments. We expressed a Neotropical cichlid rhodopsin protein invitro for the first time, and found that while its spectral tuning properties were characteristic of typical vertebrate rhodopsin pigments, the rate of decay of its active signalling form was much slower, consistent with dim light adaptation in other vertebrate rhodopsins. Using site-directed mutagenesis combined with spectroscopic assays, we found that a key amino acid substitution present in some Central American cichlids accelerates the rate of decay of active rhodopsin, which may mediate adaptation to clear water habitats. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina.

    Science.gov (United States)

    Giraldo, M A; Stavenga, D G

    2016-05-01

    Butterflies belonging to the nymphalid subfamily, Morphinae, are famous for their brilliant blue wing coloration and iridescence. These striking optical phenomena are commonly explained as to originate from multilayer reflections by the ridges of the wing scales. Because the lower lamina of the scales of related nymphalid butterflies, the Nymphalinae, plays a dominant role in the wing coloration, by acting as a thin film reflector, we investigated single blue scales of three characteristic Morpho species: M. epistrophus, M. helenor and M. cypris. The experimental data obtained by spectrophotometry, scatterometry and scanning electron microscopy demonstrated that also in the Morpho genus the lower lamina of both the cover and ground scales acts as an optical thin film reflector, contributing importantly to the blue structural coloration of the wings. Melanin pigment has a contrast-enhancing function in a sub-class of ground scales.

  1. Cone visual pigments are present in gecko rod cells.

    Science.gov (United States)

    Kojima, D; Okano, T; Fukada, Y; Shichida, Y; Yoshizawa, T; Ebrey, T G

    1992-08-01

    The Tokay gecko (Gekko gekko), a nocturnal lizard, has two kinds of visual pigments, P467 and P521. In spite of the pure-rod morphology of the photoreceptor cells, the biochemical properties of P521 and P467 resemble those of iodopsin (the chicken red-sensitive cone visual pigment) and rhodopsin, respectively. We have found that the amino acid sequence of P521 deduced from the cDNA was very similar to that of iodopsin. In addition, P467 has the highest homology with the chicken green-sensitive cone visual pigment, although it also has a relatively high homology with rhodopsins. These results give additional strength to the transmutation theory of Walls [Walls, G. L. (1934) Am. J. Ophthalmol. 17, 892-915], who proposed that the rod-shaped photoreceptor cells of lizards have been derived from ancestral cone-like photoreceptors. Apparently amino acid sequences of visual pigments are less changeable than the morphology of the photoreceptor cells in the course of evolution.

  2. New insights into melanosome transport in vertebrate pigment cells.

    Science.gov (United States)

    Aspengren, Sara; Hedberg, Daniel; Sköld, Helen Nilsson; Wallin, Margareta

    2009-01-01

    Pigment cells of lower vertebrates provide an excellent model to study organelle transport as they specialize in the translocation of pigment granules in response to defined chemical cues. This review will focus on the well-studied melanophore/melanocyte systems in fish, amphibians, and mammals. We will describe the roles of melanin, melanophores, and melanocytes in animals, current views on how the three motor proteins dynein, kinesin, and myosin-V are involved in melanosome transport along microtubules and actin filaments, and how signal transduction pathways regulate the activities of the motors to achieve aggregation and dispersion of melanosomes. We will also describe how melanosomes are transferred to surrounding skin cells in amphibians and mammals. Comparative studies have revealed that the ability of physiological color change is lost during evolution while the importance of morphological color change, mainly via transfer of pigment to surrounding skin cells, increases. In humans, pigment mainly has a role in protection against ultraviolet radiation, but also perhaps in the immune system.

  3. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    Science.gov (United States)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  4. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    Directory of Open Access Journals (Sweden)

    Davies Wayne L

    2007-10-01

    Full Text Available Abstract Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2 expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. Conclusion The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment.

  5. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri.

    Science.gov (United States)

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann E O; Collin, Shaun P

    2007-10-25

    One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment.

  6. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    Science.gov (United States)

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  7. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  8. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    Science.gov (United States)

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of

  9. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko.

    Science.gov (United States)

    Yokoyama, S; Blow, N S

    2001-10-03

    We have isolated a full-length cDNA encoding a putative ultraviolet (UV)-sensitive visual pigment of the Tokay gecko (Gekko gekko). This clone has 57 and 59% sequence similarities to the gecko RH2 and MWS pigment genes, respectively, but it shows 87% similarity to the UV pigment gene of the American chameleon (Anolis carolinensis). The evolutionary rates of amino acid replacement are significantly higher in the three gecko pigments than in the corresponding chameleon pigments. The accelerated evolutionary rates reflect not only the transition from cones to rods in the retina but also the blue-shift in the absorption spectra of the gecko pigments.

  10. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  11. β-arrestin functionally regulates the non-bleaching pigment parapinopsin in lamprey pineal.

    Directory of Open Access Journals (Sweden)

    Emi Kawano-Yamashita

    2011-01-01

    Full Text Available The light response of vertebrate visual cells is achieved by light-sensing proteins such as opsin-based pigments as well as signal transduction proteins, including visual arrestin. Previous studies have indicated that the pineal pigment parapinopsin has evolutionally and physiologically important characteristics. Parapinopsin is phylogenetically related to vertebrate visual pigments. However, unlike the photoproduct of the visual pigment rhodopsin, which is unstable, dissociating from its chromophore and bleaching, the parapinopsin photoproduct is stable and does not release its chromophore. Here, we investigated arrestin, which regulates parapinopsin signaling, in the lamprey pineal organ, where parapinopsin and rhodopsin are localized to distinct photoreceptor cells. We found that beta-arrestin, which binds to stimulated G protein-coupled receptors (GPCRs other than opsin-based pigments, was localized to parapinopsin-containing cells. This result stands in contrast to the localization of visual arrestin in rhodopsin-containing cells. Beta-arrestin bound to cultured cell membranes containing parapinopsin light-dependently and translocated to the outer segments of pineal parapinopsin-containing cells, suggesting that beta-arrestin binds to parapinopsin to arrest parapinopsin signaling. Interestingly, beta-arrestin colocalized with parapinopsin in the granules of the parapinopsin-expressing cell bodies under light illumination. Because beta-arrestin, which is a mediator of clathrin-mediated GPCR internalization, also served as a mediator of parapinopsin internalization in cultured cells, these results suggest that the granules were generated light-dependently by beta-arrestin-mediated internalization of parapinopsins from the outer segments. Therefore, our findings imply that beta-arrestin-mediated internalization is responsible for eliminating the stable photoproduct and restoring cell conditions to the original dark state. Taken together with a

  12. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    Science.gov (United States)

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  13. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  14. Characterization of pre-hispanic pigments by modern analytical techniques

    International Nuclear Information System (INIS)

    Ortega A, M.

    2003-01-01

    In this work, the study of mural painting pigments from two archaeological sites (The Great Temple in Mexico city and Cacaxtla) was performed to know their materials composition, identify their structural characteristics and properties by using modern analytical techniques. Blue, ochre, red and black pigments of Mexica culture (1325-1521 a.C. / late Post Classic period); blue, ochre, red, brown, pink, green and white of Olmeca- Xicalanca culture (700-900 a.C. / Epiclassic period) were studied. Data about materials used, technological evolution, mineralogical background, cultural interchange and origin was obtained. Environmental exposition of these paintings since their discovering has produced changes and damage on their materials. Therefore, stability of some pigments has been notorious, ''Maya Blue'' specially presents extraordinary resistance to diluted and concentrated acids and alkalis including boiling condition, acqua regia, solvents, oxidant and reducing agents, moderate heat and biocorrosi6n; for that reason its study was emphasized. ''Maya Blue'' pigment was synthesized in laboratory using the processes described by historic sources (with indigophera suffruticosa leaves and synthetic indigo) up to obtain a stable pigment including acqua regia action. Clay matrix sorbs nearly 0.4 weight percent of organic dye, which cover 79% of palygorskita surface area. (Author)

  15. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    OpenAIRE

    Jing Zhang; Yujuan Suo; Daofeng Zhang; Fangning Jin; Hang Zhao; Chunlei Shi

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to...

  16. Wings of the butterfly: Sunspot groups for 1826-2015

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  17. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  18. Pigments, parasites and personalitiy: towards a unifying role for steroid hormones?

    Directory of Open Access Journals (Sweden)

    Silje Kittilsen

    Full Text Available A surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or "animal personalities". Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish. There was no significant association between pigmentation and lice at other developmental stages, suggesting that host factors associated with melanin-based pigmentation may modify ectoparasite development to a larger degree than settlement. In a subsequent laboratory experiment a strong negative correlation between skin spots and post-stress cortisol levels was revealed, with less pigmented individuals showing a more pronounced cortisol response to acute stress. The observation that lice prevalence was strongly increased on a fraction of sexually mature male salmon which occurred among the farmed fish further supports a role for steroid hormones as mediators of reduced parasite resistance. The data presented here propose steroid hormones as a proximate cause for the association between melanin-based pigmentation and parasites. Possible fundamental and applied implications are discussed.

  19. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  20. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates

    Science.gov (United States)

    Lorin, Thibault; Brunet, Frédéric G.; Laudet, Vincent; Volff, Jean-Nicolas

    2018-01-01

    Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates. PMID:29599177

  1. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Jing; Suo, Yujuan; Zhang, Daofeng; Jin, Fangning; Zhao, Hang; Shi, Chunlei

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus , is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD 450 ) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM . Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus , non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus .

  2. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Science.gov (United States)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  3. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-04-01

    Full Text Available Staphyloxanthin (STX, a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD450 of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST, and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM. Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59% and ST25 (13%. Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus, non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus.

  4. Annular and central heavy pigment deposition on the posterior lens capsule in the pigment dispersion syndrome: pigment deposition on the posterior lens capsule in the pigment dispersion syndrome.

    Science.gov (United States)

    Turgut, Burak; Türkçüoğlu, Peykan; Deniz, Nurettin; Catak, Onur

    2008-12-01

    To report annular and central heavy pigment deposition on the posterior lens capsule in a case of pigment dispersion syndrome. Case report. A 36-year-old female with bilateral pigment dispersion syndrome presented with progressive decrease in visual acuity in the right eye over the past 1-2 years. Clinical examination revealed the typical findings of pigment dispersion syndrome including bilateral Krunkenberg spindles, iris transillumination defects, and dense trabecular meshwork pigmentation. Remarkably, annular and central dense pigmentation of the posterior lens capsule was noted in the right eye. Annular pigment deposition on the posterior lens capsule may be a rare finding associated with pigment dispersion syndrome. Such a finding suggests that there may be aqueous flow into the retrolental space in some patients with this condition. The way of central pigmentation is the entrance of aqueous to Berger's space. In our case, it is probable that spontaneous detachment of the anterior hyaloid membrane aided this entrance.

  5. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  6. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  7. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  8. The effective compliance of spatially evolving planar wing-cracks

    Science.gov (United States)

    Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.

    2018-02-01

    We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.

  9. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  10. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  11. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  12. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    Science.gov (United States)

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  13. Skin Pigmentation Disorders

    Science.gov (United States)

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  14. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  15. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  16. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    Science.gov (United States)

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  17. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  18. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.

    Directory of Open Access Journals (Sweden)

    Motohiro Wakakuwa

    Full Text Available The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ(max = 453 nm and violet receptors (λ(max = 425 nm, respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.

  19. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  20. Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters.

    Science.gov (United States)

    Abbasi, Roohollah; Marcus, Jeffrey M

    2015-01-01

    A phylogenetic approach was used to study color pattern evolution in Vanessa butterflies. Twenty-four color pattern elements from the Nymphalid ground plan were identified on the dorsal and ventral surfaces of the fore- and hind wings. Eyespot characters were excluded and will be examined elsewhere. The evolution of each character was traced over a Bayesian phylogeny of Vanessa reconstructed from 7750 DNA base pairs from 10 genes. Generally, the correspondence between character states on the same surface of the two wings is stronger on the ventral side compared to the dorsal side. The evolution of character states on both sides of a wing correspond with each other in most extant species, but the correspondence between dorsal and ventral character states is much stronger in the forewing than in the hindwing. The dorsal hindwing of many species of Vanessa is covered with an extended Basal Symmetry System and the Discalis I pattern element is highly variable between species, making this wing surface dissimilar to the other wing surfaces. The Basal Symmetry System and Discalis I may contribute to behavioral thermoregulation in Vanessa. Overall, interspecific directional character state evolution of non-eyespot color patterns is relatively rare in Vanessa, with a majority of color pattern elements showing non-variable, non-directional, or ambiguous character state evolution. The ease with which the development of color patterns can be modified, including character state reversals, has likely made important contributions to the production of color pattern diversity in Vanessa and other butterfly groups. © 2014 Wiley Periodicals, Inc.

  1. Dense pigmentation of the posterior lens capsule associated with the pigment dispersion syndrome.

    Science.gov (United States)

    Lin, Danny Y; Volpicelli, Mark; Singh, Kuldev

    2003-12-01

    To report an unusual case of pigment dispersion syndrome associated with unilateral dense pigmentation of the posterior lens capsule. Case report. A 59-year-old male with bilateral pigment dispersion syndrome presented with progressive decrease in visual acuity in the left eye over the past 10 to 20 years. Clinical examination revealed the typical findings of pigment dispersion syndrome including the presence of bilateral Krunkenberg spindles, iris transillumination defects, and heavy trabecular meshwork pigmentation. Of note, there was remarkably dense pigmentation of the posterior lens capsule in the eye with decreased visual acuity. Pigmentation of the posterior lens capsule may be a rare finding associated with pigment dispersion syndrome. Such a finding suggests that there may be aqueous flow into the retrolental space in some patients with this condition. The optimal treatment of this unusual condition remains undetermined.

  2. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum.

    Science.gov (United States)

    Arai, Teppei; Kojima, Ryo; Motegi, Yoshiki; Kato, Jun; Kasumi, Takafumi; Ogihara, Jun

    2015-12-01

    The production of pigments as secondary metabolites by microbes is known to vary by species and by physiological conditions within a single strain. The fungus strain Penicillium purpurogenum IAM15392 has been found to produce violet pigment (PP-V) and orange pigment (PP-O),Monascus azaphilone pigment homologues, when grown under specific culture conditions. In this study, we analysed PP-V and PP-O production capability in seven strains of P. purpurogenum in addition to strain IAM15392 under specific culture conditions. The pigment production pattern of five strains cultivated in PP-V production medium was similar to that of strain IAM15392, and all violet pigments produced by these five strains were confirmed to be PP-V. Strains that did not produce pigment were also identified. In addition, two strains cultivated in PP-O production medium produced a violet pigment identified as PP-V. The ribosomal DNA (rDNA) internal transcribed spacer (ITS) region sequences from the eight P. purpurogenum strains were sequenced and used to construct a neighbor-joining phylogenetic tree. PP-O and PP-V production of P. purpurogenum was shown to be related to phylogenetic placement based on rDNA ITS sequence. Based on these results, two hypotheses for the alteration of pigment production of P. purpurogenum in evolution were proposed. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. What serial homologs can tell us about the origin of insect wings [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yoshinori Tomoyasu

    2017-03-01

    Full Text Available Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings.

  4. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies.

    Science.gov (United States)

    Ge, Dengteng; Wu, Gaoxiang; Yang, Lili; Kim, Hye-Na; Hallwachs, Winnie; Burns, John M; Janzen, Daniel H; Yang, Shu

    2017-07-11

    Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei , a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.

  5. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  6. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland.

    Directory of Open Access Journals (Sweden)

    Justyna M Drewnowska

    Full Text Available Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.

  7. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    Science.gov (United States)

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  8. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  9. Synthesis of Cr-doped CaTiSiO5 ceramic pigments by spray drying

    International Nuclear Information System (INIS)

    Lyubenova, T. Stoyanova; Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.; Carda, J.

    2009-01-01

    Cr-doped CaTiSiO 5 was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 μm range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  10. Dynamics of supercooled liquids: excess wings, β peaks, and rotation-translation coupling

    International Nuclear Information System (INIS)

    Cummins, H Z

    2005-01-01

    Dielectric susceptibility spectra of liquids cooled towards the liquid-glass transition often exhibit secondary structure in the frequency region between the α peak and the susceptibility minimum, in the form of either an 'excess wing' or a secondary peak-the Johari-Goldstein β peak. Recently, Goetze and Sperl (2004 Phys. Rev. Lett. 92 105701) showed that a simple schematic mode coupling theory model, which incorporates rotation-translation (RT) coupling, successfully describes the nearly logarithmic decay observed in optical Kerr effect data. This model also exhibits both excess wing and β peak features, qualitatively resembling experimental dielectric data. It also predicts that the excess wing slope decreases with decreasing temperature and gradually evolves into a β peak with increasing RT coupling. We therefore suggest that these features and their observed evolution with temperature may be consequences of RT coupling

  11. Ecological-friendly pigments from fungi.

    Science.gov (United States)

    Durán, Nelson; Teixeira, Maria F S; De Conti, Roseli; Esposito, Elisa

    2002-01-01

    The dyestuff industry is suffering from the increases in costs of feedstock and energy for dye synthesis, and they are under increasing pressure to minimize the damage to the environment. The industries are continuously looking for cheaper, more environmentally friendly routes to existing dyes. The aim of this minireview is to discuss the most important advances in the fungal pigment area and its interest in biotechnological applications. Characteristic pigments are produced by a wide variety of fungi and the chemical composition of natural dyes are described. These pigments exhibit several biological activities besides cytotoxicity. The synthetic pigments authorized by the EC and in USA and the natural pigments available in the world market are discussed. The obstacle to the exploitation of new natural pigments sources is the food legislation, requesting costly toxicological research, manufacturing costs, and acceptance by consumers. The dislike for novel ingredients is likely to be the biggest impediment for expansion of the pigment list in the near future. If the necessary toxicological testing and the comparison with accepted pigments are made, the fungal pigments, could be acceptable by the current consumer. The potentiality of pigment production in Brazil is possible due to tremendous Amazonian region biodiversity.

  12. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  13. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae.

    Science.gov (United States)

    Obara, Yoshiaki; Ozawa, Gaku; Fukano, Yuya

    2008-11-01

    The British and Japanese subspecies of the cabbage butterfly, Pieris rapae , differ in terms of the UV reflectance of their wings ( Obara and Majerus, 2000 ). We studied the biogeographical distribution of the female cabbage butterfly having wings with UV reflectance around the Eurasian continent, and between Britain and Japan. For the study, we collected specimens from various locations. A gradient in the UV reflectance of the wings appears to exist along the west-east axis; reflectance was higher toward the east and reached a peak in butterflies in Japan. The UV-reflecting Japanese subspecies Pieris rapae crucivora was found exclusively along the east coast of the Eurasian continent. This suggests that the Japanese subspecies has evolved from a continental ancestor, with females having UV-absorbing wings. We discuss the results of our study with regard to the evolution and adaptive significance of UV coloration in the Japanese subspecies.

  14. UV-B affects the immune system and promotes nuclear abnormalities in pigmented and non-pigmented bullfrog tadpoles.

    Science.gov (United States)

    Franco-Belussi, Lilian; Fanali, Lara Zácari; De Oliveira, Classius

    2018-03-01

    Ultra-Violet (UV) radiation is a stressor of the immune system and causes DNA damage. Leukocytes can change in response to environmental changes in anurans, making them an important biomarker of stressful situations. The initial barrier against UV in ectothermic animals is melanin-containing cells in skin and in their internal organs. Here, we tested the effects of UV exposure on immune cells and DNA integrity in pigmented and non-pigmented tadpoles of Lithobates catesbeianus. We used an inflammation model with lipopolysaccharide (LPS) of Escherichia coli to test synergic effects of UV and LPS. We tested the following hypotheses: 1) DNA damage caused by UV will be more pronounced in non-pigmented than in pigmented animals; 2) LPS increases leukocytes in both pigmented and non-pigmented animals by systemic inflammation; 3) The combined LPS and UV exposure will decrease the number of leukocytes. We found that the frequency of immune cells differed between pigmented and non-pigmented tadpoles. UV exposure increased mast cells and DNA damage in erythrocytes in both pigmented and non-pigmented tadpoles, while leukocytes decreased after UV exposure. Non-pigmented tadpoles experienced DNA damage and a lower lymphocyte count earlier than pigmented tadpoles. UV altered immune cells likely as a consequence of local and systemic inflammation. These alterations were less severe in pigmented than in non-pigmented animals. UV and LPS increased internal melanin in pigmented tadpoles, which were correlated with DNA damage and leukocytes. Here, we described for the first time the effects of UV and LPS in immune cells of pigmented and non-pigmented tadpoles. In addition, we demonstrated that internal melanin in tadpoles help in these defenses, since leukocyte responses were faster in non-pigmented animals, supporting the hypothesis that melanin is involved in the initial innate immune response. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Aging effect on the pigment composition and color of Vitis vinifera L. Cv. Tannat wines. Contribution of the main pigment families to wine color.

    Science.gov (United States)

    Boido, Eduardo; Alcalde-Eon, Cristina; Carrau, Francisco; Dellacassa, Eduardo; Rivas-Gonzalo, Julian C

    2006-09-06

    Red wines made from Vitis vinifera L. cv. Tannat grapes are known to possess high contents of tannins and intense color, features that are responsible for the originality of these wines. This work aimed to study the evolution of the pigment composition and CIELAB color parameters as Tannat wines become older, as well as to establish the contribution to wine color of the main pigment families. Tannat wines produced in Uruguay from grapes of the same vineyard in six consecutive vintages (1998-2003) and Tannat grapes of the 2003 harvest were analyzed by means of HPLC-DAD-MS and UV-vis spectrometric techniques. The correlations between the different pigment families and the CIELAB parameters revealed the importance of the variations of the percentage, found in anthocyanins and flavanol-anthocyanin acetaldehyde-mediated condensation products (decrease) and pyranoanthocyanins and direct condensation products (increase), in the modification of the color from purple-red hues to more orange-red ones. The color suffered qualitative rather than quantitative changes, that is, the hue (h*ab) increased, whereas the chroma (C*ab) and lightness (L) did not show a defined trend with time.

  16. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  17. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    OpenAIRE

    Johnson, Adam S; Garc?a, Dana M

    2007-01-01

    Abstract Background Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the ca...

  18. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species.

    Directory of Open Access Journals (Sweden)

    Gizem Kalay

    2010-11-01

    Full Text Available cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of

  19. Insights into bird wing evolution and digit specification from polarizing region fate maps.

    Science.gov (United States)

    Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-08-09

    The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.

  20. Long anterior zonules and pigment dispersion.

    Science.gov (United States)

    Moroi, Sayoko E; Lark, Kurt K; Sieving, Paul A; Nouri-Mahdavi, Kouros; Schlötzer-Schrehardt, Ursula; Katz, Gregory J; Ritch, Robert

    2003-12-01

    To describe pigment dispersion associated with long anterior zonules. Multicenter observational case series. Fifteen patients, seven of whom were treated for glaucoma or ocular hypertension, were identified with long anterior zonules and pigment dispersion. Transmission electron microscopy was performed on one anterior capsule specimen. All patients had anterior zonules that inserted centrally on the lens capsule. Signs of pigment dispersion included corneal endothelial pigmentation, loss of the pupillary ruff, and variable trabecular meshwork pigmentation. Ultrasound biomicroscopy verified the lack of posterior iris insertion and concavity. There was no exfoliation material. Transmission electron microscopy showed zonular lamellae with adherent pigment granules, and no exfoliation material. Long anterior zonules inserted onto the central lens capsule may cause mechanical disruption of the pigment epithelium at the pupillary ruff and central iris leading to pigment dispersion.

  1. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.

    Science.gov (United States)

    Nudds, Robert L; Dyke, Gareth J

    2009-04-01

    Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.

  2. Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.

    Science.gov (United States)

    Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O

    2018-03-01

    Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  3. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  4. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  5. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  6. Do the Golden-winged Warbler and Blue-winged Warbler Exhibit Species-specific Differences in their Breeding Habitat Use?

    Directory of Open Access Journals (Sweden)

    Laura L. Patton

    2010-12-01

    Full Text Available We compared habitat features of Golden-winged Warbler (Vermivora chrysoptera territories in the presence and absence of the Blue-winged Warbler (V. cyanoptera on reclaimed coal mines in southeastern Kentucky, USA. Our objective was to determine whether there are species specific differences in habitat that can be manipulated to encourage population persistence of the Golden-winged Warbler. When compared with Blue-winged Warblers, Golden-winged Warblers established territories at higher elevations and with greater percentages of grass and canopy cover. Mean territory size (minimum convex polygon was 1.3 ha (se = 0.1 for Golden-winged Warbler in absence of Blue-winged Warbler, 1.7 ha (se = 0.3 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 2.1 ha (se = 0.3 for Blue-winged Warbler. Territory overlap occurred within and between species (18 of n = 73 territories, 24.7%. All Golden-winged and Blue-winged Warblers established territories that included an edge between reclaimed mine land and mature forest, as opposed to establishing territories in open grassland/shrubland habitat. The mean distance territories extended from a forest edge was 28.0 m (se = 3.8 for Golden-winged Warbler in absence of Blue-winged Warbler, 44.7 m (se = 5.7 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 33.1 m (se = 6.1 for Blue-winged Warbler. Neither territory size nor distances to forest edges differed significantly between Golden-winged Warbler in presence or absence of Blue-winged Warbler. According to Monte Carlo analyses, orchardgrass (Dactylis glomerata, green ash (Fraxinus pennsylvanica seedlings and saplings, and black locust (Robinia pseudoacacia saplings were indicative of sites with only Golden-winged Warblers. Sericea lespedeza, goldenrod (Solidago spp., clematis vine (Clematis spp., and blackberry (Rubus spp. were indicative of sites where both species occurred. Our findings complement recent genetic studies and add

  7. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  8. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    Science.gov (United States)

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  9. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Directory of Open Access Journals (Sweden)

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  10. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  11. Evolution of Vision

    Science.gov (United States)

    Ostrovsky, Mikhail

    The evolution of photoreception, giving rise to eye, offers a kaleidoscopic view on selection acting at both the organ and molecular levels. The molecular level is mainly considered in the lecture. The greatest progress to date has been made in relation to the opsin visual pigments. Opsins appeared before eyes did. Two- and three-dimensional organization for rhodopsin in the rod outer segment disk membrane, as well as molecular mechanisms of visual pigments spectral tuning, photoisomerization and also opsin as a G-protein coupled receptor are considered. Molecular mechanisms of visual pigments spectral tuning, namely switching of chromophore (physiological time scale) and amino acid changes in the chromophore site of opsin (evolutionary time scale) is considered in the lecture. Photoisomerization of rhodopsin chromophore, 11-cis retinal is the only photochemical reaction in vision. The reaction is extemely fast (less that 200 fs) and high efficient (. is 0.65). The rhodopsin photolysis and kinetics of the earlier products appearance, photo- and bathorhodopsin, is considered. It is known that light is not only a carrier of information, but also a risk factor of damage to the eye. This photobiological paradox of vision is mainly due to the nature of rhodopsin chromophore. Photooxidation is the base of the paradox. All factors present in the phototrceptor cells to initiate free-radical photooxidation: photosensitizers, oxygen and substrates of oxidation: lipids and proteins (opsin). That is why photoprotective system of the eye structures appeared in the course of evolution. Three lines of protective system to prevent light damage to the retina and retina pigment epithelium is known: permanent renewal of rod and cone outer segment, powerful antioxidant system and optical media as cut-off filters where the lens is a key component. The molecular mechanisms of light damage to the eye and photoprotective system of the eye is considered in the lecture. The molecular

  12. Natural pigments and sacred art

    Science.gov (United States)

    Kelekian, Lena, ,, Lady

    2010-05-01

    Since the dawn of mankind, cavemen has expressed himself through art. The earliest known cave paintings date to some 32,000 years ago and used 4 colours derived from the earth. These pigments were iron oxides and known as ochres, blacks and whites. All pigments known by the Egyptians, the Greeks, the Romans and Renaissance man were natural and it was not until the 18th century that synthetic pigments were made and widely used. Until that time all art, be it sacred or secular used only natural pigments, of which the preparation of many have been lost or rarely used because of their tedious preparation. As a geologist, a mineralogist and an artist specializing in iconography, I have been able to rediscover 89 natural pigments extracted from minerals. I use these pigments to paint my icons in the traditional Byzantine manner and also to restore old icons, bringing back their glamour and conserving them for years to come. The use of the natural pigments in its proper way also helps to preserve the traditional skills of the iconographer. In the ancient past, pigments were extremely precious. Many took an exceedingly long journey to reach the artists, and came from remote countries. Research into these pigments is the work of history, geography and anthropology. It is an interesting journey in itself to discover that the blue aquamarines came from Afghanistan, the reds from Spain, the greens Africa, and so on. In this contribution I will be describing the origins, preparation and use of some natural pigments, together with their history and provenance. Additionally, I will show how the natural pigments are used in the creation of an icon. Being a geologist iconographer, for me, is a sacrement that transforms that which is earthly, material and natural into a thing of beauty that is sacred. As bread and wine in the Eucharist, water during baptism and oil in Holy Union transmit sanctification to the beholder, natural pigments do the same when one considers an icon. The

  13. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    Science.gov (United States)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  14. Phototrophic pigment production with microalgae

    NARCIS (Netherlands)

    Mulders, K.J.M.

    2014-01-01

    Abstract

    Microalgal pigments are regarded as natural alternatives for food colorants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary

  15. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  16. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  17. Diversity and functional properties of bistable pigments.

    Science.gov (United States)

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  18. Epistatic adaptive evolution of human color vision.

    Directory of Open Access Journals (Sweden)

    Shozo Yokoyama

    2014-12-01

    Full Text Available Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV-free retinal environment, the short wavelength-sensitive (SWS1 visual pigment in human (human S1 switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.

  19. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  20. Skin pigmentation kinetics after UVB exposure

    DEFF Research Database (Denmark)

    Ravnbak, M.H.; Philipsen, P.A.; Wiegell, S.R.

    2008-01-01

    There have been few previous studies of the kinetics of pigmentation following ultraviolet B (UVB) exposure, and these have included only fair-skinned persons. The current study investigated pigmentation increase to steady state and fading in 12 Scandinavians and 12 Indians/Pakistanis. Over...... a period of 3 weeks the subjects were UV-irradiated 6 times on the right side of the back and 12 times on the left side using a Solar Simulator and narrowband UVB with equal sub-Minimal Melanogenesis Doses (individually predetermined). Pigmentation was measured from skin remittance at 555 urn and 660 nm...... (allowing correction for erythema). The absolute pigmentation increase was independent of pre-exposure pigmentation, therefore the percentage pigmentation increase was higher in fair-skinned volunteers. The UV dose to minimal pigmentation was higher in darker-skinned persons for single and multiple UV...

  1. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  2. Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group

    NARCIS (Netherlands)

    Trzeciak, Tomasz M.; Wilts, Bodo D.; Stavenga, Doekele G.; Vukusic, Peter; Sterke, C. Martijn de

    2012-01-01

    The dorsal wing surfaces of papilionid butterflies of the nireus group are marked by bands of brilliant blue-green-colored cover scales. The thin, cuticular lower lamina of the scales acts as a blue reflector. The thick upper lamina forms a dense two-dimensional cuticular lattice of air cavities

  3. Production of Monascus-like pigments

    DEFF Research Database (Denmark)

    2012-01-01

    the cultivation medium with an inoculum of Penicillium to form a cultivation composition; d) cultivating the inoculated cultivation composition of (c); e) separating the one or more produced pigment compositions. The method of the invention may be used for producing Monascus-like pigment compositions for use......The present invention relates to a method for producing one or more Monascus-like pigment composition from Penicillium species comprising: a) providing a cultivation medium comprising a high concentration of C-and N-sources and a high C/N molar ratio, b) adjusting pH to about 5 to 8, c) inoculating...... as colouring agents in food items or non food items. The inventions further relates to Monascus-like pigment composition obtainable by a method of the inventions as well as use of the pigments....

  4. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.

    Directory of Open Access Journals (Sweden)

    N Adam Smith

    Full Text Available Just as skeletal characteristics provide clues regarding behavior of extinct vertebrates, phylogenetically-informed evaluation of endocranial morphology facilitates comparisons among extinct taxa and extant taxa with known behavioral characteristics. Previous research has established that endocranial morphology varies across Aves; however, variation of those systems among closely related species remains largely unexplored. The Charadriiformes (shorebirds and allies are an ecologically diverse clade with a comparatively rich fossil record, and therefore, are well suited for investigating interspecies variation, and potential links between endocranial morphology, phylogeny, ecology and other life history attributes. Endocranial endocasts were rendered from high resolution X-ray computed tomography data for 17 charadriiforms (15 extant and two flightless extinct species. Evaluation of endocranial character state changes on a phylogeny for Charadriiformes resulted in identification of characters that vary in taxa with distinct feeding and locomotor ecologies. In comparison with all other charadriiforms, stem and crown clade wing-propelled diving Pan-Alcidae displayed compressed semicircular canals, and indistinct occipital sinuses and cerebellar fissures. Flightless wing-propelled divers have relatively smaller brains for their body mass and smaller optic lobes than volant pan-alcids. Observed differences between volant and flightless wing-propelled sister taxa are striking given that flightless pan-alcids continue to rely on the flight stroke for underwater propulsion. Additionally, the brain of the Black Skimmer Rynchops niger, a taxon with a unique feeding ecology that involves continuous forward aerial motion and touch-based prey detection used both at day and night, is discovered to be unlike that of any other sampled charadriiform in having an extremely large wulst as well as a small optic lobe and distinct occipital sinus. Notably, the

  5. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    OpenAIRE

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-01-01

    Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and musc...

  6. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  7. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  8. Pigment production from a mangrove Penicillium

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... Key words: Penicillium, 2-(4-acetyl phenyl) acetic acid, bio elements, salts, soluble pigment. .... Table 1. Characteristics of the pigment fractions after solvent extraction. ..... naphthoquinone pigment by Fusarium verticillioides.

  9. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  10. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  11. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.

    Science.gov (United States)

    Yokoyama, S

    2000-01-01

    The coelacanth, a "living fossil," lives at a depth of about 200 m near the coast of the Comoros archipelago in the Indian Ocean and receives only a narrow range of light at about 480 nm. To see the entire range of "color" the Comoran coelacanth appears to use only rod-specific RH1 and cone-specific RH2 visual pigments, with the optimum light sensitivities (lambda max) at 478 nm and 485 nm, respectively. These blue-shifted lambda max values of RH1 and RH2 pigments are fully explained by independent double amino acid replacements E122Q/A292S and E122Q/M207L, respectively. More generally, currently available mutagenesis experiments identify only 10 amino acid changes that shift the lambda max values of visual pigments more than 5 nm. Among these, D83N, E1220, M207L, and A292S are associated strongly with the adaptive blue shifts in the lambda max values of RH1 and RH2 pigments in vertebrates.

  12. Hairless pigmented guinea pigs: a new model for the study of mammalian pigmentation.

    Science.gov (United States)

    Bolognia, J L; Murray, M S; Pawelek, J M

    1990-09-01

    A stock of hairless pigmented guinea pigs was developed to facilitate studies of mammalian pigmentation. This stock combines the convenience of a hairless animal with a pigmentary system that is similar to human skin. In both human and guinea pig skin, active melanocytes are located in the basal layer of the interfollicular epidermis. Hairless albino guinea pigs on an outbred Hartley background (CrI:IAF/HA(hr/hr)BR; designated hr/hr) were mated with red-haired guinea pigs (designated Hr/Hr). Red-haired heterozygotes from the F1 generation (Hr/hr) were then mated with each other or with hairless albino guinea pigs. The F2 generation included hairless pigmented guinea pigs that retained their interfollicular epidermal melanocytes and whose skin was red-brown in color. Following UV irradiation, there was an increase in cutaneous pigmentation as well as an increase in the number of active epidermal melanocytes. An additional strain of black hairless guinea pigs was developed using black Hr/Hr animals and a similar breeding scheme. These two strains should serve as useful models for studies of the mammalian pigment system.

  13. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  14. Sensitizing pigment in the fly

    International Nuclear Information System (INIS)

    Vogt, K.; Kirschfeld, K.

    1983-01-01

    The sensitizing pigment hypothesis for the high UV sensitivity in fly photoreceptors (R1-6) is further substantiated by measurements of the polarisation sensitivity in the UV. The quantum yield of the energy transfer from sensitizing pigment to rhodopsin was estimated by electrophysiological measurements of the UV sensitivity and the rhabdomeric absorptance (at 490 nm) in individual receptor cells. The transfer efficiency is >=0.75 in receptors with an absorptance in the rhabdomeres of 0.55-0.95. This result suggests that the sensitizing pigment is bound in some way to the rhodopsin. A ratio of two molecules of sensitizing pigment per one rhodopsin is proposed. (orig.)

  15. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  16. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  17. Preparation and characterization of chrome doped sphene pigments prepared via precursor mechanochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Pantić, Jelena, E-mail: jelena.pantic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Prekajski, Marija; Dramićanin, Miroslav; Abazović, Nadica [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Vuković, Nikola [Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000 Belgrade (Serbia); Kremenović, Aleksandar [Faculty of Mining and Geology, University of Belgrade, Djušina 7, Belgrade (Serbia); Matović, Branko [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia)

    2013-12-05

    Highlights: •Mechanical activation of precursors has been used for the preparation of Cr-doped sphene ceramic pigments (CaTi{sub 1−y}Cr{sub y}SiO{sub 5}). •The average particle size is around 1 μm, which is desirable for application. •The optimum pigment (best hue with lowest Cr content) is obtained with 0.1% Cr. •Both chromium ions (Cr{sup 4+} and Cr{sup 3+}), find itself within distorted octahedral coordination. -- Abstract: Mechanical activation of precursors has been used for the preparation of Cr-doped sphene ceramic pigments (CaTi{sub 1−y}Cr{sub y}SiO{sub 5}). Ceramic material has been prepared from a powder mixture of CaCO{sub 3}, TiO{sub 2}, SiO{sub 2} and Cr(NO{sub 3})⋅9H{sub 2}O using vibro-milling for homogenization and activation of precursors. The mechanochemical process initially yielded amorphous powders, which on further calcination, crystallized to yield Cr-doped sphene ceramic pigment. Phase evolution in CaTi{sub 1−y}Cr{sub y}SiO{sub 5} composition with thermal treatment was investigated by X-ray powder diffraction (XRPD). Texture properties and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. UV/Vis reflectance spectra are used to determinate the behavior of the chromium ion. The color efficiency of pigments was evaluated by colorimetric analysis (CIE L {sup *} a {sup *} b system). Photoluminescence measurements were also performed.

  18. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  19. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  20. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    Science.gov (United States)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  1. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation.

    Directory of Open Access Journals (Sweden)

    Erine H Budi

    2011-05-01

    Full Text Available The pigment cells of vertebrates serve a variety of functions and generate a stunning variety of patterns. These cells are also implicated in human pathologies including melanoma. Whereas the events of pigment cell development have been studied extensively in the embryo, much less is known about morphogenesis and differentiation of these cells during post-embryonic stages. Previous studies of zebrafish revealed genetically distinct populations of embryonic and adult melanophores, the ectotherm homologue of amniote melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging, mutational analyses, and transgenesis to identify peripheral nerves as a niche for precursors to adult melanophores that subsequently migrate to the skin to form the adult pigment pattern. We further identify genetic requirements for establishing, maintaining, and recruiting precursors to the adult melanophore lineage and demonstrate novel compensatory behaviors during pattern regulation in mutant backgrounds. Finally, we show that distinct populations of latent precursors having differential regenerative capabilities persist into the adult. These findings provide a foundation for future studies of post-embryonic pigment cell precursors in development, evolution, and neoplasia.

  2. Effect of pigment concentration on fastness and color values of thermal and UV curable pigment printing

    Science.gov (United States)

    Baysal, Gulcin; Kalav, Berdan; Karagüzel Kayaoğlu, Burçak

    2017-10-01

    In the current study, it is aimed to determine the effect of pigment concentration on fastness and colour values of thermal and ultraviolet (UV) curable pigment printing on synthetic leather. For this purpose, thermal curable solvent-based and UV curable water-based formulations were prepared with different pigment concentrations (3, 5 and 7%) separately and applied by screen printing technique using a screen printing machine. Samples printed with solvent-based formulations were thermally cured and samples printed with water-based formulations were cured using a UV curing machine equipped with gallium and mercury (Ga/Hg) lamps at room temperature. The crock fastness values of samples printed with solvent-based formulations showed that increase in pigment concentration was not effective on both dry and wet crock fastness values. On the other hand, in samples printed with UV curable water-based formulations, dry crock fastness was improved and evaluated as very good for all pigment concentrations. However, increasing the pigment concentration affected the wet crock fastness values adversely and lower values were observed. As the energy level increased for each irradiation source, the fastness values were improved. In comparison with samples printed with solvent-based formulations, samples printed with UV curable water-based formulations yielded higher K/S values at all pigment concentrations. The results suggested that, higher K/S values can be obtained in samples printed with UV curable water-based formulations at a lower pigment concentration compared to samples printed with solvent-based formulations.

  3. Central posterior capsule pigmentation in a patient with pigment dispersion and previous ocular trauma: a case report.

    Science.gov (United States)

    Al-Mezaine, Hani S

    2010-01-01

    We report a 55-year-old man with unusually dense, unilateral central posterior capsule pigmentation associated with the characteristic clinical features of pigment dispersion syndrome, including a Krukenberg's spindle and dense trabecular pigmentation in both eyes. A history of an old blunt ocular trauma probably caused separation of the anterior hyaloid from the back of the lens, thereby creating an avenue by which pigment could reach the potential space of Berger's from the posterior chamber.

  4. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  5. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  6. Characterization of pre-hispanic pigments by modern analytical techniques; Caracterizacion de pigmentos prehispanicos por tecnicas analiticas modernas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega A, M

    2003-07-01

    In this work, the study of mural painting pigments from two archaeological sites (The Great Temple in Mexico city and Cacaxtla) was performed to know their materials composition, identify their structural characteristics and properties by using modern analytical techniques. Blue, ochre, red and black pigments of Mexica culture (1325-1521 a.C. / late Post Classic period); blue, ochre, red, brown, pink, green and white of Olmeca- Xicalanca culture (700-900 a.C. / Epiclassic period) were studied. Data about materials used, technological evolution, mineralogical background, cultural interchange and origin was obtained. Environmental exposition of these paintings since their discovering has produced changes and damage on their materials. Therefore, stability of some pigments has been notorious, ''Maya Blue'' specially presents extraordinary resistance to diluted and concentrated acids and alkalis including boiling condition, acqua regia, solvents, oxidant and reducing agents, moderate heat and biocorrosi6n; for that reason its study was emphasized. ''Maya Blue'' pigment was synthesized in laboratory using the processes described by historic sources (with indigophera suffruticosa leaves and synthetic indigo) up to obtain a stable pigment including acqua regia action. Clay matrix sorbs nearly 0.4 weight percent of organic dye, which cover 79% of palygorskita surface area. (Author)

  7. Characterization of pre-hispanic pigments by modern analytical techniques; Caracterizacion de pigmentos prehispanicos por tecnicas analiticas modernas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega A, M

    2003-07-01

    In this work, the study of mural painting pigments from two archaeological sites (The Great Temple in Mexico city and Cacaxtla) was performed to know their materials composition, identify their structural characteristics and properties by using modern analytical techniques. Blue, ochre, red and black pigments of Mexica culture (1325-1521 a.C. / late Post Classic period); blue, ochre, red, brown, pink, green and white of Olmeca- Xicalanca culture (700-900 a.C. / Epiclassic period) were studied. Data about materials used, technological evolution, mineralogical background, cultural interchange and origin was obtained. Environmental exposition of these paintings since their discovering has produced changes and damage on their materials. Therefore, stability of some pigments has been notorious, ''Maya Blue'' specially presents extraordinary resistance to diluted and concentrated acids and alkalis including boiling condition, acqua regia, solvents, oxidant and reducing agents, moderate heat and biocorrosi6n; for that reason its study was emphasized. ''Maya Blue'' pigment was synthesized in laboratory using the processes described by historic sources (with indigophera suffruticosa leaves and synthetic indigo) up to obtain a stable pigment including acqua regia action. Clay matrix sorbs nearly 0.4 weight percent of organic dye, which cover 79% of palygorskita surface area. (Author)

  8. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  9. The visual pigment cyanide effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1989-12-01

    The visual pigment of the Tokay gecko (Gekko gekko) with its in situ absorption maximum at 521 nm has its spectral position at 500 to 505 nm when chloride-deficient digitonin is used for the extraction. In this case the addition of chloride or bromide to the extract restores the maximum to 521 nm. This property, characteristic of gecko pigments in general, does not occur with any of the rhodopsins that have been tested. Simple salts of cyanide, a pseudohalogenoid with an ionic radius close to those of chloride and bromide and/or its hydrolysis product attacks both this gecko pigment and rhodopsins in the dark. This is seen as a slow thermal loss of photopigment if (sodium) cyanide is present at concentrations above 40 mM for the gecko pigment and 150 mM for the rhodopsins of the midshipman (Porichthys notatus) and of the frog (Rana pipiens). In all cases the loss of the photopigment is accompanied by the appearance of a spectral product with maximum absorption at about 340 nm. Cyanide addition has no effect on the photosensitivity of the native pigments and neither does it alter, as do chloride, bromide and other anions, the spectral absorbance curve. The spectral product at 340 nm also appears when the visual pigments are photolyzed in the presence of cyanide salts below the threshold concentrations given above. Incubation of digitonin-solubilized all-trans-retinal with (sodium) cyanide leads to a reaction product with absorption spectrum similar to that obtained with visual pigments under comparable conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  11. Central posterior capsule pigmentation in a patient with pigment dispersion and previous ocular trauma: A case report

    Directory of Open Access Journals (Sweden)

    Al-Mezaine Hani

    2010-01-01

    Full Text Available We report a 55-year-old man with unusually dense, unilateral central posterior capsule pigmentation associated with the characteristic clinical features of pigment dispersion syndrome, including a Krukenberg′s spindle and dense trabecular pigmentation in both eyes. A history of an old blunt ocular trauma probably caused separation of the anterior hyaloid from the back of the lens, thereby creating an avenue by which pigment could reach the potential space of Berger′s from the posterior chamber.

  12. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  13. Higher iridescent-to-pigment optical effect in flowers facilitates learning, memory and generalization in foraging bumblebees.

    Science.gov (United States)

    de Premorel, Géraud; Giurfa, Martin; Andraud, Christine; Gomez, Doris

    2017-10-25

    Iridescence-change of colour with changes in the angle of view or of illumination-is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant-pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees ( Bombus terrestris ) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator-plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings. © 2017 The Author(s).

  14. Endosulfan induced changes in growth rate, pigment composition and photosynthetic activity of mosquito fern Azolla microphylla

    Directory of Open Access Journals (Sweden)

    Raja W.

    2012-11-01

    Full Text Available This paper is the first in a series reporting a study on the effects of different concentrations of insecticide, Endosulfan (0-600ppm was premeditated on 5th day after insecticide exposure with respect to growth rate, pigment composition and photosynthetic activity of Azolla microphylla under laboratory conditions which become non-target organism in the rice fields. Endosulfan inhibited the relative growth rate, pigment content and photosynthetic O2 evolution. Phycocyanin was main target followed by carotenoid and total chlorophyll. Significant increase in pigment, flavonoid and Anthocyanin was noticed after six days of treatment. In contrast to the photosynthetic activity, the rate of respiration in Azolla microphylla was increased significantly. Our results show that Endosulfan at normally recommended field rates and intervals are seldom deleterious to the beneficial and Eco friendly Azolla microphylla and their activities and thus in turn suppress plant growth and development. Phytotoxity of Azolla microphylla can be minimized by restrictions on application, timing, method and rate of application.

  15. Nitric oxide-dependent pigment migration induced by ultraviolet radiation in retinal pigment cells of the crab Neohelice granulata.

    Science.gov (United States)

    Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia

    2010-01-01

    The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  16. State of art in research of ceramic pigments

    International Nuclear Information System (INIS)

    Sulcova, P.; Trojan, M.

    2004-01-01

    The research of our laboratory is focused on investigation of special inorganic pigments, mainly on ceramic pigments. many pigments used just now are questionable from the hygienic point of view. The fact that the most of the pigments contain problematic elements opens necessity of substitution of pigments containing toxic metals (chromium). Yellow ceramic pigments commonly used such as Pb 2 Sb 2 O 7 , PbCrO 4 and CdS are now being expelled from the market because of their toxicity. For this reason the main attention has been directed to the synthesis of new inorganic compounds mainly with yellow, orange and red colour hues, which can be used as pigments for colouring of glaze, plastics or building materials. In harmony with this postulate the pigments based on CeO 2 represent new special inorganic pigments with high-temperature stability have been synthesized. The commercial significance is in thermal, chemical and light stability, combined with their low toxicity. (author)

  17. True bursal pigmented villonodular synovitis

    International Nuclear Information System (INIS)

    Abdelwahab, Ibrahim Fikry; Kenan, Samuel; Steiner, German C.; Abdul-Quader, Mohammed

    2002-01-01

    We describe two cases of pigmented villonodular synovitis affecting true bursae. This study was also designed to discuss the term ''pigmented villonodular bursitis'', not confined to true synovial bursae, sometimes creating misunderstanding. (orig.)

  18. Synthesis of new environment-friendly yellow pigments

    International Nuclear Information System (INIS)

    Furukawa, Shinya; Masui, Toshiyuki; Imanaka, Nobuhito

    2006-01-01

    New inorganic pigments based on amorphous cerium tungstate, Ce 1-x M x W 2 O 8 (M = Zr or Ti, 0 ≤ x ≤ 0.6), were synthesized and their color properties were characterized from the viewpoint of possible ecological inorganic pigments. The Ce 1-x M x W 2 O 8 materials absorb the visible and the ultraviolet light under 500 nm efficiently, which is originated in the O 2p -Ce 4f and the O 2p -W 5d double charge transfer transitions, and, as a result, the pigments can show a brilliant yellow color. The optical absorption edge wavelength of these pigments depends on the Zr or Ti content, and the effective yellow hue was observed at x = 0.2 for both pigments. The color properties of the present pigments suggest that they have a potential to be applied as a satisfactory pigment for paints. Furthermore, these pigments can be prepared by a simple co-precipitation method. They are inert and safe and do not produce side effects in the human body because they are composed of non-toxic and safe elements

  19. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  20. Swapping one red pigment for another.

    Science.gov (United States)

    Davies, Kevin M

    2015-01-01

    Betalains are bright red and yellow pigments, which are produced in only one order of plants, the Caryophyllales, and replace the more familiar anthocyanin pigments. The evolutionary origin of betalain production is a mystery, but a new study has identified the first regulator of betalain production and discovered a previously unknown link between the two pigment pathways.

  1. Modification of cadmium pigments for colouring of polyolefins

    International Nuclear Information System (INIS)

    Kalinskaya, T.V.; Livshits, I.M.

    1976-01-01

    Modification conditions are studied of cadmium pigments, obtained by different methods, aliphatic acids(C 5 , C 8 and C 17 ). It is found, that cadmium pigments can adsorb acids with the number of atoms of carbon not less than 8. Stearic acid adsorption on lemon cadmium pigment taken as an example has shown the efficiency of pigment modification influence on its dispersancy in non-polar medium. Modification of yellow cadmium pigments of stearic acid makes possible to obtain pigment output forms ensuring a good particle distribution during polyolefine colouring

  2. The penetration depth and lateral distribution of pigment related to the pigment grain size and the calendering of paper

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Schueler, B.; Tullander, E.; Oestling, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2002-01-01

    The interaction of ink and newspaper has been investigated and the specific question of penetration of ink into the paper has been addressed with a nuclear microprobe using particle induced X-ray emission. The penetration depth of the newsprint is a critical factor in terms of increasing the quality of newsprint and minimising the amount of ink used. The objective of the experiment was to relate the penetration depth of pigment with the calendering of the paper. The dependence of the penetration depth on the pigment grain size was also studied. To study the penetration depth of pigment in paper, cyan ink with Cu as a tracer of the coloured pigment was used. For the study of the penetration depth dependence of pigment size, specially grounded Japanese ink with well-defined pigment grain size was used. This was compared to Swedish ink with pigment grains with normal size-distribution. The results show that the calendering of the paper considerably affects the penetration depth of ink

  3. Ozone Sensitivity and Catalase Activity in Pigmented and Non-Pigmented Strains of Serratia Marcescens.

    Science.gov (United States)

    de Ondarza, José

    2017-01-01

    Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia 's virulence genes and defenses is therefore valuable. Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 - 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H 2 O 2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens .

  4. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  5. Production of Monascus-like pigments

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method for producing one or more Monascus-like pigment composition from Penicillium species comprising: a) providing a cultivation medium comprising a high concentration of C-and N-sources and a high C/N molar ratio, b) adjusting pH to about 5 to 8, c) inoculati...... as colouring agents in food items or non food items. The inventions further relates to Monascus-like pigment composition obtainable by a method of the inventions as well as use of the pigments....

  6. True bursal pigmented villonodular synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahab, Ibrahim Fikry [Department of Radiology, New York Methodist Hospital, Affiliated with New York Hospital-Cornell Medical Center, Brooklyn, NY (United States); Kenan, Samuel [Department of Orthopedics, New York University Medical Center, NY (United States); Steiner, German C. [Department of Pathology, Hospital for Joint Diseases/Orthopedic Institute, New York, NY (United States); Abdul-Quader, Mohammed [Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY (United States)

    2002-06-01

    We describe two cases of pigmented villonodular synovitis affecting true bursae. This study was also designed to discuss the term ''pigmented villonodular bursitis'', not confined to true synovial bursae, sometimes creating misunderstanding. (orig.)

  7. Crystalline Organic Pigment-Based Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu

    2017-07-05

    Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.

  8. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  9. Familial occurrence of pigment dispersion syndrome.

    Science.gov (United States)

    Bovell, A M; Damji, K F; Dohadwala, A A; Hodge, W G; Allingham, R R

    2001-02-01

    Pigment dispersion syndrome affects up to 4% of the white population. It is characterized by the presence of transillumination defects, Krukenberg's spindle and dense trabecular meshwork pigmentation. Open-angle glaucoma will develop in as many as 50% of affected patients. In this study we describe the familial occurrence of pigment dispersion syndrome in six North American pedigrees and the phenotypic characteristics with respect to pigment dispersion syndrome and glaucoma. Probands with pigment dispersion syndrome were identified in glaucoma clinics at university eye centres in Ottawa and Durham, NC. Families with two or more affected members were evaluated. All willing members in each family underwent a thorough clinical examination and were classified as affected with pigment dispersion syndrome, suspect or unaffected. The previous medical records were reviewed to obtain the past medical and ocular history, including risk factors for glaucoma. All six families are white. Three families show at least two generations of affected members. Of the 43 subjects examined 58% were women. All 14 affected members showed moderate to heavy trabecular meshwork pigmentation and either Krukenberg's spindle or transillumination defects. The affected members were also considerably more myopic (mean spherical equivalent for the right eye -4.72 dioptres) than the suspect group or the unaffected group (mean spherical equivalent -0.79 D and +1.19 D respectively) (p pigment dispersion syndrome. Our ultimate goal is to identify the gene(s) that causes this disorder in order to clarify its molecular etiology and pathophysiology. This may give rise to a molecular classification of the disease as well as provide the foundation for genetic testing and new treatment approaches.

  10. Pigmented xerodermoid - Report of three cases

    Directory of Open Access Journals (Sweden)

    Das Jayanta Kumar

    2005-01-01

    Full Text Available Pigmented xerodermoid, a rare genodermatosis, presents with clinical features and pathology similar to xeroderma pigmentosum, but at a later age. DNA repair replication is normal, but there is total depression of DNA synthesis after exposure to UV radiation. Two siblings in their teens and a man in his thirties with features of pigmented xerodermoid, e.g. photophobia, freckle-like lesions, keratoses, dryness of skin, and hypo- and hyper-pigmentation, are described. Although classically the onset of pigmented xerodermoid is said to be delayed till third to fourth decade of life, it seems the disease may appear earlier in the tropics. Early diagnosis and management could be life-saving.

  11. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  12. Populists in Parliament : Comparing Left-Wing and Right-Wing Populism in the Netherlands

    NARCIS (Netherlands)

    Otjes, Simon; Louwerse, Tom

    2015-01-01

    In parliament, populist parties express their positions almost every day through voting. There is great diversity among them, for instance between left-wing and right-wing populist parties. This gives rise to the question: is the parliamentary behaviour of populists motivated by their populism or by

  13. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  14. Key factors for UV curable pigment dispersions

    International Nuclear Information System (INIS)

    Magny, B.; Pezron, E.; Ciceron, P.H.; Askienazy, A.

    1999-01-01

    UV oligomers with good pigment dispersion are needed to allow good formulation flexibility and possibility to apply thinner films. Pigment dispersion mainly depends on three phenomena: the wetting of agglomerates, the breakage of agglomerates by mechanical stress and the stabilization of smaller agglomerates and primary particles against flocculation. It has been shown that oligomers with low viscosity and low surface tension induce a good pigment wetting. Examples of monomers and oligomers for good pigment dispersion are given

  15. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  16. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. The gecko visual pigments. The behavior of opsin.

    Science.gov (United States)

    Crescitelli, F

    1979-05-01

    The 521-pigment extracted out of the retina of the Tokay gecko has the typical stereospecificity of the vertebrate visual pigments. This is true for the pigment in the chloride-depleted, "blue-shifted" state as well as for the normal pigment with added chloride. While in the chloride-deficient state, pigment regeneration occurred with both 11-cis- and 9-cis-retinals and the regenerated photopigments were also in the blue-shifted, chloride-depleted state. As with the native pigment, these regenerated pigments were bathochromically shifted to their normal positions by the addition of chloride. Chloride-deficient opsin by itself also responded to chloride for the pigment regenerated with 11-cis-retinal from such chloride-treated opsin was in the normal 521-position. Regeneration was always rapid, reaching completion in less than 5 min, and was significantly faster than for cow rhodopsin regenerating under the same conditions. This rapid rate was found with or without chloride, with both 11-cis- and 9-cis-retinals and in the presence of the sulfhydryl poison, p-hydroxymercuribenzoate (PMB). Like the native chloride-deficient pigment, the regenerated chloride-depleted photopigments responded to PMB by a blue shift beyond the position of the chloride-deficient state. The addition of chloride to these "poisoned" regenerated pigments caused a bathochromic shift of such magnitude as to indicate a repair of both the PMB and chloride-deficient blue shift. In this discussion the possible implications of these results to phylogenetic considerations are considered as well as to some molecular properties of the 521-pigment.

  18. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  19. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2009-01-01

    A non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents theA non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to

  20. Microscopic Analysis of Pigments Extracted from Spalting Fungi

    Directory of Open Access Journals (Sweden)

    Sarath M. Vega Gutierrez

    2017-03-01

    Full Text Available Pigments that are currently available in the market usually come from synthetic sources, or, if natural, often need mordants to bind to the target substrate. Recent research on the fungal pigment extracts from Scytalidium cuboideum, Scytalidium ganodermophthorum, Chlorociboria aeruginosa, and Chlorociboria aeruginascens have been shown to successfully dye materials, like wood, bamboo, and textiles, however, there is no information about their binding mechanisms. Due to this, a microscopic study was performed to provide information to future manufacturers interested in these pigments. The results of this study show that S. ganodermophthorum and C. aeruginosa form an amorphous layer on substrates, while S. cuboideum forms crystal-like structures. The attachment and morphology indicate that there might be different chemical and physical interactions between the extracted pigments and the materials. This possibility can explain the high resistance of the pigments to UV light and color fastness that makes them competitive against synthetic pigments. These properties make these pigments a viable option for an industry that demands natural pigments with the properties of the synthetic ones.

  1. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    Science.gov (United States)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in

  2. Gingival Pigmentation Affected by Smoking among Different Age Groups: A Quantitative Analysis of Gingival Pigmentation Using Clinical Oral Photographs.

    Science.gov (United States)

    Kato, Tomotaka; Mizutani, Shinsuke; Takiuchi, Hiroya; Sugiyama, Seiichi; Hanioka, Takashi; Naito, Toru

    2017-08-04

    The presence of any age-related differences in gingival pigmentation associated with smoking, particularly in a young population, remains to be fully investigated. The purpose of this study was to determine the age-related differences in smoking gingival pigmentation. Gingival pigmentation was analyzed using the gingival melanosis record (GMR) and Hedin's classification with frontal oral photographs taken at 16 dental offices in Japan. Participants were categorized into 10-year age groups, and their baseline photographs were compared. In addition, to evaluate the effect of smoking cessation on gingival pigmentation, subjects were divided into a former smoker group (stopped smoking) and current smoker group. A total of 259 patients 19 to 79 years of age were analyzed. People in their 30s showed the most widespread gingival pigmentation. In addition, subjects in their 20s showed a weak effect of smoking cessation on gingival pigmentation. These findings suggested that the gingival pigmentation induced by smoking was more remarkable in young people than in middle-aged people. This information may be useful for anti-smoking education, especially among young populations with a high affinity for smoking.

  3. PRODUCTION OF MONASCUS-LIKE AZAPHILONE PIGMENT

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to the field of biotechnological production of polyketide based colorants from filamentous fungi, in particular a method for preparing a biomass comprising a Monascus-like pigment composition from a nontoxigenic and non-pathogenic fungal source. The present invention...... further relates to use of the Monascus-like pigment composition as a colouring agent for food items and/or non-food items, and a cosmetic composition comprising the Monascus-like pigment composition....

  4. Pigmented xerodermoid - Report of three cases

    OpenAIRE

    Das Jayanta Kumar; Gangopadhyay Asok Kumar

    2005-01-01

    Pigmented xerodermoid, a rare genodermatosis, presents with clinical features and pathology similar to xeroderma pigmentosum, but at a later age. DNA repair replication is normal, but there is total depression of DNA synthesis after exposure to UV radiation. Two siblings in their teens and a man in his thirties with features of pigmented xerodermoid, e.g. photophobia, freckle-like lesions, keratoses, dryness of skin, and hypo- and hyper-pigmentation, are described. Although classically the on...

  5. Production of Monascus-like azaphilone Pigment

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to the field of biotechnological production of polyketide based colorants from filamentous fungi, in particular a method for preparing a biomass comprising a Monascus-like pigment composition from a nontoxigenic and non-pathogenic fungal source. The present invention...... further relates to use of the Monascus-like pigment composition as a colouring agent for food items and/or non-food items, and a cosmetic composition comprising the Monascus-like pigment composition....

  6. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  7. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies.

    Science.gov (United States)

    McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D

    2017-09-01

    Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  9. A single gene causes an interspecific difference in pigmentation in Drosophila.

    Science.gov (United States)

    Ahmed-Braimah, Yasir H; Sweigart, Andrea L

    2015-05-01

    The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species. Copyright © 2015 by the Genetics Society of America.

  10. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  11. Seperation, identification and analysis of pigment (melanin ...

    African Journals Online (AJOL)

    Nine strains among 180 Streptomyces isolates produce a diffusible dark brown pigment on both peptone-yeast extract agar and synthetic tyrosine-agar. They also show the positive reaction to Ltyrosine or L-dopa substrates. The pigment has been referred to be as merely as dark brown watersoluble pigment, as melanoid or ...

  12. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction.

    Science.gov (United States)

    Salvadó, N; Pradell, T; Pantos, E; Papiz, M Z; Molera, J; Seco, M; Vendrell-Saz, M

    2002-07-01

    The scientific investigation of ancient paintings gives a unique insight into ancient painting techniques and their evolution through time and geographic location. This study deals with the identification of the green pigments used by one of the most important Catalan masters in Gothic times, Jaume Huguet. Other pigments and materials have also been characterized by means of conventional techniques such as optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Synchrotron radiation X-ray diffraction has been used to produce maps of phases at a spatial resolution of 100 microm across chromatic layers.

  13. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  14. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  15. Proton beam modification of lead white pigments

    International Nuclear Information System (INIS)

    Beck, L.; Gutiérrez, P.C.; Miserque, F.; Thomé, L.

    2013-01-01

    Pigments and paint materials are known to be sensitive to particle irradiation. Occasionally, the analysis of paintings by PIXE can induce a slight or dark stain depending on the experimental conditions (beam current, dose, particle energy). In order to understand this discoloration, we have irradiated various types of art white pigments – lead white (hydrocerussite and basic lead sulfate), gypsum, calcite, zinc oxide and titanium oxide – with an external 3 MeV proton micro-beam commonly used for PIXE experiments. We have observed various sensitivities depending on the pigment. No visible change occurs for calcite and titanium oxide, whereas lead white pigments are very sensitive. For the majority of the studied compounds, the discoloration is proportional to the beam current and charge. The damage induced by proton beam irradiation in lead white pigments was studied by micro-Raman and XPS spectroscopies. Structural modifications and dehydration were detected. Damage recovery was investigated by thermal treatment and UV-light irradiation. The discoloration disappeared after one week of UV illumination, showing that PIXE experiments could be safely undertaken for pigments and paintings

  16. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight

    Science.gov (United States)

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M.; Luis Sanz, José; Buscalioni, Ángela D.

    2015-01-01

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers. PMID:26440221

  17. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles.

    Science.gov (United States)

    Lindgren, Johan; Sjövall, Peter; Carney, Ryan M; Uvdal, Per; Gren, Johan A; Dyke, Gareth; Schultz, Bo Pagh; Shawkey, Matthew D; Barnes, Kenneth R; Polcyn, Michael J

    2014-02-27

    Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.

  18. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  19. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  20. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    Science.gov (United States)

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.

  1. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  2. DNA damage in isolated rat hepatocytes exposed to C.I. pigment orange 5 and C.I. pigment yellow 12 by the alkaline comet assay

    DEFF Research Database (Denmark)

    Møller, P; Wallin, Håkan; Grunnet, N

    1998-01-01

    The induction of DNA damage by commonly used printing ink pigments, C.I. pigment orange 5 (C.I. 12075) and C.I. pigment yellow 12 (C.I. 21090), was investigated in freshly isolated rat hepatocytes with the comet assay. C.I. pigment yellow 12 is a 3,3'-dichlorobenzidine-based diarylide pigment...

  3. Impact of Pigments on Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Ernestas Ivanauskas

    2011-04-01

    Full Text Available We describe an impact of using iron oxide pigment on self-compacting concrete (SCC properties. We have experimented with adding portions of iron oxide pigment from 3 % to 6 % into cement paste. A few alternative pigments (chromic oxide and iron oxide hydroxide were used for performing the same experiments. The impact of these pigments on a normal cement paste is described in this paper. We demonstrate that iron oxide pigment reduces the need for water in a normal cement paste. However, adding the pigment also reduces the compressive strength of concrete up to 20 %. The concrete specimens were tested in various time spans, i.e. 1 day to 28 days, by keeping them in 20 ± 2 ºC water – normal consolidation regimen. Some of the specimens were processed in steam chamber, at 60 ºC in order to make the process of the cement hydration faster, as well as to estimate an impact of active SiO2 proportion in ash on SCC properties. We show that using iron oxide pigment for SCC mixture increases the slump-flow property of concrete mix up to 5 %. Experiments with solidified concrete have demonstrated that iron oxide diminishes water absorption up to 6 % and decreases open concrete porosity that makes concrete resistant against freezing. Article in Lithuanian

  4. Modeling and Optimization for Morphing Wing Concept Generation

    Science.gov (United States)

    Skillen, Michael D.; Crossley, William A.

    2007-01-01

    This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results.

  5. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  6. Color-producing mechanism of morpho butterfly wings and biomimetics; Cho no hasshoku kiko to biomimetics

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-07-01

    Although the synthetic dyes and pigments originating in the 19th century are now at the height of their prosperity, there is an earnest hope for technology for realizing `supercolor.` If it is presumed that the features of such supercolor are to be found in outstanding clearness and high resistance to fading in the presence of ultraviolet rays, etc., the supercolor will be quite tough to deal with. When attention is steered toward the living world, however, there are cases of easily producing such by morphogenesis at the level of several tens of nanometers. In this paper, the development of a novel material is presented from the viewpoint of biomimetic engineering that the author et al. are engaged in. The coloring on the wings of a butterfly Morpho Sulkowskyi of South American origin is the product of interaction between light and the physical, microscopic structure of scales, and the coloring is extremely clear and remains free of fading except in case the microstructure is destroyed. This mechanism is applied for the development of a supercolor fiber. As the result, a structurally coloring fiber is created by stretching a molten composite string. In this effort, reformed polyester and polyamide different in refraction factor are used in place of substance layers and air layers on the butterfly wings. (NEDO)

  7. PEGIDA : fearful patriots or right-wing radicals?

    OpenAIRE

    Glasmeier, Ruth Katharina

    2016-01-01

    Right-wing movements have become more popular in recent years. This shows in the increase of right-wing populist or right-wing radical parties in different European governments. Despite this European wide trend, Germany did not have a successful right-wing movement. This changed with the creation of PEGIDA and the AfD. Since this type of movement is relatively new in Germany, this thesis aims to understand PEGIDA. The thesis aims to answer the question of Who are PEGIDA? To do so, it will...

  8. Microbial Production of Food Grade Pigments

    Directory of Open Access Journals (Sweden)

    Laurent Dufossé

    2006-01-01

    Full Text Available The controversial topic of synthetic dyes in food has been discussed for many years. The scrutiny and negative assessment of synthetic food dyes by the modern consumer have raised a strong interest in natural colouring alternatives. Nature is rich in colours (minerals, plants, microalgae, etc., and pigment-producing microorganisms (fungi, yeasts, bacteria are quite common. Among the molecules produced by microorganisms are carotenoids, melanins, flavins, quinones, and more specifically monascins, violacein or indigo. The success of any pigment produced by fermentation depends upon its acceptability on the market, regulatory approval, and the size of the capital investment required to bring the product to market. A few years ago, some expressed doubts about the successful commercialization of fermentation-derived food grade pigments because of the high capital investment requirements for fermentation facilities and the extensive and lengthy toxicity studies required by regulatory agencies. Public perception of biotechnology-derived products also had to be taken into account. Nowadays some fermentative food grade pigments are on the market: Monascus pigments, astaxanthin from Xanthophyllomyces dendrorhous, Arpink Red from Penicillium oxalicum, riboflavin from Ashbya gossypii, b-carotene from Blakeslea trispora. The successful marketing of pigments derived from algae or extracted from plants, both as a food colour and a nutritional supplement, reflects the presence and importance of niche markets in which consumers are willing to pay a premium for »all natural ingredients«.

  9. Studies on pigments of the myxomycete Physarum nudum. II. Separation and optical properties of the pigments from plasmodia cultured in darkness

    Directory of Open Access Journals (Sweden)

    L. Raczkowski

    2015-01-01

    Full Text Available The paper presents the data on Separation and some optical properties of the pigments obtained from the plasmodium of the myxomycete Physarum nudum grown in the dark. Pigment Separation was performed by means of thin-layer chromatography with celulose MN 300 as adsorbent and with the solvent: tert.-butylalcohol, H2O, 3N NH4OH at the ratio 5:2:1 In these conditions the chromatograms revealed 12 coloured bands from which pigments were eluted and their absorption spectra as well as the spectra of fluorescence emission were determined. The isolated pigments differ from one another by their physical properties (different Rf values, localization of absorption maxima, and behaviour in acid solution. Nevertheless, certain analogies perceptible between particular pigments per-mitted to distinguish 3 families of the studied pigments demonstrating similar properties.

  10. Fish pigmentation and the melanocortin system.

    Science.gov (United States)

    Cal, Laura; Suarez-Bregua, Paula; Cerdá-Reverter, José Miguel; Braasch, Ingo; Rotllant, Josep

    2017-09-01

    The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Pigment dispersion syndrome masquerading as acute anterior uveitis.

    Science.gov (United States)

    Gonzalez-Gonzalez, Luis Alonso; Rodríguez-García, Alejandro; Foster, C Stephen

    2011-06-01

    Signs and symptoms of pigment dispersion may be confused with those of acute anterior uveitis. This case series is intended to aid the ophthalmologist in the clinical differentiation between these two disorders. The authors present a series of 6 patients with pigment dispersion who were initially diagnosed as having acute anterior uveitis and treated with anti-inflammatory medication, including corticosteroids. The patients were referred for a second opinion due to poor or no response to therapy and were found to have pigment dispersion instead of uveitis. Symptoms of pigment dispersion may consist of blurred vision, redness, ocular pain, and photophobia, all of which are also symptoms of acute anterior uveitis. These symptoms, plus the fact that pigment floating in the aqueous humor can be mistaken for inflammation, make diagnosis challenging. Moreover, the possible co-existence of true anterior uveitis and pigment dispersion makes the diagnosis and treatment more difficult.

  12. The molecular origin and evolution of dim-light vision in mammals.

    Science.gov (United States)

    Bickelmann, Constanze; Morrow, James M; Du, Jing; Schott, Ryan K; van Hazel, Ilke; Lim, Steve; Müller, Johannes; Chang, Belinda S W

    2015-11-01

    The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin--the vertebrate visual pigment mediating the first step in phototransduction at low-light levels--via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Multi-wing hyperchaotic attractors from coupled Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.

    2009-01-01

    This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.

  14. Light-induced vegetative anthocyanin pigmentation in Petunia

    OpenAIRE

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins...

  15. Interspecific aggression, not interspecific mating, drives character displacement in the wing coloration of male rubyspot damselflies (Hetaerina)

    Science.gov (United States)

    Drury, J. P.; Grether, G. F.

    2014-01-01

    Traits that mediate intraspecific social interactions may overlap in closely related sympatric species, resulting in costly between-species interactions. Such interactions have principally interested investigators studying the evolution of reproductive isolation via reproductive character displacement (RCD) or reinforcement, yet in addition to reproductive interference, interspecific trait overlap can lead to costly between-species aggression. Previous research on rubyspot damselflies (Hetaerina spp.) demonstrated that sympatric shifts in male wing colour patterns and competitor recognition reduce interspecific aggression, supporting the hypothesis that agonistic character displacement (ACD) drove trait shifts. However, a recent theoretical model shows that RCD overshadows ACD if the same male trait is used for both female mate recognition and male competitor recognition. To determine whether female mate recognition is based on male wing coloration in Hetaerina, we conducted a phenotype manipulation experiment. Compared to control males, male H. americana with wings manipulated to resemble a sympatric congener (H. titia) suffered no reduction in mating success. Thus, female mate recognition is not based on species differences in male wing coloration. Experimental males did, however, experience higher interspecific fighting rates and reduced survival compared to controls. These results greatly strengthen the case for ACD and highlight the mechanistic distinction between ACD and RCD. PMID:25339724

  16. Clinical characteristics of pigment dispersion syndrome in Chinese patients.

    Science.gov (United States)

    Qing, G; Wang, N; Tang, X; Zhang, S; Chen, H

    2009-08-01

    To report clinical findings and characteristics of pigment dispersion syndrome (PDS) in Chinese patients. PDS suspects with any one of the following signs: corneal endothelial pigmentation, iris transillumination defects (ITDs), pigment granule dusting on anterior iris surface, posterior iris bowing, trabecular meshwork (TM) pigmentation, and lenticular or zonular pigmentation were evaluated for PDS at the glaucoma specialty clinic at Beijing Tongren Eye Centre. Diagnosis of PDS required at least two of the following signs: Krukenberg spindle, moderate-to-heavy TM pigmentation (>or=Scheie II) and any degree of lenticular and/or zonular pigmentation. Eighteen patients (12 males and six females) were identified as having PDS during a 1-year period, with mean age of 35.5+/-7.0 years (range, 22-49). All but two eyes from two patients had myopia of -0.5 D or greater, with mean spherical equivalent power of -5.20+/-5.80 D (range, -24.75+/-0.5). The average IOP at initial diagnosis was 33.7+/-10.5 mm Hg (range, 16-56). Fifteen patients (83.3%) were found to have pigmentary glaucoma at their initial diagnosis. All patients showed homogenous increased TM pigmentation as well as lenticular and/or zonular pigmentation. 61.1% of patients (11 of 18) had Krukenberg spindle. None of the patients exhibited spoke-like midperipheral ITDs except for trace-isolated transillumination in both eyes of the two patients. The most common clinical findings in Chinese PDS patients include homogeneous TM pigmentation and pigment granule dusting on lens zonules and/or posterior peripheral lens surface. ITDs are uncommon in Chinese patients with PDS.

  17. Pigmented skin disorders: Evaluation and treatment

    NARCIS (Netherlands)

    Kroon, M.W.

    2015-01-01

    Pigmentary disorders are disturbances of human skin color. Minor changes in the cellular physiology of the skin can dramatically affect pigment production in positive or negative manner. In this these, associated diseases, therapeutical options and disease parameters for the pigmentation disorder

  18. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma.

    Science.gov (United States)

    Mierlo, Camille Van; Pinto, Luis Abegão; Stalmans, Ingeborg

    2015-01-01

    Iatrogenic pigment dispersion syndrome generally originates from a repetitive, mechanical trauma to the pigmented posterior epithelium of the iris. This trauma can arise after intraocular surgery, most commonly due to an abnormal contact between the intraocular lens (IOL) and the iris. Whether surgical removal of this primary insult can lead to a successful intraocular pressure (IOP) control remains unclear. Case-series. Patients with IOP elevation and clinical signs of pigment dispersion were screened for a diagnosis of iatrogenic IOL-related pigment dispersion. Three patients in which the IOL or the IOL-bag complex caused a pigment dispersion through a repetitive iris chafing were selected. In two cases, replacement of a sulcus-based single-piece IOL (patient 1) or a sub-luxated in-the-bag IOL (patient 2) by an anterior-chamber (AC) iris-fixed IOL led to a sustained decrease in IOP. In the third case, extensive iris atrophy and poor anatomical AC parameters for IOL implantation precluded further surgical intervention. IOL-exchange appears to be a useful tool in the management of iatrogenic pigment dispersion glaucoma due to inappropriate IOL implantation. This cause-oriented approach seems to be effective in controlling IOP, but should be offered only if safety criteria are met. How to cite this article: Van Mierlo C, Abegao Pinto L, Stalmans I. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma. J Curr Glaucoma Pract 2015;9(1):28-32.

  19. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  20. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    Science.gov (United States)

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    Directory of Open Access Journals (Sweden)

    Robert A. Huber

    2017-12-01

    Full Text Available This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the association between populist parties and mutual constraints is a consequence of the populist element and thus, we expect no differences between the left-wing and right-wing parties. We test our expectations against data from 30 European countries between 1990 and 2012. Our empirical findings support the argument for the proposed differences regarding minority rights and, to a lesser extent, the proposed similarities regarding mutual constraints. Therefore we conclude that, when examining the relationship between populism and democracy, populism should not be considered in isolation from its host ideology.

  2. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  3. Skin Pigmentation Kinetics after Exposure to Ultraviolet A

    DEFF Research Database (Denmark)

    Ravnbak, M.H.; Philipsen, P.A.; Wiegell, S.R.

    2009-01-01

    Multiple exposures to ultraviolet radiation (UVR) are the norm in nature and phototherapy. However, studies of the kinetics of pigmentation following UVA exposure have included only fair-skinned persons. The aim of this study was to investigate steady-state pigmentation and fading in 12 Scandinav......Multiple exposures to ultraviolet radiation (UVR) are the norm in nature and phototherapy. However, studies of the kinetics of pigmentation following UVA exposure have included only fair-skinned persons. The aim of this study was to investigate steady-state pigmentation and fading in 12...... Scandinavians and 12 Indians/Pakistanis after 6 and 12 exposures on the back using broadband UVA and UVA1 with equal sub-minimal melanogenic doses (individually predetermined). Pigmentation was measured by skin reflectance at 555 and 660 urn. The UV dose to minimal pigmentation was higher in dark......-skinned persons after a single broadband UVA exposure, but independent of pigmentation/skin type after single and multiple UVA1 exposures. To elicit minimal melanogenic doses after 6 and 12 exposures, every dose is lowered by a factor of 2 and 3, respectively, but the cumulative dose increases three- and four...

  4. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  5. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  6. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  7. Pigment Production by the Edible Filamentous Fungus Neurospora Intermedia

    Directory of Open Access Journals (Sweden)

    Rebecca Gmoser

    2018-02-01

    Full Text Available The production of pigments by edible filamentous fungi is gaining attention as a result of the increased interest in natural sources with added functionality in the food, feed, cosmetic, pharmaceutical and textile industries. The filamentous fungus Neurospora intermedia, used for production of the Indonesian food “oncom”, is one potential source of pigments. The objective of the study was to evaluate the fungus’ pigment production. The joint effect from different factors (carbon and nitrogen source, ZnCl2, MgCl2 and MnCl2 on pigment production by N. intermedia is reported for the first time. The scale-up to 4.5 L bubble column bioreactors was also performed to investigate the effect of pH and aeration. Pigment production of the fungus was successfully manipulated by varying several factors. The results showed that the formation of pigments was strongly influenced by light, carbon, pH, the co-factor Zn2+ and first- to fourth-order interactions between factors. The highest pigmentation (1.19 ± 0.08 mg carotenoids/g dry weight biomass was achieved in a bubble column reactor. This study provides important insights into pigmentation of this biotechnologically important fungus and lays a foundation for future utilizations of N. intermedia for pigment production.

  8. Preparation, characterization and application of some anti- corrosive molybdate pigments

    International Nuclear Information System (INIS)

    Abd El-Ghaffar, M.A.; El-Sawy, S.M.; Ahmed, N.M.

    2005-01-01

    Some molybdate pigments of single and mixed metal ions, namely, zinc, calcium and zinc-calcium molybdates were prepared, characterized and evaluated according to international standard methods. The evaluated pigments were incorporated in some paint formulations. The physicomechanical, chemical and corrosion protective properties of the paint films were measured; this was done in comparison with a commercial imported molybdate pigment. It was found that, the prepared pigments under investigation are fine white crystalline powders of suitable pigment properties. They can be successfully used as environmentally acceptable anti corrosive pigments. They can replace satisfactorily the similar commercial imported pigment and possess adequate or superior properties against corrosion

  9. Alternative Carrier Solvents for Pigments Extracted from Spalting Fungi

    Directory of Open Access Journals (Sweden)

    Lauren Pittis

    2018-05-01

    Full Text Available The use of both naturally occurring and synthetic pigmented wood has been prevalent in woodcraft for centuries. Modern manifestations generally involve either woodworkers’ aniline dyes, or pigments derived from a special class of fungi known as spalting fungi. While fungal pigments are more renewable than anilines and pose less of an environmental risk, the carrier required for these pigments—dichloromethane (DCM—is both problematic for humans and tends to only deposit the pigments on the surface of wood instead of evenly within the material. Internal coloration of wood is key to adoption of a pigmenting system by woodworkers. To address this issue, five solvents that had moderate solubility with the pigments extracted from Chlorociboria aeruginosa and Scytalidium cuboideum were identified, in the hopes that a reduction in solubility would result in a greater amount of the pigment deposited inside the wood. Of the tested solvents, acetonitrile was found to produce the highest internal color in ash, Douglas-fir, madrone, mountain hemlock, Port-Orford cedar, Pacific silver fir, red alder and sugar maple. While these carrier solvents are not ideal for extracting the pigments from the fungi, acetonitrile in particular does appear to allow for more pigment to be deposited within wood. The use of acetonitrile over DCM offers new opportunities for possible industrial spalting applications, in which larger pieces of wood could be uniformly pigmented and sold to the end user in larger quantities than are currently available with spalted wood.

  10. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  11. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  12. Light-induced vegetative anthocyanin pigmentation in Petunia

    Science.gov (United States)

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris×(Petunia axillaris×Petunia hybrida cv. ‘Rose of Heaven’)]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (Amax). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors. PMID:19380423

  13. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  14. Non-conventional synthesis of ceramic pigments

    International Nuclear Information System (INIS)

    Dziubak, C.; Rutkowski, R.; Gebel, R.

    2003-01-01

    A short characterization of traditional methods of homogenization of components, used to produce ceramic pigments, was presented. Efficient and economic methods are searched to prepare raw material sets for ceramic pigments as alternative methods for the traditional way of wet mixing in ball mill or of dry mixing in the mixer of 'Z' type. The results of research of the use of sol-gel method to achieve these aims are presented. At the present stage of research, carried out on the yellow praseodymium and coral-pink iron-zirconium pigments show that traditional methods are better. (author)

  15. COMPARISON OF A FIXED-WING AND MULTI-ROTOR UAV FOR ENVIRONMENTAL MAPPING APPLICATIONS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2017-08-01

    Full Text Available The advent and evolution of Unmanned Aerial Vehicles (UAVs and photogrammetric techniques has provided the possibility for on-demand high-resolution environmental mapping. Orthoimages and three dimensional products such as Digital Surface Models (DSMs are derived from the UAV imagery which is amongst the most important spatial information tools for environmental planning. The two main types of UAVs in the commercial market are fixed-wing and multi-rotor. Both have their advantages and disadvantages including their suitability for certain applications. Fixed-wing UAVs normally have longer flight endurance capabilities while multi-rotors can provide for stable image capturing and easy vertical take-off and landing. Therefore, the objective of this study is to assess the performance of a fixed-wing versus a multi-rotor UAV for environmental mapping applications by conducting a specific case study. The aerial mapping of the Cors-Air model aircraft field which includes a wetland ecosystem was undertaken on the same day with a Skywalker fixed-wing UAV and a Raven X8 multi-rotor UAV equipped with similar sensor specifications (digital RGB camera under the same weather conditions. We compared the derived datasets by applying the DTMs for basic environmental mapping purposes such as slope and contour mapping including utilising the orthoimages for identification of anthropogenic disturbances. The ground spatial resolution obtained was slightly higher for the multi-rotor probably due to a slower flight speed and more images. The results in terms of the overall precision of the data was noticeably less accurate for the fixed-wing. In contrast, orthoimages derived from the two systems showed small variations. The multi-rotor imagery provided better representation of vegetation although the fixed-wing data was sufficient for the identification of environmental factors such as anthropogenic disturbances. Differences were observed utilising the respective DTMs

  16. Comparison of a Fixed-Wing and Multi-Rotor Uav for Environmental Mapping Applications: a Case Study

    Science.gov (United States)

    Boon, M. A.; Drijfhout, A. P.; Tesfamichael, S.

    2017-08-01

    The advent and evolution of Unmanned Aerial Vehicles (UAVs) and photogrammetric techniques has provided the possibility for on-demand high-resolution environmental mapping. Orthoimages and three dimensional products such as Digital Surface Models (DSMs) are derived from the UAV imagery which is amongst the most important spatial information tools for environmental planning. The two main types of UAVs in the commercial market are fixed-wing and multi-rotor. Both have their advantages and disadvantages including their suitability for certain applications. Fixed-wing UAVs normally have longer flight endurance capabilities while multi-rotors can provide for stable image capturing and easy vertical take-off and landing. Therefore, the objective of this study is to assess the performance of a fixed-wing versus a multi-rotor UAV for environmental mapping applications by conducting a specific case study. The aerial mapping of the Cors-Air model aircraft field which includes a wetland ecosystem was undertaken on the same day with a Skywalker fixed-wing UAV and a Raven X8 multi-rotor UAV equipped with similar sensor specifications (digital RGB camera) under the same weather conditions. We compared the derived datasets by applying the DTMs for basic environmental mapping purposes such as slope and contour mapping including utilising the orthoimages for identification of anthropogenic disturbances. The ground spatial resolution obtained was slightly higher for the multi-rotor probably due to a slower flight speed and more images. The results in terms of the overall precision of the data was noticeably less accurate for the fixed-wing. In contrast, orthoimages derived from the two systems showed small variations. The multi-rotor imagery provided better representation of vegetation although the fixed-wing data was sufficient for the identification of environmental factors such as anthropogenic disturbances. Differences were observed utilising the respective DTMs for the mapping

  17. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  18. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  19. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  20. Enological Tannin Effect on Red Wine Color and Pigment Composition and Relevance of the Yeast Fermentation Products

    Directory of Open Access Journals (Sweden)

    Ignacio García-Estévez

    2017-11-01

    Full Text Available Enological tannins are widely used in the winemaking process either to improve different wine characteristics (color stability, among others or to compensate for low tannin levels. In this work, the influence of the addition of two different enological tannins, mainly composed of hydrolysable (ellagitannins and condensed tannins, on the evolution of color and pigment composition of two different types of model systems containing the five main grape anthocyanins was studied. In addition, the effect of the addition of an enological tannin on the color and pigment composition of red wines made from Vitis vinifera L. cv Tempranillo grapes was also studied by high-performance liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-MS. Results showed that, in model systems, the addition of the enological tannin favored the formation of anthocyanin-derived pigments, such as A-type and B-type vitisins and flavanol-anthocyanin condensation products, provided that the yeast precursors were previously supplied. Moreover, model systems containing the enological tannins were darker and showed higher values of chroma at the end of the study than control ones. The higher formation of these anthocyanin-derived pigments was also observed in the red wines containing the enological tannin. Moreover, these wine also showed lower lightness (L* values and higher chroma (C*ab values than control wines, indicating a higher stabilization of color.

  1. Enological Tannin Effect on Red Wine Color and Pigment Composition and Relevance of the Yeast Fermentation Products.

    Science.gov (United States)

    García-Estévez, Ignacio; Alcalde-Eon, Cristina; Puente, Víctor; Escribano-Bailón, M Teresa

    2017-11-23

    Enological tannins are widely used in the winemaking process either to improve different wine characteristics (color stability, among others) or to compensate for low tannin levels. In this work, the influence of the addition of two different enological tannins, mainly composed of hydrolysable (ellagitannins) and condensed tannins, on the evolution of color and pigment composition of two different types of model systems containing the five main grape anthocyanins was studied. In addition, the effect of the addition of an enological tannin on the color and pigment composition of red wines made from Vitis vinifera L. cv Tempranillo grapes was also studied by high-performance liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-MS). Results showed that, in model systems, the addition of the enological tannin favored the formation of anthocyanin-derived pigments, such as A-type and B-type vitisins and flavanol-anthocyanin condensation products, provided that the yeast precursors were previously supplied. Moreover, model systems containing the enological tannins were darker and showed higher values of chroma at the end of the study than control ones. The higher formation of these anthocyanin-derived pigments was also observed in the red wines containing the enological tannin. Moreover, these wine also showed lower lightness (L*) values and higher chroma (C* ab ) values than control wines, indicating a higher stabilization of color.

  2. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  3. 21 CFR 178.3725 - Pigment dispersants.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pigment dispersants. 178.3725 Section 178.3725 Food...

  4. Spanwise transition section for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    A blended wing-body aircraft includes a central body, a wing, and a transition section which interconnects the body and the wing on each side of the aircraft. The two transition sections are identical, and each has a variable chord length and thickness which varies in proportion to the chord length. This enables the transition section to connect the thin wing to the thicker body. Each transition section has a negative sweep angle.

  5. Platelet-Rich Plasma Increases Pigmentation.

    Science.gov (United States)

    Uysal, Cagri A; Ertas, Nilgun Markal

    2017-11-01

    Platelet-rich plasma (PRP) is an autologous solution of plasma containing 4 to 7 times the baseline concentration of human platelets. Platelet-rich plasma has been widely popular in facial rejuvenation to attenuate wrinkles and has been practically used. The authors have been encountering various patients of increased hiperpigmentation following PRP applications that were performed to attenuate the postinflammatory hiperpigmentation especially after laser treatment. The authors have been using PRP for facial rejuvenation in selected patients and in 1 patient the authors have encountered increased pigmentation over the pigmented skin lesions that were present before the application. The authors recommend that the PRP might increase pigmentation especially in the face region and precautions might be taken before and after the application. Platelet-rich plasma should not be used for the treatment of post inflammatory hiperpigmentation.

  6. Hyperspectral remote sensing of plant pigments.

    Science.gov (United States)

    Blackburn, George Alan

    2007-01-01

    The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.

  7. [Primary pigmented breast adenocarcinoma in a male patient].

    Science.gov (United States)

    Dauendorffer, J-N; Pages, C; Abd Alsamad, I; Bagot, M; Fraitag, S

    2013-01-01

    Pigmented mammary tumours are rare. Herein, we report the third case of primary pigmented breast adenocarcinoma in a male patient with clinical mimicking of nodular melanoma of the nipple. A male patient presented with a pigmented nodule of the right nipple. Histological examination of the lesion showed dermal and subcutaneous adenocarcinomatous proliferation. The perilesional stroma contained melanin both inside and outside macrophages, leading us to conclude on primary pigmented breast adenocarcinoma clinically mimicking nodular melanoma of the nipple. Local production of melanin by neoplastic cells in the mammary carcinoma was postulated as the cause of hyperpigmentation of the tumour. Other possible causes are transfer of melanin from overlying melanocytes of the pigmented areolar epidermis to the underlying neoplastic cells, or melanin synthesis by intratumoral melanocytes migrating from the epidermis (which strikes us as the most convincing interpretation for the reported case). Breast adenocarcinoma is a rare tumour in men and may present clinically as a pigmented lesion of the nipple, resulting in the problem of differential diagnosis with primary or metastasised nodular melanoma. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  9. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  10. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  11. Micro-pigmentation: implications for patients and professionals.

    Science.gov (United States)

    Collingridge, Kim; Calcluth, Julie

    In the UK, reconstructive breast surgery is routinely offered to patients undergoing surgery for breast cancer. The results can be excellent, but without a nipple-areola complex the patient can feel incomplete. In response to patient need, an innovative nurse-led micro-pigmentation service has been developed in the authors' NHS trust, which provides women (and men) an opportunity to complete their reconstruction process. With the use of coloured pigments, micro-pigmentation creates a permanent image of a nipple-areola complex, which improves the aesthetic appearance of the surgically-created breast. As with the development of any new nurse-led innovation, the micro-pigmentation service has professional and client implications. Breast cancer can be devastating and may induce many psychological concerns, not least about body image and sexuality. This article addresses these issues, along with professional matters, such as autonomous practice, role expansion and the blurring of clinical boundaries. These factors are considered in relation to the nursing management of the micro-pigmentation service, where patient autonomy is encouraged to promote acceptance of self-image and closure on the breast cancer experience.

  12. Long-distance stone transport and pigment use in the earliest Middle Stone Age

    Science.gov (United States)

    Brooks, Alison S.; Yellen, John E.; Potts, Richard; Behrensmeyer, Anna K.; Deino, Alan L.; Leslie, David E.; Ambrose, Stanley H.; Ferguson, Jeffrey R.; d’Errico, Francesco; Zipkin, Andrew M.; Whittaker, Scott; Post, Jeffrey; Veatch, Elizabeth G.; Foecke, Kimberly; Clark, Jennifer B.

    2018-04-01

    Previous research suggests that the complex symbolic, technological, and socioeconomic behaviors that typify Homo sapiens had roots in the middle Pleistocene methods. Hominins at these sites made prepared cores and points, exploited iron-rich rocks to obtain red pigment, and procured stone tool materials from ≥25- to 50-kilometer distances. Associated fauna suggests a broad resource strategy that included large and small prey. These practices imply notable changes in how individuals and groups related to the landscape and to one another and provide documentation relevant to human social and cognitive evolution.

  13. Pigment Production from Immobilized Monascus sp. Utilizing Polymeric Resin Adsorption

    OpenAIRE

    Evans, Patrick J.; Wang, Henry Y.

    1984-01-01

    Pigment production by the fungus Monascus sp. was studied to determine why Monascus sp. provides more pigment in solid culture than in submerged culture. Adding a sterilized nonionic polymeric adsorbent resin directly to the growing submerged culture did not enhance the pigment production, thus indicating that pigment extraction is probably not a factor. Monascus cells immobilized in hydrogel were studied and exhibited decreased pigment production as a result of immobilization. This result is...

  14. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  15. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  16. Analysis of basidiomycete pigments in situ by Raman spectroscopy.

    Science.gov (United States)

    Tauber, James P; Matthäus, Christian; Lenz, Claudius; Hoffmeister, Dirk; Popp, Jürgen

    2018-02-07

    Basidiomycetes, that is, mushroom-type fungi, are known to produce pigments in response to environmental impacts. As antioxidants with a high level of unsaturation, these compounds can neutralize highly oxidative species. In the event of close contact with other microbes, the enzymatically controlled pigment production is triggered and pigment secretion is generated at the interaction zone. The identification and analysis of these pigments is important to understand the defense mechanism of fungi, which is essential to counteract an uncontrolled spread of harmful species. Usually, a detailed analysis of the pigments is time consuming as it depends on laborious sample preparation and isolation procedures. Furthermore, the applied protocols often influence the chemical integrity of the compound of interest. A possibility to noninvasively investigate the pigmentation is Raman microspectroscopy. The methodology has the potential to analyze the chemical composition of the sample spatially resolved at the interaction zone. After the acquisition of a representative spectroscopic library, the pigment production by basidiomycetes was monitored for during response to different fungi and bacteria. The presented results describe a very efficient noninvasive way of pigment analysis which can be applied with minimal sample preparation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay.

    Science.gov (United States)

    Peraza-Vega, Ricardo I; Castañeda-Sortibrán, América N; Valverde, Mahara; Rojas, Emilio; Rodríguez-Arnaiz, Rosario

    2017-05-01

    The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.

  18. Synthesis of chromium containing pigments from chromium galvanic sludges

    International Nuclear Information System (INIS)

    Andreola, F.; Barbieri, L.; Bondioli, F.; Cannio, M.; Ferrari, A.M.; Lancellotti, I.

    2008-01-01

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr 0.04 Sn 0.97 SiO 5 and green Ca 3 Cr 2 (SiO 4 ) 3 were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr 2 O 3 . The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr 2 O 3

  19. Chemical characterisation of zircon-cadmium sulfoselenide ceramic pigments

    International Nuclear Information System (INIS)

    Gazulla Barreda, M. F.; Rodrigo Edo, M.; Blasco Roca, E.; Orduna Cordero, M.

    2013-01-01

    The present paper addresses the development of a methodology that allows the complete chemical characterisation of zircon cadmium sulfoselenide ceramic pigments including minor and major elements. To develop the methodology, five zircon-cadmium sulfoselenide pigments with different hues were selected, studying the different measurement process steps, from sample preparation to the optimisation of the measurement of the different components of the pigments by spectroscopic techniques (WD-XRF and elemental analysis by combustion and IR detection). The chemical characterisation method developed was validated with synthetic standards prepared from the mixture of certified reference materials and pure oxides because no certified referenced materials of this type of pigments were commercially available. The developed method can be used for a complete chemical characterization of zircon-cadmium sulfoselenide ceramic pigments with a very low uncertainty for all the elements analysed. (Author)

  20. The Assessment of Natural Pigmentation in Archaeological Wool

    DEFF Research Database (Denmark)

    Scharff, Annemette Bruselius

    2018-01-01

    Naturally coloured wool contains pigment grains that mainly occur as ellipsoidal organelles (eumelanin) or spher¬ical grains (pheomelanin). Eumelanin is the most commonly occurring pigment, but naturally coloured wool fi¬bres contain both eumelanin and pheomelanin. In black and brown wool....... This can especially be the case if the pigments are degraded. When analysing the textiles from Lønne Hede (a Danish Iron Age inhumation grave), it was difficult to gain exact information about the natural pigmentation in some of the samples. To investigate this further, four samples of red-brown yarns from...... patterned fragments were selected for analyses. Earlier dyestuff analyses of the red-brown yarns gave no results, and it was therefore necessary to test the yarns for natural pigmentation. Three different methods were used for the analy¬ses. Transmitted light microscopy of whole mounts of the fibres...

  1. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  2. The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry

    Science.gov (United States)

    Kronforst, Marcus R.; Papa, Riccardo

    2015-01-01

    Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation. PMID:25953905

  3. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    Science.gov (United States)

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  4. Application of slender wing benefits to military aircraft

    Science.gov (United States)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  5. Tipping the scales: Evolution of the allometric slope independent of average trait size.

    Science.gov (United States)

    Stillwell, R Craig; Shingleton, Alexander W; Dworkin, Ian; Frankino, W Anthony

    2016-02-01

    The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Neurotized congenital melanocytic nevus resembling a pigmented neurofibroma

    Directory of Open Access Journals (Sweden)

    Nidhi Singh

    2015-01-01

    Full Text Available Neurotized congenital melanocytic nevus and pigmented neurofibroma (PNF are close mimics and pose a clinicopathological challenge. We present a case of pigmented hypertrichotic plaque over lumbosacral region and discuss the differential diagnosis and its clinical, histopathological and immunohistochemistry features which may aid in differentiation. We highlight the difficulties faced in differentiating neurotized congenital melanocytic nevus from pigmented neurofibroma.

  7. A Model for Selection of Eyespots on Butterfly Wings.

    Science.gov (United States)

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in

  8. A Model for Selection of Eyespots on Butterfly Wings.

    Directory of Open Access Journals (Sweden)

    Toshio Sekimura

    Full Text Available The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins. A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not.We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions

  9. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  10. [Distribution Characteristics of Sedimentary Pigments in the Changjiang Estuary and Zhe-Min Coast and its Implications].

    Science.gov (United States)

    Li, Dong; Yao, Peng; Zhao, Bin; Wang, Jin-peng; Pan, Hui-hui

    2015-08-01

    higher sedimentary pigment preservation efficiencies were probably ideal areas for the marine eco-environmental evolutions. The bad sedimentary environment caused by the water exchange inside and outside of Hangzhou Bay was the dominant reason for the low sedimentary pigment contents and preservation efficiencies in this region.

  11. Spectral reflectance properties of iridescent pierid butterfly wings

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primoz; Stavenga, Doekele G.; Pirih, Primož

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in

  12. A molecular investigation of adsorption onto mineral pigments

    Science.gov (United States)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  13. Pigment and terracotta analyses of Hellenistic figurines in Crete

    International Nuclear Information System (INIS)

    Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.

    2003-01-01

    The results of the analyses performed on blue, black, brown, orange, white and purple pigments decorating Hellenistic figurines, excavated in a rock-cut tomb in the archaeological zone of Chania, Crete, Greece, are presented. Different spectroscopic techniques, such as Fourier transform infrared spectroscopy and energy dispersive X-ray fluorescence identified the compounds present in the chromatic layers. X-ray diffraction analysis gave complementary information and further support to the spectral assignments. Optical microscopy revealed the nature and sequence of the pigmented layer on the terracotta. Several precious pigments, such as Egyptian blue for the bluish areas, Tyrian purple for the purple ones, and the rare huntite for the white-pigmented areas were identified among the studied pigmented areas. The pigment analysis provides information on the technical aspects related to terracotta manufacture and preservation, and promotes historical indications on cultural and commercial changes among the Mediterranean civilisations

  14. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  15. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    Science.gov (United States)

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  16. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  17. Antimicrobial activity of Micrococcus luteus Cartenoid pigment

    Directory of Open Access Journals (Sweden)

    Huda Z. Majeed

    2017-11-01

    Full Text Available Cartenoids are group of pigments, with enormous types different structurally and functionally, have colors range from red to yellow found in a wide variety of plants, fungi, algae and bacteria. The animals took from food because they cannot make it, on contrary, the plants and microbes produce them due to subjection to environment. The aim of the study is to isolate and characterize the cartenoid pigment from Micrococcus luteus. The pigment extraction was done by acetone, and then was characterized with UltraViolet-Visible spectroscopy (UV–Vis and Fourier Transform Infrared (FTIR spectroscopy. Then, it was tested for antibacterial activity against five different bacterial isolates and antifungal activity tests against six different fungal isolates by well diffusion method. The results found that, the extracted pigment having antibacterial activity and antifungal activity and having the ability to absorb UVA rays within the range of 300-500 nm. There was no significant difference in antimicrobial effect of pigment, even when the extraction and isolation were done by two culture mediums (Nutrient Broth and Luria Bertani Broth. There were considerable inhibition percentages of adhesion after subjection to Cartenoid pigment ranged between (5.71, 23.84 % for Klebsiella spp. and Pseudomonas aeruginosa respectively and all the 11 isolate changed from Biofilm producer to non-producer. The isolated compound can be used against different bacterial and fungal infections. So they had a great future in medicine, cosmetics and as a sun protecting agent.

  18. Intraclutch variation in avian eggshell pigmentation: the anaemia hypothesis.

    Science.gov (United States)

    De Coster, Greet; De Neve, Liesbeth; Lens, Luc

    2012-10-01

    Many passerine species lay eggs that are speckled with dark protoporphyrin pigmentation. Because protoporphyrin is mainly derived from the blood, we here formulate and test a new hypothesis that links an increase in anaemia along the laying sequence to within-clutch variation in egg pigmentation. More intense pigmentation is expected if pigments accumulate during enhanced red blood cell production in response to anaemia. Reduced pigmentation is expected if pigments are derived from the degradation of red blood cells that circulate in smaller numbers due to blood loss. To test this hypothesis, we manipulated anaemia in great tit (Parus major) females by infesting the nests with hen fleas (Ceratophyllus gallinae) prior to egg laying. Polychromatophil (i.e., immature red blood cells) percentage, as a measure of blood cell production, was positively correlated with parasite load confirming that female great tits experienced stronger anaemia when infested with haematophagous parasites during egg laying. We found a positive relationship between spot darkness and laying order that weakened under high parasite load. This result suggests that anaemia in females due to blood-sucking parasites led to diminished protoporphyrin from disintegrated red blood cells and hence a decreased deposition of protoporphyrin. However, the overall increase in pigment darkness along the laying sequence suggests that pigments also accumulate by enhanced red blood cell production caused by anaemia due to egg production itself.

  19. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  20. Multiscale Pigment Analysis of Medieval Illuminated Manuscripts

    Science.gov (United States)

    Sestak, Erica; Manukyan, Khachatur; Wiescher, Michael; Gura, David

    2017-09-01

    Three medieval illuminated manuscripts (codd. Lat. b. 1; Lat. b. 2; Lat. e. 4), housed at the University of Notre Dame's Hesburgh Library, vary in style, pigments, scribes, and regions, despite all three being Psalters used in the Late Middle Ages. XRF and Raman spectroscopy, which provided the elemental and molecular composition of the pigments, respectively, were used to analyze the pigments' compositions in an attempt to narrow further the manuscripts' possible origins. This experimental investigation emphasizes the importance of understanding the history of the manuscript through their pigments. Codd. Lat. b. 1 and Lat. b. 2 are Latinate German Psalters from the fifteenth century likely used in Katharinenkloster in Nuremberg. While there are visible differences in style within each Psalter, the variations in some of the pigment compositions, such as the inconstant presence of zinc, suggest different admixtures. Cod. Lat. e. 4 is a Latinate English Psalter from the fourteenth century, and it was written by two scribes and illuminated by two distinct painters. It is currently being tested to determine whether there are any correlations between the scribes and painters. These physical analyses will clarify the origins and provenances of the manuscripts.

  1. Problem of Vortex Turbulence behind Wings (II),

    Science.gov (United States)

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  2. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  3. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  4. Differences in pigmentation between life cycle stages in Scrippsiella lachrymosa (dinophyceae).

    Science.gov (United States)

    Persson, Agneta; Smith, Barry C; Cyronak, Tyler; Cooper, Emily; DiTullio, Giacomo R

    2016-02-01

    Various life cycle stages of cyst-producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst-producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.2 ± 0.5 pg · cell(-1) ), whereas gamete pigment content was 22% lower. The pigment content of zygotes was 82% lower than vegetative cells, even though they appeared darker under the microscope. Zygotes of S. lachrymosa contained significantly higher cellular concentrations of β-carotene (0.65 ± 0.15 pg · cell(-1) ) than all other life stages. Photoprotective pigments and the de-epoxidation ratio of xanthophylls-cycle pigments in S. lachrymosa were significantly elevated in zygotes and cysts compared to other stages. This suggests a role for accessory pigments in combating intracellular oxidative stress during sexual reproduction or encystment. Resting cysts contained some pigments even though chloroplasts were not visible, suggesting that the brightly colored accumulation body contained photosynthetic pigments. The differences in pigmentation between life stages have implications for interpretation of pigment data from field samples when sampled during dinoflagellate blooms. © 2015 Phycological Society of America.

  5. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  6. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  7. Fe K-edge XANES of Maya blue pigment

    Science.gov (United States)

    Río, M. Sánchez del; Sodo, A.; Eeckhout, S. G.; Neisius, T.; Martinetto, P.; Dooryhée, E.; Reyes-Valerio, C.

    2005-08-01

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the "Maya blue" pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si8(Mg2Al2)O20(OH)2(OH2)4.4H2O and an organic colourant (indigo: C16H10N2O2), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.

  8. Fe K-edge XANES of Maya blue pigment

    International Nuclear Information System (INIS)

    Rio, M. Sanchez del; Sodo, A.; Eeckhout, S.G.; Neisius, T.; Martinetto, P.; Dooryhee, E.; Reyes-Valerio, C.

    2005-01-01

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the 'Maya blue' pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si 8 (Mg 2 Al 2 )O 20 (OH) 2 (OH 2 ) 4 .4H 2 O and an organic colourant (indigo: C 16 H 10 N 2 O 2 ), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue

  9. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    lines; Procrustes analysis; wing shape; wing size. ... Models of stochastic gene expression pre- dict that intrinsic noise ... Quantitative parameters of wing size and shape asymmetries ..... the residuals of a regression on centroid size produced.

  10. Combined Laser Treatment in a Patient with Pigment Dispersion Secondary to a Large Iris Pigment Epithelial Cyst

    Directory of Open Access Journals (Sweden)

    Özlem Yıldırım

    2012-09-01

    Full Text Available We reported a case of bilateral extensive iris pigment epithelial cysts masquerading as pigment dispersion. A-30-year-old male patient presented with a dull pain in both eyes and a decreased visual acuity OD. He underwent a complete ophthalmic examination. OD was injected and the cells were graded as +3 and pigmented a +2, in the OS. Intraocular pressures (IOP were measured as 42 (OD and 22 (OS mmHg. Gonioscopy revealed a confluent accumulation of dense pigment in both eyes. Visual fields, peripapillary retinal nerve fiber layer thickness (Spectral OCT/SLO OTI-OPKO Health. Inc, Miami, FL and optic nerve head tomography (HRT-II Heidelberg Engineering, Heidelberg, Germany results were within normal limits. On ultrasound biomicroscopy (UBM, bilateral extensive cysts were identified in the midzonal portion of the iris and in the ciliary body. An, antiglaucomatous treatment was started. Then, we decided to perform both Nd:YAG laser iridocystotomyc and selective laser trabeculoplasty. Fourteen months after the combined therapy, the cysts had not recurred, and still apposed and the IOPs were under control without medication.

  11. Combined laser treatment in a patient with pigment dispersion secondary to a large iris pigment epithelial cyst.

    Science.gov (United States)

    Aykan, Umit; Yıldırım, Ozlem

    2012-09-01

    We reported a case of bilateral extensive iris pigment epithelial cysts masquerading as pigment dispersion. A-30-year-old male patient presented with a dull pain in both eyes and a decreased visual acuity OD. He underwent a complete ophthalmic examination. OD was injected and the cells were graded as +3 and pigmented a +2, in the OS. Intraocular pressures (IOP) were measured as 42 (OD) and 22 (OS) mmHg. Gonioscopy revealed a confluent accumulation of dense pigment in both eyes. Visual fields, peripapillary retinal nerve fiber layer thickness (Spectral OCT/SLO OTI-OPKO Health. Inc, Miami, FL) and optic nerve head tomography (HRT-II Heidelberg Engineering, Heidelberg, Germany) results were within normal limits. On ultrasound biomicroscopy (UBM), bilateral extensive cysts were identified in the midzonal portion of the iris and in the ciliary body. An, antiglaucomatous treatment was started. Then, we decided to perform both Nd:YAG laser iridocystotomyc and selective laser trabeculoplasty. Fourteen months after the combined therapy, the cysts had not recurred, and still apposed and the IOPs were under control without medication.

  12. Optimization of composite tiltrotor wings with extensions and winglets

    Science.gov (United States)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  13. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  14. Age-class separation of blue-winged ducks

    Science.gov (United States)

    Hohman, W.L.; Moore, J.L.; Twedt, D.J.; Mensik, John G.; Logerwell, E.

    1995-01-01

    Accurate determination of age is of fundamental importance to population and life history studies of waterfowl and their management. Therefore, we developed quantitative methods that separate adult and immature blue-winged teal (Anas discors), cinnamon teal (A. cyanoptera), and northern shovelers (A. clypeata) during spring and summer. To assess suitability of discriminant models using 9 remigial measurements, we compared model performance (% agreement between predicted age and age assigned to birds on the basis of definitive cloacal or rectral feather characteristics) in different flyways (Mississippi and Pacific) and between years (1990-91 and 1991-92). We also applied age-classification models to wings obtained from U.S. Fish and Wildlife Service harvest surveys in the Mississippi and Central-Pacific flyways (wing-bees) for which age had been determined using qualitative characteristics (i.e., remigial markings, shape, or wear). Except for male northern shovelers, models correctly aged lt 90% (range 70-86%) of blue-winged ducks. Model performance varied among species and differed between sexes and years. Proportions of individuals that were correctly aged were greater for males (range 63-86%) than females (range 39-69%). Models for northern shovelers performed better in flyway comparisons within year (1991-92, La. model applied to Calif. birds, and Calif. model applied to La. birds: 90 and 94% for M, and 89 and 76% for F, respectively) than in annual comparisons within the Mississippi Flyway (1991-92 model applied to 1990-91 data: 79% for M, 50% for F). Exclusion of measurements that varied by flyway or year did not improve model performance. Quantitative methods appear to be of limited value for age separation of female blue-winged ducks. Close agreement between predicted age and age assigned to wings from the wing-bees suggests that qualitative and quantitative methods may be equally accurate for age separation of male blue-winged ducks. We interpret annual

  15. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  16. Emerging greener extraction systems for fungal pigments isolation

    OpenAIRE

    Lebeau , Juliana; Venkatachalam , Mekala; Fouillaud , Mireille; Dufossé , Laurent; Caro , Yanis

    2016-01-01

    International audience; Filamentous fungi produce a mixture of various metabolites such as pigments, fatty acids, proteins and other cellular metabolites. Thus, extraction and isolation of the pigmented molecules of interest are necessary steps before proceeding to any further utilization of these metabolites for commercial applications. Pigments can be stored within the biomass, excreted in the fermentation broth or both, suggesting that extraction methods need to be developed accordingly to...

  17. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  18. Neoplasia versus hyperplasia of the retinal pigment epithelium

    DEFF Research Database (Denmark)

    Heegaard, Steffen; Larsen, J.N.B.; Fledelius, Hans C.

    2001-01-01

    ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography......ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography...

  19. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  20. Transitional fossil earwigs - a missing link in Dermaptera evolution

    Directory of Open Access Journals (Sweden)

    Ren Dong

    2010-11-01

    Full Text Available Abstract Background The Dermaptera belongs to a group of winged insects of uncertain relationship within Polyneoptera, which has expanded anal region and adds numerous anal veins in the hind wing. Evolutional history and origin of Dermaptera have been in contention. Results In this paper, we report two new fossil earwigs in a new family of Bellodermatidae fam. nov. The fossils were collected from the Jiulongshan Formation (Middle Jurassic in Inner Mongolia, northeast China. This new family, characterized by an unexpected combination of primitive and derived characters, is bridging the missing link between suborders of Archidermaptera and Eodermaptera. Phylogenetic analyses support the new family to be a new clade at the base of previously defined Eodermaptera and to be a stem group of (Eodermaptera+Neodermaptera. Conclusion Evolutional history and origin of Dermaptera have been in contention, with dramatically different viewpoints by contemporary authors. It is suggested that the oldest Dermaptera might possibly be traced back to the Late Triassic-Early Jurassic and they had divided into Archidermaptera and (Eodermaptera+Neodermaptera in the Middle Jurassic.

  1. Finnish wallpaper pigments in the 18th-19th century: Presence of KFe3(CrO4)2(OH)6 and odd pigment mixtures

    Science.gov (United States)

    Castro, Kepa; Knuutinen, Ulla; Vallejuelo, Silvia Fdez-Ortiz de; Irazola, Mireia; Madariaga, Juan Manuel

    2013-04-01

    Several Finish wallpapers from the 18th and 19th century were analysed by using Raman spectroscopy assisted with EDXRF instrumentation, in an attempt of determine the pigments used in their manufacture process as well as of trying to date some of the samples through pigment composition. All pigments present in samples were determined and surprisingly the unusual and strange iron (III) chromate yellow pigment was found. Besides, unusual mixtures were found to obtain fashionable colours, especially in blue and green areas, where more than one blue pigments were mixed with green and yellow pigments. Blue verditer, ultramarine blue, Prussian blue, chrome yellow, calcite, lead white, red and yellow iron oxide, gypsum and carbon black were identified. The presence of the risky and poisonous emerald green must be highlighted. The results were compared with those found in other wallpapers from Spain and France.

  2. Zinc deficiency leads to lipofuscin accumulation in the retinal pigment epithelium of pigmented rats.

    Directory of Open Access Journals (Sweden)

    Sylvie Julien

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. METHODOLOGY/PRINCIPAL FINDINGS: Adult Long Evans (LE rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE. The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4-3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. CONCLUSIONS/SIGNIFICANCE: In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane.

  3. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  4. Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.

    Science.gov (United States)

    Wilts, Bodo D; Sheng, Xiaoyuan; Holler, Mirko; Diaz, Ana; Guizar-Sicairos, Manuel; Raabe, Jörg; Hoppe, Robert; Liu, Shu-Hao; Langford, Richard; Onelli, Olimpia D; Chen, Duyu; Torquato, Salvatore; Steiner, Ullrich; Schroer, Christian G; Vignolini, Silvia; Sepe, Alessandro

    2018-05-01

    Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enological Tannin Effect on Red Wine Color and Pigment Composition and Relevance of the Yeast Fermentation Products

    OpenAIRE

    Ignacio García-Estévez; Cristina Alcalde-Eon; Víctor Puente; M. Teresa Escribano-Bailón

    2017-01-01

    Enological tannins are widely used in the winemaking process either to improve different wine characteristics (color stability, among others) or to compensate for low tannin levels. In this work, the influence of the addition of two different enological tannins, mainly composed of hydrolysable (ellagitannins) and condensed tannins, on the evolution of color and pigment composition of two different types of model systems containing the five main grape anthocyanins was studied. In addition, the...

  6. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    OpenAIRE

    Sutthiphong Srigrarom; Woei-Leong Chan

    2015-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings a...

  7. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    OpenAIRE

    Huber, Robert A.; Schimpf, Christian H.

    2017-01-01

    This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the assoc...

  8. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  9. Fe K-edge XANES of Maya blue pigment

    Energy Technology Data Exchange (ETDEWEB)

    Rio, M. Sanchez del [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France)]. E-mail: srio@esrf.fr; Sodo, A. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Eeckhout, S.G. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Neisius, T. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Martinetto, P. [Laboratoire de Cristallographie, CNRS, Grenoble B.P. 166, F-38042, Grenoble Cedex 09 (France); Dooryhee, E. [Laboratoire de Cristallographie, CNRS, Grenoble B.P. 166, F-38042, Grenoble Cedex 09 (France); Reyes-Valerio, C. [INAH, Mexico DF (Mexico)

    2005-08-15

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the 'Maya blue' pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si{sub 8}(Mg{sub 2}Al{sub 2})O{sub 20}(OH){sub 2}(OH{sub 2}){sub 4}.4H{sub 2}O and an organic colourant (indigo: C{sub 16}H{sub 10}N{sub 2}O{sub 2}), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.

  10. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  11. Pigment dispersion syndrome: a clinical study.

    Science.gov (United States)

    Scheie, H G; Cameron, J D

    1981-01-01

    This study involved a group of 407 patients (799 eyes) with pigment dispersion syndrome gathered from a glaucoma population of 9200 patients. The sex distribution was equal. The majority (65%) of patients were myopic. The incidence of retinal detachment was 6.4%. No patients were black, but 5 were mulatto. Approximately one-quarter of the patients wih pigment dispersion syndrome (31% of the men, 19% of the women) had glaucoma. The average age of onset of glaucoma was 15 years less than in control patients with chronic simple glaucoma. When both eyes were affected by glaucoma, the glaucoma was consistently more severe in the eye with the more heavily pigmented angle. The degree of iris transillumination was found to be of no importance in predicting the presence of glaucoma or the severity of trabecular pigmentation. The pressure in 66% of the eyes with pigmentary glaucoma was controlled medically. A higher percentage of patients with pigmentary glaucoma required surgery than patients in the control group with chronic simple glaucoma. Men with pigmentary glaucoma required surgery at a much earlier age than women with pigmentary glaucoma. PMID:7236571

  12. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata.

    Science.gov (United States)

    Montgomery, E M; Hamel, J-F; Mercier, A

    supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure. © 2017 Elsevier Ltd. All rights reserved.

  13. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Unknown

    presumptive wing blade domains unlike in Drosophila, where it is confined to the hinge and the wing pouch. ... events are different and the wing discs behave like presumptive wing buds .... emerge with the fore- and the hind-wings (figure 1e, j) on ... phosis (compare c with d, and h with i) during the larval to pupal transition.

  14. Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings

    Science.gov (United States)

    2016-08-30

    production, power consumption , and efficiency. Novel tools for studying wing morphing during complicated flapping flights have been developed to...23 Figure 14. Transverse plane cut at mid-downstroke. (a) Cut through wing and body (b) Cut through the near wake (no wings...between wing surfaces and corresponding least square planes . The distances are normalized by wing mid chord length

  15. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching.

    Science.gov (United States)

    Neubauer, Nicole; Scifo, Lorette; Navratilova, Jana; Gondikas, Andreas; Mackevica, Aiga; Borschneck, Daniel; Chaurand, Perrine; Vidal, Vladimir; Rose, Jerome; von der Kammer, Frank; Wohlleben, Wendel

    2017-10-17

    The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe 2 O 3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m 2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).

  16. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  17. Pigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans

    Science.gov (United States)

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553

  18. Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.

    Science.gov (United States)

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.

  19. Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Stuart Chaskes

    Full Text Available In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.

  20. Adaptive evolution of facial colour patterns in Neotropical primates.

    Science.gov (United States)

    Santana, Sharlene E; Lynch Alfaro, Jessica; Alfaro, Michael E

    2012-06-07

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial colour patterns and pigmentation within Neotropical primates. Consistent with the hypothesis that facial patterns function in communication and species recognition, we find that species living in smaller groups and in sympatry with a higher number of congener species have evolved more complex patterns of facial colour. The evolution of facial pigmentation and hair length is linked to ecological factors, and ecogeographical rules related to UV radiation and thermoregulation are met by some facial regions. Our results demonstrate the interaction of behavioural and ecological factors in shaping one of the most outstanding facial diversities of any mammalian lineage.

  1. Pigments produced by the bacteria belonging to the genus Arthrobacter

    OpenAIRE

    Sutthiwong , Nuthathai; Caro , Yanis; Fouillaud , Mireille; Laurent , Philippe; Valla , A.; Dufossé , Laurent

    2013-01-01

    Poster communication, 7th International Congress of Pigments in Food – New technologies towards health, through colors, Novara, Italy, June 18-21, 2013.; International audience; Since several decades, pigments have been used as a taxonomic tool for the identification and classification of bacteria. Nowadays, pigment producing microorganisms have been also widely interested in scientific disciplines because of their biotechnological potential. With the growing interest in microbial pigments be...

  2. Experimental investigation into wing span and angle-of-attack effects on sub-scale race car wing/wheel interaction aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Diasinos, S. [Toyota F1, Koeln (Germany); Gatto, A. [Brunel University, Department of Mechanical Engineering, School of Engineering and Design, Uxbridge (United Kingdom)

    2008-09-15

    This paper details a quantitative 3D investigation using LDA into the interaction aerodynamics on a sub-scale open wheel race car inverted front wing and wheel. Of primary importance to this study was the influence of changing wing angle of attack and span on the resulting near-field and far-field flow characteristics. Results obtained showed that both variables do have a significant influence on the resultant flow-field, particularly on wing vortex and wheel wake development and propagation. (orig.)

  3. Experimental investigation into wing span and angle-of-attack effects on sub-scale race car wing/wheel interaction aerodynamics

    Science.gov (United States)

    Diasinos, S.; Gatto, A.

    2008-09-01

    This paper details a quantitative 3D investigation using LDA into the interaction aerodynamics on a sub-scale open wheel race car inverted front wing and wheel. Of primary importance to this study was the influence of changing wing angle of attack and span on the resulting near-field and far-field flow characteristics. Results obtained showed that both variables do have a significant influence on the resultant flow-field, particularly on wing vortex and wheel wake development and propagation.

  4. Pigment Production Analysis in Human Melanoma Cells.

    Science.gov (United States)

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  5. Multi-analytical study of historical semiconductor pigments

    International Nuclear Information System (INIS)

    Caporosso, V.

    2015-01-01

    This work is focused on the study of semiconductor-based pigments, which substituted traditional pigments in the second half of the 19. century. Synthetic semiconductor pigments may be chemically unstable due to the presence of many impurities unintentionally introduced during manufacturing. The aim of this work is to provide an insight on the application of X-ray Fluorescence (XRF) for the analysis of these painting materials, including both Cd- and Zn-based pigments. Three different approaches have been followed: the semi-quantitative analysis of samples with similar elemental composition, the complementary use of XRF and Raman spectroscopy for the analysis of elemental and molecular composition and the synchrotron-based XRF and XANES for the detection of impurities. The synergetic combination of different techniques provides information useful for the definition of specific markers for future analysis of paint-samples with implications for the conservation and treatment of late 19. and early 20. century paintings.

  6. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  7. Blue Pseudoazulene-Skeleton Pigments of Natural Origin

    OpenAIRE

    井上, 謙一郎; イノウエ, ケンイチロウ; KENICHIRO, INOUE

    1993-01-01

    Genipin, an iridoid constituent of Genipa americana, readily reacts with amino acids in the presence of oxygen to give a mixture of polymeric blue pigments whose structures are not determined. In the basic studies to elucidate the structure and formation mechnism of blue pigments, the reaction of genipin with methylamine in the absence of oxygen yielded 9 red compounds leading to blue pigments. In this article, the structures and spectroscopic properties of these red compounds were described....

  8. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  9. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  10. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  11. Formation of broad Balmer wings in symbiotic stars

    International Nuclear Information System (INIS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Hong, Chae-Lin; Lee, Hee-Won

    2016-01-01

    Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. In addition to many prominent emission lines symbiotic stars exhibit Raman scattered O VI features at 6825 and 7088 Å. Another notable feature present in the spectra of many symbiotics is the broad wings around Balmer lines. Astrophysical mechanisms that can produce broad wings include Thomson scattering by free electrons and Raman scattering of Ly,β and higher series by neutral hydrogen. In this poster presentation we produce broad wings around Hα and H,β adopting a Monte Carlo techinique in order to make a quantitative comparison of these two mechanisms. Thomson wings are characterized by the exponential cutoff given by the termal width whereas the Raman wings are dependent on the column density and continuum shape in the far UV region. A brief discussion is provided. (paper)

  12. Internal pigment cells respond to external UV radiation in frogs.

    Science.gov (United States)

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. © 2016. Published by The Company of Biologists Ltd.

  13. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2001-01-01

    In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker

  14. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  15. Pigment dispersion syndrome and pigmentary glaucoma--a major review.

    Science.gov (United States)

    Niyadurupola, Nuwan; Broadway, David C

    2008-12-01

    Pigment dispersion syndrome (PDS) is an interesting condition that can lead to secondary open angle glaucoma. Pigmentary glaucoma is primarily a disease of young people, myopes and men. PDS is characterized by the presence of Krukenberg spindles, iris trans-illumination defects, trabecular meshwork pigmentation and backward bowing of the iris. Posterior bowing of the iris causes rubbing of the pigmented iris epithelium against lens structures, liberation of pigment and trabecular meshwork changes that result in reduced aqueous outflow with the risk of glaucoma. Peripheral laser iridotomy can reverse backward bowing of the iris and may prevent progression of pigmentary glaucoma.

  16. Wing patterning genes and coevolution of Müllerian mimicry in Heliconius butterflies: Support from phylogeography, cophylogeny, and divergence times.

    Science.gov (United States)

    Hoyal Cuthill, Jennifer F; Charleston, Michael

    2015-12-01

    Examples of long-term coevolution are rare among free-living organisms. Müllerian mimicry in Heliconius butterflies had been suggested as a key example of coevolution by early genetic studies. However, research over the last two decades has been dominated by the idea that the best-studied comimics, H. erato and H. melpomene, did not coevolve at all. Recently sequenced genes associated with wing color pattern phenotype offer a new opportunity to resolve this controversy. Here, we test the hypothesis of coevolution between H. erato and H. melpomene using Bayesian multilocus analysis of five color pattern genes and five neutral genetic markers. We first explore the extent of phylogenetic agreement versus conflict between the different genes. Coevolution is then tested against three aspects of the mimicry diversifications: phylogenetic branching patterns, divergence times, and, for the first time, phylogeographic histories. We show that all three lines of evidence are compatible with strict coevolution of the diverse mimicry wing patterns, contrary to some recent suggestions. Instead, these findings tally with a coevolutionary diversification driven primarily by the ecological force of Müllerian mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  17. Optimization and design of pigments for heat-insulating coatings

    Science.gov (United States)

    Wang, Guang-Hai; Zhang, Yue

    2010-12-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.

  18. Studies on the bio production of monascus red pigment

    International Nuclear Information System (INIS)

    Emam, D.A.

    2007-01-01

    there is an increasing interest on natural pigments to replace some currently used synthetic dyes, since the latter have been associated with toxic effects in foods. the red pigment of the fungus Monascus is widely used in all the world as food additives or pharmaceuticals. although pigment production by Monascus spp.in chemically defined media is well documented, very few information is available about the use of agro-industrial wastes. in this regard, the present study has been devoted to investigate the effect of different parameters on red pigment production by the local isolated strain of M. purpureu, in an attempt to maximize the production, and also to develop a potential fermentation process for the production of red pigment using potato processing wastewater (PPW,waters used to wash the potato slices prior to cooking in chips and crisp manufacture) as cheap production medium

  19. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  20. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution

    Science.gov (United States)

    Galván, Ismael; Solano, Francisco

    2016-01-01

    Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models. PMID:27070583

  1. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution

    Directory of Open Access Journals (Sweden)

    Ismael Galván

    2016-04-01

    Full Text Available Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.

  2. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  3. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  4. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  5. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  6. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Directory of Open Access Journals (Sweden)

    Juan L Torres-Pérez

    Full Text Available Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  7. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Science.gov (United States)

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  8. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R; Stacy, Elizabeth A; Price, Donald K; Michalak, Pawel

    2016-05-30

    The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Production and chemical characterization of pigments in filamentous fungi.

    Science.gov (United States)

    Souza, Patrícia Nirlane da Costa; Grigoletto, Tahuana Luiza Bim; de Moraes, Luiz Alberto Beraldo; Abreu, Lucas M; Guimarães, Luís Henrique Souza; Santos, Cledir; Galvão, Luciano Ribeiro; Cardoso, Patrícia Gomes

    2016-01-01

    Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as Aspergillus sydowii (CML2967), Aspergillus aureolatus (CML2964), Aspergillus keveii (CML2968), Penicillium flavigenum (CML2965), Penicillium chermesinum (CML2966), Epicoccum nigrum (CML2971), Lecanicillium aphanocladii (CML2970) and Fusarium sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of L. aphanocladii (CML2970), E. nigrum (CML2971), and P. flavigenum (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.

  10. Analysis of ancient pigments by Raman microscopy

    International Nuclear Information System (INIS)

    Zuo Jian; Xu Cunyi

    1999-01-01

    Raman microscopy can be applied for the spatial resolution, and non-destructive in situ analysis of inorganic pigments in pottery, manuscripts and paintings. Compared with other techniques, it is the best single technique for this purpose. An overview is presented of the applications of Raman microscopy in the analysis of ancient pigments

  11. Heterotrophic cultivation of microalgae for pigment production: A review.

    Science.gov (United States)

    Hu, Jianjun; Nagarajan, Dillirani; Zhang, Quanguo; Chang, Jo-Shu; Lee, Duu-Jong

    Pigments (mainly carotenoids) are important nutraceuticals known for their potent anti-oxidant activities and have been used extensively as high end health supplements. Microalgae are the most promising sources of natural carotenoids and are devoid of the toxic effects associated with synthetic derivatives. Compared to photoautotrophic cultivation, heterotrophic cultivation of microalgae in well-controlled bioreactors for pigments production has attracted much attention for commercial applications due to overcoming the difficulties associated with the supply of CO 2 and light, as well as avoiding the contamination problems and land requirements in open autotrophic culture systems. In this review, the heterotrophic metabolic potential of microalgae and their uses in pigment production are comprehensively described. Strategies to enhance pigment production under heterotrophic conditions are critically discussed and the challenges faced in heterotrophic pigment production with possible alternative solutions are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Production of Monascus pigments as extracellular crystals by cell suspension culture.

    Science.gov (United States)

    Lu, Fengling; Liu, Lujie; Huang, Yaolin; Zhang, Xuehong; Wang, Zhilong

    2018-01-01

    It is generally accepted that Monascus pigments are predominantly cell-bound, including both intracellular and surface-bound pigments. This long-term misconception was corrected in the present work. Production of extracellular crystal pigments by submerged culture of Monascus sp. was confirmed by microscopic observation and collection of Monascus pigments from extracellular broth by direct membrane filtration. Following up the new fact, the bioactivity of mycelia as whole-cell biocatalyst for biosynthesis and biodegradation of Monascus pigments had been detailedly examined in both an aqueous solution and a nonionic surfactant micelle aqueous solution. Based on those experimental results, cell suspension culture in an aqueous medium was developed as a novel strategy for accumulation of high concentration of Monascus pigments. Thus, glucose feeding during submerged culture in the aqueous medium was carried out successfully and high orange Monascus pigments concentration of near 4 g/L was achieved.

  13. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  14. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  15. Low noise wing slat system with rigid cove-filled slat

    Science.gov (United States)

    Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)

    2013-01-01

    Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.

  16. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.

    Science.gov (United States)

    Usherwood, James R; Lehmann, Fritz-Olaf

    2008-11-06

    Dragonflies are dramatic, successful aerial predators, notable for their flight agility and endurance. Further, they are highly capable of low-speed, hovering and even backwards flight. While insects have repeatedly modified or reduced one pair of wings, or mechanically coupled their fore and hind wings, dragonflies and damselflies have maintained their distinctive, independently controllable, four-winged form for over 300Myr. Despite efforts at understanding the implications of flapping flight with two pairs of wings, previous studies have generally painted a rather disappointing picture: interaction between fore and hind wings reduces the lift compared with two pairs of wings operating in isolation. Here, we demonstrate with a mechanical model dragonfly that, despite presenting no advantage in terms of lift, flying with two pairs of wings can be highly effective at improving aerodynamic efficiency. This is achieved by recovering energy from the wake wasted as swirl in a manner analogous to coaxial contra-rotating helicopter rotors. With the appropriate fore-hind wing phasing, aerodynamic power requirements can be reduced up to 22 per cent compared with a single pair of wings, indicating one advantage of four-winged flying that may apply to both dragonflies and, in the future, biomimetic micro air vehicles.

  17. A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko).

    Science.gov (United States)

    Loew, E R

    1994-06-01

    Numerous extraction and microspectrophotometric studies have shown that the nocturnal Tokay gecko (Gekko gekko), has two visual pigments: a "green" with lambda max at 521 nm and a "blue" at 467 nm. In addition, similar studies on other nocturnal gecko species have found only the same two classes of visual pigment. With the finding that some diurnal species of gecko have a third visual pigment class with lambda max peaking in the UV, doubts were raised concerning the presence of only two visual pigment classes in nocturnal forms. Therefore, a microspectrophotometric re-examination of the Tokay gecko was undertaken to look specifically for a UV visual pigment. A UV-absorbing pigment (364 nm lambda max) was found in approx. 20% of the thin outer segments of type C double rods, thought previously to contain only the 467 nm pigment. That this UV-absorbing pigment was truly a visual pigment was confirmed by its dichroism, behaviour following exposure to UV radiation and "nomogram" fit. It is suggested that this visual pigment had been seen in previous microspectrophotometric studies, but its similarity to known photoproducts peaking in the same spectral region resulted in a case of mistaken identity.

  18. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    Science.gov (United States)

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  19. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins.

    Science.gov (United States)

    Thomas, Daniel B; McGoverin, Cushla M; McGraw, Kevin J; James, Helen F; Madden, Odile

    2013-06-06

    Many animals extract, synthesize and refine chemicals for colour display, where a range of compounds and structures can produce a diverse colour palette. Feather colours, for example, span the visible spectrum and mostly result from pigments in five chemical classes (carotenoids, melanins, porphyrins, psittacofulvins and metal oxides). However, the pigment that generates the yellow colour of penguin feathers appears to represent a sixth, poorly characterized class of feather pigments. This pigment class, here termed 'spheniscin', is displayed by half of the living penguin genera; the larger and richer colour displays of the pigment are highly attractive. Using Raman and mid-infrared spectroscopies, we analysed yellow feathers from two penguin species (king penguin, Aptenodytes patagonicus; macaroni penguin, Eudyptes chrysolophus) to further characterize spheniscin pigments. The Raman spectrum of spheniscin is distinct from spectra of other feather pigments and exhibits 17 distinctive spectral bands between 300 and 1700 cm(-1). Spectral bands from the yellow pigment are assigned to aromatically bound carbon atoms, and to skeletal modes in an aromatic, heterocyclic ring. It has been suggested that the penguin pigment is a pterin compound; Raman spectra from yellow penguin feathers are broadly consistent with previously reported pterin spectra, although we have not matched it to any known compound. Raman spectroscopy can provide a rapid and non-destructive method for surveying the distribution of different classes of feather pigments in the avian family tree, and for correlating the chemistry of spheniscin with compounds analysed elsewhere. We suggest that the sixth class of feather pigments may have evolved in a stem-lineage penguin and endowed modern penguins with a costly plumage trait that appears to be chemically unique among birds.

  20. An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects.

    Directory of Open Access Journals (Sweden)

    Subhash Rajpurohit

    Full Text Available We used experimental evolution to test the 'melanism-desiccation' hypothesis, which proposes that dark cuticle in several Drosophila species is an adaptation for increased desiccation tolerance. We selected for dark and light body pigmentation in replicated populations of D. melanogaster and assayed several traits related to water balance. We also scored pigmentation and desiccation tolerance in populations selected for desiccation survival. Populations in both selection regimes showed large differences in the traits directly under selection. However, after over 40 generations of pigmentation selection, dark-selected populations were not more desiccation-tolerant than light-selected and control populations, nor did we find significant changes in mass or carbohydrate amounts that could affect desiccation resistance. Body pigmentation of desiccation-selected populations did not differ from control populations after over 140 generations of selection, although selected populations lost water less rapidly. Our results do not support an important role for melanization in Drosophila water balance.

  1. Study on airflow characteristics of rear wing of F1 car

    Science.gov (United States)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  2. Pigment from Streptomyces bellus MSA1 isolated from marine sediments

    Science.gov (United States)

    Srinivasan, M.; Merlyn Keziah, S.; Hemalatha, M.; Subathra Devi, C.

    2017-11-01

    The existing study is purposeful on the intracellular pigment extraction from actinomycetes isolated from Kovalam Beach regions of Chennai, Tamil Nadu, India. Only one actinobacterial isolate showed pigmented growth out of total 4 isolates. Ethyl acetate as the solvent was used in cell disruption technique for the extraction of intracellular pigments. UV-Visible spectrophotometry, FT-IR spectroscopy, HPLC and GC-MS were used for the partial characterization of the pigment. The extracted pigment was applied for the preparation of lip balm and assessing its textile dyeing property. In addition, the extracted pigment was analysed for antioxidant, antibacterial activity, MTT assay and haemolytic activity. On optimization, dextrose and maltose were the best carbon sources. The finest nitrogen sources were found to be casein and peptone. The optimum temperature range was 35°C -40°C and optimal pH was found to be between 6.0 and 8.0. The obtained results showed potent antioxidant activity and found to be non-toxic to human erythrocytes.

  3. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.

    Science.gov (United States)

    D'Alba, Liliana; Kieffer, Leah; Shawkey, Matthew D

    2012-04-15

    Understanding the mechanistic bases of natural color diversity can provide insight into its evolution and inspiration for biomimetic optical structures. Metazoans can be colored by absorption of light from pigments or by scattering of light from biophotonic nanostructures, and these mechanisms have largely been treated as distinct. However, the interactions between them have rarely been examined. Captive breeding of budgerigars (Aves, Psittacidae, Melopsittacus undulatus) has produced a wide variety of color morphs spanning the majority of the spectrum visible to birds, including the ultraviolet, and thus they have been used as examples of hypothesized structure-pigment interactions. However, empirical data testing these interactions in this excellent model system are lacking. Here we used ultraviolet-visible spectrometry, light and electron microscopy, pigment extraction experiments and optical modeling to examine the physical bases of color production in seven budgerigar morphs, including grey and chromatic (purple to yellow) colors. Feathers from all morphs contained quasi-ordered air-keratin 'spongy layer' matrices, but these were highly reduced and irregular in grey and yellow feathers. Similarly, all feathers but yellow and grey had a layer of melanin-containing melanosomes basal to the spongy layer. The presence of melanosomes likely increases color saturation produced by spongy layers whereas their absence may allow increased expression of yellow colors. Finally, extraction of yellow pigments caused some degree of color change in all feathers except purple and grey, suggesting that their presence and contribution to color production is more widespread than previously thought. These data illustrate how interactions between structures and pigments can increase the range of colors attainable in birds and potentially in synthetic systems.

  4. Studies on pigments of the myxomycete Physarum nudum. II. Separation and optical properties of the pigments from plasmodia cultured in darkness

    OpenAIRE

    L. Raczkowski

    2015-01-01

    The paper presents the data on Separation and some optical properties of the pigments obtained from the plasmodium of the myxomycete Physarum nudum grown in the dark. Pigment Separation was performed by means of thin-layer chromatography with celulose MN 300 as adsorbent and with the solvent: tert.-butylalcohol, H2O, 3N NH4OH at the ratio 5:2:1 In these conditions the chromatograms revealed 12 coloured bands from which pigments were eluted and their absorption spectra as well as the spectra o...

  5. Change of Monascus pigment metabolism and secretion in different extractive fermentation process.

    Science.gov (United States)

    Chen, Gong; Tang, Rui; Tian, Xiaofei; Qin, Peng; Wu, Zhenqiang

    2017-06-01

    Monascus pigments that were generally produced intracellularly from Monascus spp. are important natural colorants in food industry. In this study, change of pigment metabolism and secretion was investigated through fed-batch extractive fermentation and continuous extractive fermentation. The biomass, secreting rate of pigment and total pigment yield closely correlated with the activated time of extractive fermentation as well as the composition of feeding nutrients. Metal ions played a key role in both the cell growth and pigment metabolism. Nitrogen source was necessary for a high productivity of biomass but not for high pigment yield. Furthermore, fermentation period for the fed-batch extractive fermentation could be reduced by 18.75% with a nitrogen source free feeding medium. Through a 30-day continuous extractive fermentation, the average daily productivity for total pigments reached 74.9 AU day -1 with an increase by 32.6 and 296.3% compared to that in a 6-day conventional batch fermentation and a 16-day fed-batch extractive fermentation, respectively. At the meantime, proportions of extracellular pigments increased gradually from 2.7 to 71.3%, and yellow pigments gradually became dominated in both intracellular and extracellular pigments in the end of continuous extractive fermentation. This findings showed that either fed-batch or continuous extractive fermentation acted as a promising method in the efficient production of Monascus pigments.

  6. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  7. Pigments and oligomers for inks - moving towards the best combination

    International Nuclear Information System (INIS)

    Hutchinson, I.; Smith, S.; Grierson, W.; Devine, E.

    1999-01-01

    The formulation of UV curable printing inks depends on several complex factors. If the individual components of the ink are not complementary, then performance problems can arise. One critical combination is that between the pigment and the oligomer. In a new approach to improve understanding of pigment/oligomer interactions, the resources of a pigment manufacturer and an oligomer manufacturer have been combined to investigate the problem. Initial screening of process yellow pigments and several oligomer types highlighted performance variations which were then examined in more detail

  8. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  9. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  10. Optimization and design of pigments for heat-insulating coatings

    International Nuclear Information System (INIS)

    Wang Guang-Hai; Zhang Yue

    2010-01-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ∼ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100–300 nm. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Dynamics of F-actin prefigure the structure of butterfly wing scales.

    Science.gov (United States)

    Dinwiddie, April; Null, Ryan; Pizzano, Maria; Chuong, Lisa; Leigh Krup, Alexis; Ee Tan, Hwei; Patel, Nipam H

    2014-08-15

    The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A comprehensive study of eco-friendly natural pigment and its applications.

    Science.gov (United States)

    Parmar, Ramendra Singh; Singh, Charu

    2018-03-01

    Actinomycetes, a large group of filamentous bacteria account for 70-80% of secondary metabolites available commercially. The present investigation was undertaken with an aim to identify and characterize pigment from actinomycetes. Actinomycetes were isolated from rhizosphere soil samples collected from different regions of Madhya Pradesh state. Out of 85 actinomycetes, only 5 actinomycetes showed pigment production and based on diffusible pigment production ability one actinomycete ARITM02 was selected. The extraction of pigment was done by solvent extraction method using methanol and purified by TLC and column chromatography. The pigment was characterized by UV-Vis spectroscopy which showed the lamda maximum of 277.44. FTIR spectroscopy suggested various functional groups like amino group, amide group, hydroxide, benzene and lactone group. The Mass spectroscopy and NMR spectroscopy showed that the molecular mass of pigment is 621.7 and molecular formula is C34H43N3O8. The pigment was also tested for Antimicrobial activity against broad spectrum human pathogens, antioxidant test and toxicity test for safe use as a natural colorant in cosmetic, food, pharmaceutical and textile industries. The conclusion of study suggested that this novel pigment could be a versatile natural, safe and multipurpose.

  13. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  14. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  15. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  16. Unusual extensive physiologic melanin pigmentation of the oral cavity: A clinical presentation

    Directory of Open Access Journals (Sweden)

    K Mallikarjuna

    2013-01-01

    Full Text Available Pigmented lesions are commonly found in the oral cavity. Oral pigmentations may be physiological or pathological in nature. It may represent as a localized anomaly of limited significance or the presentation of potentially life threatening multisystem disease. Oral pigmentation has a multifactorial etiology. Most of the oral pigmentations are physiologic. Evaluation of a patient with pigmented lesions should include a full medical and dental history, extraoral and intraoral examinations. In this article, we report a case of extensive physiologic pigmentation of the oral cavity in a 12 year old female patient, posing a diagnostic challenge.

  17. Colour pattern homology and evolution in Vanessa butterflies (Nymphalidae: Nymphalini): eyespot characters.

    Science.gov (United States)

    Abbasi, R; Marcus, J M

    2015-11-01

    Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty-four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells -1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  19. Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening

    Directory of Open Access Journals (Sweden)

    Briardo eLlorente

    2016-03-01

    Full Text Available Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes and phytochrome-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  20. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  1. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  2. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  3. Gingival pigmentation beneath a metallic crown

    International Nuclear Information System (INIS)

    Sakai, T.; Hirayasu, R.; Sakai, H.; Hashimoto, N.

    1988-01-01

    Light and electron microscopic studies and energy dispersive X-ray analysis disclosed that the essential cause of gingival discoloration following the placement of a metallic crown, was marked deposition of melanin pigment. Deposition of melanin pigment was observed in epithelial cells, on basement membranes, and in fibroblasts, macrophages and among intercellular ground substance of the proprial layer. Brown or dark brown colored granules were observed in the deep portion of the proprial layer. Some metallic elements as silver and sulfur were detected. It was presumed that these materials were dental metals accidentally implanted in gingival tissues during the therapeutic procedure. The deposition of melanin pigment closely corresponded with mucosal tissue where these materials were present in the deep portion of the proprial layer. These findings suggested that these materials influenced the physiological metabolism of melanin and induced its pathological deposition in the proprial tissue. (author)

  4. [Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs].

    Science.gov (United States)

    Konovalova, A M; Shylin, S O; Rokytko, P V

    2006-01-01

    An effective method was developed for complete removal of pigments from the cells and solvent mixture for further separation of pigments using thin layer chromatography on silica gel. Carotenoid samples that have been obtained in this way are of good purity for further investigations. Carotenoid pigments of pink-pigmented facultative methylotrophic bacteria Methylobacterium have been characterized. These carotenoids are represented mainly by xanthophylls, particularly hydroxycarotenoids. Strains M. fujisawaense B-3365 and M. mesophilicum B-3352 also have nonpolar carotenes in a small amount. Physico-chemical properties of carotenoids have been studied.

  5. The Solvent Effectiveness on Extraction Process of Seaweed Pigment

    Directory of Open Access Journals (Sweden)

    Warkoyo Warkoyo

    2011-09-01

    Full Text Available Eucheuma cottonii seaweed is a species of seaweed cultured in Indonesian waters, because its cultivation is relatively easy and inexpensive. It has a wide variety of colors from green to yellow green, gray, red and brown, indicating photosynthetic pigments, such as chlorophyll and carotenoids. An important factor in the effectiveness of pigment extraction is the choice of solvent. The correct type of solvent in the extraction method of specific natural materials is important so that a pigment with optimum quality that is also benefical to the society can be produced. The target of this research is to obtain a high quality solvent type of carotenoid pigment. This research was conducted using a randomized block design with three (3 replications involving two factors namely solvent type (4 levels: aceton, ethanol, petroleum benzene, hexan & petroleum benzene and seaweed color (3 levels: brown, green and red. Research results indicated that each solvent reached a peak of maximal absorbance at  410-472 nm, namely carotenoids. The usage of acetone solvent gave the best pigment quality. Brown, green and red seaweed have pigment content of 1,28 mg/100 g; 0,98 mg/100 g; 1,35 mg/100 g and rendement of 6,24%; 4,85% and 6,65% respectively.

  6. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  7. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  8. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Science.gov (United States)

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  9. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  10. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  11. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  12. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880 were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts.

  13. Anatomy and histochemistry of spread-wing posture in birds. I. Wing drying posture in the double-crested cormorant, Phalacrocorax auritus.

    Science.gov (United States)

    Meyers, Ron A

    1997-07-01

    Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67-76, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.

  14. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    Science.gov (United States)

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

  15. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  16. Optimizing Angkak Pigments and Lovastatin Production By Monascus purpureus

    Directory of Open Access Journals (Sweden)

    HASIM DANURI

    2008-06-01

    Full Text Available Angkak pigments and lovastatin had been reported very useful as natural coloring agents, as an agent to increase thrombocyte level in Dengue hemorrhagic fever, and also as a compound that was able to control blood cholesterol level. Three strains of fungus Monascus purpureus AKI, AKII, and 915 were selected to produce angkak pigments and lovastatin in potato dextrose agar (PDA medium. The best fungus strain, which is AKII, was then applied in three kinds of rice media (white rice IR-42, red rice BP-1804-IF-9, and a combination of 1:1 (w/w white IR-42 and red rice BP-1804-IF-9 for solid fermentation. The best medium and fermentation times were determined for the production of angkak pigments and lovastatin separately. Results showed that strains, media, and duration of fermentations gave significant effect on the amount of pigment produced. Strain AKII produced highest concentration of angkak pigments. The combination of rice (White IR-42 and red rice BP-1804-IF-9 produced the highest pigment than the individual white and red rie it self. The optimum duration of fermentation was 16 days for strains AKI and AKII, but only 15 days for strain 915. Therefore the strain AKII with media combination of rice and a fermentation time of 16 days were used to investigate the additional effect of various minerals. Addition of the mineral individually gave significant increased on angkak pigment production by AKII, where as the addition of minerals mixture in the forth tube did not.

  17. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  18. Low-Reynolds Number Aerodynamics of an 8.9 Percent Scale Semispan Swept Wing for Assessment of Icing Effects

    Science.gov (United States)

    Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic

    2017-01-01

    Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future

  19. Radiation-curable coatings containing reactive pigment dispersants

    International Nuclear Information System (INIS)

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  20. Pigments which reflect infrared radiation from fire

    Science.gov (United States)

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  1. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    Science.gov (United States)

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  2. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.

    Science.gov (United States)

    Vendruscolo, Francielo; Schmidell, Willibaldo; de Oliveira, Débora; Ninow, Jorge Luiz

    2017-01-01

    Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO 2  L -1 at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO 2  g x -1  h -1 and 3.133 g x  gO 2 -1 and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.

  3. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Science.gov (United States)

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  4. Secondary pigmentary glaucoma in patients with underlying primary pigment dispersion syndrome

    Directory of Open Access Journals (Sweden)

    Sivaraman KR

    2013-03-01

    Full Text Available Kavitha R Sivaraman, Chirag G Patel, Thasarat S Vajaranant, Ahmad A ArefDepartment of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago School of Medicine, Chicago, IL, USAAbstract: Primary pigment dispersion syndrome (PPDS is a bilateral condition that occurs in anatomically predisposed individuals. PPDS may evolve into pigmentary glaucoma, but it is difficult to predict which patients will progress. Secondary pigment dispersion is more often unilateral and acquired as a result of surgery, trauma, or intraocular tumor, but can likewise lead to pigmentary glaucoma. We report two cases of patients with bilateral PPDS who developed secondary pigment dispersion and pigmentary glaucoma in one eye. Patients with PPDS who acquire a secondary mechanism of pigment dispersion may be at an increased risk of progression to pigmentary glaucoma, presumably due to an increased burden of liberated pigment. In addition to regular surveillance for progression to glaucoma from PPDS, secondary causes of pigmentary dispersion in these eyes should be considered when patients present with grossly asymmetric findings. When secondary pigment dispersion is identified in eyes with PPDS, we recommend prompt intervention to alleviate the cause of secondary pigment dispersion and/or aggressive control of intraocular pressure to limit glaucomatous damage.Keywords: primary pigment dispersion syndrome, pigmentary glaucoma

  5. Recent developments in rotary-wing aerodynamic theory

    Science.gov (United States)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  6. Pigmentos maculares Macular pigments

    Directory of Open Access Journals (Sweden)

    Renata Canovas

    2009-12-01

    Full Text Available A luteína e a zeaxantina são pigmentos amarelos que se localizam na mácula. Devido à sua localização, diminuem e filtram a quantidade de luz principalmente azul que chega aos fotorreceptores, atuam como antioxidantes e podem melhorar a qualidade visual. Esta é uma revisão do seu mecanismo de incorporação, ação, possíveis aplicações e conhecimento científico a respeito.Lutein and Zeaxanthin are yellow pigments located at the macula. Because of your location macular pigments decrease and filter the amount of blue light that reach photoreceptors, protect the outer retina from oxidative stress and may improve the vision quality. This is a review regarding incorporation mechanism, function and knowledge update.

  7. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Science.gov (United States)

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  8. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Directory of Open Access Journals (Sweden)

    Dae Seok Eom

    Full Text Available The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11. We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  9. Secondary pigmentary glaucoma in patients with underlying primary pigment dispersion syndrome.

    Science.gov (United States)

    Sivaraman, Kavitha R; Patel, Chirag G; Vajaranant, Thasarat S; Aref, Ahmad A

    2013-01-01

    Primary pigment dispersion syndrome (PPDS) is a bilateral condition that occurs in anatomically predisposed individuals. PPDS may evolve into pigmentary glaucoma, but it is difficult to predict which patients will progress. Secondary pigment dispersion is more often unilateral and acquired as a result of surgery, trauma, or intraocular tumor, but can likewise lead to pigmentary glaucoma. We report two cases of patients with bilateral PPDS who developed secondary pigment dispersion and pigmentary glaucoma in one eye. Patients with PPDS who acquire a secondary mechanism of pigment dispersion may be at an increased risk of progression to pigmentary glaucoma, presumably due to an increased burden of liberated pigment. In addition to regular surveillance for progression to glaucoma from PPDS, secondary causes of pigmentary dispersion in these eyes should be considered when patients present with grossly asymmetric findings. When secondary pigment dispersion is identified in eyes with PPDS, we recommend prompt intervention to alleviate the cause of secondary pigment dispersion and/or aggressive control of intraocular pressure to limit glaucomatous damage.

  10. Monascus: a Reality on the Production and Application of Microbial Pigments.

    Science.gov (United States)

    Vendruscolo, Francielo; Meinicke Bühler, Rose Marie; Cesar de Carvalho, Júlio; de Oliveira, Débora; Moritz, Denise Estevez; Schmidell, Willibaldo; Ninow, Jorge Luiz

    2016-01-01

    Monascus species can produce yellow, orange, and red pigments, depending on the employed cultivation conditions. They are classified as natural pigments and can be applied for coloration of meat, fishes, cheese, beer, and pates, besides their use in inks for printer and dyes for textile, cosmetic, and pharmaceutical industries. These natural pigments also present antimicrobial activity on pathogenic microorganisms and other beneficial effects to the health as antioxidant and anticholesterol activities. Depending on the substrates, the operational conditions (temperature, pH, dissolved oxygen), and fermentation mode (state solid fermentation or submerged fermentation), the production can be directed for one specific color dye. This review has a main objective to present an approach of Monascus pigments as a reality to obtaining and application of natural pigments by microorganisms, as to highlight properties that makes this pigment as promising for worldwide industrial applications.

  11. Project Sekwa: A variable stability, blended-wing-body, research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available of flying wing and Blended-Wing-Body (BWB) platforms. The main objective of the project was to investigate the advantages and pitfalls of relaxing the longitudinal stability criteria on a Blended-Wing-Body UAV. The project was also aimed at expanding...

  12. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  13. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  14. Self-Normalized Photoacoustic Technique for the Quantitative Analysis of Paper Pigments

    Science.gov (United States)

    Balderas-López, J. A.; Gómez y Gómez, Y. M.; Bautista-Ramírez, M. E.; Pescador-Rojas, J. A.; Martínez-Pérez, L.; Lomelí-Mejía, P. A.

    2018-03-01

    A self-normalized photoacoustic technique was applied for quantitative analysis of pigments embedded in solids. Paper samples (filter paper, Whatman No. 1), attached with the pigment: Direct Fast Turquoise Blue GL, were used for this study. This pigment is a blue dye commonly used in industry to dye paper and other fabrics. The optical absorption coefficient, at a wavelength of 660 nm, was measured for this pigment at various concentrations in the paper substrate. It was shown that Beer-Lambert model for light absorption applies well for pigments in solid substrates and optical absorption coefficients as large as 220 cm^{-1} can be measured with this photoacoustic technique.

  15. The applications of VIP 397/418 bulbs in free radical white pigmented coatings: UV curing evaluation for different free radical white pigmented formulations (I)

    International Nuclear Information System (INIS)

    Rong Bao; McCartney, R.

    1999-01-01

    White pigmented coatings have gained commercial success using a Gallium doped microwave F600-V bulb. A novel VIP 397/418 bulb has been made recently, by Fusion UV Systems, to increase UV curing efficiency of white pigmented coatings. Previous research work has shown that the VIP 397/418 bulb can cure cationic white pigmented coatings 40-60% faster than a F600-V bulb. Further evaluations of free radical white pigmented coatings have produced significant data indicating that better physical properties (40-50%) or higher cure speeds (50%) can be obtained by using the VIP 397/418 bulb than a F600-V bulb

  16. Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV

    Science.gov (United States)

    Phan, Hoang Vu; Park, Hoon Cheol

    2016-04-01

    In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.

  17. Limb patterning genes and heterochronic development of the emu wing bud

    Directory of Open Access Journals (Sweden)

    Craig A. Smith

    2016-12-01

    Full Text Available Abstract Background The forelimb of the flightless emu is a vestigial structure, with greatly reduced wing elements and digit loss. To explore the molecular and cellular mechanisms associated with the evolution of vestigial wings and loss of flight in the emu, key limb patterning genes were examined in developing embryos. Methods Limb development was compared in emu versus chicken embryos. Immunostaining for cell proliferation markers was used to analyze growth of the emu forelimb and hindlimb buds. Expression patterns of limb patterning genes were studied, using whole-mount in situ hybridization (for mRNA localization and RNA-seq (for mRNA expression levels. Results The forelimb of the emu embryo showed heterochronic development compared to that in the chicken, with the forelimb bud being retarded in its development. Early outgrowth of the emu forelimb bud is characterized by a lower level of cell proliferation compared the hindlimb bud, as assessed by PH3 immunostaining. In contrast, there were no obvious differences in apoptosis in forelimb versus hindlimb buds (cleaved caspase 3 staining. Most key patterning genes were expressed in emu forelimb buds similarly to that observed in the chicken, but with smaller expression domains. However, expression of Sonic Hedgehog (Shh mRNA, which is central to anterior–posterior axis development, was delayed in the emu forelimb bud relative to other patterning genes. Regulators of Shh expression, Gli3 and HoxD13, also showed altered expression levels in the emu forelimb bud. Conclusions These data reveal heterochronic but otherwise normal expression of most patterning genes in the emu vestigial forelimb. Delayed Shh expression may be related to the small and vestigial structure of the emu forelimb bud. However, the genetic mechanism driving retarded emu wing development is likely to rest within the forelimb field of the lateral plate mesoderm, predating the expression of patterning genes.

  18. Recent progress in the analysis of iced airfoils and wings

    Science.gov (United States)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  19. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    Science.gov (United States)

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  20. Quantitative analysis of ancient Egyptian pigments by external PIXE

    International Nuclear Information System (INIS)

    Uda, M.; Tsunokami, T.; Murai, R.; Maeda, K.; Harigai, I.; Nakayama, Y.; Yoshimura, S.; Kikuchi, T.; Sakurai, K.; Sasa, Y.

    1993-01-01

    Pigments painted on Egyptian excavations in the 18th Dynasty were analyzed successfully by external PIXE with the aid of the X-ray diffraction. A white pigment was composed on Mg 3 Ca(CO 3 ) 4 ; red: αFe 2 O 3 , αFeO.OH and AsS; pink: Mixtures of white and red pigments; yellow: αFeO.OH and As 2 S 3 ; and blue: CaO.CuO.4SiO 2 . (orig.)

  1. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  2. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  3. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  4. MRI diagnosis of pigmented villonodular synovitis

    International Nuclear Information System (INIS)

    Shang Zhongpu; Sui Zhengyan; Xue Jianrong; Song Cuizhi; Liu Yuekui; Li Jinwang

    2007-01-01

    Objective: To explore the MRI characteristics of pigmented villonodular synovitis. Methods: MRI and clinic data of 14 patients with pigmented villonodular synovitis proved by pathology were reviewed retrospectively. Results: MRI showed diffusible lesions in all 14 cases. 12 cases were located in knee joint, 2 in hip. MRI revealed nodules and masses formed by villis hyperplasia in the joints. MRI demonstrated the nodules with slightly low signal intensity on both T 1 WI and T 2 WI in 13 cases, the destruction of the cartilage in 8 cases, the destruction of the ligament in 5 cases, and the hydropsy in joint cavity in 10 cases, the destruction of the meniscus in 2 cases. Conclusion: The typical features of pigmented villonodular synovitis on MRI revealed the nodules formed by villis hyperplasia in the joint. Hemosiderin in the nodules demonstrated slightly low signal intensity on both T 1 WI and T 2 WI, with the presence of typical features like 'foam rubber cushion' sign and 'lichen' sign. (authors)

  5. Optimization of fermentation conditions for red pigment production ...

    African Journals Online (AJOL)

    An extracellular pigment-producing ascomycetous filamentous fungi belonging to the genera Penicillium was obtained from soil and its optimal culture conditions investigated. The optimal culture conditions for pigment production were as follows; soluble starch 2% (670 units), peptone (880 units), pH 9.0 (900 units); ...

  6. [Is prophylactic YAG iridotomy useful in pigment dispersion syndrome?].

    Science.gov (United States)

    Rosentreter, A; Schwenn, O; Funk, J; Dietlein, T

    2013-04-01

    Despite theoretical considerations concerning the advantage of iridotomy in eyes with pigment dispersion syndrome or early pigment glaucoma, there is a lack of clinical evidence that this procedure has a long-term effect in preventing glaucoma damage under these circumstances. However, several factors may contribute to this lack of evidence, e.g. the statistical problem of a low conversion rate from pigment dispersion syndrome to pigment glaucoma or the inclusion criteria in the studies treating patients older than 40 years or genetic dispositions in pigment glaucoma that are not yet fully clear. On the basis of current data the decision for YAG iridotomy should only be taken in patients younger than 40 years, if the midperipheral iris shows an inverse bowing and the intraocular pressure is normal or slightly increased with no progressive signs of optic nerve damage. In cases of insufficient intraocular pressure and visual defects due to glaucomatous optic nerve damage, incisional glaucoma surgery is usually necessary especially in younger patients with a long life expectancy.

  7. Fly ash based zeolitic pigments for application in anticorrosive paints

    International Nuclear Information System (INIS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-01-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na + with Mg 2+ and Ca 2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  8. THE EVOLUTION OF OPSINS AND COLOR VISION: CONNECTING GENOTYPE TO A COMPLEX PHENOTYPE

    OpenAIRE

    BLOCH, Natasha I

    2016-01-01

    Dissecting the genetic basis of adaptive traits is key to our understanding of evolutionary processes. A major and essential step in the study of evolutionary genetics is drawing link between genotype and phenotype, which depends on the difficult process of defining the phenotype at different levels, from functional to organismal. Visual pigments are a key component of the visual system and their evolution could also provide important clues on the evolution of visual sensory system in respons...

  9. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  10. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  11. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  12. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  13. The concave iris in pigment dispersion syndrome.

    Science.gov (United States)

    Liu, Lance; Ong, Ee Lin; Crowston, Jonathan

    2011-01-01

    To visualize the changes of the iris contour in patients with pigment dispersion syndrome after blinking, accommodation, and pharmacologic miosis using anterior segment optical coherence tomography. Observational case series. A total of 33 eyes of 20 patients with pigment dispersion syndrome. Each eye was imaged along the horizontal 0- to 180-degree meridian using the Visante Anterior Segment Imaging System (Carl Zeiss Meditec, Dublin, CA). Scans were performed at baseline and after focusing on an internal fixation target for 5 minutes, forced blinking, accommodation, and pharmacologic miosis with pilocarpine 2%. Quantitative analysis of the changes in the iris configuration. After 5 minutes of continual fixation, the iris became planar with the mean ± standard deviation curvature decreasing from 214 ± 74 μm to 67 ± 76 μm (P pigment dispersion syndrome after forced blinking, but the iris concavity recovered to 227 ± 113 μm (P = 0.34) and 238 ± 119 μm (P = 0.19) with the -3.0 and -6.0 diopter lenses, respectively. Pilocarpine-induced miosis caused the iris to assume a planar configuration in all subjects. This study shows that the iris in pigment dispersion syndrome assumes a planar configuration when fixating and that the concavity of the iris surface is not restored by blinking. Accommodation restored the iris concavity, suggesting that the posterior curvature of the iris in pigment dispersion syndrome is induced and probably maintained, at least in part, by accommodation. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  15. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  16. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.

    Science.gov (United States)

    Vellichirammal, Neetha Nanoth; Gupta, Purba; Hall, Tannice A; Brisson, Jennifer A

    2017-02-07

    The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.

  17. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range.

    Science.gov (United States)

    Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker

    2016-01-01

    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

  18. [Spectral sensitivity and visual pigments of the coastal crab Hemigrapsus sanguineus].

    Science.gov (United States)

    Shukoliukov, S A; Zak, P P; Kalamkarov, G R; Kalishevich, O O; Ostrovskiĭ, M A

    1980-01-01

    It has been shown that the compound eye of the coastal crab has one photosensitive pigment rhodopsin and screening pigments, black and orange one. The orange pigment has lambda max = 480 nm, rhodopsin in digitonin is stable towards hydroxylamin action, has lambda max = 490-495 nm and after bleaching is transformed into free retinene and opsin. The pigments with lambda max = 430 and 475 nm of the receptor part of the eye are also solubilized. These pigments are not photosensitive but they dissociate under the effect of hydroxylamine. The curye of spectral sensitivity of the coastal crab has the basic maximum at approximately 525 nm and the additional one at 450 nm, which seems to be provided by a combination of the visual pigment--rhodopsin (lambda max 500 nm) with a carotinoid filter (lambda max 480-490). Specific features of the visual system of coastal crab are discussed.

  19. Topology optimization of compliant adaptive wing leading edge with composite materials

    Directory of Open Access Journals (Sweden)

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  20. Chlorophyll: The wonder pigment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.

    Chlorophyll, the green plant pigment, a 'real life force' of living beings, besides synthesizing food, is a great source of vitamins, minerals and other phytochemicals. Adding chlorophyll rich food to our diet fortifies our body against health...

  1. Barumiki antocyjanowe u Iris germanica [Anthocyanin pigments in Iris germanica L.

    Directory of Open Access Journals (Sweden)

    J. Szczepańska

    2015-06-01

    Full Text Available Anthocyanin pigments occurring in the flowers of Iris germanica were investigated in five varieties: Rota, Wedgewood, Empress of India, Deputate Nomblot and Joanna. The relation between the colour of the flower and the amount of the pigment was studied. The pigments were extracted from the dry plant material with 1% hydrochloric acid in methanol. Paper chromatography and colorimetric determinations were used for identification of the pigments and their quantitative determination. The results allow the following conclusions: 1. The varieties investigated were characterized toy the occurrence of delphinidine glycoside; 2. The colour intensity is dependent on the anthocyanin pigments; 3. The colour spectrum of Iris sp. flowersis greatly extended by yellow copigments.

  2. Unraveling the chemical identity of meat pigments.

    Science.gov (United States)

    Pegg, R B; Shahidi, F

    1997-10-01

    This review examines the chemistry of nitrite curing of meat and meat products as it relates to the development of cured meat color and provides a detailed account of how nitrite-free processed meats could be prepared using the preformed cooked cured-meat pigment (CCMP). Thus, a chemical description of meat color, both raw and cooked, and characterization of nitrosylheme pigments follows. Based on electron paramagnetic resonance (EPR), visible and infrared spectroscopic studies, evidence has been provided to support the hypothesis that the chemical structure of the preformed CCMP is identical to that of the pigment prepared in situ after thermal processing of nitrite-cured meat and is in fact a mononitrosylheme complex. An appendix, which describes the basic principles of EPR spectroscopy used in the context of this review, is attached.

  3. Corneal collagen crosslinking and pigment dispersion syndrome.

    Science.gov (United States)

    LaHood, Benjamin R; Moore, Sacha

    2017-03-01

    We describe the case of a keratoconus patient with pigment dispersion syndrome (PDS) who was treated for progressive corneal ectasia with corneal collagen crosslinking (CXL). Pigment dispersion syndrome has been shown to have associated morphologic changes of the corneal endothelium. Corneal CXL has the potential to cause toxicity to the corneal endothelium, and adjacent pigment might increase the likelihood of damage. In this case, the presence of PDS had no detrimental effect on the outcome of treatment, and no complications were observed at 12 months follow-up, indicating that it may be safe to perform corneal CXL in the setting of PDS. This is an important observation as the number of indications for corneal CXL grows. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-02-01

    Full Text Available The thermohydraulic performance in a tube containing a modified twisted tape with alternate-axes and wing arrangements is reported. This work aims to investigate the effects of wing arrangements (opposite (O and parallel (P wings at different wing shapes (triangle (Tri, rectangular (Rec, and trapezoidal (Tra wings and on the thermohydraulic performance characteristics. The obtained results show that wing twisted tapes with all wing shape arrangements (O-Tri/O-Rec/O-Tra/P-Tri/P-Rec/P-Tra give superior thermohydraulic performance and heat transfer rate to the typical twisted tape. In addition, the tapes with opposite wing arrangement of O-Tra, O-Rec, and O-Tri give superior thermohydraulic performances to those with parallel wing arrangement of P-Tra, P-Rec, and P-Tri around 2.7%, 3.5%, and 3.2%, respectively.

  5. Microscopic modulation of mechanical properties in transparent insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin; Singh, Kamal P., E-mail: kpsingh@iisermohali.ac.in; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 (India)

    2014-02-10

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodic organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.

  6. Winging of scapula due to serratus anterior tear

    Directory of Open Access Journals (Sweden)

    Varun Singh Kumar

    2014-10-01

    Full Text Available 【Abstract】Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle. Traumatic injury to serratus anterior muscle itself is very rare. We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male. Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test. Patient was managed conservatively and achieved satisfactory result. Key words: Serratus anterior tear; Scapula; Wounds and injuries

  7. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  8. New findings of twisted-wing parasites (Strepsiptera) in Alaska

    Science.gov (United States)

    Mcdermott, Molly

    2016-01-01

    Strepsipterans are a group of insects with a gruesome life history and an enigmatic evolutionary past. Called ‘twisted-wing parasites’, they are minute parasitoids with a very distinct morphology (Figure 1). Alternatively thought to be related to ichneumon wasps, Diptera (flies), Coleoptera (beetles), and even Neuroptera (net-winged insects) (Pohl and Beutel, 2013); the latest genetic and morphological data support the sister order relationship of Strepsiptera and Coleoptera (Niehuis et al., 2012). Strepsipterans are highly modified, males having two hind wings and halteres instead of front wings or elytra. Unlike most parasitoids, they develop inside active, living insects who are sexually sterilized but not killed until or after emergence (Kathirithamby et al., 2015).

  9. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].

    Science.gov (United States)

    Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian

    2012-03-01

    The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.

  10. Prodigiosin pigment of Serratia marcescens is associated with increased biomass production.

    Science.gov (United States)

    Haddix, Pryce L; Shanks, Robert M Q

    2018-04-03

    Serratia marcescens is a gram-negative, facultatively-anaerobic bacterium and opportunistic pathogen which produces the red pigment prodigiosin. We employed both batch culture and chemostat growth methods to investigate prodigiosin function in the producing organism. Pigmentation correlated with an increased rate of ATP production during population lag phase. Results with a lacZ transcriptional fusion to the prodigiosin (pig) biosynthetic operon revealed that operon transcription is activated by low cellular levels of ATP at high cell density. Furthermore, these data enabled estimation of the ATP per cell minimum value at which the operon is induced. Pigmented cells were found to accumulate ATP more rapidly and to multiply more quickly than non-pigmented cells during the high density growth phase. Finally, results with both batch and chemostat culture revealed that pigmented cells grow to approximately twice the biomass yield as non-pigmented S. marcescens bacteria. Prodigiosin production may, therefore, provide a growth advantage at ambient temperatures.

  11. Current perspective of yellowish-orange pigments from microorganisms- a review

    OpenAIRE

    Aruldass , Claira Arul; Dufossé , Laurent; Ahmad , Wan Azlina

    2018-01-01

    International audience; Natural yellowish-orange pigments are derived from bacteria, yeasts, fungi and microalgae, including Chryseobacterium, Monascus and Chlorella. The purpose of this review is to provide an overview of these pigments in various aspects towards exploiting them for numerous functions. These pigments are produced in various shades of yellow-orange and categorised as carotenoids, anthraquinones, zeaxanthin, flexirubin and other compounds. They served as alternative colourants...

  12. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  13. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  14. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    Science.gov (United States)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  15. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  16. Production of colourful pigments consisting of amorphous arrays of silica particles.

    Science.gov (United States)

    Yoshioka, Shinya; Takeoka, Yukikazu

    2014-08-04

    It is desirable to produce colourful pigments that have anti-fading properties and are environmentally friendly. In this Concept, we describe recently developed pigments that exhibit such characteristics. The pigments consist of amorphous arrays of submicron silica particles, and they exhibit saturated and angle-independent structural colours. Variously coloured pigments can be produced by changing the size of the particles, and the saturation of the colour can be controlled by incorporating small amounts of black particles. We review a simple analysis that is useful for interpreting the angular independence of the structural colours and discuss the remaining tasks that must be accomplished for the realistic application of these pigments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Raman af hvide pigmenter

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard; Nielsen, Ole Faurskov; Sauer, Stephan P. A.

    2013-01-01

    Et samspil mellem kunst og kemi. I et samarbejde mellem Statens Museum for Kunst og Kemisk Institut på KU er Ramanspek-troskopi brugt til at definere sammensætningen af blandinger af blyhvidt og calcit i maleriers hvide pigmenter....

  18. Spontaneous long-range calcium waves in developing butterfly wings.

    Science.gov (United States)

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  19. Butterflies: Photonic Crystals on the Wing

    Science.gov (United States)

    2007-03-22

    green hairstreak , Callophrys rubi, suggested that the scales have a 3D cubic network organization (Fig. 9). An extensive analysis of the scales of a...Fig. 9. a Ventral side of the wings of the green hairstreak , Callophrys rubi. b Transmission electron micrograph of a small area of a single...Report 3. DATES COVERED (From – To) 15 March 2006 - 08-Jun-07 4. TITLE AND SUBTITLE Butterflies : Photonic Crystals on the Wing 5a. CONTRACT

  20. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  1. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  2. Ultrastructural analysis of the pigment dispersion syndrome in DBA/2J mice.

    Science.gov (United States)

    Schraermeyer, Mareike; Schnichels, Sven; Julien, Sylvie; Heiduschka, Peter; Bartz-Schmidt, Karl-Ulrich; Schraermeyer, Ulrich

    2009-11-01

    To characterise ocular pigment abnormalities associated with iris atrophy in DBA/2J mice as a model for human pigment dispersion syndrome. Immunohistochemistry, electron and light microscopy were performed to examine the eyes of DBA/2J mice ranging in age from 2.5 to 18 months old. The focus of our study was the description of the ultrastructural modifications in the irides of DBA/2J mice. The DBA/2J mice presented modifications in the melanosomes in all the pigmented parts of the eye, including the retinal pigment epithelial cells and choroidal melanocytes of the ciliary pigment epithelium. The extracellular matrix of the iris stroma disappeared with ageing. Pigmented cells detached from the iris and migrated into the trabecular meshwork exclusively on the anterior iris surface. These cells were identified as macrophages by immunohistochemistry and electron microscopy. There was no evidence that melanocytes or iris pigment epithelial cells migrated into the trabecular meshwork, but they became more and more depigmented. The aqueous outflow was blocked by pigment-laden cells, but not by cellular debris or melanosomes. No substantial amount of extracellular melanosomes was observed. The morphology of melanosomes is aberrant in all pigment cells in the eyes of DBA/2J mice. We conclude that the disease process begins with the transfer of both immature melanosomes from the iris pigment epithelium (IPE) and melanocytes to macrophages, which subsequently migrate into the trabecular meshwork. Accumulating macrophages cause a blockade of the chamber angle. As the disease progresses, the IPE, melanocytes and iris stroma, including blood vessels, disappear, leading to iris atrophy. It is speculated that the loss of these pigment cells is partly caused by reduction of the iris stroma.

  3. TEM studies of the crystal growth of indanthrone pigments

    International Nuclear Information System (INIS)

    McHendry, P.

    1998-01-01

    The aim of this work was to study the crystal growth of indanthrone during the pigmentation process. The colouring properties of a pigment are dependant on the chemical and crystallographic structure of the pigment. However, other factors are known to affect these properties including particle size, particle size distribution and level of dispersion in the chosen application medium. The parameters which affect the growth of the pigment particles were investigated with the emphasis placed on the mechanism by which growth took place. The final form of the crystals after growth was also investigated in some detail. Various electron microscopy techniques were employed in the investigations in this thesis. High and low magnification imaging and diffraction were studied on the CTEM (conventional transmission electron microscope) whilst PEELS (parallel electron energy loss spectroscopy) and DPC (differential phase contrast) studies took place on the VG HB5 STEM (scanning transmission electron microscope). In addition to these studies, x-ray diffraction and surface area analysis techniques were employed. The low magnification CTEM work gave good information on the size, shape and size distribution of the pigment particles and enabled detailed analysis of the level of growth attained under varied reaction conditions. (author)

  4. Retrospective Evaluation of Topical Bimatoprost and Iris Pigmentation Change.

    Science.gov (United States)

    Zaleski-Larsen, Lisa A; Ruth, Nadine H; Fabi, Sabrina G

    2017-12-01

    Topical bimatoprost is a topical prostaglandin analog originally used to treat glaucoma and more recently used to cosmetically induce hypertrichosis of the eyelashes. Iris pigmentation change has been noted in the treatment of glaucoma but has not been assessed with the cosmetic periorbital application of bimatoprost. To evaluate for iris pigmentation change with the long-term cosmetic use of topical bimatoprost. A retrospective chart review in a cosmetic dermatology practice of women (N = 50) who consistently purchased topical bimatoprost over an average of 4.59 years was compared with that of age-matched non-bimatoprost patients (N = 50). A blinded evaluator assessed each patient for iris pigmentary change. No iris pigmentation change was noted with the cutaneous application of bimatoprost. The cutaneous application of bimatoprost appears to be safe with minimal risk for iris pigmentation change.

  5. Loci associated with skin pigmentation identified in African populations

    Science.gov (United States)

    Crawford, Nicholas G.; Kelly, Derek E.; Hansen, Matthew E. B.; Beltrame, Marcia H.; Fan, Shaohua; Bowman, Shanna L.; Jewett, Ethan; Ranciaro, Alessia; Thompson, Simon; Lo, Yancy; Pfeifer, Susanne P.; Jensen, Jeffrey D.; Campbell, Michael C.; Beggs, William; Hormozdiari, Farhad; Mpoloka, Sununguko Wata; Mokone, Gaonyadiwe George; Nyambo, Thomas; Meskel, Dawit Wolde; Belay, Gurja; Haut, Jake; Rothschild, Harriet; Zon, Leonard; Zhou, Yi; Kovacs, Michael A.; Xu, Mai; Zhang, Tongwu; Bishop, Kevin; Sinclair, Jason; Rivas, Cecilia; Elliot, Eugene; Choi, Jiyeon; Li, Shengchao A.; Hicks, Belynda; Burgess, Shawn; Abnet, Christian; Watkins-Chow, Dawn E.; Oceana, Elena; Song, Yun S.; Eskin, Eleazar; Brown, Kevin M.; Marks, Michael S.; Loftus, Stacie K.; Pavan, William J.; Yeager, Meredith; Chanock, Stephen; Tishkoff, Sarah

    2017-01-01

    Despite the wide range of skin pigmentation in humans, little is known about its genetic basis in global populations. Examining ethnically diverse African genomes, we identify variants in or near SLC24A5, MFSD12, DDB1, TMEM138, OCA2 and HERC2 that are significantly associated with skin pigmentation. Genetic evidence indicates that the light pigmentation variant at SLC24A5 was introduced into East Africa by gene flow from non-Africans. At all other loci, variants associated with dark pigmentation in Africans are identical by descent in southern Asian and Australo-Melanesian populations. Functional analyses indicate that MFSD12 encodes a lysosomal protein that affects melanogenesis in zebrafish and mice, and that mutations in melanocyte-specific regulatory regions near DDB1/TMEM138 correlate with expression of UV response genes under selection in Eurasians. PMID:29025994

  6. Ultraviolet radiation effects on pigmentation in the cyanobacterium ''Phormidium uncinatum''

    International Nuclear Information System (INIS)

    Donkor, V.A.; Haeder, D.P.

    1997-01-01

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the β- were more rapid than that of the α- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author)

  7. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    Science.gov (United States)

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Internal-external flow integration for a thin ejector-flapped wing section

    Science.gov (United States)

    Woolard, H. W.

    1979-01-01

    Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.

  9. Synthesis and Characterization of a New Heterocyclic Azo Pigment

    International Nuclear Information System (INIS)

    Asniza, M.; Issam, A.M.; Khalil, H.P.S.A.

    2011-01-01

    A new heterocyclic coupling agent has been produced from the reaction of maleic anhydride and p-aminophenol, namely N-(4-hexahydrophenol)maleimide. The coupling agent underwent azo coupling reaction with aromatic amine, which is p-aminophenol to produce a new heterocyclic azo pigment. The pigment was then subjected to solubility, hiding power and light fastness test. Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet/ Visible (UV/Vis) Spectroscopy, and Nuclear Magnetic Resonance Spectroscopy ( 1 H-NMR, 13 C-NMR) were used to obtain the characteristics and structural features of the pigment. (author)

  10. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.

    Science.gov (United States)

    Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W

    2016-10-01

    Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.

  11. Fumed metallic oxides and conventional pigments for glossy inkjet paper

    Science.gov (United States)

    Lee, Hyunkook

    Product development activity in the area of inkjet printing papers has accelerated greatly to meet the rapidly growing market for inkjet papers. Advancements in inkjet printing technology have also placed new demands on the paper substrate due to faster printing rates, greater resolution through increased drop volumes, and colorants added to the ink. To meet these requirements, papermakers are turning to pigmented size press formulations or pigmented coating systems. For inkjet coating applications, both the internal porosity of the pigment particles as well as the packing porosity of the coating affect print quality and dry time. Pores between the pigment particles allow for rapid diffusion of ink fluids into the coating structure, while also providing capacity for ink fluid uptake. Past research has shown the presence of coating cracks to increase the microroughness of the papers, consequently reducing the gloss of the silica/polyvinyl alcohol based coating colors. Coating cracks were not observed, at the same level of magnification, in the scanning electron microscopy images of alumina/polyvinyl alcohol coated papers. Studies are therefore needed to understand the influence of coating cracking on the microroughening of silica/polyvinyl alcohol based coatings and consequences to coating and ink gloss. Since micro roughening is known to be linked to shrinkage of the coating layer, studies are needed to determine if composite pigments can be formulated, which would enable the coating solids of the formulations to be increased to minimize the shrinkage of coating layer during drying. Coating solids greater than 55% solids are needed to reduce the difference between application solids and the coating's immobilization solids point in order to reduce shrinkage. The aim of this research was to address the above mentioned needed studies. Studies were performed to understand the influence of particle packing on gloss and ink jet print quality. Composite pigment structures

  12. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  13. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  14. Investigation of Surface Enhanced Coherent Raman Scattering on Nano-patterned Insect Wings

    Science.gov (United States)

    Ujj, Laszlo; Lawhead, Carlos

    2015-03-01

    Many insect wings (cicadas, butterflies, mosquitos) poses nano-patterned surface structure. Characterization of surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of a cicada's wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. In order to identify the chemical composition of the wing, we have deposited silver nanoparticles on it and applied Coherent anti-Stokes Raman Spectroscopy to measure the vibrational spectra of the molecules comprising the wing for the first time. The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to measure other nano-patterned surfaces and to make artificial materials in the future. Authors grateful for financial support from the Department of Physics of the College of Sciences Engineering and Health of UWF and the Pall Corporation for SEM imaging.

  15. Pigment dispersion syndrome associated with optic nerve melanocytoma.

    Science.gov (United States)

    Asorey-García, A; Méndez-Hernández, C D; Santos-Bueso, E; García-Feijoo, J

    2015-10-01

    A 60-year old patient was referred for cataract surgery. The examination showed retrokeratic pigment in the left eye, which had an intraocular pressure of 24 mm Hg. The funduscopy showed a brown lesion on the left optic disk, with adjacent vitreous seeding of pigment. The patient was thus diagnosed with secondary pigment dispersion syndrome due to optic disk melanocytoma. Although melanocytoma is most commonly a benign, stationary tumor, it may present with major complications leading to significant visual loss. A patient with melanocytoma of the optic disk should be examined periodically. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Bio production of red pigment by local isolate of Monascus purpureus

    International Nuclear Information System (INIS)

    Youssef, B.M.; Khalaf, M.A.; Emam, D.A.; Hazaa, M.M.; Shash, S.M.

    2009-01-01

    There is an increased interest on natural pigments to replace some currently used synthetic dyes, since the latter have been associated with toxic effects in foods. The red pigment of the fungus Monascus is widely used in all the world as food additives or pharmaceuticals. The Monascus purpureus local strain, which was isolated from dried silage sample was employed for red pigment production in submerged fermentation (Sm F) conditions. Different fermentation parameters including: incubation period, temperature, initial ph of the medium, agitation, different carbon and nitrogen sources, bio elements and type of inoculum and its age; were carried out under Sm F conditions to enhance the red pigment production. The maximum red pigment production (1.27 gI -1 ) was achieved at incubation temperature 30 C, initial ph 5.5, agitation rate 150 rpm, 2% starch and 0.4% ammonium sulphate as carbon and nitrogen sources, respectively, after 4 days when the production medium inoculated with 12 h age from seed culture inoculum. An experiment was conducted to investigate the effect of gamma irradiation on the activity of Monascus purpureus towards red pigment production. The maximum red pigment production (I.9 gI -1 ) was obtained at 0.5 kGy dose level

  17. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    Science.gov (United States)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  18. Pigment dispersion syndrome associated with spontaneous subluxation of crystalline lens

    Directory of Open Access Journals (Sweden)

    Vikas Veerwal

    2017-01-01

    Full Text Available Pigment dispersion syndrome (PDS is an ocular condition characterized by a dispersion of iris pigment throughout the eye. This pigment is deposited in a characteristic manner on the corneal endothelium as Krukenberg's spindle, anterior surface of the iris, in the trabecular meshwork, on the lens and zonule and occasionally on the anterior hyaloid face. Even with deposition of pigment on zonular fibers, no zonular weakness, or zonular dehiscence has been reported in these cases. We report a unique case of PDS with bilateral spontaneous subluxation of crystalline lens. With characteristic findings of pigment distribution in both his eyes, the patient had concave iris configuration with heavily pigmented trabecular meshwork confirming the diagnosis of PDS. The patient had bilateral 180° temporal subluxation of crystalline lens in both his eyes. The usual cause of lens subluxation such as Marfan's Syndrome and Ehler's Danlos Syndrome was ruled out. The patient underwent right eye followed by left eye intracapsular cataract extraction with ab-interno technique with postoperative best-corrected visual acuity (BCVA of 6/9 in both eyes. Spontaneous subluxation of crystalline lens in isolated PDS is not known to occur and has been reported by means of this case. We recommend a thorough assessment of zonular status in all cases of PDS.

  19. Pigment dispersion syndrome associated with spontaneous subluxation of crystalline lens.

    Science.gov (United States)

    Veerwal, Vikas; Goyal, Jawahar Lal; Jain, Parul; Arora, Ritu

    2017-01-01

    Pigment dispersion syndrome (PDS) is an ocular condition characterized by a dispersion of iris pigment throughout the eye. This pigment is deposited in a characteristic manner on the corneal endothelium as Krukenberg's spindle, anterior surface of the iris, in the trabecular meshwork, on the lens and zonule and occasionally on the anterior hyaloid face. Even with deposition of pigment on zonular fibers, no zonular weakness, or zonular dehiscence has been reported in these cases. We report a unique case of PDS with bilateral spontaneous subluxation of crystalline lens. With characteristic findings of pigment distribution in both his eyes, the patient had concave iris configuration with heavily pigmented trabecular meshwork confirming the diagnosis of PDS. The patient had bilateral 180° temporal subluxation of crystalline lens in both his eyes. The usual cause of lens subluxation such as Marfan's Syndrome and Ehler's Danlos Syndrome was ruled out. The patient underwent right eye followed by left eye intracapsular cataract extraction with ab-interno technique with postoperative best-corrected visual acuity (BCVA) of 6/9 in both eyes. Spontaneous subluxation of crystalline lens in isolated PDS is not known to occur and has been reported by means of this case. We recommend a thorough assessment of zonular status in all cases of PDS.

  20. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting