WorldWideScience

Sample records for wing length feather

  1. The primary feather lengths of early birds with respect to avian wing shape evolution.

    Science.gov (United States)

    Wang, X; Nudds, R L; Dyke, G J

    2011-06-01

    We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  2. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  3. Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.

    Science.gov (United States)

    Hage, W.; Meyer, R.; Bechert, D. W.

    1997-11-01

    In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.

  4. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  5. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880 were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts.

  6. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica Wing and Tail Feathers.

    Directory of Open Access Journals (Sweden)

    Péter L Pap

    Full Text Available Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1 and the sexually dimorphic outermost (Ta6 and monomorphic second outermost (Ta5 tail feathers of barn swallows (Hirundo rustica from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the

  7. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  8. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia

    Directory of Open Access Journals (Sweden)

    Klaas Michael

    2007-11-01

    Full Text Available Abstract Background Owls are known for their silent flight. Even though there is some information available on the mechanisms that lead to a reduction of noise emission, neither the morphological basis, nor the biological mechanisms of the owl's silent flight are known. Therefore, we have initiated a systematic analysis of wing morphology in both a specialist, the barn owl, and a generalist, the pigeon. This report presents a comparison between the feathers of the barn owl and the pigeon and emphasise the specific characteristics of the owl's feathers on macroscopic and microscopic level. An understanding of the features and mechanisms underlying this silent flight might eventually be employed for aerodynamic purposes and lead to a new wing design in modern aircrafts. Results A variety of different feathers (six remiges and six coverts, taken from several specimen in either species, were investigated. Quantitative analysis of digital images and scanning electron microscopy were used for a morphometric characterisation. Although both species have comparable body weights, barn owl feathers were in general larger than pigeon feathers. For both species, the depth and the area of the outer vanes of the remiges were typically smaller than those of the inner vanes. This difference was more pronounced in the barn owl than in the pigeon. Owl feathers also had lesser radiates, longer pennula, and were more translucent than pigeon feathers. The two species achieved smooth edges and regular surfaces of the vanes by different construction principles: while the angles of attachment to the rachis and the length of the barbs was nearly constant for the barn owl, these parameters varied in the pigeon. We also present a quantitative description of several characteristic features of barn owl feathers, e.g., the serrations at the leading edge of the wing, the fringes at the edges of each feather, and the velvet-like dorsal surface. Conclusion The quantitative

  9. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

    Science.gov (United States)

    Hieronymus, Tobin L

    2016-11-01

    Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.

  10. The presence of quill mites (Gabucinia bicaudata and lice (Struthiolipeurus struthionis in ostrich wing feathers

    Directory of Open Access Journals (Sweden)

    R.G. Cooper

    2006-06-01

    Full Text Available Quill mites (Gabucinia bicaudata and lice (Struthiolipeurus struthionis may infest ostrich feathers, resulting in skin damage, pruritis and excessive feather preening and loss. Four different feather types (prime white, femina extra wide, femina class 1, and femina short; n = 10 were collected. The quill mites and lice were removed with fine forceps, studied using a photographic optical microscope and counted microscopically at ×100 magnification following collection by sedimentation. They were placed in separate Petri dishes containing lactophenol solution and examined (×40 magnification. Anatomical features are described. The density of quill mites in all feather types of both wings was higher than that of the lice. There was no significant difference between the counts of both arthropods on the left wing and the right wing, respectively, except for the femina class 1 quill mites (P = 0.01. The femina extra wide feathers were a preferred habitat in both wings. Large standard deviations (quill mites left wing: 73 + 8; quill mites right wing: 69 + 7 suggested variations in the degree of migration between feather shafts or as a response to escape preening. It is recommended that ostriches be treated with an oral preparation of Ivermectin administered per os at a dosage rate of 0.2 mg / kg at 30-day intervals for quill mites, and with a 1-5 % Malathion dust at 14-day intervals for lice.

  11. Feathered non-avian dinosaurs from North America provide insight into wing origins.

    Science.gov (United States)

    Zelenitsky, Darla K; Therrien, François; Erickson, Gregory M; DeBuhr, Christopher L; Kobayashi, Yoshitsugu; Eberth, David A; Hadfield, Frank

    2012-10-26

    Previously described feathered dinosaurs reveal a fascinating record of feather evolution, although substantial phylogenetic gaps remain. Here we report the occurrence of feathers in ornithomimosaurs, a clade of non-maniraptoran theropods for which fossilized feathers were previously unknown. The Ornithomimus specimens, recovered from Upper Cretaceous deposits of Alberta, Canada, provide new insights into dinosaur plumage and the origin of the avian wing. Individuals from different growth stages reveal the presence of a filamentous feather covering throughout life and winglike structures on the forelimbs of adults. The appearance of winglike structures in older animals indicates that they may have evolved in association with reproductive behaviors. These specimens show that primordial wings originated earlier than previously thought, among non-maniraptoran theropods.

  12. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  13. The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light.

    Directory of Open Access Journals (Sweden)

    David W E Hone

    Full Text Available BACKGROUND: The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservation. This taxon has important implications for the origin of flight in birds and the possibility of a four-winged gliding phase. METHODOLOGY/PRINCIPAL FINDINGS: Examination of the specimen under ultraviolet light reveals that these feathers actually reach the body of the animal and were not disassociated from the bones. Instead they may have been chemically altered by the body tissues of the animal meaning that they did not carbonise close into the animal or more likely were covered by other decaying tissue, though evidence of their presence remains. CONCLUSIONS/SIGNIFICANCE: These UV images show that the feathers preserved on the slab are genuinely associated with the skeleton and that their arrangement and orientation is likely correct. The methods used here to reveal hidden features of the specimen may be applicable to other specimens from the fossil beds of Liaoning that produced Microraptor.

  14. The presence of quill mites (Gabucinia bicaudata) and lice (Struthiolipeurus struthionis) in ostrich wing feathers

    OpenAIRE

    R.G. Cooper; H.A.A. El Doumani

    2006-01-01

    Quill mites (Gabucinia bicaudata) and lice (Struthiolipeurus struthionis) may infest ostrich feathers, resulting in skin damage, pruritis and excessive feather preening and loss. Four different feather types (prime white, femina extra wide, femina class 1, and femina short; n = 10) were collected. The quill mites and lice were removed with fine forceps, studied using a photographic optical microscope and counted microscopically at ×100 magnification following collection by sedimentation. The...

  15. Hind wings in Basal birds and the evolution of leg feathers.

    Science.gov (United States)

    Zheng, Xiaoting; Zhou, Zhonghe; Wang, Xiaoli; Zhang, Fucheng; Zhang, Xiaomei; Wang, Yan; Wei, Guangjin; Wang, Shuo; Xu, Xing

    2013-03-15

    Recent discoveries of large leg feathers in some theropods have implications for our understanding of the evolution of integumentary features on the avialan leg, and particularly of their relevance for the origin of avialan flight. Here we report 11 basal avialan specimens that will greatly improve our knowledge of leg integumentary features among early birds. In particular, they provide solid evidence for the existence of enlarged leg feathers on a variety of basal birds, suggest that extensively scaled feet might have appeared secondarily at an early stage in ornithuromorph evolution, and demonstrate a distal-to-proximal reduction pattern for leg feathers in avialan evolution.

  16. The Effect of Height, Wing Length, and Wing Symmetry on Tabebuia rosea Seed Dispersal

    Directory of Open Access Journals (Sweden)

    Yasmeen Moussa

    2014-12-01

    Full Text Available The relationship between the vertical drop height and the horizontal distance traveled (dispersal ratio was investigated for a sample of fifty Tabebuia rosea seeds by dropping the seeds from five heights ranging from 1.00 to 2.00 meters. The dispersal ratio was found to be a constant 0.16 m/m for these heights. The effects of total seed length and asymmetry of seed wings on dispersal ratio were also measured using separate samples of fifty Tabebuia rosea seeds. It was found that neither seed length nor asymmetry had a significant effect on the dispersal ratio.

  17. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range.

    Science.gov (United States)

    Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker

    2016-01-01

    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

  18. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  19. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  20. Quantification of feather structure, wettability and resistance to liquid penetration

    Science.gov (United States)

    Srinivasan, Siddarth; Chhatre, Shreerang S.; Guardado, Jesus O.; Park, Kyoo-Chul; Parker, Andrew R.; Rubner, Michael F.; McKinley, Gareth H.; Cohen, Robert E.

    2014-01-01

    Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for barbs and barbules. In this work, we describe a systematic methodology to characterize the quasi-hierarchical topography of bird feathers that is based on contact angle measurements using a set of polar and non-polar probing liquids. Contact angle measurements on dip-coated feathers of six aquatic bird species (including three from the Phalacrocoracidae family) are used to extract two distinguishing structural parameters, a dimensionless spacing ratio of the barbule (D*) and a characteristic length scale corresponding to the spacing of defect sites. The dimensionless spacing parameter can be used in conjunction with a model for the surface topography to enable us to predict a priori the apparent contact angles of water droplets on feathers as well as the water breakthrough pressure required for the disruption of the plastron on the feather barbules. The predicted values of breakthrough depths in water (1–4 m) are towards the lower end of typical diving depths for the aquatic bird species examined here, and therefore a representative feather is expected to be fully wetted in a typical deep dive. However, thermodynamic surface energy analysis based on a simple one-dimensional cylindrical model of the feathers using parameters extracted from the goniometric analysis reveals that for water droplets on feathers of all six species under consideration, the non-wetting ‘Cassie–Baxter’ composite state represents the global energy minimum of the system. By contrast, for other

  1. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  2. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird.

    Directory of Open Access Journals (Sweden)

    Csongor I Vágási

    Full Text Available The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The 'molt constraint' hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs. However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.This study shows that sedentary birds might face evolutionary costs because of the molt rate-feather quality conflict. This is the first study to experimentally demonstrate that (1 molt rate affects several aspects of body feathers as well as flight feathers and (2 the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.

  3. Haste Makes Waste but Condition Matters: Molt Rate–Feather Quality Trade-Off in a Sedentary Songbird

    Science.gov (United States)

    Vágási, Csongor I.; Pap, Péter L.; Vincze, Orsolya; Benkő, Zoltán; Marton, Attila; Barta, Zoltán

    2012-01-01

    Background The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored. Methodology/Principal Findings The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent. Conclusions/Significance This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth. PMID:22808221

  4. Blood parasites, body condition, and wing length in two subspecies of yellow wagtail (Motacilla flava) during migration.

    Science.gov (United States)

    Shurulinkov, Peter; Chakarov, Nayden; Daskalova, Girgina

    2012-05-01

    Blood parasites of migrating yellow wagtails of two subspecies--Motacilla flava feldegg and Motacilla flava flava-were studied on a sample of 473 birds caught in spring and autumn periods in Bulgaria. We controlled eight "migration waves" (flocks captured in different evenings) of yellow wagtails for four parameters--average body mass, average fat level, average wing length, and average prevalence of different hematozoan species. Gametocytes or meronts of a total of six species of hematozoa belonging to three genera were identified-Haemoproteus motacillae, Haemoproteus anthi, Plasmodium relictum, Plasmodium subpraecox, Plasmodium cathemerium, and Tryponosoma avium. Mixed infections were detected in 31 cases, of which 14 were of H. anthi/H. motacillae type. Parasite species composition was similar in the two studied subspecies of M. flava. We did not find any significant differences in the overall infection prevalence or number of infecting parasites between M. f. flava and M. f. feldegg. Parasite prevalence and the number of co-infecting parasites in spring were much higher than in fall. Season had a strong influence on the prevalence of H. anthi and H. motacillae, and for both, there was a marginally significant interaction between subspecies and season, but not a season-independent influence of subspecies. Males of M. f. feldegg had a significantly higher overall blood parasite prevalence and prevalence of H. anthi than females. Sex-related differences in the prevalence of other parasites were not significant. Migration waves of yellow wagtails differed in overall infection status and in H. motacillae prevalence, but not for H. anthi prevalence. We also found significant differences in fat score, weight, and wing length between the studied migration waves of the yellow wagtails. Fat scores of birds infected with different hematozoa were lower compared with those of the non-infected birds. This only marginally was true for body weight and was not the case for wing

  5. Fossil evidence for evolution of the shape and color of penguin feathers.

    Science.gov (United States)

    Clarke, Julia A; Ksepka, Daniel T; Salas-Gismondi, Rodolfo; Altamirano, Ali J; Shawkey, Matthew D; D'Alba, Liliana; Vinther, Jakob; DeVries, Thomas J; Baby, Patrice

    2010-11-12

    Penguin feathers are highly modified in form and function, but there have been no fossils to inform their evolution. A giant penguin with feathers was recovered from the late Eocene (~36 million years ago) of Peru. The fossil reveals that key feathering features, including undifferentiated primary wing feathers and broad body contour feather shafts, evolved early in the penguin lineage. Analyses of fossilized color-imparting melanosomes reveal that their dimensions were similar to those of non-penguin avian taxa and that the feathering may have been predominantly gray and reddish-brown. In contrast, the dark black-brown color of extant penguin feathers is generated by large, ellipsoidal melanosomes previously unknown for birds. The nanostructure of penguin feathers was thus modified after earlier macrostructural modifications of feather shape linked to aquatic flight.

  6. Avian Feathers: An Examination of Lightweight Resilience and Bioinspired Designs

    Science.gov (United States)

    Sullivan, Tarah Naoe

    In bird flight, the majority of the wing surface consists of highly refined and hierarchically organized beta-keratinous feathers. Thus, flight feathers contain ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. Their design involves two main parts: a central shaft which prescribes stiffness and lateral vanes that allow for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface and ensuring lift. Microhooks at the end of barbules hold barbs tightly together, providing a close-knit, unified structure and enabling repair of the vane through the reattachment of un-hooked junctions. In this dissertation, unique aspects of feather architecture are explored to uncover principles translatable to the design of modern aerospace materials and structures. Specifically, understudied aspects of the feather's lightweight yet resilient properties are investigated. This research has revealed several novel characteristics of the feather. Allometric scaling relationships are developed linking the geometry of a bird's wing components to its flight characteristics and total mass. Barbule spacing within the feather vane is found to be 8-16 microm for birds ranging from 0.02-11 kg. Additionally, it is discovered that strength is recovered with the shape recovery property of feathers, and a mechanism for this phenomenon is proposed. Barbule adhesion within the vane is found to prevent barbs from twisting in flexure, maintaining the vane's stiffness, and the extent to which unzipping these connections affects the feather's ability to capture air is related to barb shape. Directional permeability of the feather vane is experimentally confirmed and related to the intricate microstructure of barbules. Lastly, the exceptional architecture of the feather motivated the design of novel bioinspired structures with tailored and unique properties. The avian feather serves

  7. Effects of small increases in corticosterone levels on morphology, immune function, and feather development.

    Science.gov (United States)

    Butler, Michael W; Leppert, Lynda L; Dufty, Alfred M

    2010-01-01

    Stressors encountered during avian development may affect an individual's phenotype, including immunocompetence, growth, and feather quality. We examined effects of simulated chronic low-level stress on American kestrel (Falco sparverius) nestlings. Continuous release of corticosterone, a hormone involved in the stress response, can model chronic stress in birds. We implanted 13-d-old males with either corticosterone-filled implants or shams and measured their growth, immune function, and feather coloration. We found no significant differences between groups at the end of the weeklong exposure period in morphometrics (mass, tarsus, wing length, and asymmetry), immunocompetence (cutaneous immunity, heterophil/lymphocyte ratio, and humoral immunity), or feather coloration. One week subsequent to implant removal, however, differences were detected. Sham-implanted birds had significantly longer wings and a reduced level of cutaneous immune function compared with those of birds given corticosterone-filled implants. Therefore, increases of only 2 ng/mL in basal corticosterone titer can have small but measurable effects on subsequent avian development.

  8. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  9. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  10. Relative feather mass indices: are feather masses needed to ...

    African Journals Online (AJOL)

    Relative feather mass indices: are feather masses needed to estimate the percentage of new feather mass grown for moult regression models? ... As an alternative, it is here tested if feather mass indices may be sufficient replacements for species-specific feather masses. Thirty-five species of birds with known primary ...

  11. Unzipping bird feathers.

    Science.gov (United States)

    Kovalev, Alexander; Filippov, Alexander E; Gorb, Stanislav N

    2014-03-06

    The bird feather vane can be separated into two parts by pulling the barbs apart. The original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. Because numerous microhooks keep the integrity of the feather, their properties are of great interest for understanding mechanics of the entire feather structure. This study was undertaken to estimate the separation force of single hooklets and their arrays using force measurement of an unzipping feather vane. The hooklets usually separate in some number synchronously (20 on average) with the highest observed separation force of 1.74 mN (average force 0.27 mN), whereas the single hooklet separation force was 14 μN. A simple numerical model was suggested for a better understanding of zipping and unzipping behaviour in feathers. The model demonstrates features similar to those observed in experiments.

  12. Theory of the development of curved barbs and their effects on feather morphology.

    Science.gov (United States)

    Feo, Teresa J; Simon, Emma; Prum, Richard O

    2016-08-01

    Feathers exhibit an extraordinary diversity of shapes, which are used by birds to accomplish a diverse set of functions. Pennaceous feathers have a double branched morphology that develops from a tube of epidermis, and variation in branch geometry determines feather shape. Feather development is both complex (i.e., a simple developmental modification can have multiple effects on mature feather shape), and redundant (i.e., different developmental modifications can create the same shape). Due to this, it is not readily apparent how different feather shapes develop. In many feathers, barbs are not straight, but instead curve in toward, or away, from the feather tip. Barb curvature can affect the shape of mature feathers but the development of curved barbs is unknown. Previous research has hypothesized that barb curvature could develop either during the helical growth of barb ridges in the tubular feather germ, or during barb angle expansion as the feather unfurls from the sheath. To better understand the development of curved barbs and their effects on mature feathers we present a theoretical model of curved barb development and test the model with empirical investigations of feathers. We find that curved barbs affect many aspects of feather morphology including vane width, barb length, and barb spacing. In real feathers, curved barbs can develop both during helical barb ridge growth and during barb angle expansion, with most of the observed curvature due to barb angle expansion. Our results demonstrate that barb angle expansion as a feather unfurls from the sheath is a complex and dynamic process that plays an important role in determining the shape and structure of mature feathers. Curved barbs create heterogeneity in barb geometry within the feather vane, which could have important implications for aerodynamic function and the development of within feather pigmentation patterns. J. Morphol. 277:995-1013, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  13. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus: effect of wing length and hatching sequence.

    Directory of Open Access Journals (Sweden)

    Marek Kouba

    Full Text Available In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days. The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.

  14. Modelling growth curves of Nigerian indigenous normal feather ...

    African Journals Online (AJOL)

    This study was conducted to predict the growth curve parameters using Bayesian Gompertz and logistic models and also to compare the two growth function in describing the body weight changes across age in Nigerian indigenous normal feather chicken. Each chick was wing-tagged at day old and body weights were ...

  15. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  16. Feather loss and feather destructive behavior in pet birds.

    Science.gov (United States)

    Rubinstein, Jonathan; Lightfoot, Teresa

    2014-01-01

    Feather loss in psittacine birds is a common and frustrating clinical presentation. Causes include medical and nonmedical causes of feather loss with and without overt feather destructive behavior. Underlying causes include inappropriate husbandry and housing; parasitic, viral and bacterial infections; metabolic and allergic diseases; and behavioral disorders. Prior to a diagnosis of a behavioral disorder, medical causes of feather loss must be excluded through a complete medical work-up including history, physical examination, and diagnostic testing. This article focuses on common medical and nonmedical causes of feather loss and feather destructive behavior and approaches to diagnosis and treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination

    International Nuclear Information System (INIS)

    Dauwe, T.; Bervoets, L.; Pinxten, R.; Blust, R.; Eens, M.

    2003-01-01

    Concentrations of many heavy metals in feathers, except Hg, did not reflect the molting sequence, suggesting external contamination. - In this study we examined the effect of external contamination on the heavy metal (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) concentration in feathers. We compared the heavy metal content among the 10 primary wing feathers of sparrowhawks (Accipiter nisus), little owls (Athene nocta) and barn owls (Tyto alba) and the variation within the outermost tail feather of sparrowhawks and tawny owls (Strix aluco). The concentration of Hg was significantly higher in feathers molted first, suggesting that levels in feathers reflect levels in the blood during formation. For some other elements (Al, Co, Ni, Pb, Zn) on the other hand, there are strong indications that external contamination may have an important impact on the levels detected in the feathers. This should be taken into account in future monitoring studies

  18. Body feathers as a potential new biomonitoring tool in raptors: a study on organohalogenated contaminants in different feather types and preen oil of West Greenland white-tailed eagles (Haliaeetus albicilla).

    Science.gov (United States)

    Jaspers, Veerle L B; Rodriguez, Francisco Soler; Boertmann, David; Sonne, Christian; Dietz, Rune; Rasmussen, Lars Maltha; Eens, Marcel; Covaci, Adrian

    2011-11-01

    We investigated the variation in concentrations and profiles of various classes of organohalogenated compounds (OHCs) in different feather types, muscle tissue and preen oil from 15 white-tailed eagle (Haliaeetus albicilla) carcasses from Greenland. The influence of moult patterns and potential external contamination onto the feather surface was examined, while the present study is also the first to investigate the use of body feathers for OHC monitoring. Concentrations of sum polychlorinated biphenyls (PCBs) in feathers from white tailed eagles ranged from 2.3 ng/g in a primary wing feather to 4200 ng/g in body feathers. Using 300 mg of body feathers, almost 50 different OHCs could be quantified and median concentrations in body feathers were 10 fold higher than concentrations in tail feathers (rectrices) or primary wing feathers. Body feathers could be very useful for biomonitoring taking into account their easy sampling, short preparation time and high levels of OHCs. In addition, the effects of confounding variables such as feather size, moult and age are also minimised using body feathers. Correlations with concentrations in muscle tissue and preen oil were high and significant for all feather types (r ranging from 0.81 to 0.87 for sum PCBs). Significant differences in concentrations and profiles of OHCs were found between different primary feathers, indicating that the accumulation of OHCs in feathers varies over the moulting period (maximum three years). Washing of feathers with an organic solvent (acetone) resulted in a significant decrease in the measured concentrations of OHCs in feathers. However, our results indicated that preen oil is probably not the only contributor to the external contamination that can be removed by washing with acetone. Possibly dust and other particles may be of importance and may be sticking to the preened feathers. Rectrices washed only with water showed high and significant correlations with concentrations in muscle and preen

  19. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination.

    Science.gov (United States)

    Dauwe, T; Bervoets, L; Pinxten, R; Blust, R; Eens, M

    2003-01-01

    In this study we examined the effect of external contamination on the heavy metal (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) concentration in feathers. We compared the heavy metal content among the 10 primary wing feathers of sparrowhawks (Accipiter nisus), little owls (Athene nocta) and barn owls (Tyto alba) and the variation within the outermost tail feather of sparrowhawks and tawny owls (Strix aluco). The concentration of Hg was significantly higher in feathers molted first, suggesting that levels in feathers reflect levels in the blood during formation. For some other elements (Al, Co, Ni, Pb, Zn) on the other hand, there are strong indications that external contamination may have an important impact on the levels detected in the feathers. This should be taken into account in future monitoring studies.

  1. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  2. On the Morphogenesis of Feathers

    Science.gov (United States)

    Yu, Mingke; Wu, Ping; Widelitz, Randall B.; Chuong, Cheng-Ming

    2015-01-01

    The most unique character of the feather is its highly ordered hierarchical branched structure1, 2. This evolutionary novelty confers flight function to birds3–5. Recent discoveries of fossils in China have prompted keen interest in the origin and evolution of feathers6–14. However, controversy arises whether the irregularly branched integumentary fibers on dinosaurs such as Sinornithosaurus are truly feathers6, 11, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather8–10. Here we take a developmental approach to analyze molecular mechanisms in feather branching morphogenesis. We have used the replication competent avian sarcoma (RCAS) retrovirus15 to efficiently deliver exogenous genes to regenerating chicken flight feather follicles. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) plays a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore we show that sonic hedgehog (SHH) is essential for apoptosis of the marginal plate epithelia to become spaces between barbs. Our analyses show the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide first clues on the possible developmental mechanisms in the evolution of feather forms. PMID:12442169

  3. Both feather peckers and victims are more asymmetrical than control hens

    DEFF Research Database (Denmark)

    Machado Tahamtani, Fernanda; Forkman, Björn; Hinrichsen, Lena Karina

    2017-01-01

    Feather pecking is the major welfare issue facing the egg farming industry worldwide. Previous research has found a relationship between cannibalistic behaviour, fluctuating asymmetry of bilateral traits (FA) and body weight in laying hens. As cannibalism is linked to severe feather pecking......, it could be suggested that a relationship between feather pecking, FA and body weight also exists. The purpose of this study was to analyse the association between feather pecking behaviour and a) FA, b) body weight and c) comb size in laying hens. Sixty-four laying hens were categorised as feather peckers......, victims or control hens based on weekly performance of feather pecking behaviour from age 0–23 weeks and plumage condition at age 23 weeks. After culling at 23 weeks of age, the lengths of ulna, tarsus and middle toe as well as the widths of tarsus and hock were measured twice in each side. Each trait...

  4. Tracking Seasonal Habitats Using Carbon and Nitrogen Stable Isotopes of Osprey Primary Flight Feathers

    Science.gov (United States)

    Velinsky, D.; Zelanko, P.; Rice, N.

    2011-12-01

    The majority of bird migration studies use the latitudinal precipitation effect of hydrogen and oxygen stable isotopes of feathers to determine wintering and breeding grounds. Few studies have considered carbon and nitrogen stable isotopes to accomplish the same goal; exploiting the variation in dietary constitutes throughout yearly migration cycles. Also, there is no standard procedure of feather sampling; some use body, while others use wing feathers. This sampling discrepancy is not an issue for most migratory species since the majority of birds molt completely in one location, i.e. wintering verse breeding ground. Large birds of prey however, have a continuous molt that may last years, growing feathers on their breeding and wintering grounds. Therefore, a stable isotopic study of Osprey could not randomly sample feathers because it is impossible to know where individual feathers were grown. Here we present an in depth study of carbon and nitrogen stable isotopes from Mid-Atlantic Osprey primary flight feathers. Not only did we observe three signatures indicating the breeding ground and two distinct wintering grounds, we recorded dietary seasonality shifts within 2 to 3 year olds that remain on the wintering grounds for multiple years.

  5. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    Science.gov (United States)

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight. © 2015. Published by The Company of Biologists Ltd.

  6. Development, regeneration, and evolution of feathers.

    Science.gov (United States)

    Chen, Chih-Feng; Foley, John; Tang, Pin-Chi; Li, Ang; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2015-01-01

    The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.

  7. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    Full Text Available Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt.

  8. Light diffraction through a feather

    Directory of Open Access Journals (Sweden)

    Pérez García, Hugo;

    2012-01-01

    Full Text Available We have used a feather to study light diffraction, in a qualitative as well as in a quantitative manner. Experimental measurement of the separation between the bright spots obtained with a laser pointer allowed the determination of the space between feather's barbs and barbules. The results we have obtained agree satisfactorily with those corresponding to a typical feather. Due to the kind of materials, the related concepts and the experimental results, this activity becomes an excellent didactic resource suitable for studying diffraction, both in introductory undergraduate as well as in secondary school physics courses.

  9. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  10. Individual consistency of feather pecking behavior in laying hens: once a feather pecker always a feather pecker?

    Directory of Open Access Journals (Sweden)

    Courtney L Daigle

    2015-04-01

    Full Text Available TThe pecking behavior (severe feather, gentle feather, and aggressive pecks of individual White Shaver non-cage laying hens (n = 300 was examined at 21, 24, 27, 32, and 37 wk. Hens were housed in 30 groups of 10 hens each and on 3cm litter with access to a feeder, perch, and two nest boxes. The number of severe feather pecks given and received was used to categorize hens as feather peckers (P, victims (V, neutrals (N, or feather pecker-victims (PV at each age. Hens categorized as PV exhibited pecking behaviors similar to P and received pecks similar to V. Severe feather pecks (SFP given were correlated with aggressive pecks given, but not with gentle feather pecks given throughout the study. State transition plot maps illustrated that 22.5% of P remained P, while 44% of PV remained PV throughout the duration of the study. Lifetime behavioral categories identified hens as a consistent feather pecker (5%, consistent neutral (3.9%, consistent victim (7.9%, consistent feather pecker-victim (29.4%, or inconsistent (53.8% in their behavioral patterns throughout their life. Consistent feather peckers performed more SFP than hens of other categories, and consistent neutral hens received fewer gentle feather pecks than consistent feather pecker-victims. No differences in corticosterone or whole blood serotonin levels were observed among the categories. Approximately half of the population was classified as a feather pecker at least once during the study, while the remainder was never categorized as a feather pecker. Therefore, even if the development and cause of feather pecking may be multi-factorial, once the behavior has been developed, some hens may persist in feather pecking. However, as some hens were observed to never receive or perform severe feather pecks, emphasis should be made to select for these hens in future breeding practices.

  11. The allometric pattern of sexually size dimorphic feather ornaments and factors affecting allometry.

    Science.gov (United States)

    Cuervo, José J; Møller, A P

    2009-07-01

    The static allometry of secondary sexual characters is currently subject to debate. While some studies suggest an almost universal positive allometry for such traits, but isometry or negative allometry for nonornamental traits, other studies maintain that any kind of allometric pattern is possible. Therefore, we investigated the allometry of sexually size dimorphic feather ornaments in 67 species of birds. We also studied the allometry of female feathers homologous to male ornaments (female ornaments in the following) and ordinary nonsexual traits. Allometries were estimated as reduced major axis slopes of trait length on tarsus length. Ornamental feathers showed positive allometric slopes in both sexes, although that was not a peculiarity for ornamental feathers, because nonsexual tail feathers also showed positive allometry. Migration distance (in males) and relative size of the tail ornament (in females) tended to be negatively related to the allometric slope of tail feather ornaments, although these results were not conclusive. Finally, we found an association between mating system and allometry of tail feather ornaments, with species with more intense sexual selection showing a smaller degree of allometry of tail ornaments. This study is consistent with theoretical models that predict no specific kind of allometric pattern for sexual and nonsexual characters.

  12. Bioplastics from feather quill.

    Science.gov (United States)

    Ullah, Aman; Vasanthan, Thavaratnam; Bressler, David; Elias, Anastasia L; Wu, Jianping

    2011-10-10

    Poultry feather quills have been extruded in a twin screw extruder with sodium sulfite treatment as a reducing agent. The effect of four different plasticizers (ethylene glycol, propylene glycol, glycerol, and diethyl tartrate) on the thermoplastic properties was then investigated. Conformational changes and plasticizer-protein interactions in the extruded resins were assessed by Fourier transform infrared spectroscopy (FTIR), while viscoelastic behavior of the quill keratin plasticized with different plasticizers was investigated by dynamic mechanical analysis (DMA). Differential scanning calorimetry (DSC) was used to determine the effect of different plasticizers on protein denaturation. Thermal degradation patterns of the extrudates were studied by thermogravimetric analysis (TGA). The effect of plasticizers on the mechanical properties of resins was also assessed by tensile strength measurements. Results indicated that ethylene glycol was able to interact more effectively with quill keratin at the molecular level, exhibiting only one sharp glass transition, better mechanical properties, and higher transparency compared to other plasticized resins. The two phases found in glycerol plasticized material were attributed to glycerol-rich and protein-rich zones. Propylene glycol and diethyl tartrate exhibited lower H-bonding interactions and showed wide transition regions in DMA profiles during heating, suggesting weak and heterogeneous interactions between quill keratin and these plasticizers.

  13. Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba

    OpenAIRE

    Pabisch, S.; Puchegger, S.; Kirchner, H.O.K.; Weiss, I.M.; Peterlik, H.

    2010-01-01

    The keratin structure in the cortex of peacocks? feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5?cm close to the calamus and remains constant for about 1?m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of ?-sheets, which is not fully formed initially. In the final structure, the crystall...

  14. Feather quill knobs in the dinosaur Velociraptor.

    Science.gov (United States)

    Turner, Alan H; Makovicky, Peter J; Norell, Mark A

    2007-09-21

    Some nonavian theropod dinosaurs were at least partially covered in feathers or filamentous protofeathers. However, a complete understanding of feather distribution among theropod dinosaurs is limited because feathers are typically preserved only in lagerstätten like that of Solnhofen, Germany or Liaoning, China. Such deposits possess clear taphonomic biases toward small-bodied animals, limiting our knowledge regarding feather presence in larger members of feathered clades. We present direct evidence of feathers in Velociraptor mongoliensis based on the presence of quill knobs on the posterior forearm. This report of secondaries in a larger-bodied, derived, and clearly flightless member of a nonavian theropod clade represented by feathered relatives is a substantial contribution to our knowledge of the evolution of feathers.

  15. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    OpenAIRE

    di Luca, Matteo; Mintchev, Stefano; Heitz, Grégoire Hilaire Marie; Noca, Flavio; Floreano, Dario

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly...

  16. Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird.

    Directory of Open Access Journals (Sweden)

    Maria Angela Echeverry-Galvis

    Full Text Available A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus, in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual's life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7(th primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in

  17. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  18. Eagle Feathers, the Highest Honor.

    Science.gov (United States)

    Beaverhead, Pete

    Following his own advice that elders of the tribe share their knowledge so that "the way of the Indians would come back to the children of today," Pete Beaverhead (1899-1975) tells of the traditions of respect and honor surrounding the eagle feather in a booklet illustrated with black and white drawings. The eagle is an Indian symbol of…

  19. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jane Harms, N., E-mail: naomi.harms@usask.c [University of Saskatchewan, Western College of Veterinary Medicine, Department of Veterinary Pathology, 52 Campus Drive, Saskatoon, SK, S7N 5B4 (Canada); Fairhurst, Graham D., E-mail: graham.fairhurst@usask.c [University of Saskatchewan, Department of Biology, 112 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Bortolotti, Gary R., E-mail: gary.bortolotti@usask.c [University of Saskatchewan, Department of Biology, 112 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Smits, Judit E.G., E-mail: judit.smits@usask.c [University of Saskatchewan, Western College of Veterinary Medicine, Department of Veterinary Pathology, 52 Campus Drive, Saskatoon, SK, S7N 5B4 (Canada)

    2010-03-15

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. - Under ideal weather conditions, tree swallow nestlings on reclaimed OSPM-affected wetlands are in good body condition and mount strong cell-mediated immune responses.

  20. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada

    International Nuclear Information System (INIS)

    Jane Harms, N.; Fairhurst, Graham D.; Bortolotti, Gary R.; Smits, Judit E.G.

    2010-01-01

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. - Under ideal weather conditions, tree swallow nestlings on reclaimed OSPM-affected wetlands are in good body condition and mount strong cell-mediated immune responses.

  1. Poultry feather wastes recycling possibility as soil nutrient

    Directory of Open Access Journals (Sweden)

    Lili Mézes

    2015-10-01

    Full Text Available Poultry feathers are produced in large amounts as a waste in poultry slaughterhouses. Only 60-70% of the poultry slaughterhouse products are edible for human being. This means more million tons annually worldwide (Papadopoulus et al., 1986; Williams et al., 1991; Hegedűs et al., 1998. The keratin-content of feather can be difficulty digested, so physical, chemical and/or biological pre-treatment are needed in practice, which have to be set according to the utilization method. Feather was enzymatic degraded, and then fermented in separated bioreactors. The anaerobic bioreactor system (4 digesters with 6 litre volume was controlled by ACE SCADA software running on Linux platforms. Pot scale seed germination tests were established to suggest the quantity of digested slurry to be utilized. The chosen test plants were lettuce (Lactuca sativa. In case of reproduction test Student’s t-test was applied to examine significant differences between the root lengths of the control and the treated plant species. In case of pot seed germination variance analysis with Tukey B’s and Duncan test was applied to examine significant differences between the root lengths of plants, grown on different treatments. The effect of treatments on germination ability of the plant species was expressed in the percentage of the controls. According to Student’s t-test significant difference was found between root lengths of different treatments. Based on variance analysis with Tukey B’s and Duncan tests could be detected a significant difference between the treatments. Utilization of the fermented material reduces the use of fertilizers and because of its large moisture content it reduces the watering costs. Recycle of the slaughterhouse feather and different agricultural wastes and by-products can solve three main problems: disposal of harmful materials, producing of renewable energy and soil nutrient, measuring reflectance at the certain spectral range, which can

  2. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  3. Applying chemical stimuli on feathers to reduce feather pecking in laying hens

    NARCIS (Netherlands)

    Harlander Matauschek, A.; Rodenburg, T.B.

    2011-01-01

    Recent studies have shown that spraying a distasteful substance (quinine) on a bird's feather cover reduced short-term feather pecking. The present experiment evaluated if other substances offer similar or better protection against feather pecking. One hundred and twenty birds were divided into 12

  4. Individual consistency of feather pecking behavior in laying hens: once a feather pecker always a feather pecker?

    NARCIS (Netherlands)

    Daigle, C.L.; Rodenburg, T.B.; Bolhuis, J.E.; Swanson, J.C.; Siegford, J.M.

    2015-01-01

    The pecking behavior [severe feather, gentle feather, and aggressive pecks (AP)] of individual White Shaver non-cage laying hens (n = 300) was examined at 21, 24, 27, 32, and 37 weeks. Hens were housed in 30 groups of 10 hens each and on 3 cm litter with access to a feeder, perch, and two nest

  5. Birds of a feather: Neanderthal exploitation of raptors and corvids.

    Science.gov (United States)

    Finlayson, Clive; Brown, Kimberly; Blasco, Ruth; Rosell, Jordi; Negro, Juan José; Bortolotti, Gary R; Finlayson, Geraldine; Sánchez Marco, Antonio; Giles Pacheco, Francisco; Rodríguez Vidal, Joaquín; Carrión, José S; Fa, Darren A; Rodríguez Llanes, José M

    2012-01-01

    The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1) does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2) did Middle (associated with Neanderthals) and Upper Palaeolithic (associated with modern humans) sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3) is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4) was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to those of

  6. Premature feather loss among common tern chicks in Ontario: the return of an enigmatic developmental anomaly

    Directory of Open Access Journals (Sweden)

    Jennifer M. Arnold

    2016-05-01

    Full Text Available In July 2014, we observed premature feather loss (PFL among non-sibling, common tern Sterna hirundo chicks between two and four weeks of age at Gull Island in northern Lake Ontario, Canada. Rarely observed in wild birds, to our knowledge PFL has not been recorded in terns since 1974, despite the subsequent banding of hundreds of thousands of tern chicks across North America alone. The prevalence, 5% of chicks (9/167, and extent of feather loss we report is more extreme than in previous reports for common terns but was not accompanied by other aberrant developmental or physical deformities. Complete feather loss from all body areas (wing, tail, head and body occurred over a period of a few days but all affected chicks appeared vigorous and quickly began to grow replacement feathers. All but one chick (recovered dead and submitted for post-mortem most likely fledged 10–20 days after normal fledging age. We found no evidence of feather dystrophy or concurrent developmental abnormalities unusual among affected chicks. Thus, the PFL we observed among common terns in 2014 was largely of unknown origin. There was striking temporal association between the onset of PFL and persistent strong southwesterly winds that caused extensive mixing of near-shore surface water with cool, deep lake waters. One hypothesis is that PFL may have been caused by unidentified pathogens or toxins welling up from these deep waters along the shoreline but current data are insufficient to test this. PFL was not observed among common terns at Gull Island in 2015, although we did observe similar feather loss in a herring gull Larus argentatus chick in that year. Comparison with sporadic records of PFL in other seabirds suggests that PFL may be a rare, but non-specific, response to a range of potential stressors. PFL is now known for gulls, penguins and terns.

  7. Repeated adaptive divergence of microhabitat specialization in avian feather lice

    Directory of Open Access Journals (Sweden)

    Johnson Kevin P

    2012-06-01

    Full Text Available Abstract Background Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards and lake systems (for example, African cichlids. Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems. The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms. Results Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa. Conclusions This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships.

  8. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers

    Science.gov (United States)

    Lefèvre, Ulysse; Cau, Andrea; Cincotta, Aude; Hu, Dongyu; Chinsamy, Anusuya; Escuillié, François; Godefroit, Pascal

    2017-10-01

    Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335-340, 2003; Hu et al. Nature 461:640-643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.

  9. Effects of stocking density on feather pecking and aggressive behavior in Thai crossbred chickens

    Directory of Open Access Journals (Sweden)

    Xin Huo

    2016-09-01

    Full Text Available The influence of stocking density on feather pecking and aggressive behavior of Thai crossbred chickens was investigated from age 4–12 wk. In total, 900 day-old mixed sex Thai crossbred chickens were assigned to three replicates of 100 birds per pen, at stocking densities of 8 birds/m2, 12 birds/m2 and 16 birds/m2, respectively. The frequency of feather pecking, the number of pecks per bout, pecking intensity and the frequency of aggressive behavior were recorded once a week by scanning all the birds in the pen. It was found that the stocking density had no effect on the frequencies of feather pecking on body areas except on the wings area (p < 0.05. The stocking density had no effect on the occurrence of 1–4 pecks per bout or 5–9 pecks per bout. The stocking density had no significant influence on the pecking, pinching or plucking intensity, except on the intensity of pulling. The different types of aggressive behavior such as stand-off, fight, threat, leap, chase, avoidance and peck were not affected by the stocking density. In conclusion, stocking density did not affect the feather pecking activities and aggressive behavior of Thai crossbred chickens. However, further work is suggested with a larger number of replications to establish that there is no effect of stocking density, as the power of this study was low.

  10. Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Tinbergen, Jan; Leertouwer, Hein L.; Wilts, Bodo D.

    2011-01-01

    The colours of the common kingfisher, Alcedo atthis, reside in the barbs of the three main types of feather: the orange breast feathers, the cyan back feathers and the blue tail feathers. Scanning electron microscopy showed that the orange barbs contain small pigment granules. The cyan and blue

  11. Preliminary study on chicken feather protein-based wood adhesives

    Science.gov (United States)

    Zehui Jiang; Daochun Qin; Chung-Yun Hse; Monlin Kuo; Zhaohui Luo; Ge Wang; Yan Yu

    2008-01-01

    The objective of this preliminary study was to partially replace phenol in the synthesis of phenol-formaldehyde resin with feather protein. Feather protein–based resins, which contained one part feather protein and two parts phenol, were formulated under the conditions of two feather protein hydrolysis methods (with and without presence of phenol during...

  12. Are melanized feather barbs stronger?

    Science.gov (United States)

    Butler, Michael; Johnson, Amy S

    2004-01-01

    Melanin has been associated with increased resistance to abrasion, decreased wear and lowered barb breakage in feathers. But, this association was inferred without considering barb position along the rachis as a potentially confounding variable. We examined the cross-sectional area, breaking force, breaking stress, breaking strain and toughness of melanized and unmelanized barbs along the entire rachis of a primary feather from an osprey (Pandion haliaetus). Although breaking force was higher for melanized barbs, breaking stress (force divided by cross-sectional area) was greater for unmelanized barbs. But when position was considered, all mechanical differences between melanized and unmelanized barbs disappeared. Barb breaking stress, breaking strain and toughness decreased, and breaking stiffness increased, distally along the rachis. These proximal-distal material property changes are small and seem unlikely to affect flight performance of barbs. Our observations of barb bending, breaking and morphology, however, lead us to propose a design principle for barbs. We propose that, by being thicker-walled dorso-ventrally, the barb's flexural stiffness is increased during flight; but, by allowing for twisting when loaded with dangerously high forces, barbs firstly avoid failure by bending and secondly avoid complete failure by buckling rather than rupturing.

  13. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings.

    Science.gov (United States)

    Xu, Xing; Zheng, Xiaoting; Sullivan, Corwin; Wang, Xiaoli; Xing, Lida; Wang, Yan; Zhang, Xiaomei; O'Connor, Jingmai K; Zhang, Fucheng; Pan, Yanhong

    2015-05-07

    The wings of birds and their closest theropod relatives share a uniform fundamental architecture, with pinnate flight feathers as the key component. Here we report a new scansoriopterygid theropod, Yi qi gen. et sp. nov., based on a new specimen from the Middle-Upper Jurassic period Tiaojishan Formation of Hebei Province, China. Yi is nested phylogenetically among winged theropods but has large stiff filamentous feathers of an unusual type on both the forelimb and hindlimb. However, the filamentous feathers of Yi resemble pinnate feathers in bearing morphologically diverse melanosomes. Most surprisingly, Yi has a long rod-like bone extending from each wrist, and patches of membranous tissue preserved between the rod-like bones and the manual digits. Analogous features are unknown in any dinosaur but occur in various flying and gliding tetrapods, suggesting the intriguing possibility that Yi had membranous aerodynamic surfaces totally different from the archetypal feathered wings of birds and their closest relatives. Documentation of the unique forelimbs of Yi greatly increases the morphological disparity known to exist among dinosaurs, and highlights the extraordinary breadth and richness of the evolutionary experimentation that took place close to the origin of birds.

  14. Effects of dietary protein concentration and specific amino acids on body weight, body composition and feather growth in young turkeys.

    Science.gov (United States)

    Wylie, L M; Robertson, G W; Hocking, P M

    2003-03-01

    1. Two randomised block factorial experiments were conducted to investigate the relationships between the effects of dietary crude protein and specific amino acid concentrations on the relative growth of the body and feathers of young turkeys. 2. Decreasing dietary crude protein concentration from 300 to 180 g/kg in experiment 1 reduced the body and breast muscle weights of a large male line of turkeys proportionally by 0.44 and 0.52 compared with 0.19 and 0.24 in a small traditional line. 3. Decreasing dietary crude protein concentration was associated with a maximum reduction in feather weight of 0.18 and 0.24 respectively in male line and traditional turkeys. The length of the feathers in the cranial region of the breast decreased from 26 to 19mm in the traditional line compared with an increase from 14 to 25 mm in male line turkeys. 4. Decreasing dietary crude protein concentration was associated with an increase in the fat content of the feather-free carcase. Male line turkeys had a higher carcase fat and lower feather dry matter content than the traditional turkeys. 5. It was concluded that dietary crude protein was preferentially partitioned to feather rather than muscle growth in the male line in contrast to a traditional line of turkeys in which the growth of feathers and muscle were affected equally. 6. In experiment 2, the amino acids arginine, valine, methionine and tyrosine were added separately to a common basal ration (180g CP/kg) to raise their concentration to that of the control ration (260 g CP/kg). Each ration was fed ad libitum to male line turkeys from 2 to 6 weeks of age. 7. Amino acid supplementation increased body and breast muscle weights. 8. Compared with the basal ration, tyrosine was associated with a reduction in feather weight whereas valine had no effect. Supplementation with arginine and methionine resulted in increased feather weights that were similar to that of the controls. 9. It was concluded that arginine and methionine were

  15. Feather eating and its associations with plumage damage and feathers on the floor in commercial farms of laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Hinrichsen, Lena Karina

    2016-01-01

    Feather eating has been associated with feather pecking, which continues to pose economic and welfare problems in egg production. Knowledge on feather eating is limited and studies of feather eating in commercial flocks of laying hens have not been performed previously. Therefore, the main...

  16. Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba.

    Science.gov (United States)

    Pabisch, S; Puchegger, S; Kirchner, H O K; Weiss, I M; Peterlik, H

    2010-12-01

    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5 cm close to the calamus and remains constant for about 1m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Chronologically sampled flight feathers permits recognition of individual molt-migrants due to varying protein sources

    Directory of Open Access Journals (Sweden)

    Sievert Rohwer

    2015-01-01

    Full Text Available This is a proof of concept paper based on chronological samples of growing feathers from geese thought to be molt-migrants. When molt-migrant birds initiate molt shortly after migrating to a new isoscape, isotope values measured along the length of their feathers should change continuously. To assess long-term changes and daily cycling in δ15N and δ13C values, we serially sampled a growing primary from three presumed molt-migrant geese. Two showed changing δ15N signatures along the length of their growing primary, indicating they were molt-migrants, while the third, presumably a resident, showed no change. We then resampled these feathers at closer intervals for evidence of the predicted diel cycle in the use of exogenous and endogenous protein for feather growth, generated by the diel feeding cycle of these geese. As predicted, a periodicity of ca. 24 h in δ15N values was found along the primary of the two equilibrating geese, but not in the other goose that was probably a resident. Our results demonstrate that chronological sampling along the length of individual primaries holds great potential for identifying individuals that are molt-migrants.

  18. Effects of immune activation and glucocorticoid administration on feather growth in greenfinches.

    Science.gov (United States)

    Männiste, Marju; Hõrak, Peeter

    2011-11-01

    Elevation of glucocorticoid (GC) hormone levels is an integral part of stress response (as well as its termination) and immunomodulation. These hormones are also responsible for mobilizing energy stores by stimulation of gluconeogenesis and inhibition of protein synthesis. Elevation of GCs is thus incompatible with other protein-demanding processes, such as moult. Previous studies have shown that chronic elevation of GC hormones suppresses feather growth. Here, we asked whether similar effect would also occur in the case of acute GC elevation and induction of an inflammatory response by foreign antigen. We performed an experiment on captive wild-caught greenfinches (Carduelis chloris) injecting birds with phytohaemagglutinin (PHA) and dexamethasone (DEX) in a factorial design. To assess the possible somatic impacts of these manipulations, we removed one of the outermost tail feathers before the experiment and measured mass and rachis diameter and length of the replacement feathers grown in captivity. Immunostimulation by PHA reduced rachis length, but did not affect feather mass or rachis diameter. Single injection of a synthetic GC hormone DEX significantly reduced all three parameters of feather size. Altogether, these findings demonstrate the sensitivity of feather growth to manipulation of immune and adrenal functions. Our results corroborate the somatic costs of immune activation and suggest that even a short-term elevation of GC hormones may induce long-term somatic costs with a potential impact on fitness. Our findings also imply that a single injection of DEX, frequently used as a diagnostic tool, can have lasting effects and researchers must consider this when designing experiments. © 2011 Wiley Periodicals, Inc.

  19. The fearful feather pecker : applying the principles to practice to prevent feather pecking in laying hens

    NARCIS (Netherlands)

    Haas, de E.N.

    2014-01-01

    Billions of laying hens are kept worldwide. Severe feather pecking (SFP) is a behaviour which occurs with a high prevalence on commercial farms. SFP, the pecking and plucking of feathers of another bird, induces pain and stress and can ultimately lead to cannibalism. Moreover, SFP can occur if a

  20. Morphological properties of the last primaries, the tail feathers, and the alulae of Accipiter nisus, Columba livia, Falco peregrinus, and Falco tinnunculus.

    Science.gov (United States)

    Schmitz, Anke; Ponitz, Benjamin; Brücker, Christoph; Schmitz, Helmut; Herweg, Jan; Bleckmann, Horst

    2015-01-01

    We investigated the mechanical properties (Young's modulus, bending stiffness, barb separation forces) of the tenth primary of the wings, of the alulae and of the middle tail feathers of Falco peregrinus. For comparison, we also investigated the corresponding feathers in pigeons (Columba livia), kestrels (Falco tinnunculus), and sparrowhawks (Accipiter nisus). In all four species, the Young's moduli of the feathers ranged from 5.9 to 8.4 GPa. The feather shafts of F. peregrinus had the largest cross-sections and the highest specific bending stiffness. When normalized with respect to body mass, the specific bending stiffness of primary number 10 was highest in F. tinnunculus, while that of the alula was highest in A. nisus. In comparison, the specific bending stiffness, measured at the base of the tail feathers and in dorso-ventral bending direction, was much higher in F. peregrinus than in the other three species. This seems to correlate with the flight styles of the birds: F. tinnunculus hovers and its primaries might therefore withstand large mechanical forces. A. nisus has often to change its flight directions during hunting and perhaps needs its alulae for this maneuvers, and in F. peregrinus, the base of the tail feathers might need a high stiffness during breaking after diving. © 2014 Wiley Periodicals, Inc.

  1. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  2. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  3. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  4. Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films

    OpenAIRE

    Stavenga, Doekele G.; Tinbergen, Jan; Leertouwer, Hein L.; Wilts, Bodo D.

    2011-01-01

    The colours of the common kingfisher, Alcedo atthis, reside in the barbs of the three main types of feather: the orange breast feathers, the cyan back feathers and the blue tail feathers. Scanning electron microscopy showed that the orange barbs contain small pigment granules. The cyan and blue barbs contain spongy nanostructures with slightly different dimensions, causing different reflectance spectra. Imaging scatterometry showed that the pigmented barbs create a diffuse orange scattering a...

  5. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches.

    Science.gov (United States)

    Hõrak, Peeter; Männiste, Marju; Meitern, Richard; Sild, Elin; Saks, Lauri; Sepp, Tuul

    2013-09-15

    Corticosterone (CORT) content of feathers is a potent source of information about activation of hypothalamus-pituitary-adrenal (HPA) axis during feather growth, which is used for assessment of well-being and stress history of individuals and populations in avian studies. However, little is known about factors affecting deposition of CORT into feathers and how feather CORT covaries with other markers of stress imposed upon individuals during feather growth. We addressed these questions by measuring CORT levels in feathers of wild-caught greenfinches (Carduelis chloris) brought into captivity. One tail feather was removed from all the birds upon arrival to the laboratory and the CORT levels of replacement feathers, grown in captivity were recorded. The birds were subjected to treatments of immune activation (by injection of phytohaemagglutinin) and synthetic glucocorticoid (dexamethasone, DEX) administration. Only DEX injection affected feather CORT levels. DEX-injected birds deposited on average 37% less of CORT in their feathers than saline-injected birds. Despite significant effects of DEX and immune activation treatments on differential leukocyte counts, we did not find any correlations between CORT and leukocyte hemoconcentrations or heterophil/lymphocyte ratios (a haematological index of stress), measured at three stages of feather growth. Our findings provide novel evidence that feather CORT levels are sensitive to manipulation of hormonal balance of birds, thereby supporting the diagnostic value of feather CORT measurements. However, we did not find any evidence about covariation between feather CORT and other markers of stress perceived during the period of feather growth. This calls for further research on information content of feather CORT, preferably in experiments manipulating more diverse array of psychological, immunological and abiotic stressors. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    Science.gov (United States)

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of

  7. Soluble proteins from fowl feather keratin. II. Isolation of some proteins from barbs.

    Science.gov (United States)

    Murayama, K; Akahane, K; Murozono, S

    1977-01-01

    Four fractions, GF-1, 2, 3, and 4, which had been separated from S-carboxymethylated (SCM-) proteins of fowl feathers by gel filtration, were each chromatographed on a DEAE-cellulose column in 0.05 M Tris-HCl buffer (pH 8.5) containing 8 M urea. The major fraction, GF-3, was further separated into seven peaks; the first four were shown to be single components by polyacrylamide disc gel electrophoresis. Chromatograms of GF-1 and 2 showed broad peaks which appeared at nearly the same volume as in GF-3. The components from GF-3 had very similar amino acid compositions except that the SCM-cysteine content showed a tendency to increase in the order of elution from the column. SCM-extract prepared from barbs of the wing feathers of a fowl was more heterogeneous than that taken from the body feathers. A combination of gel filtration on Sephadex G-75 and chromatography on DEAE-cellulose was found to be more effective for the isolation of soluble SCM-proteins.

  8. Feather eating and its associations with plumage damage and feathers on the floor in commercial farms of laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Hinrichsen, Lena Karina

    2016-01-01

    Feather eating has been associated with feather pecking, which continues to pose economic and welfare problems in egg production. Knowledge on feather eating is limited and studies of feather eating in commercial flocks of laying hens have not been performed previously. Therefore, the main...... objective was to investigate feather eating and its association with plumage damage and floor feather characteristics in commercial flocks of layers in barn and organic production systems. The study was performed in 13 flocks of barn layers and 17 flocks of organic layers. Each flock was visited at around.......3% in organic; P=0.99). Our hypothesis about a positive correlation between feather eating and plumage damage was not supported as no correlation was found between the prevalence of poor plumage condition and the prevalence of droppings with feather content. However, the prevalence of pecking damaged floor...

  9. Stabilization of solutions of feather keratins by sodium dodecyl sulphate

    NARCIS (Netherlands)

    Schrooyen, P.M.M.; Dijkstra, Pieter J.; Oberthür, Radulf C.; Bantjes, A.; Bantjes, Adriaan; Feijen, Jan

    2001-01-01

    Feather keratins were extracted from chicken feathers with aqueous solutions of urea and 2-mercaptoethanol. After filtration of the insoluble residue, a feather keratin solution was obtained. Removal of 2-mercaptoethanol and urea by dialysis resulted in aggregation of the keratin polypeptide chains

  10. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  11. Alternative fish feed production from waste chicken feathers

    Directory of Open Access Journals (Sweden)

    Sri Jumini

    2017-08-01

    Full Text Available In this This devotion has been done to provide education and training of the utilization of waste chicken manure, making flour chicken feathers as a fish feed alternative, that can overcome some of the problems that waste chicken feathers from the center cutting broiler chickens in the village Krasak enough, it causes pollution, and not used optimally; Low public awareness of awareness of environmental pollution; the lack of public knowledge about the utilization of waste chicken feathers, and processing technology, as well as to address the needs of fish feed more expensive, need alternative feed ingredients. This service program has provided insight to the public about waste chicken feathers so that it can be used as a new entrepreneurial startups. To achieve these objectives have been done of activity as follows: 1 Provide counseling and understanding of the community will be a negative impact on the environment of waste chicken feathers. 2 Provide counseling utilization of waste chicken feathers for people in nearby farms. 3 Make a chicken feather meal of chicken feather waste as an alternative fish feed to improve digestibility of chicken feathers. 3 The formation of the group for increasing the economic income of the family. This service activities program runs quite well with demonstrated some activity, namely: 1 Change Behavior Society (knowledge transfer; 2 Chicken Feather Extension Waste Utilization; 3 Making Unit Waste Chicken Feathers; 4 Establishment of New Business of Diversified Waste Chicken Feathers.

  12. Wing bone geometry reveals active flight in Archaeopteryx.

    Science.gov (United States)

    Voeten, Dennis F A E; Cubo, Jorge; de Margerie, Emmanuel; Röper, Martin; Beyrand, Vincent; Bureš, Stanislav; Tafforeau, Paul; Sanchez, Sophie

    2018-03-13

    Archaeopteryx is an iconic fossil taxon with feathered wings from the Late Jurassic of Germany that occupies a crucial position for understanding the early evolution of avian flight. After over 150 years of study, its mosaic anatomy unifying characters of both non-flying dinosaurs and flying birds has remained challenging to interpret in a locomotory context. Here, we compare new data from three Archaeopteryx specimens obtained through phase-contrast synchrotron microtomography to a representative sample of archosaurs employing a diverse array of locomotory strategies. Our analyses reveal that the architecture of Archaeopteryx's wing bones consistently exhibits a combination of cross-sectional geometric properties uniquely shared with volant birds, particularly those occasionally utilising short-distance flapping. We therefore interpret that Archaeopteryx actively employed wing flapping to take to the air through a more anterodorsally posteroventrally oriented flight stroke than used by modern birds. This unexpected outcome implies that avian powered flight must have originated before the latest Jurassic.

  13. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    Science.gov (United States)

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  14. Light oiling of feathers increases flight energy expenditure in a migratory shorebird.

    Science.gov (United States)

    Maggini, Ivan; Kennedy, Lisa V; Macmillan, Alexander; Elliott, Kyle H; Dean, Karen; Guglielmo, Christopher G

    2017-07-01

    Flying birds depend on their feathers to undertake most activities, and maintain them in peak condition through periodic molt and frequent preening. Even small exposures to crude oil reduce the integrity of feathers, and could impair flight performance. We trained wild western sandpipers ( Calidris mauri ) to perform endurance flights in a wind tunnel, and used magnetic resonance body composition analysis to measure energy expenditure after birds were exposed to weathered MC252 crude oil from the Deepwater Horizon oil spill. The cost of transport was 0.26±0.04 kJ km -1 in controls, and increased by 22% when the trailing edges of the wing and tail were oiled (flight control, and only half of moderately oiled birds completed the flight test. We then flew birds at a range of speeds to estimate basic kinematic parameters. At low speeds, light and moderately oiled birds had larger wingbeat amplitudes than controls, while moderately oiled birds showed greater wingbeat frequencies across all speeds, and a shift in optimal flight speed towards higher wind speeds. We suggest these changes reflect poorer lift production and increased drag on the wings and body. Oiling will increase the difficulty and energy costs of locomotion for daily and seasonal activities such as foraging, predator evasion, territory defense, courtship, chick provisioning, commuting and long-distance migration. These sub-lethal effects must be considered in oil spill impact assessments. © 2017. Published by The Company of Biologists Ltd.

  15. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    Science.gov (United States)

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  16. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    Science.gov (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  17. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    Science.gov (United States)

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  18. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  19. Identification of shed or plucked origin of Indian peafowl (Pavo cristatus) tail feathers: preliminary findings.

    Science.gov (United States)

    Sahajpal, Vivek; Goyal, S P

    2008-06-01

    Indian Peafowl (Pavo cristatus) tail covert feathers were studied to investigate the difference between shed and plucked feathers in the context of wildlife offence cases involving the killing of the Indian national bird for the purpose of plucking feathers. Plucked feathers were distinguished from shed feathers by examining their roots under low magnification of a stereoscopic microscope. A chemical test to show the presence of blood on the roots of plucked feathers was used to corroborate the plucked origin of feathers.

  20. Microstructure of the feather in Japanese Jungle Crows (Corvus macrorhynchos) with distinguishing gender differences.

    Science.gov (United States)

    Lee, Eunok; Aoyama, Masato; Sugita, Shoei

    2009-09-01

    Assessing gender difference in Japanese Jungle Crows (Corvus macrorhynchos) is difficult by gross observation because both sexes have black plumage colors. Careful observation of the plumage, however, reveals that it is actually iridescent glossy purple and dark-green in color, and that these colors are more marked in adult males than in females. In birds, such iridescent structural colors are generally produced in the feather barbules, where light is scattered constructively by laminar arrays consisting of alternating layers of materials with different refractive indices, namely keratin, melanin and air. We have investigated differences in the microstructure of the feathers of male and female Jungle Crows by means of scanning and transmission electron microscopy. Male birds had more barbs than females, and the length of the prongs was shorter in males than in females. The density of the melanin granules in the cross-section of barbules was higher in males than in females. Moreover, only in males did the melanin granules show an ordered arrangement beneath a keratin cortex layer at the edges of barbules. These results demonstrate that there are microstructural differences in the feathers of male and female Jungle Crows and suggest that the Jungle Crows' feathers may have iridescent coloring that differs according to gender.

  1. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking

    DEFF Research Database (Denmark)

    Rodenburg, T Bas; de Haas, Elske N; Nielsen, Birte Lindstrøm

    2010-01-01

    Feather pecking (FP) remains a major welfare and economic problem in laying hens. FP has been found to be related to other behavioural characteristics, such as fearfulness. There are indications that fearful birds are more likely to develop FP. Furthermore, FP can lead to increased fearfulness in...... not differ in their fear responses. Divergent selection on feather pecking may have altered pecking motivation rather than fearfulness....

  2. High feather corticosterone indicates better coccidian infection resistance in greenfinches.

    Science.gov (United States)

    Sild, Elin; Meitern, Richard; Männiste, Marju; Karu, Ulvi; Hõrak, Peeter

    2014-08-01

    Differential exposure or sensitivity to stressors can have substantial effects on the variation in immune responsiveness of animals. However, the questions about the causes and consequences of these processes have remained largely unclear, particularly as regards wild animals and their natural pathogens. Here we ask how a potential marker of stress responses, the feather corticosterone (CORT) content, reflects the resistance to an experimental infection with natural coccidian parasites in wild-caught captive greenfinches (Carduelis chloris). CORT content of tail feathers grown in captivity correlated positively with a behavioural measure of captivity-intolerance, i.e., the amount of damage accrued to tail feathers in captivity that results from flapping against cage bars. This finding is consistent with an idea that feather CORT reflects the amount of stress experienced during feather growth. Experimental infection with heterologous coccidian strains increased feather CORT levels. Birds with highest feather CORT levels appeared most resistant to new infection, assessed on the basis of parasite oocyst shedding at the peak phase of infection. Birds with highest feather CORT levels also cleared the infection faster than the birds with lower feather CORT levels. These findings provide the first evidence about positive covariation between feather CORT and resistance to a natural pathogen in a wild bird species. Assuming that feather CORT levels reflect circulating hormone titres, these findings suggest that parasite-mediated selection may contribute to maintenance of phenotypes with high corticosterone responsiveness to stress, despite potential negative behavioural consequences. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Clinical beak and feather disease virus infection in wild juvenile eastern rosellas of New Zealand; biosecurity implications for wildlife care facilities.

    Science.gov (United States)

    Jackson, B; Harvey, C; Galbraith, J; Robertson, M; Warren, K; Holyoake, C; Julian, L; Varsani, A

    2014-09-01

    Four juvenile eastern rosellas (Platycercus eximius) were admitted to two separate wildlife care facilities in the Auckland region by members of the public. They had missing or dystrophic wing and tail feathers that rendered them flightless, suggestive of beak and feather disease virus (BFDV) infection. Two were subject to euthanasia after failing to re-grow their feathers, with samples taken for histopathology and PCR analysis. Blood samples were obtained from the other two birds at the time of examination, however these individuals were lost to follow up. Basophilic inclusion bodies were observed in histological sections of the feather bulb, typical of BFDV infection, from the two euthanised individuals. Blood from all four birds tested positive by PCR for BFDV, and analysis of the recovered full BFDV genomes identified them as belonging to the BFDV-A strain. Beak and feather disease virus infection. This report highlights the clinical impacts of BFDV in juvenile eastern rosellas that may result in their admission to wildlife care facilities, creating a biosecurity risk in institutions that may host other native parrots intended for release. The environmental stability of BFDV and resistance to disinfection requires strict quarantine procedures to prevent contamination and spread within a facility. It is recommended that high-risk species such as wild eastern rosella be excluded from facilities that may also house native parrots.

  4. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) II. The molecular parameters of feather keratin plasticity.

    Science.gov (United States)

    Weiss, Ingrid M; Schmitt, Karl P; Kirchner, Helmut O K

    2011-06-01

    Thermal activation analysis of plastic deformation of peacock tail feathers, by temperature changes and stress relaxation, gave for the keratin cortex an activation enthalpy of 1.78 ± 0.89 eV and an activation volume of 0.83 ± 0.13 nm³, for both the blue and the white subspecies. These values suggest that breaking of electrostatic bonds is responsible for plasticity in feather keratin. These might be bonds between keratin and nonkeratinous matrix or keratin-keratin cross-links. The mechanical properties of the rachis cortex are surprisingly uniform along the length of the feathers. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  5. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.

    Science.gov (United States)

    Alibardi, Lorenzo

    2010-06-01

    The present ultrastructural study on follicle of regenerating feathers of four different avian species focuses on the formation and cytology of the rachis. Epithelial cells within the bottom part of the follicle (the collar) are contacted from mesenchymal cells of the dermal papilla. The most basal part of the collar is formed by a circular epithelium containing germinal cells, while in the upper ramogenic part of the collar barb ridges are generated. Epithelial cells rest upon a basement membrane that is stretched in actively forming barb ridges among which anchored mesenchymal cells send thin elongation. This observation suggests that an intense exchange of molecules with the epithelium occurs. The process of formation of the rachis occurs by fusion of barb ridges with the nonsegmented, dorsal or anterior part of the collar. The latter becomes the rachidial ridge, the upper part of the collar where barbs form the branches of the pennaceous feather. The rachis grows and matures into an external cortical part, containing compact corneous material (feather keratin, as confirmed by immunocytochemistry), and a vacuolated medulla with a process similar to that occurring in rami of single barbs. The extension of the medulla and cortex varies along the rachis in different species. In general a thin cortex is formed in those sections of the rachis where barbs are absent, and the feather keratin positive layer increases in the basal part of the feather, the calamus.

  6. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth.

    Science.gov (United States)

    Marteinson, Sarah C; Eulaers, Igor; Jaspers, Veerle L B; Covaci, Adrian; Eens, Marcel; Letcher, Robert J; Fernie, Kim J

    2017-01-01

    Feathers are useful for monitoring contaminants in wild birds and are increasingly used to determine persistent organic pollutants. However, few studies have been conducted on birds with known exposure levels. We aimed to determine how well nestling feather concentrations reflect in ovo exposure to hexabromocyclododecane (α-, β- and γ-HBCDD), and to determine if feather concentrations are related to physiological biomarkers. Captive kestrels (n = 11) were exposed in ovo to maternally transferred HBCDD-isomers at concentrations of 127, 12 and 2 ng/g wet weight of α-, β- and γ-HBCDD (measured in sibling eggs), respectively, and compared to controls (n = 6). Nestling growth was monitored at 5 d intervals and circulating thyroid hormone concentrations assessed at d 20. Tail feathers were collected prior to the first molt and analyzed for HBCDD isomers. The mean ΣHBCDD concentration in feathers was 2405 pg/g dry weight (in exposed birds) and α-, β- and γ-HBCDD made up 32%, 13%, and 55%, respectively of the ΣHBCDD concentrations. This isomer distribution deviated from the typical dominance of α-HBCDD reported in vertebrate samples. Exposed chicks had significantly higher feather concentrations of β- and γ-HBCDD compared with controls (p = 0.007 and p = 0.001 respectively), while α-HBCDD concentrations did not differ between the two groups. Feather concentrations of α-HBCDD were best explained by egg concentrations of β- or γ-HBCDD concentrations (w i  = 0.50, 0.30 respectively), while feather concentrations of β- and γ-HBCDD were influenced by growth parameters (rectrix length: w i  = 0.61; tibiotarsus length: w i  = 0.28). These results suggest that feather α-HBCDD concentrations may reflect internal body burdens, whereas β- and γ-HBCDD may be subject to selective uptake. The α-HBCDD concentrations in the feathers were negatively associated with the ratio of plasma free triiodothyronine to free thyroxine (T 3 :T 4 ; p = 0

  7. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  8. Ecological correlates of feather mite prevalence in passerines

    OpenAIRE

    Figuerola, Jordi

    2000-01-01

    The relationship between host ecology and feather mite prevalence was analysed in birds. Feather mites are small arthropods (fam. Pterolichoidea and Analgoidea) commonly found on birds, although the nature of their interactions with the host (commensalism, mutualism or parasitism), still remains unclear. Host body mass and migratory behaviour were unrelated to feather mite prevalence. Contrary to expecta- tion, there was no differences in mite prevalence between colonial and so...

  9. Short barb: a feather structure mutation in Japanese quail.

    Science.gov (United States)

    Fulton, J E; Roberts, C W; Nichols, C R; Cheng, K M

    1982-12-01

    A type of feather structure abnormality in Japanese quail resulting in shortened barbs on contour feathers was found to be controlled by a single autosomal recessive gene, sh (short barb). The mutation was first identified in a full-sib family from the University of British Columbia wild type line. Unlike other feather structure mutations in Japanese quail reported previously in literature, the short barb mutation is not associated with poor reproduction.

  10. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    Energy Technology Data Exchange (ETDEWEB)

    Tsipoura, Nellie [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States); Burger, Joanna, E-mail: burger@biology.rutgers.edu [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Newhouse, Michael [NJ Meadowlands Commission, One DeKorte Park Plaza, Lyndhurst, NJ 07071 (United States); Jeitner, Christian [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Gochfeld, Michael [Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Mizrahi, David [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States)

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a

  11. Spatially modulated structural colour in bird feathers

    Science.gov (United States)

    Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.

    2015-12-01

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  12. From feathers to syngas - technologies and devices.

    Science.gov (United States)

    Dudyński, Marek; Kwiatkowski, Kamil; Bajer, Konrad

    2012-04-01

    The poultry waste produced by industrial slaughterhouses typically contains not only feathers, but also a mixture of animal entrails, nails, blood, beaks and whole carcasses. Economical utilisation of this mixture, varying strongly in composition and moisture content, is, in general, difficult. We demonstrate that this awkward material can be successfully used for gasification in a simple, fixed-bed gasifier. The method of gasification, which we developed, enables control of the gasification process and ensures its stability in the operational regime of a working poultry processing plant. The installation, which has been working in Poland for 2 years, utilises 2 tons of feathers per hour and produces syngas of stable composition and fairly high quality. The syngas is burnt in the combustion chamber adjacent to the gasifier. Heat is recuperated in a boiler producing 3.5 tons per hour of technological steam continuously used for the operation of the slaughterhouse. The whole process complies with the stringent emission standards. In the paper we present the end-use device for feather utilisation and describe the underlying gasification and syngas combustion processes. Key elements of the whole installation are briefly discussed. The environmental impacts of the installation are summarized. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  14. Global associations between birds and vane-dwelling feather mites.

    Science.gov (United States)

    Doña, Jorge; Proctor, Heather; Mironov, Sergey; Serrano, David; Jovani, Roger

    2016-11-01

    Understanding host-symbiont networks is a major question in evolutionary ecology. Birds host a great diversity of endo- and ectosymbiotic organisms, with feather mites (Arachnida: Acariformes: Analgoidea, Pterolichoidea) being among the most diverse of avian symbionts. A global approach to the ecology and evolution of bird-feather-mite associations has been hampered because of the absence of a centralized data repository. Here we present the most extensive data set of associations between feather mites and birds. Data include 12 036 records of 1887 feather mite species located on the flight feathers of 2234 bird species from 147 countries. Feather mites typically located inside quills, on the skin, or on downy body feathers are not included. Data were extracted from 493 published sources dating from 1882 to 2015. Data exploration shows that although most continents and bird families are represented, most bird species remain unexplored for feather mites. Nevertheless, this is the most comprehensive data set available for enabling global macroecological analyses of feather mites and their hosts, such as ecological network analyses. This metadata file outlines the structure of these data and provides primary references for all records used. © 2016 by the Ecological Society of America.

  15. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    . To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight...... of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil....

  16. Feather pecking in growers: a study with individually marked birds

    DEFF Research Database (Denmark)

    Wechsler, B; Huber-Eicher, B; Nash, David Richard

    1998-01-01

    1. The aim of the present study was to investigate whether individual birds specialise in feather pecking. Growers were individually marked and reared in groups of 30 or 31 in pens with a slatted floor. At an age of 4 to 6 weeks feather pecking was frequent in all pens. 2. On average 83% of all...... individuals specialised in pecking at other specific birds, at specific areas of the body or at birds engaged in specific activities. 5. Growers (3 groups, experiment 2) that had just feather pecked engaged in more feather pecking during a subsequent 2-min focal observation than control birds that had...

  17. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  18. Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control

    NARCIS (Netherlands)

    Lommen, S.T.E.

    2013-01-01

    The central theme of this PhD thesis is natural variation in the wing length of the predatory two-spot ladybird beetle, Adalia bipunctata. ‘Wingless’ individuals of this species occur occasionally. They possess truncated wing covers and flight wings and cannot fly, but the extent of the reduction is

  19. Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.

    Science.gov (United States)

    Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O

    2018-03-01

    Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  20. Value-added products from chicken feather fiber and protein

    Science.gov (United States)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between

  1. Experimental maturation of feathers: implications for reconstructions of fossil feather colour.

    Science.gov (United States)

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Field, Daniel J; Wang, Zhengrong

    2013-06-23

    Fossil feathers often preserve evidence of melanosomes-micrometre-scale melanin-bearing organelles that have been used to infer original colours and patterns of the plumage of dinosaurs. Such reconstructions acknowledge that evidence from other colour-producing mechanisms is presently elusive and assume that melanosome geometry is not altered during fossilization. Here, we provide the first test of this assumption, using high pressure-high temperature autoclave experiments on modern feathers to simulate the effects of burial on feather colour. Our experiments show that melanosomes are retained despite loss of visual evidence of colour and complete degradation of other colour-producing structures (e.g. quasi-ordered arrays in barbs and the keratin cortex in barbules). Significantly, however, melanosome geometry and spatial distribution are altered by the effects of pressure and temperature. These results demonstrate that reconstructions of original plumage coloration in fossils where preserved features of melanosomes are affected by diagenesis should be treated with caution. Reconstructions of fossil feather colour require assessment of the extent of preservation of various colour-producing mechanisms, and, critically, the extent of alteration of melanosome geometry.

  2. Replacement Value of Feather Meal for Fishmeal on the ...

    African Journals Online (AJOL)

    Replacement Value of Feather Meal for Fishmeal on the Performance of Starter Cockerels. ... ratio and feed cost/kg weights gain. Considering the results of final live weight and daily weight gain, it appeared that the 7.5% level of FEM could be the optimal inclusion level feather meal in the diets of growing cockerels.

  3. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    puchooa

    2012-09-04

    Sep 4, 2012 ... wastes from the poultry industry and the nutritional upgrading of feather ... primary screening, skimmed milk agar was used comprising of 5.0 g/l peptone, 3.0 g/L ... production. Different feather concentrations were tested for their effects on the keratinase secretion from the bacteria. 250 ml conical flasks with ...

  4. Bioprocess enhancement of feather degradation using alkaliphilic microbial mixture.

    Science.gov (United States)

    Osman, Y; Elsayed, A; Mowafy, A M; Abdelrazak, A; Fawzy, M

    2017-06-01

    1. The main aim of this work is to develop a robust method to generate a microbial mixture which can successfully degrade poultry feathers to overcome environmental problems. 2. Four different alkaliphilic microbes were isolated and shown to degrade poultry feathers. 3. Two of the isolates were phylogenetically identified as Lysinibacillus and the others were identified as Nocardiopsis and Micrococcus. 4. The best microbial co-culture for white and black feather degradation was optimised for pH, temperature and relative population of the isolates to achieve almost 96% of degradation compared with a maximum of 31% when applying each isolate individually. 5. The maximum activity of keratinase was estimated to be 1.5 U/ml after 3 d for white feathers and 0.6 U/ml after 4 d for black feathers in a basal medium containing feather as the main carbon source. Additionally, non-denaturing polyacrylamide gel electrophoresis showed 4 and 3 protease activity bands for white and black feather, respectively. 6. This study provides a robust method to develop potential new mixtures of microorganisms that are able to degrade both white and black feathers by applying a Central Composite Design.

  5. Improved keratinase production for feather degradation by Bacillus ...

    African Journals Online (AJOL)

    Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for ...

  6. Early and late feathering in Turkey and chicken

    NARCIS (Netherlands)

    Derks, Martijn F.L.; Herrero-Medrano, Juan M.; Crooijmans, Richard P.M.A.; Vereijken, Addie; Long, Julie A.; Megens, Hendrik Jan; Groenen, Martien A.M.

    2018-01-01

    Background: Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the

  7. Feather pecking and monoamines - a behavioral and neurobiological approach

    NARCIS (Netherlands)

    Kops, M.S.

    2014-01-01

    Severe feather pecking (SFP) remains one of the major welfare issues in laying hens. SFP is the pecking at and pulling out of feathers, inflicting damage to the plumage and skin of the recipient. The neurobiological profile determining the vulnerability of individual hens to develop into a severe

  8. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  9. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  10. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    Science.gov (United States)

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-01-26

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45o. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3x103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5~10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings. © 2018 IOP Publishing Ltd.

  11. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    Directory of Open Access Journals (Sweden)

    Dennis Evangelista

    Full Text Available We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements. Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver.

  12. Can short-term frustration facilitate feather pecking in laying hens?

    NARCIS (Netherlands)

    Rodenburg, T.B.; Koene, P.; Bokkers, E.A.M.; Bos, M.E.H.; Uitdehaag, K.A.; Spruijt, B.M.

    2005-01-01

    Feather pecking is a major problem in laying hens. Frustration, i.e. the omission of expected reward, may play a role in the development of feather pecking. In two experiments, we studied if feather pecking could be facilitated by short-term frustration in birds with a high feather pecking phenotype

  13. An improved extraction method to increase DNA yield from molted feathers

    Science.gov (United States)

    Shelley Bayard De Volo; Richard T. Reynolds; Marlis R. Douglas; Michael F. Antolin

    2008-01-01

    To assess the value of molted feathers as a noninvasive source of DNA for genetic studies of Northern Goshawks (Accipiter gentilis), we isolated and quantified DNA from molted feathers and compared yields across five feather types. We also compared PCR success across the same five feather types using five microsatellite genetic markers of varying...

  14. SOUND ABSORPTION PROPERTIES OF COMPOSITES MADE OF DISCARDED DUCK FEATHERS

    OpenAIRE

    BI, Jihong; YU, Xiang; WANG, Xiao; WEI, Chunyan; CUI, Yongzhu; LV, Lihua

    2016-01-01

    A novel composite with good sound absorption properties was prepared by discarded duck feathers and Ethylene vinyl acetate copolymer (EVA) non-woven fabrics by using lay-up and hot-pressing method. The effects of discarded duck feather concentration, composite density, composite thickness and air cavity depth on sound absorption performance were studied. When the composites with proportion (w/w) of the discarded duck feathers to EVA non-woven fabrics of 300/100, density of 1400g/m2, thickness...

  15. A lightweight, biological structure with tailored stiffness: The feather vane.

    Science.gov (United States)

    Sullivan, Tarah N; Pissarenko, Andreï; Herrera, Steven A; Kisailus, David; Lubarda, Vlado A; Meyers, Marc A

    2016-09-01

    The flying feathers of birds are keratinous appendages designed for maximum performance with a minimum weight penalty. Thus, their design contains ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. This design involves two main parts: a central shaft that prescribes stiffness and lateral vanes which allows for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface which ensures lift. Microhooks at the end of barbules hold barbs tightly together, providing the close-knit, unified structure of the feather vane and enabling a repair of the structure through the reattachment of un-hooked junctions. Both the shaft and barbs are lightweight biological structures constructed of keratin using the common motif of a solid shell and cellular interior. The cellular core increases the resistance to buckling with little added weight. Here we analyze the detailed structure of the feather barb and, for the first time, explain its flexural stiffness in terms of the mechanics of asymmetric foam-filled beams subjected to bending. The results are correlated and validated with finite element modeling. We compare the flexure of single barbs as well as arrays of barbs and find that the interlocking adherence of barbs to one another enables a more robust structure due to minimized barb rotation during deflection. Thus, the flexure behavior of the feather vane can be tailored by the adhesive hooking between barbs, creating a system that mitigates damage. A simplified three-dimensional physical model for this interlocking mechanism is constructed by additive manufacturing. The exceptional architecture of the feather vane will motivate the design of bioinspired structures with tailored and unique properties ranging from adhesives to aerospace materials. Despite its importance to bird flight, literature characterizing the feather vane is extremely limited. The feather

  16. Mechanochromic response of the barbules in peacock tail feather

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Zhang, Deyuan

    2018-01-01

    Peacock tail feathers exhibit diverse striking brilliancy, as the cortex in different colored barbules of the feathers contains a 2-D photonic-crystal structure. The mechanochromic response of the 2-D photonic structure in peacock feather barbules is measured for the first time, by combining an in-situ stretching device and a reflectivity measurement system. The reflectance spectra of the barbule specimen blueshifts own to stretching along its longitudinal direction. A high strain sensitivity of 5.3 nm/% is obtained for green barbules. It could be of great help in bionic design of strain sensors using 2D photonic crystal structures.

  17. Advanced slab polyurethane foam with feather touch; Soft feather urethane foam no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Ono, H. [Toyota Motor Corp., Aichi (Japan); Mori, A.; Yamaguchi, N.; Nakamura, T. [Bridgestone Corp., Tokyo (Japan)

    1997-10-01

    Automotive seat plays an important part, which are not only retention of sitting position, but also comfort and high-class feeling. Wadding, which is a part of the seat, is a key component for the sitting comfortableness. This paper is concerned with advanced slab polyurethane foam with feather touch feeling. The compounding of formation, foaming process and reliability of mass production is studied. 2 refs., 10 figs., 3 tabs.

  18. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  19. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  1. Age-class separation of blue-winged ducks

    Science.gov (United States)

    Hohman, W.L.; Moore, J.L.; Twedt, D.J.; Mensik, John G.; Logerwell, E.

    1995-01-01

    Accurate determination of age is of fundamental importance to population and life history studies of waterfowl and their management. Therefore, we developed quantitative methods that separate adult and immature blue-winged teal (Anas discors), cinnamon teal (A. cyanoptera), and northern shovelers (A. clypeata) during spring and summer. To assess suitability of discriminant models using 9 remigial measurements, we compared model performance (% agreement between predicted age and age assigned to birds on the basis of definitive cloacal or rectral feather characteristics) in different flyways (Mississippi and Pacific) and between years (1990-91 and 1991-92). We also applied age-classification models to wings obtained from U.S. Fish and Wildlife Service harvest surveys in the Mississippi and Central-Pacific flyways (wing-bees) for which age had been determined using qualitative characteristics (i.e., remigial markings, shape, or wear). Except for male northern shovelers, models correctly aged lt 90% (range 70-86%) of blue-winged ducks. Model performance varied among species and differed between sexes and years. Proportions of individuals that were correctly aged were greater for males (range 63-86%) than females (range 39-69%). Models for northern shovelers performed better in flyway comparisons within year (1991-92, La. model applied to Calif. birds, and Calif. model applied to La. birds: 90 and 94% for M, and 89 and 76% for F, respectively) than in annual comparisons within the Mississippi Flyway (1991-92 model applied to 1990-91 data: 79% for M, 50% for F). Exclusion of measurements that varied by flyway or year did not improve model performance. Quantitative methods appear to be of limited value for age separation of female blue-winged ducks. Close agreement between predicted age and age assigned to wings from the wing-bees suggests that qualitative and quantitative methods may be equally accurate for age separation of male blue-winged ducks. We interpret annual

  2. Effects of feather pecking phenotype (severe feather peckers, victims and non-peckers) on serotonergic and dopaminergic activity in four brain areas of laying hens (Gallus gallus domesticus)

    NARCIS (Netherlands)

    Kops, M.S.; Haas, de E.N.; Rodenburg, T.B.; Ellen, E.D.; Korte-Bouws, G.A.H.; Olivier, B.; Güntürkün, O.; Bolhuis, J.E.; Korte, S.M.

    2013-01-01

    Severe feather pecking (SFP) in laying hens is a detrimental behavior causing loss of feathers, skin damage and cannibalism. Previously, we have associated changes in frontal brain serotonin (5-HT) turnover and dopamine (DA) turnover with alterations in feather pecking behavior in young pullets

  3. Molecular Biology of Feather Morphogenesis: A Testable Model for Evo-Devo Research

    Science.gov (United States)

    WIDELITZ, RANDALL B.; JIANG, TING XIN; YU, MINGKE; SHEN, TED; SHEN, JEN-YEE; WU, PING; YU, ZHICAO; CHUONG, CHENG-MING

    2015-01-01

    Darwin’s theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing anterio - posterior (along the cranio - caudal axis) and proximo - distal axes; 4) branching morphogenesis to create the rachis, barbs and barbules within a feather bud; and 5) gradual modulations of these basic morphological parameters within a single feather or across a feather tract. Thus, possibilities for variation in form and function of feathers occur at every developmental step. In this paper, principles guiding feather tract formation, distributions of individual feathers within the tracts and variations in feather forms are discussed at a cellular and molecular level. PMID:12949772

  4. STUDY OF DIFFERENT TREATMENT METHODS ON CHICKEN FEATHER BIOMASS

    Directory of Open Access Journals (Sweden)

    Swati Sharma

    2017-12-01

    Full Text Available The chicken feathers (CFs  consist of up to 10 % of total chicken dry mass and they have many potential industrial applications. CFs contains protein fibers named as keratin, which is an insoluble protein. Primary sanitization phases are complex because of the presence of lots of blood born microbes, pathogens and parasites in raw biomass. The extraction process of keratins from the unprocessed feathers is also a challenging task. Prior to the extraction cleaning/sanitization of feathers is a very necessary step. Thus, the present work was conducted to optimize  an efficient surfactant  for the cleaning process of the  CFs by using ionic and non-ionic surfactants. The experiment was conducted by the washing of feathers with double distilled water (ddH2O, detergents, ether and lastly with boiling water. The washed feathers treated with surfactants and the effect of each surfactant was analyzed by a microbiological test which tells about the extent of  the presence of different bacteria on the treated feathers. SEM, EDX, FTIR were used to study the morphology and composition of  untreated and treated CFs. SEM showed there was no detectable fiber damage after treatment. Cetrimonium bromide (CTAB (t3 was one of the best surfactant for the treatment of CFs among all the surfactant used. The present study described the best treatment method  for the CFs.

  5. Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests.

    Science.gov (United States)

    Peralta-Sánchez, Juan Manuel; Soler, Juan José; Martín-Platero, Antonio Manuel; Knight, Rob; Martínez-Bueno, Manuel; Møller, Anders Pape

    2014-02-01

    The use of feathers to line bird's nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.

  6. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  7. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  8. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  9. k0-INAA for determining chemical elements in bird feathers

    Science.gov (United States)

    França, Elvis J.; Fernandes, Elisabete A. N.; Fonseca, Felipe Y.; Antunes, Alexsander Z.; Bardini Junior, Claudiney; Bacchi, Márcio A.; Rodrigues, Vanessa S.; Cavalca, Isabel P. O.

    2010-10-01

    The k0-method instrumental neutron activation analysis ( k0-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, São Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k0-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mg kg -1), Co (max=0.47 mg kg -1), Cr (max=68 mg kg -1), Hg (max=2.79 mg kg -1), Sb (max=0.20 mg kg -1), Se (max=1.3 mg kg -1) and Zn (max=192 mg kg -1) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k0-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition.

  10. Seeking carotenoid pigments in amber-preserved fossil feathers

    Science.gov (United States)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  11. Seeking carotenoid pigments in amber-preserved fossil feathers.

    Science.gov (United States)

    Thomas, Daniel B; Nascimbene, Paul C; Dove, Carla J; Grimaldi, David A; James, Helen F

    2014-06-09

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  12. Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks

    Science.gov (United States)

    Patterson, Allison G. L.; Kitaysky, Alexander S.; Lyons, Donald E.; Roby, Daniel D.

    2015-01-01

    Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long-term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.

  13. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes).

    Science.gov (United States)

    Ksepka, Daniel T; Clarke, Julia A; Nesbitt, Sterling J; Kulp, Felicia B; Grande, Lance

    2013-06-22

    A feathered specimen of a new species of Eocypselus from the Early Eocene Green River Formation of Wyoming provides insight into the wing morphology and ecology in an early part of the lineage leading to extant swifts and hummingbirds. Combined phylogenetic analysis of morphological and molecular data supports placement of Eocypselus outside the crown radiation of Apodiformes. The new specimen is the first described fossil of Pan-Apodiformes from the pre-Pleistocene of North America and the only reported stem taxon with informative feather preservation. Wing morphology of Eocypselus rowei sp. nov. is intermediate between the short wings of hummingbirds and the hyper-elongated wings of extant swifts, and shows neither modifications for the continuous gliding used by swifts nor modifications for the hovering flight style used by hummingbirds. Elongate hindlimb elements, particularly the pedal phalanges, also support stronger perching capabilities than are present in Apodiformes. The new species is the smallest bird yet described from the Green River Formation, and supports the hypothesis that a decrease in body size preceded flight specializations in Pan-Apodiformes. The specimen also provides the first instance of melanosome morphology preserved in association with skeletal remains from the Green River Formation.

  14. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  15. 77 FR 12493 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of.... * * * * * (c) * * * (378) * * * (i) * * * (E) Feather River Air Quality Management District. (1) Rule 3.22...

  16. Feather damaging behaviour in parrots: A review with consideration of comparative aspects

    NARCIS (Netherlands)

    Zeeland, van Y.R.A.; Spruit, B.M.; Rodenburg, T.B.; Riedstra, B.; Hierden, van Y.M.; Buitenhuis, A.J.; Korte, S.M.; Lumeij, J.T.

    2009-01-01

    Feather damaging behaviour (also referred to as feather picking or feather plucking) is a behavioural disorder that is frequently encountered in captive parrots. This disorder has many characteristics that are similar to trichotillomania, an impulse control disorder in humans. Unfortunately, to date

  17. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    Science.gov (United States)

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.

  18. Feather damaging behaviour in parrots : A review with consideration of comparative aspects

    NARCIS (Netherlands)

    van Zeeland, Yvonne R. A.; Spruit, Berry M.; Rodenburg, T. Bas; Riedstra, Bernd; van Hierden, Yvonne M.; Buitenhuis, Bart; Korte, S. Mechiel; Lumeij, Johannes T.

    2009-01-01

    Feather damaging behaviour (also referred to as feather picking or feather plucking) is a behavioural disorder that is frequently encountered in captive parrots. This disorder has many characteristics that are similar to trichotillomania, an impulse control disorder in humans. Unfortunately, to date

  19. Do spotless starlings place feathers at their nests by ultraviolet color?

    Science.gov (United States)

    Avilés, Jesús M.; Parejo, Deseada; Pérez-Contreras, Tomás; Navarro, Carlos; Soler, Juan J.

    2010-02-01

    A considerable number of bird species carry feathers to their nests. Feathers’ presence in the nests has traditionally been explained by their insulating properties. Recently, however, it has been suggested that feathers carried to the nests by females of the spotted starling ( Sturnus unicolor L.) could have an ornamental function based on their ultraviolet (300-400 nm) and human-visible longer wavelength (400-700 nm) coloration. In our population, 95.7% of feathers found inside next-boxes occupied by nesting starlings were rock dove fly feathers. Of these feathers, 82.7% were naturally positioned with their reverse side oriented toward the entrance hole and 42.4% of all found feathers were situated within the nest-cup. Here we experimentally assess the signaling function of ultraviolet coloration of feathers in nests of spotless starlings by providing nests with a number of pigeon flight feathers that were respectively treated on their obverse, reverse, both, or neither side with a UV blocker. Starlings placed 42.5% of the experimental feathers in the nest-cup irrespective of the UV block treatment. Orientation of feathers toward the entrance hole was not related with their ultraviolet radiation. However, feathers placed within the nest-cup were more likely found with their reverse side oriented toward the entrance hole confirming our correlative findings. These results suggest a minor role of ultraviolet coloration on feather location by spotless starlings.

  20. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures

    NARCIS (Netherlands)

    Tinbergen, Jan; Wilts, Bodo D.; Stavenga, Doekele G.

    2013-01-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or

  1. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  2. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  3. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages.

    Science.gov (United States)

    Peñalver, Enrique; Arillo, Antonio; Delclòs, Xavier; Peris, David; Grimaldi, David A; Anderson, Scott R; Nascimbene, Paul C; Pérez-de la Fuente, Ricardo

    2017-12-12

    Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.

  5. Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution.

    Science.gov (United States)

    Bell, Phil R; Campione, Nicolás E; Persons, W Scott; Currie, Philip J; Larson, Peter L; Tanke, Darren H; Bakker, Robert T

    2017-06-01

    Recent evidence for feathers in theropods has led to speculations that the largest tyrannosaurids, including Tyrannosaurus rex , were extensively feathered. We describe fossil integument from Tyrannosaurus and other tyrannosaurids ( Albertosaurus, Daspletosaurus, Gorgosaurus and Tarbosaurus ), confirming that these large-bodied forms possessed scaly, reptilian-like skin. Body size evolution in tyrannosauroids reveals two independent occurrences of gigantism; specifically, the large sizes in Yutyrannus and tyrannosaurids were independently derived. These new findings demonstrate that extensive feather coverings observed in some early tyrannosauroids were lost by the Albian, basal to Tyrannosauridae. This loss is unrelated to palaeoclimate but possibly tied to the evolution of gigantism, although other mechanisms exist. © 2017 The Author(s).

  6. Determination of Cr and Cd concentration adsorbed by chicken feathers

    International Nuclear Information System (INIS)

    Lopez M, A.; Cuapio O, L.A.; Cardenas P, S.; Balcazar, M.; Jauregui, V.; Bonilla P, A.

    2008-01-01

    In this work the results of the samples analysis of chicken feathers are presented, used as adsorber of the heavy metals Cd and Cr present in water solutions with well-known concentrations of these metals. It was used the Neutron Activation Analysis technique (AAN), using the TRIGA Mark-III reactor of the Nuclear Center of Mexico. The obtained results they show the advantages of having a versatile installation for the analysis of this type of samples. By means of the analysis of the results, it was determined the feasibility of using chicken feathers like adsorber of these metals present in polluted waters, additionally, it was detected the presence of others polluting elements in the inputs to prepare the reference solutions as well as in the processes, so much of preparation of the feathers like of the metals adsorption. (Author)

  7. Melanin concentration gradients in modern and fossil feathers.

    Directory of Open Access Journals (Sweden)

    Daniel J Field

    Full Text Available In birds and feathered non-avian dinosaurs, within-feather pigmentation patterns range from discrete spots and stripes to more subtle patterns, but the latter remain largely unstudied. A ∼55 million year old fossil contour feather with a dark distal tip grading into a lighter base was recovered from the Fur Formation in Denmark. SEM and synchrotron-based trace metal mapping confirmed that this gradient was caused by differential concentration of melanin. To assess the potential ecological and phylogenetic prevalence of this pattern, we evaluated 321 modern samples from 18 orders within Aves. We observed that the pattern was found most frequently in distantly related groups that share aquatic ecologies (e.g. waterfowl Anseriformes, penguins Sphenisciformes, suggesting a potential adaptive function with ancient origins.

  8. Study on airflow characteristics of rear wing of F1 car

    Science.gov (United States)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  9. Analysis of severe feather pecking behavior in a high feather pecking selection line

    DEFF Research Database (Denmark)

    Labouriau, R; Kjaer, J B; Abreu, G C G

    2009-01-01

    Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations......, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence...... of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other...

  10. [Morphogenesis and histogenesis of genetically based twin feathers in domestic pigeons (columba livia dom. L.)].

    Science.gov (United States)

    Hoffmann, Hans-Jürgen

    1969-06-01

    1. "Twin feathers" described for various domestic breeds of pigeons have been found in Oriental Rollers in 12 per cent of the sides of the tails during each of the breeding periods. 2. Each studied twin feather originates in a single follicle. It shows either one sheath ("split feather") or two sheaths ("double feather"). 72 per cent of the feathers have been found in the middles of the tails, 23 per cent in the middle of one side of the rows of rectrices. 3. Twin feathers grow either out of one papilla and one blastema having the ability for forming two shafts (split feathers) or from two separated papillae and blastemas lying in a single follicle cavity (double feathers). 4. The degree of splitting of split feathers is correlated to the position of the shaft primordia in the collars. Feathers of a degree of splitting exceeding 85 per cent have been found growing from collars with a pair of shaft primordia in an approximately diametrical and lateral position and a consequently large ramogenous zone between them, otherwise the two rhachis fuse during their development so that the follicle gives rise to a feather of a smaller degree of splitting. 5. The individual formation of a twin feather in a definite follicle will not vary in the succession of the feather generations, except for the rare non-reappearance of one twin of double feathers. Especially the degree of splitting has been observed to be invariable. 6. Generally the material of a twin feather is augmented compared to the symmetrically situated feather of the opposite side of the tail. The weight and area of a double feather is doubled, the weights of split feathers are significantly increased, the areas only of feathers with a degree of splitting exceeding 85 per cent. 7. Similar principles may be stated for twin downs of nestlings, but a great number of twin downs with mutual filaments has been observed. In the first generation of contour feathers, the twin downs are generally followed by twin feathers

  11. Both feather peckers and victims are more asymmetrical than control hens

    DEFF Research Database (Denmark)

    Machado Tahamtani, Fernanda; Forkman, Björn; Hinrichsen, Lena Karina

    2017-01-01

    Feather pecking is the major welfare issue facing the egg farming industry worldwide. Previous research has found a relationship between cannibalistic behaviour, fluctuating asymmetry of bilateral traits (FA) and body weight in laying hens. As cannibalism is linked to severe feather pecking......, it could be suggested that a relationship between feather pecking, FA and body weight also exists. The purpose of this study was to analyse the association between feather pecking behaviour and a) FA, b) body weight and c) comb size in laying hens. Sixty-four laying hens were categorised as feather peckers...

  12. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands.

    Science.gov (United States)

    Tsipoura, Nellie; Burger, Joanna; Newhouse, Michael; Jeitner, Christian; Gochfeld, Michael; Mizrahi, David

    2011-08-01

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean ±SE 4.29±0.30μg/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161±36.7ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910±386ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249±44.7ng/g) and eggs (161±36.7ng/g) may pose a risk if consumed

  13. Energetics and optimum motion of oscillating lifting surfaces. [energy losses of rigid wings

    Science.gov (United States)

    Ahmadi, A. R.; Widnall, S. E.

    1983-01-01

    Low-frequency, unsteady, lifting-line theory is used to characterize the energetics and optimum motion of an unswept rigid wing oscillating harmonically in an inviscid, incompressible flow. The energetics calculations account for the leading edge suction force, the power absorbed in the wing oscillations, and the energy loss rate produced by vortex shedding. Optimization is achieved by minimizing the average energy loss rate in relation to a given thrust, and a unique solution is found in the three dimensional case for low, reduced frequencies. The two-dimensional solution is nonunique, a condition which is examined in terms of the normal modes of the energy loss rate matrix. An invisible mode with a hydrodynamic efficiency of 100 pct is obtained in the two-dimensional case, causing the nonuniqueness of the solution by yielding no fixed positive thrust through perfect unsteady feathering.

  14. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  15. Towards a quantitative indicator of feather disruption following the cleansing of oiled birds.

    Science.gov (United States)

    Bigger, Stephen W; Ngeh, Lawrence N; Dann, Peter; Orbell, John D

    2017-07-15

    A computer-based imaging method for determining feather microstructure coherency following a cleansing treatment, was developed, calibrated and trialled on Mallard Duck (Anas platyrhyhchos) feathers. The feathers were initially contaminated with a light crude oil and then cleansed by either detergent (Deacon 90) treatment or, alternatively, by magnetic particle technology (MPT) using iron powder. The imaging method provides a single quantitative parameter for the coherence of feather microstructure and the results confirm that MPT treatment imparts less disruption to the feather microstructure than detergent treatment. It is proposed that this imaging method can be developed and implemented for the assessment of feather disruption and possibly damage, either for the trialling of different treatment protocols, or as a tool during the rehabilitation process, along with other such indicators, to give a more comprehensive assessment of feather condition than is currently available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers

    Science.gov (United States)

    Moyer, Alison E.; Zheng, Wenxia; Johnson, Elizabeth A.; Lamanna, Matthew C.; Li, Da-Qing; Lacovara, Kenneth J.; Schweitzer, Mary H.

    2014-03-01

    Microbodies associated with fossil feathers, originally attributed to microbial biofilm, have been reinterpreted as melanosomes: pigment-containing, eukaryotic organelles. This interpretation generated hypotheses regarding coloration in non-avian and avian dinosaurs. Because melanosomes and microbes overlap in size, distribution and morphology, we re-evaluate both hypotheses. We compare melanosomes within feathers of extant chickens with patterns induced by microbial overgrowth on the same feathers, using scanning (SEM), field emission (FESEM) and transmission (TEM) electron microscopy. Melanosomes are always internal, embedded in a morphologically distinct keratinous matrix. Conversely, microbes grow across the surface of feathers in continuous layers, more consistent with published images from fossil feathers. We compare our results to both published literature and new data from a fossil feather ascribed to Gansus yumenensis (ANSP 23403). `Mouldic impressions' were observed in association with both the feather and sediment grains, supporting a microbial origin. We propose criteria for distinguishing between these two microbodies.

  17. Hummingbird with modern feathering: an exceptionally well-preserved Oligocene fossil from southern France

    Science.gov (United States)

    Louchart, Antoine; Tourment, Nicolas; Carrier, Julie; Roux, Thierry; Mourer-Chauviré, Cécile

    2008-02-01

    Hummingbirds (Trochilidae) today have an exclusively New World distribution, but their pre-Pleistocene fossil record comes from Europe only. In this study, we describe an exceptionally preserved fossil hummingbird from the early Oligocene of southeastern France. The specimen is articulated, with a completely preserved beak and feathering. Osteological characters allow to identify it as Eurotrochilus sp. This genus is a stem group representative of Trochilidae and was recently described from the early Oligocene of southern Germany. The new fossil reveals that these European Trochilidae were remarkably modern in size, skeletal proportions and the shape of the wing, tail and beak and hyoid bones. These features confirm the early acquisition of the abilities of hovering and nectarivory in hummingbirds, probably before the Oligocene. In several morphological characteristics, they resemble members of the ‘true hummingbirds’ (subfamily Trochilinae) and differ from hermits (Phaethornithinae). These features, which include a short and square tail and a moderately long, almost straight beak, appear to be primitive within the family Trochilidae.

  18. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  19. The disposition of oxytetracycline to feathers after poultry treatment

    NARCIS (Netherlands)

    Berendsen, B.J.A.; Bor, G.; Gerritsen, H.W.; Jansen, L.J.M.; Zuidema, T.

    2013-01-01

    In the combat against bacterial resistance, there is a clear need to check the use of antibiotics in animal husbandry, including poultry breeding. The use of chicken feathers as a tool for the detection of use of antibiotics was investigated. An extraction method for the analysis of oxytetracycline

  20. Repeatability of feather mite prevalence and intensity in passerine birds.

    Directory of Open Access Journals (Sweden)

    Javier Diaz-Real

    Full Text Available Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (R(adj after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity. The prevalence of feather mites was moderately repeatable (R = 0.26-0.53; R(adj = 0.32-0.57; smaller values were found for intensity (R = 0.19-0.30; R(adj = 0.18-0.30. These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.

  1. rights reserved Determination of the Viability of Chicken Feather as ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the .... Belarmino et al, 2012). Feather barbs show honeycomb hollow shaped hollow cells in the cross- section direction, the presence of a honeycomb structure will provide for the accumulations of liquids.

  2. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    Science.gov (United States)

    Rebecca Hylton Keller; Lingtian Xie; David B. Buchwalter; Kathleen E. Franzreb; Theodore R Simons

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope ä 15N. Mercury concentrations (mean ± SE) averaged 0.46...

  3. Purification and characterization of a keratinase from the feather ...

    African Journals Online (AJOL)

    Yomi

    2012-01-31

    Jan 31, 2012 ... proteases enzymes, release the free amino acids from keratinous proteins. Keratin is an insoluble, high stable protein found mostly in feathers, wool, nails and hairs of vertebrates (Shih, 1993). Keratin is resistant to the common proteolytic enzymes, papain, pepsin and trypsin. (Papadopoulos et al., 1986).

  4. Effect of Winged Subsoiler and Traditional Tillage Integrated with ...

    African Journals Online (AJOL)

    Effect of Winged Subsoiler and Traditional Tillage Integrated with Fanya Juu on Selected Soil Physico-Chemical and Soil Water Properties in the Northwestern ... Soil evaporation was estimated by a conceptual model whereby leaf area index, canopy cover, crop root length, moisture at saturation and field capacity were ...

  5. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  6. Applying FEATHERS for Travel Demand Analysis: Model Considerations

    Directory of Open Access Journals (Sweden)

    Qiong Bao

    2018-01-01

    Full Text Available Activity-based models of travel demand have received considerable attention in transportation planning and forecasting over the last few decades. FEATHERS (The Forecasting Evolutionary Activity-Travel of Households and their Environmental Repercussions, developed by the Transportation Research Institute of Hasselt University, Belgium, is a micro-simulation framework developed to facilitate the implementation of activity-based models for transport demand forecasting. In this paper, we focus on several model considerations when applying this framework. First, the way to apply FEATHERS on a more disaggregated geographical level is investigated, with the purpose of obtaining more detailed travel demand information. Next, to reduce the computation time when applying FEATHERS on a more detailed geographical level, an iteration approach is proposed to identify the minimum size of the study area needed. In addition, the effect of stochastic errors inherently included in the FEATHERS framework is investigated, and the concept of confidence intervals is applied to determine the minimum number of model runs needed to minimize this effect. In the application, the FEATHERS framework is used to investigate the potential impact of light rail initiatives on travel demand at a local network in Flanders, Belgium. In doing so, all the aforementioned model considerations are taken into account. The results indicate that by integrating a light rail network into the current public transport network, there would be a relatively positive impact on public transport-related trips, but a relatively negative impact on the non-motorized-mode trips in this area. However, no significant change is found for car-related trips.

  7. Preparation and characterization of sponge film made from feathers

    International Nuclear Information System (INIS)

    Zhuang, Yuan; Wu, Xiaoqian; Cao, Zhangjun; Zhao, Xiaoxiang; Zhou, Meihua; Gao, Pin

    2013-01-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM 10 was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology

  8. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  9. Piscivory in the feathered dinosaur Microraptor.

    Science.gov (United States)

    Xing, Lida; Persons, W Scott; Bell, Phil R; Xu, Xing; Zhang, Jianping; Miyashita, Tetsuto; Wang, Fengping; Currie, Philip J

    2013-08-01

    The largest specimen of the four-winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird.

    Science.gov (United States)

    Hingee, Mae; Magrath, Robert D

    2009-12-07

    Animals often form groups to increase collective vigilance and allow early detection of predators, but this benefit of sociality relies on rapid transfer of information. Among birds, alarm calls are not present in all species, while other proposed mechanisms of information transfer are inefficient. We tested whether wing sounds can encode reliable information on danger. Individuals taking off in alarm fly more quickly or ascend more steeply, so may produce different sounds in alarmed than in routine flight, which then act as reliable cues of alarm, or honest 'index' signals in which a signal's meaning is associated with its method of production. We show that crested pigeons, Ocyphaps lophotes, which have modified flight feathers, produce distinct wing 'whistles' in alarmed flight, and that individuals take off in alarm only after playback of alarmed whistles. Furthermore, amplitude-manipulated playbacks showed that response depends on whistle structure, such as tempo, not simply amplitude. We believe this is the first demonstration that flight noise can send information about alarm, and suggest that take-off noise could provide a cue of alarm in many flocking species, with feather modification evolving specifically to signal alarm in some. Similar reliable cues or index signals could occur in other animals.

  11. Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium.

    Science.gov (United States)

    Park, Geun-Tae; Son, Hong-Joo

    2009-01-01

    The aim of this study was to investigate environmental conditions affecting chicken feather degradation and keratinolytic enzyme production by Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. B. megaterium F7-1 degraded whole chicken feather completely within 7 days. The bacterium grew with an optimum at pH 7.0-11.0 and 25-40 degrees C, where maximum keratinolytic activity was also observed. The production of keratinolytic enzyme by B. megaterium F7-1 was inducible with feather. Keratinolytic enzyme production by B. megaterium F7-1 at 0.6% (w/v) skim milk was 468U/ml, which was about 9.4-fold higher than that without skim milk. The amount of keratinolytic enzyme production depended on feather concentrations. The degradation rate of autoclaved chicken feathers by cell-free culture supernatant was 26% after 24h of incubation, but the degradation of untreated chicken feathers was unsuccessful. B. megaterium F7-1 effectively degraded feather meal, duck feather and human nail, whereas human hair and sheep wool showed relatively low degradation rates. B. megaterium F7-1 presented high keratinolytic activity and was very effective in feather degradation, providing potential use for biotechnological processes of keratin hydrolysis.

  12. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    Science.gov (United States)

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  13. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  14. The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications.

    Science.gov (United States)

    Foth, Christian

    2011-04-01

    Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior-posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown-group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of "model organisms" to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. Copyright © 2011 Wiley-Liss, Inc.

  15. The development of feather pecking behaviour and targeting of pecking in chicks from a high and low feather pecking line of laying hens

    NARCIS (Netherlands)

    Hierden, van Y.M.; Korte, S.M.; Ruesink, E.W.; Reenen, van C.G.; Engel, B.; Koolhaas, J.M.; Blokhuis, H.J.

    2002-01-01

    Large individual differences between adult laying hens in their propensity for feather pecking are known to exist. However, not much research has been carried out into the individual differences concerning the development of feather pecking behaviour. The purpose of this study was to investigate

  16. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  17. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  18. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  19. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient.

    Science.gov (United States)

    Bertsch, A; Coello, N

    2005-10-01

    A strain of Kocuria rosea with keratinolytic capacity was cultured aerobically on submerged feathers to obtain a fermented feather meal (FFM). This FFM enriched with cells of K. rosea mainly contains crude protein (71%). The pepsin digestibility of the fermented product (88%) was similar to the value of the commercial feather meal and more than 70% greater that untreated feathers. The bacterial biomass improved the content of amino acids lysine (3.46%), histidine (0.94%) and methionine (0.69%). Additionally, the amino acid availability tested by in vivo assay was greater than commercial feather meal. The microbial cells also supplied carotenoid pigments to FFM (68 ppm). These results suggest that feather meal enriched with K. rosea may be useful in animal feeding as protein and pigment source.

  20. Biological value (in vitro and in sacco of chemically treated feather as rumen by pass protein source

    Directory of Open Access Journals (Sweden)

    W Puastuti

    2004-06-01

    Full Text Available A series of experiments has been conducted to study chemical processing method of feather meal using hydrocloric acid (HCl and to evaluate the biological values by in vitro and is sacco methods of the hydrolitic feather meal (HBA. Feather meal was hydrolyzed using four levels of HCl concentration (i.e.0, 6, 12 and 24% in three incubation times (i.e. 2, 4, and 6 days. The hydrolysis reaction was carried out in closed container in the ratio of feather meal and HCl of 2:1 (w/v. In vitro evaluation was conducted to measure dry matter (DM and organic matter (OM digestibility, DM solubility, ammonia (NH3 and volatile fatty acid (VFA content. In sacco to observe the degradation of HBA crude protein. Results of in sacco evaluation in rumen showed that soluble and degraded crude proteins (CP were significantly only affected by HCl concentration (P0.05. In vitro DM and OM digestibilities of HBA increased as the concentration of HCl was increased. The increase of DM digestibility followed the equation Y = -0.0231x3 + 0.7323x2 – 1.5716x + 12.383 (r = 0.994; and the OM digestibility followed the equation Y = -0.0229x3 + 0.7194x2 – 1.0606x + 15.951 (r = 0.993. Time of incubation, on the other hand, did not affect OM and DM digestibilities (P>0.05. DM solubility of HBA was significantly affected by HCl concentration and the length of incubation time (P<0.01. The increase of DM solubility was followed by the increase of NH3 content (P<0.01. The relation between DM solubility and NH3 content followed the equation Y = 0.4365x + 5.4047 (r = 0.966. The increase of DM solubility followed the equation Y = -0.027x3 + 0.9596x2 – 4.8142x + 5.3878 (r = 0.973 and the increase of NH3 content followed the equation Y = -0.0085x3 + 0.3175x2 – 1.4139x + 7.0889 (r = 0.992. Result of in sacco evaluation showed that fraction of crude protein (CP disolved and fraction of CP degraded in rumen was significantly affected by HCl concentration (P<0.01, while the rate of CP

  1. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  2. The redder the better: wing color predicts flight performance in monarch butterflies.

    Science.gov (United States)

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  3. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  4. Manakins can produce iridescent and bright feather colours without melanosomes.

    Science.gov (United States)

    Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D

    2016-06-15

    Males of many species often use colourful and conspicuous ornaments to attract females. Among these, male manakins (family: Pipridae) provide classic examples of sexual selection favouring the evolution of bright and colourful plumage coloration. The highly iridescent feather colours of birds are most commonly produced by the periodic arrangement of melanin-containing organelles (melanosomes) within barbules. Melanin increases the saturation of iridescent colours seen from optimal viewing angles by absorbing back-scattered light; however, this may reduce the wide-angle brightness of these signals, contributing to a dark background appearance. We examined the nanostructure of four manakin species (Lepidothrix isidorei, L. iris, L. nattereri and L. coeruleocapilla) to identify how they produce their bright plumage colours. Feather barbs of all four species were characterized by dense and fibrous internal spongy matrices that likely increase scattering of light within the barb. The iridescent, yet pale or whitish colours of L. iris and L. nattereri feathers were produced not by periodically arranged melanosomes within barbules, but by periodic matrices of air and β-keratin within barbs. Lepidothrix iris crown feathers were able to produce a dazzling display of colours with small shifts in viewing geometry, likely because of a periodic nanostructure, a flattened barb morphology and disorder at a microstructural level. We hypothesize that iridescent plumage ornaments of male L. iris and L. nattereri are under selection to increase brightness or luminance across wide viewing angles, which may potentially increase their detectability by females during dynamic and fast-paced courtship displays in dim light environments. © 2016. Published by The Company of Biologists Ltd.

  5. Chicken feather fiber as an additive in MDF composites

    Science.gov (United States)

    Jerrold E. Winandy; James H. Muehl; Jessie A. Glaeser; Walter Schmidt

    2007-01-01

    Medium density fiberboard (MDF) panels were made with aspen fiber and 0-95% chicken feather fiber (CFF) in 2.5%, 5%, or 25% increments, using 5% phenol formaldehyde resin as the adhesive. Panels were tested for mechanical and physical properties as well as decay. The addition of CFF decreased strength and stiffness of MDF-CFF composites compared with that of all-wood...

  6. Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds

    OpenAIRE

    Diaz-Real, Javier; Serrano, David; Pérez-Tris, Javier; Fernández-González, Sofía; Bermejo, Ana; Calleja, Juan A.; De la Puente, Javier; De Palacio, Diana; Martínez, José L.; Moreno-Opo, Rubén; Ponce, Carlos; Frías, Óscar; Tella, José L.; Møller, Anders P.; Figuerola, Jordi

    2014-01-01

    Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance compo...

  7. Sulfitolytic and keratinolytic potential of Chryseobacterium sp. RBT revealed hydrolysis of melanin containing feathers

    OpenAIRE

    Gurav, Ranjit G.; Tang, Jingchun; Jadhav, Jyoti P.

    2016-01-01

    In black feathers, melanin is embedded in keratin matrix that makes feather more resistance to the microbial degradation. Chryseobacterium sp. RBT previously isolated from the poultry waste disposable site revealed strong sulfitolytic and keratinolytic activities. Maximum keratinase activity was observed at 48?h (89.12?U?ml?1) showed 83?% of native black feather degradation. The concentration of free sulfhydryl groups released during degradation was 0.648???10?4?M?(12?h), 2.144???10?4?M?(96?h...

  8. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  9. Melanosome evolution indicates a key physiological shift within feathered dinosaurs.

    Science.gov (United States)

    Li, Quanguo; Clarke, Julia A; Gao, Ke-Qin; Zhou, Chang-Fu; Meng, Qingjin; Li, Daliang; D'Alba, Liliana; Shawkey, Matthew D

    2014-03-20

    Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.

  10. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging.

    Science.gov (United States)

    Bergmann, U; Morton, R W; Manning, P L; Sellers, W I; Farrar, S; Huntley, K G; Wogelius, R A; Larson, P

    2010-05-18

    Evolution of flight in maniraptoran dinosaurs is marked by the acquisition of distinct avian characters, such as feathers, as seen in Archaeopteryx from the Solnhofen limestone. These rare fossils were pivotal in confirming the dinosauria-avian lineage. One of the key derived avian characters is the possession of feathers, details of which were remarkably preserved in the Lagerstätte environment. These structures were previously simply assumed to be impressions; however, a detailed chemical analysis has, until now, never been completed on any Archaeopteryx specimen. Here we present chemical imaging via synchrotron rapid scanning X-ray fluorescence (SRS-XRF) of the Thermopolis Archaeopteryx, which shows that portions of the feathers are not impressions but are in fact remnant body fossil structures, maintaining elemental compositions that are completely different from the embedding geological matrix. Our results indicate phosphorous and sulfur retention in soft tissue as well as trace metal (Zn and Cu) retention in bone. Other previously unknown chemical details of Archaeopteryx are also revealed in this study including: bone chemistry, taphonomy (fossilization process), and curation artifacts. SRS-XRF represents a major advancement in the study of the life chemistry and fossilization processes of Archaeopteryx and other extinct organisms because it is now practical to image the chemistry of large specimens rapidly at concentration levels of parts per million. This technique has wider application to the archaeological, forensic, and biological sciences, enabling the mapping of "unseen" compounds critical to understanding biological structures, modes of preservation, and environmental context.

  11. Preparation and characterization of sponge film made from feathers.

    Science.gov (United States)

    Zhuang, Yuan; Wu, Xiaoqian; Cao, Zhangjun; Zhao, Xiaoxiang; Zhou, Meihua; Gao, Pin

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170°C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM10 was 98.3%. © 2013.

  12. Melanin-based color of plumage: role of condition and of feathers' microstructure

    Science.gov (United States)

    D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.

    2014-01-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  13. A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes.

    Science.gov (United States)

    Hughes, K D; Ewins, P J; Clark, K E

    1997-11-01

    Osprey (Pandion haliaetus) eggs and chick feathers were collected for mercury analysis from nests at four Great Lakes study areas in Ontario (three "naturally formed" lakes in southern Ontario and one reservoir in northern Ontario) and two New Jersey study areas in 1991-1994. Adult osprey feathers were sampled from three Great Lakes study areas in 1991. Feathers sampled from chicks (approximately 28-35 days old) appear to be better indicators of local contaminant conditions since spatial patterns of mercury in known prey, yellow perch (Perca flavescens), also collected in these areas, were more similar to chick feathers than to eggs. Mercury levels were less variable in chick feathers than in eggs. Estimates of biomagnification factors using prey of known size at these areas were also less variable in feathers than in eggs. At naturally formed lakes, no significant correlation in mercury levels between eggs and chick feathers from the same nest was apparent, suggesting that the source of mercury contamination was not the same in these two tissues: mercury levels in eggs reflect mercury acquired on the breeding grounds, wintering grounds, and migratory route; mercury levels in chick feathers reflect local dietary conditions on the breeding grounds. Mercury levels in both osprey eggs and chick feathers were higher at the Ogoki Reservoir than at naturally formed lakes. Adult osprey feathers had higher mercury concentrations than chick feathers. Mercury levels in osprey eggs, chick feathers, and adult feathers did not approach levels associated with toxic reproductive effects.

  14. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

    Directory of Open Access Journals (Sweden)

    David J. Bottjer

    2012-09-01

    Full Text Available At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds.

  15. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  16. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  17. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing.

    Science.gov (United States)

    Sobucki, Lisiane; Ramos, Rodrigo Ferraz; Daroit, Daniel Joner

    2017-10-01

    Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1-100 g l -1 ), maximal protease production was observed at 30 g l -1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l -1 ), CaCl 2 , or MgCl 2 (10 mmol l -1 ) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH 4 Cl (1 g l -1 ) resulted in less apparent negative effects on protease production, whereas peptone (2 g l -1 ) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH 4 Cl (0.5-4.5 g l -1 ) on protease production and feather degradation, FB30 supplementation with peptone and NH 4 Cl (0.5-1.1 g l -1 ) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

  18. Assessment of the effect of housing on feather damage in laying hens using IR thermography.

    Science.gov (United States)

    Pichová, K; Bilčík, B; Košt'ál, L'

    2017-04-01

    Plumage damage represents one of the animal-based measures of laying hens welfare. Damage occurs predominantly due to age, environment and damaging pecking. IR thermography, due to its non-invasiveness, objectivity and repeatability is a promising alternative to feather damage scoring systems such as the system included in the Welfare Quality ® assessment protocol for poultry. The aim of this study was to apply IR thermography for the assessment of feather damage in laying hens kept in two housing systems and to compare the results with feather scoring. At the start of the experiment, 16-week-old laying hens (n=30) were divided into two treatments such as deep litter pen and enriched cage. During 4 months, feather damage was assessed regularly in 2-week intervals. One more single assessment was done nine and a half months after the start of the experiment. The feather damage on four body regions was assessed by scoring and IR thermography: head and neck, back and rump, belly, and underneck and breast. Two variables obtained by IR thermography were used: the difference between the body surface temperature and ambient temperature (ΔTB) and the proportion of featherless areas, which were defined as areas with a temperature >33.5°C. Data were analyzed using a GLM model. The effects of housing, time, region and their interactions on feather damage, measured by the feather scoring and by both IR thermography measures, were all significant (PIR thermography assessment of the feather damage revealed differences between hens kept in different housing systems in agreement with the feather scoring. In conclusion, it was demonstrated that the IR thermography is a useful tool for the assessment of poultry feather cover quality that is not biased by the subjective component and provides higher precision than feather damage scoring.

  19. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  20. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  1. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  2. The performance of broiler finisher birds fed varying levels of feather ...

    African Journals Online (AJOL)

    The performance of broiler finisher birds fed varying levels of feather meal as replacement for soya bean meal. ... meal increased, feed cost/ kg weight gain increased and both differed significantly (P<0.05) between treatment means, while the birds tolerated feather meal up to 7.5% inclusion level, 2.5% was the optimal.

  3. The preference for high-fiber feed in laying hens divergently selected on feather pecking.

    Science.gov (United States)

    Kalmendal, R; Bessei, W

    2012-08-01

    Earlier studies in laying hens have demonstrated a negative correlation between feather pecking and the dietary fiber content of the feed. However, the factors underlying this relationship are not fully understood. In the present experiment, we hypothesized that birds prone to feather pecking would prefer a diet supplemented with dietary fiber. Thus, the aim was to investigate the voluntary consumption of a wheat-soy control diet (CON) and a diet supplemented with 8% spelt hulls (FIB) on the expense of wheat in 20 individually caged hens selected for high feather pecking (HFP) behavior and 20 individually caged hens selected for low feather pecking (LFP) behavior. The proportional intake of FIB was 0.39 and significantly different from 0.50 (Phens (0.36; Phens had inferior plumage condition (Pfeed intake (Phens plucked more feathers from a simple inanimate feather-pecking model, but the number of feathers being pulled out did not correlate with the proportional intake of FIB. It was concluded that the preference for feed supplemented with spelt hulls was different between hens displaying different feather-pecking behavior. The underlying reason for such a difference needs further investigation.

  4. 76 FR 76115 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Science.gov (United States)

    2011-12-06

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of..., Regulatory Planning and Review The Office of Management and Budget (OMB) has exempted this regulatory action...

  5. Comparison of four feed proteases for improvement of nutritive value of poultry feather meal

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Yu, S; Plumstead, P

    2012-01-01

    in the production of cost-effective feather by-products for use as feed and fertilizers. The current study examined 4 commercial feed proteases from Bacillus subtilis, Bacillus licheniformis PWD-1, Aspergillus niger, and Serratia proteamaculans HY-3 used to hydrolyze chicken feather under different conditions...

  6. THE ENERGETIC COST OF FEATHER SYNTHESIS IS PROPORTIONAL TO BASAL METABOLIC-RATE

    NARCIS (Netherlands)

    VISSER, GH; DAAN, S

    1993-01-01

    The cost of feather production, C(f) (kJ . [g dry feathers]-1), differs substantially between species. We studied the molt cost in one insectivorous songbird (bluethroat, Luscinia s. svecica) and one granivorous songbird (common redpoll, Carduelis f. flammea), We wanted to test whether differences

  7. Metals in albatross feathers from Midway Atoll: Influence of species, age, and nest location

    Energy Technology Data Exchange (ETDEWEB)

    Burger, J.; Gochfeld, M.

    2000-03-01

    In this paper the authors examine the concentrations of metals (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. They collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. The authors test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression they found significant models accounting for the variation in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. They also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated.

  8. Effect of an early bitter taste experience on subsequent feather-pecking behaviour in laying hens

    NARCIS (Netherlands)

    Harlander, A.; Beck, P.S.A.; Rodenburg, T.B.

    2010-01-01

    Recent studies showed that laying hens learn not to peck at bitter-tasting feathers from conspecifics. In the present experiment, feathers of newly hatched chicks were made distasteful by spraying them with a bitter-tasting substance (quinine). It was hypothesized that chicks could detect quinine

  9. Trade in Andean Condor Vulture gryphus feathers and body parts in ...

    African Journals Online (AJOL)

    body parts in the city of Cusco and the Sacred Valley,. Cusco region, Peru. Robert S. R. ... The sale of Andean Condor feathers and body parts is undertaken openly in the tourist markets of Cusco and the Sacred .... and shops. Prices in local currency – Nuevo Sol and US Dollar equivalent given in parentheses). Feather.

  10. Trade in Andean Condor Vulture gryphus feathers and body parts in ...

    African Journals Online (AJOL)

    Prices ranged from 5 soles for a small body feather to 160 soles for a main primary and we found handicrafts for sale at prices of up to 650 soles (featuring 6 feathers). We were offered a whole condor for sale at a market in Cusco for ... We also make recommendations for a strategy for controlling this illegal. September 2011.

  11. Determination of the viability of chicken feather as oil spill clean-up ...

    African Journals Online (AJOL)

    In this study a comparative assessment was conducted between chicken feather and a conventional synthetic sorbent mat used in the oil industry to clean-up oil spill. The result of the study shows that chicken feather has higher oil sorption capacity and sorbed oil recoverability than the standard (synthetic sorbent mat), and ...

  12. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl.

    Science.gov (United States)

    Czirják, Gábor Arpád; Møller, Anders Pape; Mousseau, Timothy A; Heeb, Philipp

    2010-08-01

    The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level, environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms. We examined abundance patterns of total cultivable bacteria and fungi and the abundance of feather-degrading bacterial subset present on feathers of barn swallows (Hirundo rustica), a colonial migratory passerine, around Chernobyl in relation to levels of ground level environmental radiation. After controlling for confounding variables, total cultivable bacterial loads were negatively correlated with environmental radioactivity, whereas abundance of fungi and feather-degrading bacteria was not significantly related to contamination levels. Abundance of both total and feather-degrading bacteria increased with barn swallow colony size, showing a potential cost of sociality. Males had lower abundance of feather-degrading bacteria than females. Our results show the detrimental effects of low-level environmental radiation on total cultivable bacterial assemblage on feathers, while the abundance of other microorganism groups living on barn swallow feathers, such as feather-degrading bacteria, are shaped by other factors like host sociality or host sex. These data lead us to conclude that the ecological effects of Chernobyl may be more general than previously assumed and may have long-term implications for host-microbe interactions and overall ecosystem functioning.

  13. Predicting feather damage in laying hens during the laying period. Is it the past or is it the present?

    NARCIS (Netherlands)

    Haas, de E.N.; Bolhuis, J.E.; Jong, de I.C.; Kemp, B.; Janczak, A.M.; Rodenburg, T.B.

    2014-01-01

    Feather damage due to severe feather pecking (SFP) in laying hens is most severe during the laying period. However, SFP can develop at an early age and is influenced by early rearing conditions. In this study we assessed the risk factors during the rearing and laying period for feather damage at 40

  14. The Hydraulic Mechanism of the Unfolding of Hind Wings in Dorcus titanus platymelus (Order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2014-04-01

    Full Text Available In most beetles, the hind wings are thin and fragile; when at rest, they are held over the back of the beetle. When the hind wing unfolds, it provides the necessary aerodynamic forces for flight. In this paper, we investigate the hydraulic mechanism of the unfolding process of the hind wings in Dorcus titanus platymelus (Oder: Coleoptera. The wing unfolding process of Dorcus titanus platymelus was examined using high speed camera sequences (400 frames/s, and the hydraulic pressure in the veins was measured with a biological pressure sensor and dynamic signal acquisition and analysis (DSA during the expansion process. We found that the total time for the release of hydraulic pressure during wing folding is longer than the time required for unfolding. The pressure is proportional to the length of the wings and the body mass of the beetle. A retinal camera was used to investigate the fluid direction. We found that the peak pressures correspond to two main cross-folding joint expansions in the hind wing. These observations strongly suggest that blood pressure facilitates the extension of hind wings during unfolding.

  15. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    Science.gov (United States)

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  16. Protection against wing icing for Airbus A300 and A310

    Science.gov (United States)

    Woelfer, G.

    1981-01-01

    To improve economy of operation, it is now planned to modify the anti-icing system used on the A300 Airbus wing. Thus, for the A310 Airbus, the deicing system will be applied to only half the wing length. Other essential modifications are a substantial simplification of the warm-air system and discontinuation of the use of a double wall in slats.

  17. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    Science.gov (United States)

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The

  18. Keratin based bioplastic film from chicken feathers and its characterization.

    Science.gov (United States)

    Ramakrishnan, Navina; Sharma, Swati; Gupta, Arun; Alashwal, Basma Yahya

    2018-01-07

    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil

  19. Plumas como enfeites da moda Feathers in fashion

    Directory of Open Access Journals (Sweden)

    Helmut Schindler

    2001-01-01

    Full Text Available O texto aborda a presença da plumária na moda feminina do século XIX. No Brasil, houve produção de enfeites com penas, que não provinha dos índios. Havia manufaturas que forneciam mercadorias para as lojas da capital. Com base nos relatos de viajantes que passaram pelo Brasil no século XIX, e no material depositado no Museu Estatal de Etnologia de Munique, o autor enfatiza as manufaturas existentes no Brasil e a captura indiscriminada de determinadas espécies de aves para atender a demanda da sociedade da época. Desde o século passado, as aves de penas mais bonitas passam a rarear, o que começa a ser acompanhado pela preocupação com o controle da caça.The article focus on the presence of plumage in the 19th century fashion. In Brazil, the feathers for the production of feather pieces were not necessarily supplied by Indians. There were manufacturers that supplied the stores in the country's capital with these pieces. Based on travelers' reports on nineteenth-century Brazil as well as on material from the State Museum of Ethnology in Munich, the author emphasizes the indiscriminate capture of some species of birds in order to face the demand of society at the time. In the 19th century, the most beautifully-feathered birds progressively began to become rare, which naturally brought forth the concern with uncontrolled bird capture.

  20. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuyang; Chen Xianqiong; Xin, J H [Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: liuxx751@umn.edu

    2008-12-01

    Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.

  1. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    Science.gov (United States)

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  2. Mechanical and Morphology Properties of Feather Fiber Composite for Dental Post Application

    International Nuclear Information System (INIS)

    Siti Maizatul Farhain Salehuddin; Mohammed Rafiq Abdul Kadir; Eshamsul Sulaiman; Noor Hayaty Abu Kasim

    2014-01-01

    Feather/plastic composite material was fabricated from polymethyl methacrylate (PMMA), feather fiber (FF) and montmorillonite (MMT) using brabender internal mixer. PMMA based composites were produced with 1, 3, 5, 7 and 10 phr composite of mass feather fiber with and without 4 % of montmorillonite (MMT). Alkali treatment was used to improve the interfacial adhesion among the feather fiber (FF) and the PMMA. Flexural properties of FF/ PMMA and FF/ PMMA/ MMT composites were investigated. Composites were analyzed by Scanning Electron (SEM) and Fourier Transform Infra Red (FTIR) spectroscopy techniques. The result showed that, the addition of FF significantly increased the flexural strength of the composites. The hydrophobic nature of feather fiber displayed an excellent compatibility among fibers and PMMA matrix. (author)

  3. A Numerical Study of Vortex Dynamics of Flexible Wing Propulsors

    Science.gov (United States)

    2011-03-30

    Final Report Title: A numerical study of vortex dynamics of flexible wing propulsors AFOSR/AOARD Reference Number: AOARD-09-4077 AFOSR/AOARD Program ...NUMBER FA23860914077 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kartik Venkatraman 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...trailing-edge amplitude showed variations with change in filament length though the frequency of flapping was almost constant. Fitt & Pope (2001) showed the

  4. Does feather corticosterone reflect individual quality or external stress in arctic-nesting migratory birds?

    Directory of Open Access Journals (Sweden)

    Pierre Legagneux

    Full Text Available The effects of environmental perturbations or stressors on individual states can be carried over to subsequent life stages and ultimately affect survival and reproduction. The concentration of corticosterone (CORT in feathers is an integrated measure of hypothalamic-pituitary-adrenal activity during the molting period, providing information on the total baseline and stress-induced CORT secreted during the period of feather growth. Common eiders and greater snow geese replace all flight feathers once a year during the pre-basic molt, which occurs following breeding. Thus, CORT contained in feathers of pre-breeding individuals sampled in spring reflects the total CORT secreted during the previous molting event, which may provide insight into the magnitude or extent of stress experienced during this time period. We used data from multiple recaptures to disentangle the contribution of individual quality vs. external factors (i.e., breeding investment or environmental conditions on feather CORT in arctic-nesting waterfowl. Our results revealed no repeatability of feather CORT within individuals of either species. In common eiders, feather CORT was not affected by prior reproductive investment, nor by pre-breeding (spring body condition prior to the molting period. Individual feather CORT greatly varied according to the year, and August-September temperatures explained most of the annual variation in feather CORT. Understanding mechanisms that affect energetic costs and stress responses during molting will require further studies either using long-term data or experiments. Although our study period encompassed only five years, it nonetheless provides evidence that CORT measured in feathers likely reflects responses to environmental conditions experienced by birds during molt, and could be used as a metric to study carry-over effects.

  5. Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits

    Science.gov (United States)

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    Background The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. Methodology/Principal Findings We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Conclusions/Significance Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations. PMID:21949798

  6. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    Full Text Available The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored.We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland and one southern population in Lund (Sweden. Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu.Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  7. Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380

  8. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Directory of Open Access Journals (Sweden)

    Roslyn Dakin

    Full Text Available Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  9. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  10. Internal Traits of Eggs and Their Relationship to Shank Feathering in Chicken Using Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shaker AS

    2017-06-01

    Full Text Available Chicken eggs represent an important source of protein to the growing human population and also supply repositories of unique genes that could be used worldwide. The inheritance of shank feathering trait is dominant upon non-feathering shank trait in chicken which is based on two factors: pti-1L and pti-1B that are located on Chromosomes 13, 15, and 24. Using 185 fertile eggs collected from two genetic lines (shank feathering and non-feathering shank of White Kurdish chicken, we found that egg weight highly (P < 0.01 correlated with yolk weight (r2=0.520, 0.704, respectively, albumen weight (r2=0.918, 0.835, and shell weight (r2=0.626, 0.225. The first two principal components explained the greatest variance in both the White with shank feathering (85.6% of total variance and non-feathering shank (76.5%. Therefore, differences in the component traits of the eggs between the two genetic lines may be influenced by the same gene actions as shank feathering trait. According to these results, the two genetic lines of Kurdish chicken yield significant differences in the internal traits of eggs.

  11. Keratin Production by Decomposing Feather Waste Using Some Local Bacillus spp. Isolated from Poultry Soil

    Directory of Open Access Journals (Sweden)

    Mojtaba Salouti

    2016-12-01

    Full Text Available Background: Feather waste is generated in large amounts as a by-product of commercial poultry processing. The main component of feather is keratin. The main purpose of this study was to identify Bacillus spp. (the keratinolytic bacteria that are able to degrade the feather for producing keratin. Methods: Bacillus spp. Were isolated from the waste of poultries located in Miyaneh city. The bacteria were grown on basal medium containing 1% hen feather as the sole source of carbon ,nitrogen, sulfur and energy at 27ºC for 7 days. Then,the isolates capable of feather degrading were identified. The Bradford method was used to assay the production of keratin in the feather samples. Different pH and temperatures were studied to determine the best conditions for production of keratinase enzyme. Results: Seven Bacillus spp. including: B. pumilis, B. subtilis, B. firmus, B. macerance, B. popilliae, B. lentimorbus and B. larvae were found to be able to degrade the feather with different abilities. Conclusion: B. subtilis was found to be most productive isolate for keratinase enzyme production.

  12. Viscoelastic Characterization of Long-Eared Owl Flight Feather Shaft and the Damping Ability Analysis

    Directory of Open Access Journals (Sweden)

    Jia-li Gao

    2014-01-01

    Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.

  13. Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy.

    Science.gov (United States)

    Bianchi, Nicola; Ancora, Stefania; di Fazio, Noemi; Leonzio, Claudio

    2008-10-01

    Bird feathers have been widely used as a nondestructive biological material for monitoring heavy metals. Sources of metals taken up by feathers include diet (metals are incorporated during feather formation), preening, and direct contact with metals in water, air, dust, and plants. In the literature, data regarding the origin of trace elements in feathers are not univocal. Only in the vast literature concerning mercury (as methyl mercury) has endogenous origin been determined. In the present study, we investigate cadmium, lead, and mercury levels in feathers of prey of Falco eleonorae in relation to the ecological characteristics (molt, habitat, and contamination by soil) of the different species. Cluster analysis identified two main groups of species. Differences and correlations within and between groups identified by cluster analysis were then checked by nonparametric statistical analysis. The results showed that mercury levels had a pattern significantly different from those of cadmium and lead, which in turn showed a significant positive correlation, suggesting different origins. Nests of F. eleonorae proved to be a good source for feathers of small trans-Saharan passerines collected by a noninvasive method. They provided abundant feathers of the various species in a relatively small area--in this case, the falcon colony on the Isle of San Pietro, Sardinia, Italy.

  14. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    Science.gov (United States)

    Pedro, Sara; Xavier, José C; Tavares, Sílvia; Trathan, Phil N; Ratcliffe, Norman; Paiva, Vitor H; Medeiros, Renata; Pereira, Eduarda; Pardal, Miguel A

    2015-01-01

    Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  15. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    Directory of Open Access Journals (Sweden)

    Sara Pedro

    Full Text Available Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua breeding at Bird Island, South Georgia (54°S 38°W. Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%. This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  16. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  17. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  18. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses.

    Science.gov (United States)

    Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico

    2016-02-15

    Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct

  19. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  20. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Prum, Richard O.; Dufresne, Eric R.; Cao, Hui (Yale)

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures. Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.

  1. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    Science.gov (United States)

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

  2. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.

  3. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  4. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  5. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  6. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  7. Structural Color of Rock Dove’s Neck Feather

    Science.gov (United States)

    Nakamura, Eri; Yoshioka, Shinya; Kinoshita, Shuichi

    2008-12-01

    It is well known that some kinds of animal have surprisingly brilliant colors showing beautiful iridescence. These colors are called structural colors, and are thought to originate from optical interference caused by periodic microstructures that have sizes comparable with the wavelength of light. However, much larger structural modifications can also play an important role in the coloration mechanism. In this paper, we show through careful optical and structural investigations that the structural color of the neck feather of rock dove, Columba livia, has a very comprehensive mechanism: the thin-layer optical interference phenomenon fundamentally produces the iridescence, while the layer structure is accompanied by various kinds of larger-size structural modifications that control the angular range of the reflection. Further, it is found that the granules containing melanin pigment exist in a localized manner to effectively enhance the contrast of the color caused by optical interference.

  8. The chicken frizzle feather is due to an α-keratin (KRT75 mutation that causes a defective rachis.

    Directory of Open Access Journals (Sweden)

    Chen Siang Ng

    Full Text Available Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms.

  9. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous, NE, Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo M.E.M. Prado

    2016-07-01

    Full Text Available Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake and Romualdo (lagoon; both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin.

  10. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    Science.gov (United States)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  11. The use of feathers of birds of prey as indicators of metal pollution.

    Science.gov (United States)

    Lodenius, Martin; Solonen, Tapio

    2013-11-01

    Published results concerning metal levels in feathers of birds of prey were listed and evaluated. Mercury concentrations have been studied most and the background values normally vary between 0.1 and 5 mg/kg dry weight the highest concentrations being in birds from aquatic food chains. Pollution causes elevated levels of mercury in feathers. The concentrations of cadmium, copper, lead and zinc show reasonable variation between species, areas and time periods. Feathers of birds of prey have proved to be good indicators of the status of environmental heavy metal pollution. Special attention should be paid to clean sampling and preparation of samples. Interpretation of the results requires knowledge on food habit, molting and migration patterns of the species. Several species representing different food chains should be included in comprehensive monitoring surveys. Chick feathers reflect most reliably local conditions.

  12. Drm/Gremlin, a BMP antagonist, defines the interbud region during feather development.

    Science.gov (United States)

    Bardot, Boris; Lecoin, Laure; Fliniaux, Ingrid; Huillard, Emmanuelle; Marx, Maria; Viallet, Jean P

    2004-01-01

    The pattern of feather buds in a tract is thought to result from the relative ratios between activator and inhibitor signals through a lateral inhibition process. We analyse the role of Drm/Gremlin, a BMPs antagonist expressed during feather pattern formation, in the dermal precursor, the dense dermis, the interbud dermis and in the posterior dermal condensation. We have altered the activity of Drm in embryonic chick skin using retroviral vectors expressing drm/ gremlin and bmps. We show that expression of endogenous drm is under the control of a feedback loop induced by the BMP pathway, and that overexpression of drm results in fusion between adjacent feather buds. We propose that endogenous BMP proteins induce drm expression in the interbud dermis. In turn, the Drm/Gremlin protein limits the inhibitory effect of BMPs, allowing the adjacent row of feathers to form. Thus, the balance between BMPs and its antagonist Drm would regulate the size and spacing of the buds.

  13. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  14. VARIANCE COMPONENTS AND SELECTION FOR FEATHER PECKING BEHAVIOR IN LAYING HENS

    OpenAIRE

    Su, Guosheng; Kjaer, Jørgen B.; Sørensen, Poul

    2005-01-01

    Variance components and selection response for feather pecking behaviour were studied by analysing the data from a divergent selection experiment. An investigation show that a Box-Cox transformation with power =-0.2 made the data be approximately normally distributed and fit best by the given model. Variance components and selection response were estimated using Bayesian analysis with Gibbs sampling technique. The total variation was rather large for the two traits in both low feather peckin...

  15. Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway.

    Science.gov (United States)

    Gómez-Ramírez, P; Bustnes, J O; Eulaers, I; Herzke, D; Johnsen, T V; Lepoint, G; Pérez-García, J M; García-Fernández, A J; Jaspers, V L B

    2017-10-01

    Plasma samples from nestlings of two top predators, White-tailed eagle (Haliaeetus albicilla) and Northern goshawk (Accipiter gentilis) from northern Norway were analysed for a wide range of per- and polyfluoroalkyl substances (PFASs). Body feathers from the White-tailed eagles were also analysed and significant associations between specific PFASs in blood plasma and body feathers were found (0.36 birds of prey are not established. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Feather mites (Acari, Astigmata) associated with birds in an Atlantic Forest fragment in Northeastern Brazil

    OpenAIRE

    Silva,HM; Hernandes,FA; Pichorim,M

    2015-01-01

    AbstractThe present study reports associations between feather mites (Astigmata) and birds in an Atlantic Forest fragment in Rio Grande do Norte state, in Brazil. In the laboratory, mites were collected through visual examination of freshly killed birds. Overall, 172 individuals from 38 bird species were examined, between October 2011 and July 2012. The prevalence of feather mites was 80.8%, corresponding to 139 infested individuals distributed into 30 species and 15 families of hosts. Fiftee...

  17. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    Full Text Available Melanin is the main pigment in animal coloration and considerable variation in the concentrations of the two melanin forms (pheo- and eumlanin in pigmented tissues exists among populations and individuals. Melanin-based coloration is receiving increasing attention particularly in socio-sexual communication contexts because the melanocortin system has been hypothesized to provide a mechanistic basis for covariation between coloration and fitness traits. However, with few notable exceptions, little detailed information is available on inter-individual and inter-population variation in melanin pigmentation and on its environmental, genetic and ontogenetic components. Here, we investigate melanin-based coloration in an Italian population of a passerine bird, the barn swallow (Hirundo rustica rustica, its sex- and age-related variation, and heritability. The concentrations of eu- and pheomelanin in the throat (brown and belly (white-to-brownish feathers differed between sexes but not according to age. The relative concentration of either melanin (Pheo:Eu differed between sexes in throat but not in belly feathers, and the concentrations in males compared to females were larger in belly than in throat feathers. There were weak correlations between the concentrations of melanins within as well as among plumage regions. Coloration of belly feathers was predicted by the concentration of both melanins whereas coloration of throat feathers was only predicted by pheomelanin in females. In addition, Pheo:Eu predicted coloration of throat feathers in females and that of belly feathers in males. Finally, we found high heritability of color of throat feathers. Melanization was found to differ from that recorded in Hirundo rustica rustica from Scotland or from H. r. erythrogaster from North America. Hence, present results show that pigmentation strategies vary in a complex manner according to sex and plumage region, and also among geographical populations

  18. Selection on feather pecking affects response to novelty and foraging behaviour in laying hens

    DEFF Research Database (Denmark)

    de Haas, Elske N; Nielsen, Birte L; Buitenhuis, A J (Bart)

    2010-01-01

    Feather pecking (FP) is a major welfare problem in laying hens, influenced by multiple factors. FP is thought to be redirected foraging behaviour, however fearful birds are also known to be more sensitive to develop FP. The relationship between fear-responses, foraging and FP is not well understo...... preference for eating feathers, this study supports earlier findings that HFP birds have a stronger pecking motivation than LFP birds...

  19. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  20. Feather mites (Acari, Astigmata from Azorean passerines (Aves, Passeriformes: lower species richness compared to European mainland

    Directory of Open Access Journals (Sweden)

    Rodrigues Pedro

    2015-01-01

    Full Text Available Ten passerine species were examined on three islands of the Azores (North Atlantic during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae. A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai.

  1. Microstructural tissue-engineering in the rachis and barbs of bird feathers.

    Science.gov (United States)

    Lingham-Soliar, Theagarten

    2017-03-27

    Feathers do not have to be especially strong but they do need to be stiff and at the same time resilient and to have a high work of fracture. Syncitial barbule fibres are the highest size-class of continuous filaments in the cortex of the rachis of the feather. However, the rachis can be treated as a generalized cone of rapidly diminishing volume. This means that hundreds of syncitial barbule fibres of the rachis may have to be terminated before reaching the tip - creating potentially thousands of inherently fatal crack-like defects. Here I report a new microstructural architecture of the feather cortex in which most syncitial barbule fibres deviate to the right and left edges of the feather rachis from far within its borders and extend into the barbs, side branches of the rachis, as continuous filaments. This novel morphology adds significantly to knowledge of β-keratin self-assembly in the feather and helps solve the potential problem of fatal crack-like defects in the rachidial cortex. Furthermore, this new complexity, consistent with biology's robust multi-functionality, solves two biomechanical problems at a stroke. Feather barbs deeply 'rooted' within the rachis are also able to better withstand the aerodynamic forces to which they are subjected.

  2. Selection of tawny owl (Strix aluco) flight feather shaft for biomonitoring As, Cd and Pb pollution.

    Science.gov (United States)

    Seoane, Rita García; Río, Zulema Varela; Ocaña, Alejo Carballeira; Escribano, José Ángel Fernández; Viñas, Jesús Ramón Aboal

    2018-04-07

    In this study, we determined the concentrations of As, Cd and Pb in the shaft of all primary flight feathers from ten tawny owl (Strix aluco) specimens, with the aim of selecting which shaft of the corresponding primary feather should be used in biomonitoring surveys to enable inter-individual comparisons of the levels of these metals. The birds had died between 2006 and 2013 and their bodies were stored in the various Wildlife Recovery Centres in Galicia (NW Spain). The analyses revealed a high degree of inter-shaft variability, mainly in the concentrations of As and Cd. However, it was possible to identify the most representative samples in each case: for As, the shaft of primary flight feather number 5 (S5) (which represented 11% of the total As excreted in all of the primary flight feathers); for Cd, the shaft of primary flight feather number 2 (S2) (11% of the total excreted); and for Pb, the shaft of primary flight feather number 8 (S8) (14% of the total excreted). However, the difficulties associated with the analytical determination of these pollutants in the shaft should be taken into account when this technique is applied in biomonitoring studies.

  3. Feather mites (Acari, Astigmata) from Azorean passerines (Aves, Passeriformes): lower species richness compared to European mainland.

    Science.gov (United States)

    Rodrigues, Pedro; Mironov, Sergey; Sychra, Oldrich; Resendes, Roberto; Literak, Ivan

    2015-01-01

    Ten passerine species were examined on three islands of the Azores (North Atlantic) during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae). A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria) presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai. © P. Rodrigues et al., published by EDP Sciences, 2015.

  4. Environmental-induced acquisition of nuptial plumage expression: a role of denaturation of feather carotenoproteins?

    Science.gov (United States)

    Blanco, Guillermo; Frías, Oscar; Garrido-Fernández, Juan; Hornero-Méndez, Dámaso

    2005-01-01

    Several avian species show a bright carotenoid-based coloration during spring and following a period of duller coloration during the previous winter, despite carotenoids presumably being fully deposited in feathers during the autumn moult. Carotenoid-based breast feathers of male linnets (Carduelis cannabina) increased in hue (redness), saturation and brightness after exposing them to outdoor conditions from winter to spring. This represents the first experimental evidence showing that carotenoid-based plumage coloration may increase towards a colourful expression due to biotic or abiotic environmental factors acting directly on full-grown feathers when carotenoids may be fully functional. Sunlight ultraviolet (UV) irradiation was hypothesized to denature keratin and other proteins that might protect pigments from degradation by this and other environmental factors, suggesting that sunlight UV irradiation is a major factor in the colour increase from winter to spring. Feather proteins and other binding molecules, if existing in the follicles, may be linked to carotenoids since their deposition into feathers to protect colourful features of associated carotenoids during the non-breeding season when its main signalling function may be relaxed. Progress towards uncovering the significance of concealment and subsequent display of colour expression should consider the potential binding and protecting nature of feather proteins associated with carotenoids. PMID:16191594

  5. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  6. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  7. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  8. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  9. Influence of the applied pressure of processing upon bioactive components of diets made of feathers

    Directory of Open Access Journals (Sweden)

    Kormanjoš Šandor M.

    2013-01-01

    Full Text Available The feathers gained by slaughtering fattening chickens can be processed into protein meal for feeding certain animals, as indicated by its chemical characteristics. However, raw feather proteins (keratin are faintly digestible (cca. 19%, even inert in digestive tract. Digestion of feather proteins could be improved by hydrolysis (alkaline, enzymatic, microbiological or hydrothermal. Practically, hydrothermal processing of raw feathers is mostly applied. The influence of hydrothermal processing under the pressures of 3.0, 3.5 or 4.0 bar on the nutritive value of the resulting meal is presented in this paper. For the hydrolysis of raw feathers, semi continuous procedure was applied. Semi continuous procedure of feathers processing comprise hydrolysis of raw wet feathers followed by partial drying of hydrolyzed mass that has to be done in a hydrolyser with indirect heating. Continuous tubular dryer with recycled air was used during the final process of drying. Protein nitrogen decreased by 3.46% and 4.80% in comparison with total protein nitrogen content in raw feathers under the pressure of 3.0 and 3.5 bar, respectively. The highest applied hydrolysis pressure caused the greatest loss of protein nitrogen up to 9.52%. Hydrothermal hydrolysis under pressure has increased in vitro protein digestibility significantly. Under pressure of 3.0, 3.5 and 4.0 bar digestibility of proteins increasing from 19.01 to 76.39, 81.71 and 87.03%, respectively. Under pressure of 3.0, 3.5 and 4.0 bar cysteine content decreased from 6.44 to 4.17% (loss 35.25%, 3.94 (loss 38.825% and to 3.75% (loss 41.77%, respectively. These decreases are statistically significant. It can be concluded that the hydrolysis carried out under the pressure of 3.5 bar, during the period of 25 minutes, and with the content of water in raw feathers of cca. 61% is the optimal technological process for converting raw feathers into diets for certain animal diets.

  10. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  11. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  12. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  13. Multi-Isotopic (δ2H, δ13C, δ15N Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Directory of Open Access Journals (Sweden)

    Scott J Werner

    Full Text Available We analyzed stable-hydrogen (δ2H, carbon (δ13C and nitrogen (δ 15N isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection, and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection. The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77% of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower and C4 (corn, millet, sorghum agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry, agricultural depredation, feeding ecology, physiology of migration and

  14. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Science.gov (United States)

    Werner, Scott J; Hobson, Keith A; Van Wilgenburg, Steven L; Fischer, Justin W

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  15. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  16. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  17. Response of sheep fed on concentrate containing feather meal and supplemented with mineral Chromium

    Directory of Open Access Journals (Sweden)

    Yulistiani D

    2013-03-01

    Full Text Available A study was conducted to evaluate the effect of substitution of protein concentrate with feather meal supplemented with organic chromium mineral on performance of lambs. Twenty five male lambs were fed basal feed of fresh chopped king grass ad libitum and were allotted to either one of five different supplements (five dietary treatments: Control (C; 10% of protein in concentrate was substituted by feather meal (FM; 10% of protein in concentrate was substituted by feather meal supplemented with Cr yeast at 1.5 mg (FMCrOrg; 10% of protein in concentrate was substituted by feather meal supplemented with Cr inorganic which equal to the amount of Cr bound in yeast (FMCr; Concentrate control supplemented with 1.5 mg Cr yeast (CCrOrg. Cr-organic was synthesized by incorporating CrCl3 in fermented rice flour by Rhizopus sp. The mineral is mixed with feather meal as a mineral carrier. Sheep in all treatments received iso protein concentrate. Parameters observed were body weight change, feed consumption and nutrient digestibility. Results shows that there was no significant effect of diet treatments on average daily gain (ADG, dry matter consumption and feed conversion, with the average value of 75.4 gr/day; 74.9 g/BW0.75 and 9.9 respectively, However diet treatment of organic chromium and protein substitution with feather meal (FMCrOrg showed tendency of having higher ADG (83.57 g/h/d. Average nutrient digestibility of dry matter, organic matter and NDF were 68.7; 69.6 and 60.9%, respectively. However NDF digestibility of FMCrOrg tended to be higher than other treatment (67.0%. It is concluded that partial substitution of protein concentrate by feather meal and 1.5 mg Cr-organic supplementation did not affect sheep performance.

  18. Turbulence investigation of the NASA common research model wing tip vortex

    Directory of Open Access Journals (Sweden)

    Čantrak Đorđe S.

    2017-01-01

    Full Text Available The paper presents high-speed stereo particle image velocimetry investigation of the NASA Common Research Model wing tip vortex. A three-percent scaled semi–span model, without nacelle and pylon, was tested in the 32- by 48-inch Indraft tunnel, at the Fluid Mechanics Laboratory at the NASA Ames Research Center. Turbulence investigation of the wing tip vortex is presented. Measurements of the wing-tip vortex were performed in a vertical cross-stream plane three tip-chords downstream of the wing tip trailing edge with a 2 kHz sampling rate. Experimental data are analyzed in the invariant anisotropy maps for three various angles of attack (0°, 2°, and 4° and the same speed generated in the tunnel (V∞ = 50 m/s. This corresponds to a chord Reynolds number 2.68x105, where the chord length of 3” is considered the characteristic length. The region of interest was x = 220 mm and y = 90 mm. The 20 000 particle image velocimetry samples were acquired at each condition. Velocity fields and turbulence statistics are given for all cases, as well as turbulence structure in the light of the invariant theory. Prediction of the wing tip vortices is still a challenge for the computational fluid dynamics codes due to significant pressure and velocity gradients. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  19. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  20. Hydrological response to climate warming: The Upper Feather River Watershed

    Science.gov (United States)

    Huang, Guobiao; Kadir, Tariq; Chung, Francis

    2012-03-01

    SummaryThe hydrological response and sensitivity to climate warming of a snow-dominated watershed, the Upper Feather River Basin (UFRB) in Northern California, were evaluated and quantified using observed changes, detrending, and specified temperature-based sensitivity simulations. The non-stationarity in historical data was detected with trend analysis and the warming trends in historical forcing data were removed by detrending. The physically-based and spatially-distributed Precipitation-Runoff Modeling System (PRMS) model was used to force uniform climate warming (+1 °C to +4 °C) to investigate hydrologic sensitivity to temperature increase. Six Global Climate Models (GCMs) with two IPCC Special Report on Emissions Scenarios (SRES), A2 and B1, were selected to represent a range of climate change projections. These projected changes were then applied to the detrended historical forcing data to simulate climate change effects in a detrended, quasi-stationary setting. The results indicate that: (1) historical annual precipitation and streamflow have no trends, but air temperature and seasonal streamflow have statistically significant trends. (2) By detrending temperature, the strong trends in seasonal streamflow are virtually eliminated. (3) Hydrologic Sensitivity to climate warming includes small changes in annual streamflow and actual evapotranspiration, significant changes in streamflow timing and increased frequency and magnitude in extreme flows. (4) All GCM projections lead to negative impact on water supply.

  1. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  2. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers.

    Science.gov (United States)

    Williams, Cassondra L; Hagelin, Julie C; Kooyman, Gerald L

    2015-10-22

    Antarctic penguins survive some of the harshest conditions on the planet. Emperor penguins breed on the sea ice where temperatures drop below -40°C and forage in -1.8°C waters. Their ability to maintain 38°C body temperature in these conditions is due in large part to their feathered coat. Penguins have been reported to have the highest contour feather density of any bird, and both filoplumes and plumules (downy feathers) are reported absent in penguins. In studies modelling the heat transfer properties and the potential biomimetic applications of penguin plumage design, the insulative properties of penguin plumage have been attributed to the single afterfeather attached to contour feathers. This attribution of the afterfeather as the sole insulation component has been repeated in subsequent studies. Our results demonstrate the presence of both plumules and filoplumes in the penguin body plumage. The downy plumules are four times denser than afterfeathers and play a key, previously overlooked role in penguin survival. Our study also does not support the report that emperor penguins have the highest contour feather density. © 2015 The Author(s).

  3. Fifty shades of white: how white feather brightness differs among species

    Science.gov (United States)

    Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D.

    2018-04-01

    White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird's body contributes to differences between brightness of white plumage patches within and across species.

  4. Feather mites (Acari, Astigmata associated with birds in an Atlantic Forest fragment in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    HM Silva

    Full Text Available AbstractThe present study reports associations between feather mites (Astigmata and birds in an Atlantic Forest fragment in Rio Grande do Norte state, in Brazil. In the laboratory, mites were collected through visual examination of freshly killed birds. Overall, 172 individuals from 38 bird species were examined, between October 2011 and July 2012. The prevalence of feather mites was 80.8%, corresponding to 139 infested individuals distributed into 30 species and 15 families of hosts. Fifteen feather mite taxa could be identified to the species level, sixteen to the genus level and three to the subfamily level, distributed into the families Analgidae, Proctophyllodidae, Psoroptoididae, Pteronyssidae, Xolalgidae, Trouessartiidae, Falculiferidae and Gabuciniidae. Hitherto unknown associations between feather mites and birds were recorded for eleven taxa identified to the species level, and nine taxa were recorded for the first time in Brazil. The number of new geographic records, as well as the hitherto unknown mite-host associations, supports the high estimates of diversity for feather mites of Brazil and show the need for research to increase knowledge of plumicole mites in the Neotropical region.

  5. Feather mites (Acari, Astigmata) associated with birds in an Atlantic Forest fragment in Northeastern Brazil.

    Science.gov (United States)

    Silva, H M; Hernandes, F A; Pichorim, M

    2015-08-01

    The present study reports associations between feather mites (Astigmata) and birds in an Atlantic Forest fragment in Rio Grande do Norte state, in Brazil. In the laboratory, mites were collected through visual examination of freshly killed birds. Overall, 172 individuals from 38 bird species were examined, between October 2011 and July 2012. The prevalence of feather mites was 80.8%, corresponding to 139 infested individuals distributed into 30 species and 15 families of hosts. Fifteen feather mite taxa could be identified to the species level, sixteen to the genus level and three to the subfamily level, distributed into the families Analgidae, Proctophyllodidae, Psoroptoididae, Pteronyssidae, Xolalgidae, Trouessartiidae, Falculiferidae and Gabuciniidae. Hitherto unknown associations between feather mites and birds were recorded for eleven taxa identified to the species level, and nine taxa were recorded for the first time in Brazil. The number of new geographic records, as well as the hitherto unknown mite-host associations, supports the high estimates of diversity for feather mites of Brazil and show the need for research to increase knowledge of plumicole mites in the Neotropical region.

  6. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    Science.gov (United States)

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  7. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  8. A genome-wide association study in a large F2-cross of laying hens reveals novel genomic regions associated with feather pecking and aggressive pecking behavior

    OpenAIRE

    Lutz, Vanessa; Stratz, Patrick; Preu?, Siegfried; Tetens, Jens; Grashorn, Michael A.; Bessei, Werner; Bennewitz, J?rn

    2017-01-01

    Background Feather pecking and aggressive pecking in laying hens are serious economic and welfare issues. In spite of extensive research on feather pecking during the last decades, the motivation for this behavior is still not clear. A small to moderate heritability has frequently been reported for these traits. Recently, we identified several single-nucleotide polymorphisms (SNPs) associated with feather pecking by mapping selection signatures in two divergent feather pecking lines. Here, we...

  9. Phenology and duration of remigial moult in Surf Scoters (Melanitta perspicillata) and White-winged Scoters (Melanitta fusca) on the Pacific coast of North America

    Science.gov (United States)

    Dickson, Rian D.; Esler, Daniel; Hupp, Jerry W.; Anderson, E.M.; Evenson, J.R.; Barrett, J.

    2012-01-01

    By quantifying phenology and duration of remigial moult in Surf Scoters (Melanitta perspicillata (L., 1758)) and White-winged Scoters (Melanitta fusca (L., 1758)), we tested whether timing of moult is dictated by temporal optima or constraints. Scoters (n = 3481) were captured during moult in Alaska, British Columbia, and Washington, and remigial emergence dates were determined. We provide evidence for a pre-emergence interval of 7.3 days that occurs after old primaries are shed and before new ones become visible. All age and sex classes of both scoter species exhibited a wide range of emergence dates (Surf Scoters: 26 June to 22 September; White-winged Scoters: 6 July to 21 September) suggestive of a lack of strong temporal optima for remigial moult. For both species, timing of moult was influenced by site, year, age, and sex. Relative to other waterfowl species, scoters have typical remigial growth rates (Surf Scoters: 3.9 mm·day–1; White-winged Scoters: 4.3 mm·day–1) but a long flightless period (34–49 days), in part because their relatively high wing-loading requires a greater proportion of feather regrowth to regain flight. Our data suggest that moulting scoters are not under strong selective pressure to complete moult quickly.

  10. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    Science.gov (United States)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  11. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings

    Directory of Open Access Journals (Sweden)

    Satterfield Dara A.

    2014-01-01

    Full Text Available The migration of monarch butterflies (Danaus plexippus in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width, and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010, results showed that the earliest migrants (n = 20 in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17. There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind

  12. Prevalence of Psittacine Beak and Feather Disease Virus and Avian Polyomavirus in Captivity Psittacines from Costa Rica

    DEFF Research Database (Denmark)

    Dolz, Gaby; Sheleby-Elías, Jessica; Romero-Zuñiga, Juan J.

    2013-01-01

    Psittacine beak and feather disease virus (PBFDV) and avian polyomavirus (APV) are the most common viral diseases in psittacine birds, both affecting feathers and physical appearance of birds. Between 2005 and 2009, a total of 269 samples were collected from birds presented at veterinary clinics...

  13. Metabolism of Chicken Feathers and Concomitant Electricity Generation by Pseudomonas aeruginosa by Employing Microbial Fuel Cell (MFC

    Directory of Open Access Journals (Sweden)

    Venkatesh Chaturvedi

    2014-01-01

    Full Text Available Keratinolytic potential of Pseudomonas aeruginosa strain SDS3 has been evaluated for the metabolism of chicken feathers. Results indicated that strain SDS3 showed complete metabolism of 0.1 and 0.5% (w/v chicken feathers in minimal medium. Feathers were metabolized up to 80% at 1% (w/v concentration. Maximum soluble protein (480.8±17.1 μg/mL and keratinase (15.4±0.25 U/mL were observed in the presence of 1% chicken feathers after five days of incubation. The effect of carbon and nitrogen sources showed that feather degradation was stimulated by complex carbon/nitrogen sources such as starch, malt extract, tryptone, and beef extract and was inhibited by simple carbon and nitrogen sources. Electricity production by employing chicken feathers as a substrate in microbial fuel cell (MFC was evaluated. It was observed that maximum voltage corresponding to 141 mV was observed after 14 days of incubation. Maximum power density of 1206.78 mW/m2 and maximum current density of 8.6 mA/m2 were observed. The results clearly indicate that chicken feathers can be successfully employed as a cheap substrate for electricity production in MFC. This is the first report showing employment of chicken feathers as substrate in MFC.

  14. Comparison of individual and social feather pecking tests in two lines of laying hens at ten different ages

    NARCIS (Netherlands)

    Rodenburg, T.B.; Koene, P.

    2003-01-01

    The aim of this experiment was to select a suitable test to measure feather pecking in laying hens. Pecking behaviour in individual and social feather pecking tests was compared with pecking behaviour in the homepen. Two lines of laying hens were used that differ in their propensity to display

  15. Genetic and phenotypic correlations between feather pecking and open-field reponse in laying hens at two different ages

    NARCIS (Netherlands)

    Rodenburg, T.B.; Buitenhuis, A.J.; Ask, B.; Uitdehaag, K.A.; Koene, P.; Poel, van der J.J.; Arendonk, van J.A.M.; Bovenhuis, H.

    2004-01-01

    The object of this research was to study the relationship between feather pecking and open-field activity in laying hens at two different ages. A population of 550 birds of a laying hen cross was subjected to an open-field test at 5 and 29 weeks of age and to a social feather pecking test at 6 and

  16. The impact of uropygial gland secretions on mechanically induced wearing of barn owl and pigeon body feathers

    Science.gov (United States)

    Ott, Benjamin; Müsse, Annika; Wagner, Hermann

    2016-04-01

    Bird feathers are remarkable structures light but yet durable providing insulation and the ability of flight. Owls are highly specialized birds of prey, widely known for their ability to y silently which is enabled by (micro-) structural specializations of the feathers. The barn owl replaces feathers less frequently in comparison to other same sized birds like pigeons, indicating a much better resistance against material fatigue of these delicate microstructures. We used axisymmetric drop shape analysis (ADSA) of water drop contact angles as a non-destructive method of characterizing wearing processes in feathers. We hypothesized that feathers become more wettable when worn. We also investigated the impact of ethanol treatment in order to remove fatty residues of the uropygial gland secretions, barn owls and pigeons use for preening, on ageing processes. Ethanol treatment resulted in a slight, but significant increase of water repellency in barn owl but not in pigeon flight feathers. Our preliminary data also suggest that the uropygial gland secretions decelerate the wearing process of the feather keratin. We observed this effect in both species, however, it was more distinct for barn owl uropygial gland secretions. The results of this study, obtained by contact angle measurements used as a non-destructive evaluation method of material fatigue, yield insights into the material fatigue of feathers and the decelerating effect of uropygial gland secretions on wear on the other hand.

  17. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling

    NARCIS (Netherlands)

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-01-01

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced

  18. Reply to: “A response to some unwarranted criticisms of single-grain dating” by J.K. Feathers

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew Sean; Buylaert, Jan-Pieter

    2017-01-01

    In the note “A response to some unwarranted criticisms of single-grain dating” Feathers raises many issues with both the approach and the conclusions of Thomsen et al. (2016). After careful consideration, we find we disagree with Feather's analysis and conclusions, and stand by the original concl...

  19. Feather mite abundance varies but symbiotic nature of mite-host relationship does not differ between two ecologically dissimilar warblers

    Science.gov (United States)

    Alix E. Matthews; Jeffery L. Larkin; Douglas W. Raybuck; Morgan C. Slevin; Scott H. Stoleson; Than J. Boves

    2017-01-01

    Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within-...

  20. Variation in carbon and nitrogen stable isotope ratios in flight feathers of a moulting White-bellied Sunbird Cinnyris talatala

    CSIR Research Space (South Africa)

    Symes, CT

    2011-11-01

    Full Text Available The authors measured d13C and d15N isotope signatures in flight feathers of a White-bellied Sunbird to assess the value of using stable isotopes of feathers in avian dietary studies. Significant variation in d13C and d15N isotope values of flight...

  1. Effects of genetic background and social environment on feather pecking and related behavioural characteristics in laying hens

    NARCIS (Netherlands)

    Uitdehaag, K.A.

    2008-01-01

    Woldwide, but especially in Europe, poultry husbandry will undergo significant changes due to the prohibition of
    both battery cage systems and beak-trimming. In laying hens, these changes will increase the risk of feather
    pecking. Feather pecking is defined as the non-aggressive pecking

  2. Keratin subsidies promote feather decomposition via an increase in keratin-consuming arthropods and microorganisms in bird breeding colonies

    Science.gov (United States)

    Sugiura, Shinji; Masuya, Hayato

    2015-06-01

    Resource subsidies are well known to increase population densities of consumers. The decomposition process of these subsidised resources can be influenced by increasing consumer abundance. However, few studies have assessed whether resource subsidies can promote resource decomposition via a population increase in consumers. Here, we examined the effects of keratin subsidies on feather decomposition in egret and heron breeding colonies. Egrets and herons (Ardeidae) frequently breed in inland forests and provide large amounts of keratin materials to the forest floor in the form of feathers of chicks (that die). We compared the decrease in the weights of egret and heron feathers (experimentally placed on the forest floor) over a 12-month period among egret/heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. Of the feathers placed experimentally on forest floors, 92-97 % and 99-100 % in colonies and 47-50 % and 71-90 % in non-colony areas were decomposed after 4 and 12 months, respectively. Then, decomposition rates of feathers were faster in colonies than in areas outside of colonies, suggesting that keratin subsidies can promote feather decomposition in colonies. Field observations and laboratory experiments indicated that keratin-feeding arthropods and keratinophilic fungi played important roles in feather decomposition. Therefore, scavenging arthropods and keratinophilic fungi, which dramatically increased in egret and heron breeding colonies, could accelerate the decomposition of feathers supplied to the forest floor of colonies.

  3. No effects of a feather mite on body condition, survivorship, or grooming behavior in the Seychelles warbler, Acrocephalus sechellensis

    NARCIS (Netherlands)

    Dowling, DK; Richardson, DS; Komdeur, J; Dowling, Damian K.; Richardson, David S.; Czeschlik, T.

    A common assumption of studies examining host-symbiont interactions is that all symbiotic organisms are parasitic. Feather mites are widespread symbionts of birds that do not appear to deplete the host of any vital resources. Instead they feed on the oily secretions that cover the feathers and the

  4. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  5. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  6. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  7. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  8. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  9. Pyrolyzed feather fibers for adsorbent and high temperature applications

    Science.gov (United States)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 ºC for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 ºC for 1 h resulted in microporous fibers with a micropore volume of ˜0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be

  10. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.

    Science.gov (United States)

    Ahn, H K; Huda, M S; Smith, M C; Mulbry, W; Schmidt, W F; Reeves, J B

    2011-04-01

    The biodegradability of three types of bioplastic pots was evaluated by measuring carbon dioxide produced from lab-scale compost reactors containing mixtures of pot fragments and compost inoculum held at 58 °C for 60 days. Biodegradability of pot type A (composed of 100% polylactic acid (PLA)) was very low (13 ± 3%) compared to literature values for other PLA materials. Near infrared spectroscopy (NIRS) results suggest that the PLA undergoes chemical structural changes during polymer extrusion and injection molding. These changes may be the basis of the low biodegradability value. Biodegradability of pot types B (containing 5% poultry feather, 80% PLA, 15% starch), and C (containing 50% poultry feather, 25% urea, 25% glycerol), were 53 ± 2% and 39 ± 3%, respectively. More than 85% of the total biodegradation of these bioplastics occurred within 38 days. NIRS results revealed that poultry feather was not degraded during composting. Published by Elsevier Ltd.

  11. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw.

    Science.gov (United States)

    Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli

    2012-07-03

    Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap.

  12. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw

    Science.gov (United States)

    Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli

    2012-01-01

    Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap. PMID:22615350

  13. Feather microstructure of the black-billed magpie (Pica pica sericea) and jungle crow (Corvus macrorhynchos).

    Science.gov (United States)

    Lee, Eunok; Lee, Hang; Kimura, Junpei; Sugita, Shoei

    2010-08-01

    The jungle crow (Corvus macrorhynchos) distribution stretches from eastern Eurasia continent to southeastern Asia. The distribution of the black-billed magpie (Pica pica sericea) stretches from Korea and China to the Kyushu area in Japan. They are both in the Family, Corvidae, and have iridescent feather colors, but the iridescent feather color of the black-billed magpie is more remarkable than that of the jungle crow. We observed the feather microstructure of these birds using electron microscope. On the barbules surface, the barbules twist and prong between the jungle crow and black-billed magpie were not similar. In the barbules cross section, the black-billed magpie showed a complex structure of melanin granules, the jungle crow showed a simple structure of melanin granules.

  14. A continued role for signaling functions in the early evolution of feathers.

    Science.gov (United States)

    Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J

    2017-03-01

    Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. Dinosaur evolution. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales.

    Science.gov (United States)

    Godefroit, Pascal; Sinitsa, Sofia M; Dhouailly, Danielle; Bolotsky, Yuri L; Sizov, Alexander V; McNamara, Maria E; Benton, Michael J; Spagna, Paul

    2014-07-25

    Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the tibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  16. Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers.

    Science.gov (United States)

    Shawkey, Matthew D; D'Alba, Liliana; Wozny, Joel; Eliason, Chad; Koop, Jennifer A H; Jia, Li

    2011-04-01

    Dynamic changes in integumentary color occur in cases as diverse as the neurologically controlled iridiphores of cephalopod skin and the humidity-responsive cuticles of longhorn beetles. By contrast, feather colors are generally assumed to be relatively static, changing by small amounts only over periods of months. However, this assumption has rarely been tested even though structural colors of feathers are produced by ordered nanostructures that are analogous to those in the aforementioned dynamic systems. Feathers are neither innervated nor vascularized and therefore any color change must be caused by external stimuli. Thus, we here explore how feathers of iridescent mourning doves Zenaida macroura respond to a simple stimulus: addition and evaporation of water. After three rounds of experimental wetting and subsequent evaporation, iridescent feather color changed hue, became more chromatic and increased in overall reflectance by almost 50%. To understand the mechanistic basis of this change, we used electron microscopy to examine macro- and nanostructures before and after treatment. Transmission electron microscopy and transfer matrix thin-film models revealed that color is produced by thin-film interference from a single (∼ 35 nm layer of keratin around the edge of feather barbules, beneath which lies a layer of air and melanosomes. After treatment, the most striking morphological difference was a twisting of colored barbules that exposed more of their surface area for reflection, explaining the observed increase in brightness. These results suggest that some plumage colors may be more malleable than previously thought, leading to new avenues for research on dynamic plumage color. Published by Elsevier GmbH.

  17. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  18. [Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design].

    Science.gov (United States)

    Mirković, Nemanja; Gostović, Aleksandra Spadijer; Lazić, Zoran; Trifković, Branka

    2012-07-01

    Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. The research was performed as an experimental study. Sixty (60) ceramic crowns were made on non-carious extracted human premolars. Thirty (30) crowns were made on the basis of feather-edge preparation (experimental group I). The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system "Zirkonzahn" (Zirkonzahn GMBH, Gais, Germany). The spherical compression test was used to determine fracture toughness, using 6 mmn diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine--Zwick, type 1464, with the speed of 0.05 mm/min. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2090 N, and in shoulder group it was 2214 N. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and gingival inflammatory response.

  19. Feather and blood meal in pre-starter and starter diets for broilers

    Directory of Open Access Journals (Sweden)

    Suzany Aparecida Gomes Xavier

    2011-08-01

    Full Text Available Two experiments were carried out (pre-starter and starter phases to evaluate the effect of feather and blood meal on performance, organ development and digestibility and retention of nutrients in broilers. In the first experiment, it was used 280 birds and in experiment 2, it was used 240 birds. The experimental diets were formulated with four levels of feather and blood meal (0%, 2%, 4% and 6% all of them isonutritive and isoenergetic. A metabolic assay was developed on the 4th and 7th days of age in experiment 1 and on the 14th and 17th days of age in experiment 2. In these periods, one bird per experimental unit was sacrificed for determination of morphometry of the digestive organs. In experiment 1, in which it was evaluated the pre-starter phase, there was a negative linear effect of the levels of feather and blood meal on weight gain and intake in 1-21 day of age period. By using feather and blood meal in the diet, it was observed a linear effect on digestibility coefficient of dry matter, nitrogen and ether extract; there was a quadratic effect on retention of dry matter and nitrogen and linear effect on the retention of ether extract. However, performance of birds in the starter phase (experiment 2 was not affected by levels of feather and blood meal used in the diet. Coefficient of digestibility of dry matter and ether extract and retention of ether extract were affected. In both phases, mortality and morphometric data of digestive organs were not influenced by the levels of meal in the diet. Formulation of diets with up to 6% feather and blood meal for chickens in the pre-starter phase (from 1 to 7 days is not a good alternative because it worsens performance of birds. However, from the initial phase (from 8 to 21 days, the use of feather and blood meal in the diet is viable. Feather and blood meal can be used at levels 3.0 or 4.0% for broilers in the pre-starter and starter phase.

  20. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences.

    Science.gov (United States)

    Jovani, Roger; Rohwer, Sievert

    2017-05-01

    Fault bars are narrow malformations in feathers oriented almost perpendicular to the rachis where the feather vein and even the rachis may break. Breaks in the barbs and barbules result in small pieces of the feather vein being lost, while breaks in the rachis result in loss of the distal portion of the feather. Here, we provide a comprehensive review of 74 papers on fault bar formation in hopes of providing a clearer approach to their study. First, we review the evidence that the propensity to develop fault bars is modified by natural selection. Given that fault bars persist in the face of survival costs, we conclude that they must be an unfortunate consequence of some alternative adaptation that outweighs the fitness costs of fault bars. Second, we summarize evidence that the development of fault bars is triggered by psychological stress such as that of handling or predation attempts, and that they persist because the sudden contractions of the muscles in the feather follicle that control fright moults also causes the development of fault bars in growing feathers. Third, we review external and physiological (e.g. corticosterone) agents that may affect the likelihood that an acute stress will result in a growing feather exhibiting a fault bar. These modifying factors have often been treated as fundamental causes in the earlier literature on fault bars. Fourth, we then use this classification to propose a tentative model where fault bars of different severity (from light to severe) are the outcome of the interaction between the propensity to produce fault bars (which differs between species, individuals and feather follicles within individuals) and the intensity of the perturbation. This model helps to explain contradictory results in the literature, to identify gaps in our knowledge, and to suggest further studies. Lastly, we discuss ways in which better understanding of fault bars can inform us about other aspects of avian evolutionary ecology, such as the

  1. Nonlinear Large Deflection Theory with Modified Aeroelastic Lifting Line Aerodynamics for a High Aspect Ratio Flexible Wing

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel

    2017-01-01

    This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.

  2. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  3. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  4. Níveis de inclusão de farinha de penas na dieta sobre o desempenho e características de carcaça de codornas para corte = Inclusion levels of feather meal in the diet on performance and carcasses characteristics of quail for meat

    Directory of Open Access Journals (Sweden)

    Alda Letícia da Silva Santos

    2006-01-01

    Full Text Available Avaliou-se o desempenho de 240 codornas européias para corte mediante diferentes níveis de inclusão de farinha de penas na dieta. O delineamento experimental utilizado foi o inteiramente casualizado, com 4 tratamentos (0, 3, 6 e 9% de farinha de penas, 5 repetições e 12 animais por unidade experimental. De acordo com os resultados, a farinha de penas pode ser utilizada na dieta de codornas para corte, exceto no período de 1 a 7 dias, em até 9%, sem alterações negativassobre o desempenho dos animais. Entretanto, foi observado que na medida em que houve aumento da inclusão de farinha de penas na dieta, houve redução do consumo de ração e no rendimento de coxa mais sobrecoxa, assim como aumento do rendimento de dorso mais asas.The performance of 240 European quail for meat was evaluated using different levels of feather meal in the diet. The experiment was conducted with a totally randomized design, consisting of four treatments (0, 3, 6, and 9% of feather meal, five repetitions andtwelve animals per experimental unit. Results show that, feather meal can be utilized in the quail for meat diet, except in a period of 1 to 7 days, up to 9%, without significant negative effects on theperformance of the animals. However, as the inclusion of feather flour in the diet increased, a reduction in the consumption of feed and in the thigh yield were observed, as well as an increase in back + wing yield.

  5. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  6. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    Science.gov (United States)

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  7. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  8. Can body traits, other than wings, reflect the flight ability of Triatominae bugs?

    Directory of Open Access Journals (Sweden)

    María Laura Hernández

    2015-12-01

    Full Text Available Abstract: INTRODUCTION : Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? METHODS : The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. RESULTS : Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. CONCLUSIONS: We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.

  9. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    Science.gov (United States)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  10. Can body traits, other than wings, reflect the flight ability of Triatominae bugs?

    Science.gov (United States)

    Hernández, María Laura; Dujardin, Jean Pierre; Gorla, David Eladio; Catalá, Silvia Susana

    2015-01-01

    Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.

  11. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  12. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  13. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  14. Seabird Tissues As Efficient Biomonitoring Tools for Hg Isotopic Investigations: Implications of Using Blood and Feathers from Chicks and Adults.

    Science.gov (United States)

    Renedo, Marina; Amouroux, David; Duval, Bastien; Carravieri, Alice; Tessier, Emmanuel; Barre, Julien; Bérail, Sylvain; Pedrero, Zoyne; Cherel, Yves; Bustamante, Paco

    2018-03-14

    Blood and feathers are the two most targeted avian tissues for environmental biomonitoring studies, with mercury (Hg) concentration in blood and body feathers reflecting short and long-term Hg exposure, respectively. In this work, we investigated how Hg isotopic composition (e.g., δ 202 Hg and Δ 199 Hg) of blood and feathers from either seabird chicks (skuas, n = 40) or adults (penguins, n = 62) can accurately provide information on exposure to Hg in marine ecosystems. Our results indicate a strong correlation between blood and feather Hg isotopic values for skua chicks, with similar δ 202 Hg and Δ 199 Hg values in the two tissues (mean difference: -0.01 ± 0.25 ‰ and -0.05 ± 0.12 ‰, respectively). Since blood and body feathers of chicks integrate the same temporal window of Hg exposure, this suggests that δ 202 Hg and Δ 199 Hg values can be directly compared without any correction factors within and between avian groups. Conversely, penguin adults show higher δ 202 Hg and Δ 199 Hg values in feathers than in blood (mean differences: 0.28 ± 0.19‰ and 0.25 ± 0.13‰), most likely due to tissue-specific Hg temporal integration. Since feathers integrate long-term (i.e., the intermoult period) Hg accumulation, whereas blood reflects short-term (i.e., seasonal) Hg exposure in adult birds, the two tissues provide complementary information on trophic ecology at different time scales.

  15. Feather damaging behaviour in parrots: a review with consideration of comparative aspects

    NARCIS (Netherlands)

    van Zeeland, Y.R.A.|info:eu-repo/dai/nl/314101160; Spruijt, B.M.|info:eu-repo/dai/nl/07079202X; Rodenburg, T.B.; Riedstra, B.; Buitenhuis, B.; van Hierden, Y.M.; Korte, S.M.|info:eu-repo/dai/nl/088952827; Lumeij, J.T.|info:eu-repo/dai/nl/073286826

    2009-01-01

    Feather damaging behaviour in parrots: A review with consideration of comparative aspects Yvonne R.A. van Zeelanda, , , Berry M. Spruitb, T. Bas Rodenburgc, Bernd Riedstrad, Yvonne M. van Hierdene, Bart Buitenhuisf, S. Mechiel Korteg, h and Johannes T. Lumeija aDivision of Zoological Medicine,

  16. Effect of dietary substitution of feather meal for fish meal on the ...

    African Journals Online (AJOL)

    Also significant differences (p<0.05) were observed in daily feed intake, daily weight gain and feed cost/kg weight gain. Considering the results of final live weight and daily weight gain, it appeared that the 7.5% level of FEM is the optimal replacement level for FM. Keywords: Feather meal, fishmeal, poultry feed, broiler chick ...

  17. 76 FR 9495 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Science.gov (United States)

    2011-02-18

    ..., 2011. The final rule amends the definition of light-sport aircraft by removing ``auto'' from the term... Administration 14 CFR Part 1 RIN 2120-AJ81 Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders... propeller operation for powered gliders that qualify as light-sport aircraft. DATES: The effective date for...

  18. Physical and chemical properties of biobased plastic resins containing chicken feather fibers

    Science.gov (United States)

    This study was conducted to (a) characterize bioplastic pellets containing feather fibers (pellets) by low temperature-scanning electron microscopy and X-Ray diffraction analysis, (b) evaluate growth and flowering of Begonia boliviensis A. DC. ‘Bonfire’ when grown in medium amended with pellets, and...

  19. 76 FR 5 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Science.gov (United States)

    2011-01-03

    ... provisions of the Sport Pilot rule and the revised Office of Management and Budget (OMB) Circular A-119...-0812; Amendment No. 1-66] RIN 2120-AJ81 Feathering Propeller Systems for Light-Sport Aircraft Powered.... SUMMARY: This final rule with request for comments amends the definition of light-sport aircraft by...

  20. Hair and feathers as indicator of internal contamination of 210Po and 210Pb

    International Nuclear Information System (INIS)

    Holm, E.; Roos, P.; Henricsson, F.

    2010-03-01

    The activities of the NKS-B HAIRPOL project is summarised in this report. The objective was to investigate if hair and feathers were suitable matrices for the estimation of the intake of 210 Po. Human hair from people of different sex and age was analysed for 210 Po showing concentrations between 0.4 to 11 Bq/kg dry weight. Samples from horses, mane, fur and tail showed concentration from 6 to 17 Bq/kg with no significant difference between the different sample types. Musk ox from Greenland showed much higher concentrations since the animal has to graze a large surface. In fur the concentration was 260 Bq/kg. A considerable fraction of the total 210 Po in this animal is contained in the hair. Also different organs were analysed and the highest concentration was found in kidney, 2 700 Bq/kg. The 210 Pb concentration in hair was estimated to about 20 Bq/kg. Three different seabirds from Svalbard were analysed. Feathers from all three seabird species show increasing activity concentrations of 210 Po and 210 Pb from the base to the tip of the feather, but it was difficult to relate feather concentrations to muscle concentrations due to a number of complicating factors. (author)

  1. Feather pecking in poultry: the application of science in a search for practical solutions

    NARCIS (Netherlands)

    Jones, R.B.; Blokhuis, H.J.; Jong, de I.C.; Keeling, L.J.; McAdie, T.M.; Preisinger, R.

    2004-01-01

    Traditional battery cages for laying hens will soon be banned in the EU but the increased risk of feather pecking (FP) hampers the adoption of alternative housing systems. FP can cause injury and lead to cannibalism and the painful death of target birds. Current management practices (beak trimming,

  2. The feather damaging Grey parrot: an analysis of its behaviour and needs

    NARCIS (Netherlands)

    van Zeeland, Y.R.A.

    2013-01-01

    With an estimated prevalence of 10-15%, feather damaging behaviour (FDB) is a common behavioural disorder in captive parrots (in particular Grey parrots, the species studied in this thesis) that may have aesthetic, medical and welfare consequences and often results in relinquishment or euthanasia.

  3. The structure of the water-holding feathers of the Namaqua ...

    African Journals Online (AJOL)

    The morphology and fine structure of the feather barbules of the Namaqua Sandgrouse Pterocles namaqua are investigated histologically and experimentally by means of light microscopy, scanning electron micrography and X-ray diffraction. Proximally the barbule is helically coiled for three and a half turns and has a ...

  4. DIVERSITY OF FEATHER MITES (ACARI: ASTIGMATA) ON DARWIN’S FINCHES

    Science.gov (United States)

    Villa, Scott M.; Le Bohec, Céline; Koop, Jennifer A. H.; Proctor, Heather C.; Clayton, Dale H.

    2014-01-01

    Feather mites are a diverse group of ectosymbionts that occur on most species of birds. Although Darwin’s finches are a well-studied group of birds, relatively little is known about their feather mites. Nearly 200 birds across 9 finch species, and from 2 locations on Santa Cruz Island, Galápagos, were dust-ruffled during the 2009 breeding season. We found 8 genera of feather mites; the most prevalent genus was Mesalgoides (53–55%), followed by Trouessartia (40–45%), Amerodectes and Proctophyllodes (26–33%), Xolalgoides (21–27%), Analges and Strelkoviacarus (0–6%), and Dermoglyphus (2–4%). There was no evidence for microclimatic effects (ambient temperature and relative humidity) on mite diversity. Host body mass was significantly correlated with mean feather mite abundance across 7 of 8 well-sampled species of finches. Certhidea olivacea, the smallest species, did not fit this pattern and had a disproportionately high number of mites for its body mass. PMID:23691947

  5. Selection on feather pecking affects response to novelty and foraging behaviour in laying hens

    NARCIS (Netherlands)

    Haas, de E.N.; Nielsen, B.; Rodenburg, T.B.; Buitenhuis, A.J.

    2010-01-01

    Feather pecking (FP) is a major welfare problem in laying hens, influenced by multiple factors. FP is thought to be redirected foraging behaviour, however fearful birds are also known to be more sensitive to develop FP. The relationship between fear-responses, foraging and FP is not well understood,

  6. Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films.

    Science.gov (United States)

    Stavenga, Doekele G; Tinbergen, Jan; Leertouwer, Hein L; Wilts, Bodo D

    2011-12-01

    The colours of the common kingfisher, Alcedo atthis, reside in the barbs of the three main types of feather: the orange breast feathers, the cyan back feathers and the blue tail feathers. Scanning electron microscopy showed that the orange barbs contain small pigment granules. The cyan and blue barbs contain spongy nanostructures with slightly different dimensions, causing different reflectance spectra. Imaging scatterometry showed that the pigmented barbs create a diffuse orange scattering and the spongy barb structures create iridescence. The extent of the angle-dependent light scattering increases with decreasing wavelength. All barbs have a cortical envelope with a thickness of a few micrometres. The reflectance spectra of the cortex of the barbs show oscillations when measured from small areas, but when measured from larger areas the spectra become wavelength independent. This can be directly understood with thin film modelling, assuming a somewhat variable cortex thickness. The cortex reflectance appears to be small but not negligible with respect to the pigmentary and structural barb reflectance.

  7. Using Pb-Al ratios to discriminate between internal and external deposition of Pb in feathers.

    Science.gov (United States)

    Cardiel, Iris E; Taggart, Mark A; Mateo, Rafael

    2011-05-01

    Feathers provide a potentially useful biomonitoring option in studies regarding pollution exposure in avian species. However, they must be used with care because the complex, fine structure is highly prone to accumulating surface contamination. This may therefore give a misleading indication of pollutant intake in the animal. Here, data are presented for 4 large scavenging raptor species collected in Spain, and analyses are undertaken on feather barbs and rachis for both Pb and Al concentrations. Aluminium levels are used as a marker of surface contamination by inorganic particulate material. Despite using a thorough washing technique, feather barbs showed significantly higher levels of Pb than did the rachis for all 4 species studied. We also observed a significant correlation (r=0.782, pbarbs, whilst rachis Al levels were below our detection limit in all samples analysed. Results indicate that the rachis would provide more representative data as regards Pb (or other heavy metal) uptake and tissue deposition within bird tissues during the period of feather growth. As such, data would be more toxicologically relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Hair and feathers as indicator of internal contamination of 210Po and 210Pb

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. (ed.); Gwynn, J.; Zaborska, A.; Gaefvert, T. (Norwegian Radiation Protection Authority (Norway)); Roos, P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Henricsson, F. (Lund Univ., Lund (Sweden))

    2010-03-15

    The activities of the NKS-B HAIRPOL project is summarised in this report. The objective was to investigate if hair and feathers were suitable matrices for the estimation of the intake of 210Po. Human hair from people of different sex and age was analysed for 210Po showing concentrations between 0.4 to 11 Bq/kg dry weight. Samples from horses, mane, fur and tail showed concentration from 6 to 17 Bq/kg with no significant difference between the different sample types. Musk ox from Greenland showed much higher concentrations since the animal has to graze a large surface. In fur the concentration was 260 Bq/kg. A considerable fraction of the total 210Po in this animal is contained in the hair. Also different organs were analysed and the highest concentration was found in kidney, 2 700 Bq/kg. The 210Pb concentration in hair was estimated to about 20 Bq/kg. Three different seabirds from Svalbard were analysed. Feathers from all three seabird species show increasing activity concentrations of 210Po and 210Pb from the base to the tip of the feather, but it was difficult to relate feather concentrations to muscle concentrations due to a number of complicating factors. (author)

  9. Reaction to frustration in high and low feather pecking laying hens

    NARCIS (Netherlands)

    Rodenburg, T.B.; Zimmerman, P.H.; Koene, P.

    2002-01-01

    Reaction to frustration of high (HFP) and low feather pecking (LFP) laying hens was investigated. From a HFP- and a LFP-line five birds with a HFP- and five birds with a LFP-phenotype were selected. Birds from the HFP-line were expected to show more key pecking and covered feeder pecking during

  10. The Structure of the Water-Holding Feathers of the Namaqua ...

    African Journals Online (AJOL)

    The barbule is solid, consisting of three layers, and bears a number of appendages at its distal end, where it is more rounded in transverse section. The uncoiling of barbules from the abdominal feathers on contact with water may be initiated by water uptake and further facilitated by the number of helical coils at the base of ...

  11. 50 CFR 20.92 - Personal use of feathers or skins.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Personal use of feathers or skins. 20.92 Section 20.92 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... or skins. Any person for his own use may possess, transport, ship, import, and export without a...

  12. New species of the feather mite subfamily Pterodectinae (Astigmata, Proctophyllodidae) from passerines in Senegal

    Czech Academy of Sciences Publication Activity Database

    Mironov, S. V.; Literák, I.; Čapek, Miroslav; Koubek, Petr

    2010-01-01

    Roč. 55, č. 4 (2010), s. 399-413 ISSN 1230-2821 R&D Projects: GA AV ČR IAA601690901 Institutional research plan: CEZ:AV0Z60930519 Keywords : Feather mites * systematics * Senegal * Passeriformes * Proctophyllodidae Subject RIV: EG - Zoology Impact factor: 1.144, year: 2010

  13. The prevention and control of feather pecking in laying hens : identifying the underlying principles

    NARCIS (Netherlands)

    Rodenburg, T. B.; van Krimpen, M. M.; de Jong, I. C.; de Haas, E. N.; Kops, M. S.; Riedstra, B. J.; Nordquist, R. E.; Wagenaar, J. P.; Bestman, M.; Nicol, C. J.

    Feather pecking (FP) in laying hens remains an important economic and welfare issue. This paper reviews the literature on causes of FP in laying hens. With the ban on conventional cages in the EU from 2012 and the expected future ban on beak trimming in many European countries, addressing this

  14. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-09-06

    Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure.

  15. Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars.

    Science.gov (United States)

    Cooke, Thomas F; Fischer, Curt R; Wu, Ping; Jiang, Ting-Xin; Xie, Kathleen T; Kuo, James; Doctorov, Elizabeth; Zehnder, Ashley; Khosla, Chaitan; Chuong, Cheng-Ming; Bustamante, Carlos D

    2017-10-05

    Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment.

    Directory of Open Access Journals (Sweden)

    Alison E Moyer

    Full Text Available Keratinous 'soft tissue' structures (i.e. epidermally derived and originally non-biomineralized, include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth, few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM and in situ immunofluorescence (IF. We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed and beta- (limited to sauropsids keratin.

  17. Feather meal : evaluation of the effect of processing conditions by chemical and chick assays

    NARCIS (Netherlands)

    Papadopoulos, M.C.

    1984-01-01

    Feather waste at poultry processing plants, has been of interest in nutritional studies because of its high protein content. This material must be hydrolyzed in order to be digested by the animal, because in its natural state it is of no nutritive value. However, this product will be of variable

  18. Ontwikkeling en validering van de Dutch Feather Squadron app voor auditieve verwerking

    NARCIS (Netherlands)

    Dr. C.A.M. Neijenhuis; M. Barker

    2015-01-01

    Posterpresentatie tijdens het 36e Congres Vlaamse Vereniging voor Logopedisten (VVL). Gent, België, 20 maart 2015 - In Nieuw Zeeland is de ‘Feather Squadron’ iPad app ontwikkeld voor het testen van auditieve verwerkingsvaardigheden. De app is vertaald naar het Nederlands. Deze poster presenteert de

  19. High refractive index of melanin in shiny occipital feathers of a bird of paradise

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Heinrich; Osorio, Daniel C.; Wilts, Bodo D.

    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's

  20. Migratory connectivity in the Rusty Blackbird: Isotopic evidence from feathers of historical and contemporary specimens

    Science.gov (United States)

    Keith A. Hobson; Russell Greenberg; Steven L. Van Wilgenburg; Claudia. Mettke-Hofmann

    2010-01-01

    The Rusty Blackbird (Euphagus carolinus) has declined dramatically across its range in North America since at least the 1960s, but the causes for this decline are unknown. We measured ratios of stable hydrogen isotopes (δD) in feathers collected from Rusty Blackbirds wintering in the Mississippi Alluvial Valley (n = 255 birds) and the coastal plain of South Carolina...

  1. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences

    Energy Technology Data Exchange (ETDEWEB)

    Jerez, Silvia [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Motas, Miguel, E-mail: motas@um.es [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Palacios, Maria Jose; Valera, Francisco [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Cuervo, Jose Javier; Barbosa, Andres [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Departamento de Ecologia Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2011-10-15

    Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adelie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 {mu}g g{sup -1} dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 {mu}g g{sup -1} dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine. - Highlights: > We study levels of trace elements in feathers of Antarctic penguins. > Eight different rookeries throughout the Antarctic Peninsula were sampled. > Interspecific (gentoo, chinstrap, Adelie) and geographical differences were tested. > Relatively high metal levels were found in areas with major human presence. > Penguin feather can be useful for metals monitoring in the Antarctic environment. - Trace element levels in feathers of three penguin species from the Antarctic Peninsula indicate the presence of pollution in certain locations.

  2. The nanomechanics of feather keratin studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Pabisch, Silvia; Puchegger, Stephan; Peterlik, Herwig; Weiss, Ingrid; Kirchner, Helmut

    2012-01-01

    Full text: Feather keratin is a highly conserved protein of 98 amino acids synthesized intracellularly in aves. In the cortex of the tail covert feathers of the peacock it forms a crystalline structure, held together by disulfide bonds between the nine cysteines of the molecule. Despite the biological importance of the molecule, its spatial structure has not yet been determined. Fraser and Parry proposed a crystallographic arrangement of beta-barrels and relegate the N-terminus and the C-terminus to an amorphous matrix, akin to the situation in silk. Therefore, in-situ tension and compression tests were made to investigate the changes in axial and lateral direction. Nanoscopically a pronounced structural asymmetry between tension and compression rules out a dihedral axis normal to the fibril direction, and indicates a strong clip-like polarization of the molecule. Based on these X-ray diffraction data from Pavo cristatus feathers, a model is presented for the axial and lateral arrangement of the molecule in feather keratin, which integrates biochemical structure and mechanical experiments. (author)

  3. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  4. Association between antennal phenotype, wing polymorphism and sex in the genus Mepraia (Reduviidae: Triatominae).

    Science.gov (United States)

    Moreno, Mariana Laura; Gorla, David; Catalá, Silvia

    2006-05-01

    Mepraia spinolai and Mepraia gajardoi (Hemiptera, Reduviidae) are only found in the arid regions of northern Chile. Mepraia is the only genus of Triatominae with marked wing polymorphism. Females of both species are micropterous, males of M. spinolai may be micropterous, brachypterous or macropterous, while males of M. gajardoi are always brachypterous. Because of this wing polymorphism, Mepraia can be used as a model to analyze morphological adaptations related to the flying activity and evolutionary relationships in the Triatominae. The study presented here analyses the antennal phenotype of the Mepraia species and carries out a comparison with the two species of Triatoma included in the spinolai complex (Triatoma eratyrusiformis and Triatoma breyeri). The analysis of the antennal phenotype of Mepraia showed a marked intraspecific phenotypic variability related with sex and wing condition. The number and length of multiporous trichoid sensilla (TH) on the pedicel are significantly higher and longer in winged males and are strongly reduced in females. The great length of the TH sensillum is an infrequent characteristic within Triatominae. The results show that phenetic distances between sexes are greater than between the two species. Similarity between the Mepraia species and T. eratyrusiformis was found as they all show long bristles (BR) and TH and two sized basiconic receptors (BA), a pattern that have not been observed in other species of Triatominae. These characters are not present in T. breyeri.

  5. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  6. Biogas Production from Citrus Wastes and Chicken Feather: Pretreatment and Codigestion

    Energy Technology Data Exchange (ETDEWEB)

    Forgacs, Gergely

    2012-07-01

    Anaerobic digestion is a sustainable and economically feasible waste management technology, which lowers the emission of greenhouse gases (GHGs), decreases the soil and water pollution, and reduces the dependence on fossil fuels. The present thesis investigates the anaerobic digestion of waste from food-processing industries, including citrus wastes (CWs) from juice processing and chicken feather from poultry slaughterhouses. Juice processing industries generate 15-25 million tons of citrus wastes every year. Utilization of CWs is not yet resolved, since drying or incineration processes are costly, due to the high moisture content; and biological processes are hindered by its peel oil content, primarily the D-limonene. Anaerobic digestion of untreated CWs consequently results in process failure because of the inhibiting effect of the produced and accumulated VFAs. The current thesis involves the development of a steam explosion pretreatment step. The methane yield increased by 426 % to 0.537 Nm{sup 3}/kg VS by employing the steam explosion treatment at 150 deg C for 20 min, which opened up the compact structure of the CWs and removed 94 % of the D-limonene. The developed process enables a production of 104 m{sup 3} methane and 8.4 L limonene from one ton of fresh CWs. Poultry slaughterhouses generate a significant amount of feather every year. Feathers are basically composed of keratin, an extremely strong and resistible structural protein. Methane yield from feather is low, around 0.18 Nm{sup 3}/kg VS, which corresponds to only one third of the theoretical yield. In the present study, chemical, enzymatic and biological pretreatment methods were investigated to improve the biogas yield of feather waste. Chemical pretreatment with Ca(OH){sub 2} under relatively mild conditions (0.1 g Ca(OH){sub 2}/g TS{sub feather}, 100 deg C, 30 min) improved the methane yield to 0.40 Nm{sup 3}/kg VS, corresponding to 80 % of the theoretical yield. However, prior to digestion, the

  7. Feather pecking in chickens is genetically related to behavioural and developmental traits.

    Science.gov (United States)

    Jensen, P; Keeling, L; Schütz, K; Andersson, L; Mormède, P; Brändström, H; Forkman, B; Kerje, S; Fredriksson, R; Ohlsson, C; Larsson, S; Mallmin, H; Kindmark, A

    2005-09-15

    Feather pecking (FP) is a detrimental behaviour in chickens, which is performed by only some individuals in a flock. FP was studied in 54 red junglefowl (ancestor of domestic chickens), 36 White Leghorn laying hens, and 762 birds from an F(2)-intercross between these two lines. From all F(2)-birds, growth and feed consumption were measured. Age at sexual maturity and egg production in females, and corticosterone levels in males were also measured. From 333 F(2)-birds of both sexes, and 20 parental birds, body composition with respect to bone mineral content, muscle and fat was obtained by post-mortem examinations using Dual X-Ray Absorptiometry (DXA). In femurs of the same birds, the bone density and structure were analysed using DXA and Peripheral Quantitative Computerized Tomography (pQCT), and a biomechanical analysis of bone strength was performed. Furthermore, plumage condition was determined in all birds as a measure of being exposed to feather pecking. Using 105 DNA-markers in all F(2)-birds, a genome-wide scan for Quantitative Trait Loci (QTL), associated with the behaviour in the F(2)-generation was performed. FP was at least as frequent in the red junglefowl as in the White Leghorn strain studied here, and significantly more common among females both in the parental strains and in the F(2)-generation. In the F(2)-birds, FP was phenotypically linked to early sexual maturation, fast growth, weak bones, and, in males, also high fat accumulation, indicating that feather peckers have a different resource allocation pattern. Behaviourally, F(2) feather peckers were more active in an open field test, in a novel food/novel object test, and in a restraint test, indicating that feather pecking might be genetically linked to a proactive coping strategy. Only one suggestive QTL with a low explanatory value was found on chromosome 3, showing that many genes, each with a small effect, are probably involved in the causation of feather pecking. There were significant

  8. Depletion of tylosin residues in feathers, muscle and liver from broiler chickens after completion of antimicrobial therapy.

    Science.gov (United States)

    Cornejo, Javiera; Pokrant, Ekaterina; Carvallo, Carolina; Maddaleno, Aldo; San Martín, Betty

    2018-03-01

    Tylosin is one of the most commonly used antimicrobial drugs from the macrolide family and in broiler chickens it is used specially for the treatment of infectious pathologies. The poultry industry produces several by-products, among which feathers account for up to 7% of a chicken's live weight, thus they amount to a substantial mass across the whole industry. Feathers have been repurposed as an animal feed ingredient by making them feather meal. Therefore, the presence of high concentrations of residues from antimicrobial drugs in feathers might pose a risk to global public health, due to re-entry of these residues into the food chain. This work aimed to characterise the depletion behaviour of tylosin in feather samples, while considering its depletion in muscle and liver tissue samples as a reference point. To achieve this goal, we have implemented and validated an analytical methodology suitable for detecting and quantifying tylosin in these matrices. Sixty broiler chickens, raised under controlled conditions, received an oral dose of 32 mg kg -1 of tylosin for 5 days. Tylosin was quantified in muscle, liver and feathers by liquid chromatography coupled with a photodiode array detector (HPLC-DAD). High concentrations of tylosin were detected in feather samples over the whole experimental period after completing both the therapy and the recommended withdrawal time (WDT). On the other hand, tylosin concentrations in muscle and liver tissue samples fell below the limit of detection of this method on the first sampling day. Our results indicate that the WDT for feather samples is 27 days, hence using feather meal for the formulation of animal diets or for other agricultural purposes could contaminate with antimicrobial residues either other livestock species or the environment. In consequence, we recommend monitoring this matrix when birds have been treated with tylosin, within the context of poultry farming.

  9. Mitochondrial genomes of the jungle crow Corvus macrorhynchos (Passeriformes: Corvidae) from shed feathers and a phylogenetic analysis of genus Corvus using mitochondrial protein-coding genes.

    Science.gov (United States)

    Krzeminska, Urszula; Wilson, Robyn; Rahman, Sadequr; Song, Beng Kah; Seneviratne, Sampath; Gan, Han Ming; Austin, Christopher M

    2016-07-01

    The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.

  10. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  11. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  12. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  13. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  14. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  15. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  16. Feather corticosterone reveals stress associated with dietary changes in a breeding seabird.

    Science.gov (United States)

    Will, Alexis; Watanuki, Yutaka; Kikuchi, Dale M; Sato, Nobuhiko; Ito, Motohiro; Callahan, Matt; Wynne-Edwards, Katherine; Hatch, Scott; Elliott, Kyle; Slater, Leslie; Takahashi, Akinori; Kitaysky, Alexander

    2015-10-01

    Changes in climate and anthropogenic pressures might affect the composition and abundance of forage fish in the world's oceans. The junk-food hypothesis posits that dietary shifts that affect the quality (e.g., energy content) of food available to marine predators may impact their physiological state and consequently affect their fitness. Previously, we experimentally validated that deposition of the adrenocortical hormone, corticosterone, in feathers is a sensitive measure of nutritional stress in seabirds. Here, we use this method to examine how changes in diet composition and prey quality affect the nutritional status of free-living rhinoceros auklets (Cerorhinca monocerata). Our study sites included the following: Teuri Is. Japan, Middleton Is. central Gulf of Alaska, and St. Lazaria Is. Southeast Alaska. In 2012 and 2013, we collected "bill loads" delivered by parents to feed their chicks (n = 758) to document dietary changes. We deployed time-depth-temperature recorders on breeding adults (n = 47) to evaluate whether changes in prey coincided with changes in foraging behavior. We measured concentrations of corticosterone in fledgling (n = 71) and adult breeders' (n = 82) feathers to determine how birds were affected by foraging conditions. We found that seasonal changes in diet composition occurred on each colony, adults dove deeper and engaged in longer foraging bouts when capturing larger prey and that chicks had higher concentrations of corticosterone in their feathers when adults brought back smaller and/or lower energy prey. Corticosterone levels in feathers of fledglings (grown during the breeding season) and those in feathers of adult breeders (grown during the postbreeding season) were positively correlated, indicating possible carryover effects. These results suggest that seabirds might experience increased levels of nutritional stress associated with moderate dietary changes and that physiological responses to changes in prey composition

  17. Variance components and selection response for feather-pecking behavior in laying hens.

    Science.gov (United States)

    Su, G; Kjaer, J B; Sørensen, P

    2005-01-01

    Variance components and selection response for feather pecking behavior were studied by analyzing the data from a divergent selection experiment. An investigation indicated that a Box-Cox transformation with power lambda = -0.2 made the data approximately normally distributed and gave the best fit for the model. Variance components and selection response were estimated using Bayesian analysis with Gibbs sampling technique. The total variation was rather large for the investigated traits in both the low feather-pecking line (LP) and the high feather-pecking line (HP). Based on the mean of marginal posterior distribution, in the Box-Cox transformed scale, heritability for number of feather pecking bouts (FP bouts) was 0.174 in line LP and 0.139 in line HP. For number of feather-pecking pecks (FP pecks), heritability was 0.139 in line LP and 0.105 in line HP. No full-sib group effect and observation pen effect were found in the 2 traits. After 4 generations of selection, the total response for number of FP bouts in the transformed scale was 58 and 74% of the mean of the first generation in line LP and line HP, respectively. The total response for number of FP pecks was 47 and 46% of the mean of the first generation in line LP and line HP, respectively. The variance components and the realized selection response together suggest that genetic selection can be effective in minimizing FP behavior. This would be expected to reduce one of the major welfare problems in laying hens.

  18. Development of colour-producing β-keratin nanostructures in avian feather barbs

    Science.gov (United States)

    Prum, Richard O.; Dufresne, Eric R.; Quinn, Tim; Waters, Karla

    2009-01-01

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of β-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. ‘Channel’ nanostructures consist of β-keratin bars and air channels of elongate, tortuous and twisting forms. ‘Spherical’ nanostructures consist of highly spherical air cavities that are surrounded by thin β-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary β-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of β-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary β-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the hollow

  19. Development of colour-producing beta-keratin nanostructures in avian feather barbs.

    Science.gov (United States)

    Prum, Richard O; Dufresne, Eric R; Quinn, Tim; Waters, Karla

    2009-04-06

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of beta-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. 'Channel' nanostructures consist of beta-keratin bars and air channels of elongate, tortuous and twisting forms. 'Spherical' nanostructures consist of highly spherical air cavities that are surrounded by thin beta-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary beta-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of beta-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary beta-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the

  20. Lifetime variation in feather corticosterone levels in a long-lived raptor.

    Science.gov (United States)

    López-Jiménez, Lidia; Blas, Julio; Tanferna, Alessandro; Cabezas, Sonia; Marchant, Tracy; Hiraldo, Fernando; Sergio, Fabrizio

    2017-02-01

    In long-lived animals, the challenges that threaten individual homeostasis, and the way they are dealt with, are expected to vary in an age-related manner, encompassing the progressive selection of superior phenotypes and the acquisition and improvement of key skills (e.g. foraging, breeding and fighting abilities). Since exposure to homeostatic challenges typically elevates circulating glucocorticoid (GC) levels in vertebrates (modulating the behavioural and physiological responses that mediate allostasis), we may expect concomitant age-related changes in these hormones. Here, we investigated whether the level of corticosterone (the main avian GC) deposited in feathers during regular moult reflected the expected lifelong progression of energetic challenges in a long-lived raptor, the black kite (Milvus migrans). Feather corticosterone values were highest in the youngest birds, gradually declined to reach minimum levels in prime age, 7- to 11-year-old birds, and then increased again slightly among the oldest, senescent birds (≥12 years old). This pattern mirrored the age-related changes in reproductive success and survival rates previously reported for this population, suggesting that feather corticosterone levels captured the most vulnerable and challenging periods experienced by these birds as they proceeded through life. Moreover, feather corticosterone levels were negatively related to body size, suggesting that larger birds either experienced fewer homeostatic challenges, or were better able to cope with them. Feather corticosterone measures thus provided a valuable snapshot of how allostatic loads vary along the life of individuals, supporting the idea of a tight, long-term link between cumulative physiological responses to ecological challenges and demographic performance.

  1. Metals in Feathers of African Penguins (Spheniscus demersus): Considerations for the Welfare and Management of Seabirds Under Human Care.

    Science.gov (United States)

    Squadrone, S; Abete, M C; Brizio, P; Pessani, D; Favaro, L

    2018-02-15

    Bird feathers have been proven to be reliable indicators of metal exposure originating from contaminated food and polluted environments. The concentrations of 15 essential and non-essential metals were investigated in African penguins (Spheniscus demersus) feathers from a Northwestern Italian zoological facility. These birds are exclusively fed with herring from the northeast Atlantic Ocean. Certain elements, such as Hg and Cd, reflected the bioaccumulation phenomena that occur through the marine food chain. The levels of Cr, Mn, and Ni were comparable to those registered in feathers of birds living in polluted areas. These results are important for comparative studies regarding the health, nutrition and welfare of endangered seabirds kept under human care.

  2. First `Winged' and `X'-shaped Radio Source Candidates

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C.C.

    2007-01-22

    A small number of double-lobed radio galaxies (17 from our own census of the literature) show an additional pair of low surface brightness ''wings'', thus forming an overall ''X''-shaped appearance. The origin of the wings in these radio sources is unclear. They may be the result of back-flowing plasma from the currently active radio lobes into an asymmetric medium surrounding the active nucleus, which would make these ideal systems in which to study thermal/non-thermal plasma interactions in extragalactic radio sources. Another possibility is that the wings are the aging radio lobes left over after a (rapid) realignment of the central supermassive black-hole/accretion disk system due perhaps to a merger. Generally, these models are not well tested; with the small number of known examples, previous works focused on detailed case studies of selected sources with little attempt at a systematic study of a large sample. Using the VLA-FIRST survey database, we are compiling a large sample of winged and X-shaped radio sources for such studies. As a first step toward this goal, an initial sample of 100 new candidate objects of this type are presented in this paper. The search process is described, optical identifications from available literature data, and basic radio data are presented. From the limited resolution FIRST images ({approx} 5''), we can already confidently classify a sufficient number of these objects as having the characteristic wing lengths >80% of the active lobes to more than double the number of known X-shaped radio sources. We have also included as candidates, radio sources with shorter wings (<80% wing to lobe length ratios), or simply ''winged'' sources, as it is probable that projection effects are important. Finally, among the candidates are four quasars (z=0.37 to 0.84), and several have morphologies suggestive of Fanaroff-Riley type-I (low-power) radio galaxies. While followup

  3. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Haley Johnson

    Full Text Available In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus, a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width, which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%. Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  4. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  5. Proximate analysis of female population of wild feather back fish ...

    African Journals Online (AJOL)

    Each specimen was dried and powdered to determine dry mass, water mass, ash content, protein content and organic content. There was good correlation between percentage water content and other constituents (percentage ash, protein and percentage organic contents) of yield processing. Total length remains constant ...

  6. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  7. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  8. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  9. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  10. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  11. Survival of surf scoters and white-winged scoters during remigial molt

    Science.gov (United States)

    Uher-Koch, Brian D.; Esler, Daniel N.; Dickson, Rian D.; Hupp, Jerry; Evenson, Joseph R.; Anderson, Eric M.; Barrett, Jennifer; Schmutz, Joel A.

    2014-01-01

    Quantifying sources and timing of variation in demographic rates is necessary to determine where and when constraints may exist within the annual cycle of organisms. Surf scoters (Melanitta perspicillata) and white-winged scoters (M. fusca) undergo simultaneous remigial molt during which they are flightless for >1 month. Molt could result in reduced survival due to increased predation risk or increased energetic demands associated with regrowing flight feathers. Waterfowl survival during remigial molt varies across species, and has rarely been assessed for sea ducks. To quantify survival during remigial molt, we deployed very high frequency (VHF) transmitters on surf scoters (n = 108) and white-winged scoters (n = 57) in southeast Alaska and the Salish Sea (British Columbia and Washington) in 2008 and 2009. After censoring mortalities potentially related to capture and handling effects, we detected no mortalities during remigial molt; thus, estimates of daily and period survival for both scoter species during molt were 1.00. We performed sensitivity analyses in which mortalities were added to the dataset to simulate potential mortality rates for the population and then estimated the probability of obtaining a dataset with 0 mortalities. We found that only at high survival rates was there a high probability of observing 0 mortalities. We conclude that remigial molt is normally a period of low mortality in the annual cycle of scoters. The molt period does not appear to be a constraint on scoter populations; therefore, other annual cycle stages should be targeted by research and management efforts to change population trajectories.

  12. In vitro gas production tests on irradiated-chicken feathers to estimate its nutritive value as feed for ruminants

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Vera, Azucena C.; Asaad, Celia O.; Ellana, Marivic M.

    2003-01-01

    Chicken feathers are a highly abundant agro-waste product containing high amount of protein from keratin. However, these are not practically utilized as animal feeds since they provide little, if any nutritional value due to low digestibility in its natural state. Using an in vitro fermentation approach, the ruminant feed potential of chicken feathers treated with gamma-radiation was estimated. Gas production within an incubation period of 96 hours was monitored and values were fitted in the rumen degradability model by McDonald and Orskov (1981). Radiation treatment which could induce depolymerization of chicken feather keratin allowed for the improvement in the nutritive value for ruminants by liberating an additional 7.2% in metabolizable energy (ME) (P<0.005) for ruminant livestock. However, increasing the absorbed dose to 50 kGy resulted in significantly lower energy value for the feather substrate possibility accrued from the induced protein-protein cross-linking phenomenon. (Authors)

  13. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    Directory of Open Access Journals (Sweden)

    Jayapradha Ramakrishnan

    2011-09-01

    Full Text Available A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l. The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing.

  14. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Federica Talarico

    2011-05-01

    Full Text Available In carabid beetles, physiological and behavioural characteristics reflect specific habitat demands and there is a strong correlation between body form and habit in species with different life style. In this study, we compared the morphometry and compound eye characteristics of three species of the genus Siagona: S. jenissoni, S. dejeani and S. europaea. These carabids have a stenotopic lifestyle in Mediterranean clayey soils, inhabiting the ground fissure system formed during the dry season. All species have a Mediterranean distribution and are nocturnal olfactory hunters, and are strict ant predators. For morphometric measurements, we considered body length (mm, wing length (mm, antenna length (mm, head width (mm, trochanter length (mm, number of ommatidia, eye surface area (mm2, ommatidia density (number of ommatidia/mm2 of eye surface area, head height (mm, thorax height (mm and abdomen height (mm. The data revealed intersexual and interspecific differences. The three species differ in relative length of the antennae, density and number of ommatidia and relative trochanter length. Significant differences occurred in wing sizes, which are well developed in S. europaea, the only species capable of flight. When eye size is compared with other ground beetles of various lifestyles, Siagona shows pronounced “microphthalmy” an adaptation to subterranean life in clayey crevices of tropical and subtropical climates with a marked dry season.

  15. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.

    Science.gov (United States)

    Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D

    2017-12-22

    Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

  16. Large-scale spatial variation in feather corticosterone in invasive house sparrows (Passer domesticus) in Mexico is related to climate

    OpenAIRE

    Treen, Gillian D; Hobson, Keith A; Marchant, Tracy A; Bortolotti, Gary R

    2015-01-01

    Ecologists frequently use physiological tools to understand how organisms cope with their surroundings but rarely at macroecological scales. This study describes spatial variation in corticosterone (CORT) levels in feathers of invasive house sparrows (Passer domesticus) across their range in Mexico and evaluates CORT–climate relationships with a focus on temperature and precipitation. Samples were collected from 49 sites across Mexico. Feather CORT (CORTf) was measured using methanol-based ex...

  17. Harmonic hopping, and both punctuated and gradual evolution of acoustic characters in Selasphorus hummingbird tail-feathers.

    Directory of Open Access Journals (Sweden)

    Christopher James Clark

    Full Text Available Models of character evolution often assume a single mode of evolutionary change, such as continuous, or discrete. Here I provide an example in which a character exhibits both types of change. Hummingbirds in the genus Selasphorus produce sound with fluttering tail-feathers during courtship. The ancestral character state within Selasphorus is production of sound with an inner tail-feather, R2, in which the sound usually evolves gradually. Calliope and Allen's Hummingbirds have evolved autapomorphic acoustic mechanisms that involve feather-feather interactions. I develop a source-filter model of these interactions. The 'source' comprises feather(s that are both necessary and sufficient for sound production, and are aerodynamically coupled to neighboring feathers, which act as filters. Filters are unnecessary or insufficient for sound production, but may evolve to become sources. Allen's Hummingbird has evolved to produce sound with two sources, one with feather R3, another frequency-modulated sound with R4, and their interaction frequencies. Allen's R2 retains the ancestral character state, a ∼1 kHz "ghost" fundamental frequency masked by R3, which is revealed when R3 is experimentally removed. In the ancestor to Allen's Hummingbird, the dominant frequency has 'hopped' to the second harmonic without passing through intermediate frequencies. This demonstrates that although the fundamental frequency of a communication sound may usually evolve gradually, occasional jumps from one character state to another can occur in a discrete fashion. Accordingly, mapping acoustic characters on a phylogeny may produce misleading results if the physical mechanism of production is not known.

  18. Flutter suppression and stability analysis for a variable-span wing via morphing technology

    Science.gov (United States)

    Li, Wencheng; Jin, Dongping

    2018-01-01

    A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.

  19. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  20. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  1. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  2. The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs

    Science.gov (United States)

    Sullivan, Corwin; Hone, David W. E.; Xu, Xing; Zhang, Fucheng

    2010-01-01

    In extant birds, the hand is permanently abducted towards the ulna, and the wrist joint can bend extensively in this direction to fold the wing when not in use. Anatomically, this asymmetric mobility of the wrist results from the wedge-like shape of one carpal bone, the radiale, and from the well-developed convexity of the trochlea at the proximal end of the carpometacarpus. Among the theropod precursors of birds, a strongly convex trochlea is characteristic of Coelurosauria, a clade including the highly derived Maniraptora in addition to tyrannosaurs and compsognathids. The shape of the radiale can be quantified using a ‘radiale angle’ between the proximal and distal articular surfaces. Measurement of the radiale angle and reconstruction of ancestral states using squared-change parsimony shows that the angle was small (15°) in primitive coelurosaurs but considerably larger (25°) in primitive maniraptorans, indicating that the radiale was more wedge-shaped and the carpal joint more asymmetric. The radiale angle progressively increased still further within Maniraptora, with concurrent elongation of the forelimb feathers and the forelimb itself. Carpal asymmetry would have permitted avian-like folding of the forelimb in order to protect the plumage, an early advantage of the flexible, asymmetric wrist inherited by birds. PMID:20200032

  3. Wing, tail, and vocal contributions to the complex acoustic signals of courting Calliope hummingbirds

    Directory of Open Access Journals (Sweden)

    Christopher James CLARK

    2011-04-01

    Full Text Available Multi-component signals contain multiple signal parts expressed in the same physical modality. One way to identify individual components is if they are produced by different physical mechanisms. Here, I studied the mechanisms generating acoustic signals in the courtship displays of the Calliope hummingbird Stellula calliope. Display dives consisted of three synchronized sound elements, a high-frequency tone (hft, a low frequency tone (lft, and atonal sound pulses (asp, which were then followed by a frequency-modulated fall. Manipulating any of the rectrices (tail-feathers of wild males impaired production of the lft and asp but not the hft or fall, which are apparently vocal. I tested the sound production capabilities of the rectrices in a wind tunnel. Single rectrices could generate the lft but not the asp, whereas multiple rectrices tested together produced sounds similar to the asp when they fluttered and collided with their neighbors percussively, representing a previously unknown mechanism of sound production. During the shuttle display, a trill is generated by the wings during pulses in which the wingbeat frequency is elevated to 95 Hz, 40% higher than the typical hovering wingbeat frequency. The Calliope hummingbird courtship displays include sounds produced by three independent mechanisms, and thus include a minimum of three acoustic signal components. These acoustic mechanisms have different constraints and thus potentially contain different messages. Producing multiple acoustic signals via multiple mechanisms may be a way to escape the constraints present in any single mechanism [Current Zoology 57 (2: 187–196, 2011].

  4. Wedge cells during regeneration of juvenile and adult feathers and their role in carving out the branching pattern of barbs.

    Science.gov (United States)

    Alibardi, Lorenzo

    2007-01-01

    The present ultrastructural study on regenerating feathers emphasizes the role of supportive cells in determining the branching pattern of barbs. Supportive cells are localized among developing barb and barbule cells, in marginal plates, and underneath the feather sheath, and their differentiative fate, in general, is a form of lipid degeneration. The Latter process determines the carving out of barb branching in both downfeathers and pennaceous feathers. In the latter feathers, some supportive cells (barb vane cells and cylindrical cells of marginal plates) degenerate within each barb ridge leaving separate barbules. Other supportive cells, here termed wedge cells, form columns of cornified material that merge into elongated corneous scaffolds localized among barbs and the rachis. This previously undescribed form of cornification of supportive cells derives from the aggregation of periderm and dense granules present in wedge cells. The latter cells give origin to a corneous material different from feather keratin that may initially sustain the early and soft barbules. After barbules are cornified the supportive cells scaffolds are eventually sloughed as the sheath breaks allowing the new feather to open up and form a planar vane. The corneous material of wedge cells may also contribute to molding of the overlapped nodes of barbule cells that form lateral spines or hooklets in mature barbules. Eventually, the disappearance of wedge cell scaffolding determines the regular spacing of barbs attached to the rachis in order to form a close vane.

  5. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media.

    Science.gov (United States)

    Parrado, J; Rodriguez-Morgado, B; Tejada, M; Hernandez, T; Garcia, C

    2014-04-10

    This study evaluates the use of different types of feathers as fermentation media for enzyme production. Bacillus licheniformis was grown on the feathers, which lead to total biodegradation due to bacterial enzymatic hydrolytic excretion. B. licheniformis excretes protease and lipase activity, with feather concentration being the main parameter controlling their generation. Using a proteomic approach, the proteins excreted during fermentation were identified, and the influence of the chemical composition of the feathers on protein secretion was tested. The identified proteins are hydrolytic enzymes such as keratinase, gamma-glutamyltranspeptidase, chitosanases, and glicosidases. The diversity of proteins is related to the chemical complexity of the feathers. Understanding the composition of a hydrolytic system, when B. licheniformis is cultured on different feathers, may assist in utilizing such a system for producing different hydrolytic enzymes. The data indicate that proteomics can be a valuable tool for describing the physiological state of B. licheniformis cell populations growing on different wastes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  7. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  8. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  9. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  10. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  11. Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers

    Science.gov (United States)

    Sharma, Swati; Gupta, Arun; Chik, Syed Mohd Saufi Bin Tuan; Yeo Gek Kee, Chua; Poddar, Pradeep Kumar

    2017-04-01

    In the present study chicken feathers were hydrolyzed in alkaline environment. The pH value of feather hydrolyzed solution was adjusted according to the principle of isoelectric precipitation. Three kinds of precipitates of keratin polypeptide were collected at pH of 3.5, 5.5 and 7.5 respectively. The keratin solution were freeze dried and denoted as FKP1, FKP2, FKP3 respectively. All keratin particles possessed smooth, uniform and round surface by scanning electron microscope (SEM). FKP1, FKP2 and FKP3 had higher glass transition temperature examined by thermogravimetry (TG). Fourier transform infrared spectroscopy (FTIR) revealed that the extracted keratin retained the most of protein backbone, with the breakage of disulfide cross-links and hydrogen bonds.

  12. Níveis de inclusão de farinha de penas na dieta sobre o desempenho e características de carcaça de codornas para corte - DOI: 10.4025/actascianimsci.v28i1.661 Inclusion levels of feather meal in the diet on performance and carcasses characteristics of quail for meat - DOI: 10.4025/actascianimsci.v28i1.661

    Directory of Open Access Journals (Sweden)

    Marcus Ferreira Pessôa

    2006-01-01

    Full Text Available Avaliou-se o desempenho de 240 codornas européias para corte mediante diferentes níveis de inclusão de farinha de penas na dieta. O delineamento experimental utilizado foi o inteiramente casualizado, com 4 tratamentos (0, 3, 6 e 9% de farinha de penas, 5 repetições e 12 animais por unidade experimental. De acordo com os resultados, a farinha de penas pode ser utilizada na dieta de codornas para corte, exceto no período de 1 a 7 dias, em até 9%, sem alterações negativas sobre o desempenho dos animais. Entretanto, foi observado que na medida em que houve aumento da inclusão de farinha de penas na dieta, houve redução do consumo de ração e no rendimento de coxa mais sobrecoxa, assim como aumento do rendimento de dorso mais asas.The performance of 240 European quail for meat was evaluated using different levels of feather meal in the diet. The experiment was conducted with a totally randomized design, consisting of four treatments (0, 3, 6, and 9% of feather meal, five repetitions and twelve animals per experimental unit. Results show that, feather meal can be utilized in the quail for meat diet, except in a period of 1 to 7 days, up to 9%, without significant negative effects on the performance of the animals. However, as the inclusion of feather flour in the diet increased, a reduction in the consumption of feed and in the thigh yield were observed, as well as an increase in back + wing yield.

  13. Feather Vibration as a Stimulus for Sensing Incipient Separation in Falcon Diving Flight

    Science.gov (United States)

    2016-07-07

    material: polyvinyl chloride PVC) was milled out of a block with the acquired surface contour data using a CNC ( Computerized Numerical Control ) 5-axis...Thus the bird in streamlined shape has still a good measure to control its attitude to be in the narrow win- dow of safe angle of incidence. This...feather vibration during flight and the local flow situation. A possible way is to study the bird flight under controlled situation in a wind

  14. Rockets and feathers meet Joseph: Reinvestigating the oil-gasoline asymmetry on the international markets

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Luňáčková, P.

    2015-01-01

    Roč. 49, č. 1 (2015), s. 1-8 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : Rockets and feathers * Asymmetry * Gasoline * Crude oil * Cointegration Subject RIV: AH - Economics Impact factor: 2.862, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452312.pdf

  15. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  16. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  17. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  18. Colour-producing [beta]-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    Energy Technology Data Exchange (ETDEWEB)

    D; Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D. (Yale); (Akron); (Texas)

    2012-03-26

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel {beta}-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of {beta}-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly.

  19. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    Science.gov (United States)

    D'Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D.

    2011-01-01

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel β-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of β-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly. PMID:21307042

  20. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

    Science.gov (United States)

    Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

    1999-01-01

    We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

  1. Multiple UV reflectance peaks in the iridescent neck feathers of pigeons

    Science.gov (United States)

    McGraw, Kevin J.

    Recent studies of colorful plumage signals in birds have been aided by the finding that birds can see ultraviolet (UV) light and thus may communicate using colors invisible to humans. Some of the pioneering and more pivotal work on avian color vision was performed with domestic pigeons (Columba livia), yet surprisingly there have been few detailed reports of the UV-reflecting properties of pigeon feathers. Here, I use UV-VIS fiber-optic spectrometry to document the full-spectrum reflectance characteristics of iridescent purple and green neck plumage in pigeons. Neck feathers that appear purple to the human eye exhibit four reflectance peaks-two in the UV and one in the blue and red regions-and thus exhibit a UV-purple hue. Neck feathers that appear green to the human eye are characterized by five spectral peaks: two in the UV (UVA and UVB), a predominant green peak, and secondary violet and red peaks, conferring a UV-purple-green color. Such elaborate UV coloration suggests that birds may use an even more complex and `hidden' UV signaling system than previously thought.

  2. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2017-11-01

    Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.

  3. Deadly hairs, lethal feathers--convergent evolution of poisonous integument in mammals and birds.

    Science.gov (United States)

    Plikus, Maksim V; Astrowski, Aliaksandr A

    2014-07-01

    Hairs and feathers are textbook examples of the convergent evolution of the follicular appendage structure between mammals and birds. While broadly recognized for their convergent thermoregulatory, camouflage and sexual display functions, hairs and feathers are rarely thought of as deadly defence tools. Several recent studies, however, show that in some species of mammals and birds, the integument can, in fact, be a de facto lethal weapon. One mammalian example is provided by African crested rats, which seek for and chew on the bark of plants containing the highly potent toxin, ouabain. These rats then coat their fur with ouabain-containing saliva. For efficient toxin retention, the rodents have evolved highly specialized fenestrated and mostly hollow hair shafts that soak up liquids, which essentially function as wicks. On the avian side of the vertebrate integumental variety spectrum, several species of birds of New Guinea have evolved resistance to highly potent batrachotoxins, which they acquire from their insect diet. While the mechanism of bird toxicity remains obscure, in a recently published issue of the journal, Dumbacher and Menon explore the intriguing idea that to achieve efficient storage of batrachotoxins in their skin, some birds exploit the basic permeability barrier function of their epidermis. Batrachotoxins become preferentially sequestered in their epidermis and are then transferred to feathers, likely through the exploitation of specialized avian lipid-storing multigranular body organelles. Here, we discuss wider implications of this intriguing concept. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Traceability of poultry viscera meal by stable isotopes in broiler feathers

    International Nuclear Information System (INIS)

    Araujo, Priscila Cavalca de; Sartori, Jose Roberto; Pezzato, Antonio Celso; Stradiotti, Ana Cristina; Pelicia, Vanessa Cristina; Ducatti, Carlos

    2011-01-01

    The objective of this work was to evaluate the presence of poultry viscera meal (VM) in the diet of broiler chickens, through the feather analyses by stable isotopes of carbon ( 13 C/ 12 C) and nitrogen ( 15 N/ 14 N) and mass spectrophotometry. Seven hundred and twenty Cobb male broiler chicks were subjected to the following treatments: vegetable diet based on corn and soybean meal, from 1 to 42 days of age; diet with 8% poultry viscera meal, from 1 to 42 days of age; vegetable diet from 1 to 21 days, and diet with VM from 22 to 42 days; vegetable diet from 1 to 35 days, and diet with VM from 36 to 42 days; diet with VM from 1 to 21 days and, and vegetable diet from 22 to 42 days; diet with VM from 1 to 35 days, and vegetable diet from 36 to 42 days. Feather samples were collected from four birds per treatment at 7, 14, 21, 28, 35 and 42 days of age, which were subjected to isotopic analysis for carbon ( 13 C/ 12 C) and nitrogen ( 15 N/ 14 N) by mass spectrometry. The use of the stable C and N isotope technique in feathers allow the VM detection in broiler chicken diet after 21 days of VM inclusion. (author)

  5. Study on elements concentrations on seabird feathers by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Theophilo, Carolina Y.S.; Moreira, Edson G.; Figueira, Rubens C.L.; Colabuono, Fernanda I.

    2017-01-01

    Seabirds are very sensitive to environmental changes and because of their large longevity they are also sensitive to cumulative impacts. These birds usually occupy the higher trophic levels. White-chinned petrel (Procellaria aequinoctialis) and black-browed albatross (Thalassarche melanophris) are Procellariiformes, which is a seabird order, composed of 4 families. In the last years, researches are being done and actions are being taken to reduce the mortality of albatrosses and petrels caused by human activities. Due to the great ecological importance of these birds and the developed work with Procellariiformes, this study purpose is to quantify the Br, Cl, Cu, K, Mg, Mn, Na and V elements in white-chinned petrel and black-browed albatross feathers. Bird specimens were killed accidentally by pelagic longline fisheries operating off southern Brazil. Feathers were cleaned with acetone and then milled in a cryogenic mill. Instrumental Neutron Activation Analysis (INAA) was used for quantification of the element concentrations and measurements of induced activities were performed in a HPGe detector for gamma ray spectrometry. The obtained results on feathers showed that concentrations in these birds are not higher than others studies with the same species and, with exception of Br, there are no significant differences between elements mean concentrations in the two seabirds. (author)

  6. The proteomics of feather development in pied flycatchers (Ficedula hypoleuca) with different plumage coloration.

    Science.gov (United States)

    Leskinen, Paula K; Laaksonen, Toni; Ruuskanen, Suvi; Primmer, Craig R; Leder, Erica H

    2012-12-01

    The genetic theory of morphological evolution postulates that form evolves largely by changing the expression proteins that are functionally conserved. It follows that understanding the function of proteins during different phases of development as well as the mechanisms by which the functions are modified is a prerequisite for understanding evolutionary change. Male pied flycatchers exhibit marked phenotypic variation in their breeding plumage. This variation has repeatedly been shown to have adaptive significance, but the molecular basis of this variation is not known. Here, we characterize the proteome of developing pied flycatcher feathers from differently pigmented males and also introduce a new method for examining the effect sizes of expression differences in protein interaction networks. Approximately 300 proteins were identified in the developing feathers of males. Gene products associated with cellular transport, cell metabolism and protein synthesis formed a large part of the developing feather proteome. Sixty-five proteins associated with the development of the epidermis and/or pigmentation were detected in the data. The examination of expression level differences of protein-protein interaction networks revealed an immunological signalling-related network to exhibit significantly higher expression in black compared to brown males. Additionally, indications of differences in energy balance and oxidative stress related characteristics were detected. Together, these results provide new insight into the molecular mechanisms and evolutionary significance of plumage colour variation. © 2012 Blackwell Publishing Ltd.

  7. Chicken feather peptone: A new alternative nitrogen source for pigment production by Monascus purpureus.

    Science.gov (United States)

    Orak, Tugba; Caglar, Ozge; Ortucu, Serkan; Ozkan, Hakan; Taskin, Mesut

    2018-04-10

    Peptones are accepted as one of the most favourable nitrogen sources supporting pigment synthesis in Monascus purpureus. The present study was performed to test the feasibility of chicken feather peptone (CFP) as nitrogen source for pigment production from M. purpureus ATCC16365. CFP was compared with fish peptone (FP) and protease peptone (PP) in order to elucidate its effectiveness on pigment production. CFP was prepared from waste feathers using hydrolysis (KOH) and neutralization (H 2 SO 4 ) methods. The protein content of CFP was determined as 67.2 g/100 g. Optimal concentrations of CFP and glucose for pigment production were determined as 3 and 20 g/L, respectively. A medium pH of 5.5 and an incubation period of 7-days were found to be more favourable for pigment production. In CFP, PP and FP media, yellow pigment absorbances were 2.819, 2.870 and 2.831, red pigment absorbances were 2.709, 2.304 and 2.748, and orange pigment absorbances were 2.643, 2.132 and 2.743, respectively. Sugar consumption and mycelia growth showed the similar trends in CFP, FP and PP media. This study indicates that the peptone from chicken feathers may be a good nutritional substrate for pigment production from M. purpureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Study on elements concentrations on seabird feathers by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Theophilo, Carolina Y.S.; Moreira, Edson G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil); Figueira, Rubens C.L.; Colabuono, Fernanda I., E-mail: carolina.theophilo@gmail.com, E-mail: emoreira@ipen.br, E-mail: rfigueira@usp.br, E-mail: ficolabuono@gmail.com [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Instituto Oceanográfico

    2017-07-01

    Seabirds are very sensitive to environmental changes and because of their large longevity they are also sensitive to cumulative impacts. These birds usually occupy the higher trophic levels. White-chinned petrel (Procellaria aequinoctialis) and black-browed albatross (Thalassarche melanophris) are Procellariiformes, which is a seabird order, composed of 4 families. In the last years, researches are being done and actions are being taken to reduce the mortality of albatrosses and petrels caused by human activities. Due to the great ecological importance of these birds and the developed work with Procellariiformes, this study purpose is to quantify the Br, Cl, Cu, K, Mg, Mn, Na and V elements in white-chinned petrel and black-browed albatross feathers. Bird specimens were killed accidentally by pelagic longline fisheries operating off southern Brazil. Feathers were cleaned with acetone and then milled in a cryogenic mill. Instrumental Neutron Activation Analysis (INAA) was used for quantification of the element concentrations and measurements of induced activities were performed in a HPGe detector for gamma ray spectrometry. The obtained results on feathers showed that concentrations in these birds are not higher than others studies with the same species and, with exception of Br, there are no significant differences between elements mean concentrations in the two seabirds. (author)

  9. Lightning protection design and testing of an all composite wet wing for the Egrett

    Science.gov (United States)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  10. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  11. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  12. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  13. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  14. Effect of Sex-linked Feathering Genes on Body Weight, Age At Sexual Maturity, Feed Intake and Subsequent Laying Performance of Baladi Chickens

    Directory of Open Access Journals (Sweden)

    A. AI-Sobayel

    1997-01-01

    Full Text Available A total of 320 twenty week-old slow and rapid feathering Saudi Arabian Baladi pullers were used to assess the effect of sex-linked feathering genes on body weight, age at sexual maturity, feed intake and subsequent laying performance. Similar numbers of rapid feathering Leghorns pullets were included in the study for the purpose of comparison. The experimental birds of each genotypic group were randomly divided into four replicates and subjected to standard management practices. Slow feathering Baladi pullers had higher (P<0.05 adult body weight, rate of mortality, and feed intake and a similar age at sexual maturity but showed lower (P< 0.05 hen-day, and hen-housed egg production and feed conversion compared with rapid feathering Baladi pullets. Rapid feathering Leghorns had higher (P<0.05 adult body weight. age at sexual maturity, hen-day egg production, rate of mortality and feed intake and lower feed intake/kg eggs than rapid and slow feathering Baladi. However, rapid feathering Baladi and Leghorns had similar hen-housed egg production and feed intake per dozen eggs and had better (l’<0.05' performance than slow feathering Baladi.

  15. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  16. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  17. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Figure 12. Thin spline plate graphics for the species belonging to the genus Cerceris. Figure 13. Fore wing landmarks of the significant wing characteristics in the honeybee Apis mellifera. Linnaeus. stated as the traditional wing morphometry that enables the practical discrimination of the honeybee (Apis sp ...

  18. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  19. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  20. Metal Levels in Shorebird Feathers and Blood During Migration Through Delaware Bay.

    Science.gov (United States)

    Tsipoura, Nellie; Burger, Joanna; Niles, Lawrence; Dey, Amanda; Gochfeld, Michael; Peck, Mark; Mizrahi, David

    2017-05-01

    We investigated levels of arsenic mercury, lead, cadmium, and chromium in Red Knot (Calidris canutus), Semipalmated Sandpipers (Calidris pusilla), and Sanderling (Calidris alba) migrating through Delaware Bay, New Jersey to determine if contaminant levels are likely to be causing negative effects on the populations of these shorebirds, to compare among species, and to explore differences among individuals collected early and late during their migration stopover. We analyzed blood and feathers, both nonlethal ways of exploring contaminants in birds. Blood contaminant analysis provides a direct measure of recent dietary exposure, whereas feathers reflect body burden at the time of feather molt. We found some differences among species and between early and late samples. Levels of Hg and Pb were higher in Sanderling blood collected early (36.52 ± 8.45 and 145.00 ± 12.56 ng/g ww respectively) compared with later (16.21 ± 6.03 and 33.60 ± 4.05 ng/g ww respectively) during the migration stopover. Blood Pb levels of Sanderling in the early period were higher than those of the other two species (75.38 ± 15.52 ng/g ww in Red Knot and 42.39 ± 8.42 ng/g ww in Semipalmated Sandpipers). Semipalmated Sandpipers had lower blood As levels than the other two species (254.33 ± 40.15 and 512.00 ± 66.79 ng/g ww early and late respectively) but higher feather levels (914.01 ± 167.29 and 770.00 ± 116.21 ng/g dw early and late respectively), and their blood As was higher in the later sampling period compared with the early sampling period. Arsenic levels in shorebird tissues were relatively high and may reflect levels in horseshoe crab eggs, their primary diet item in Delaware Bay. In Red Knot, blood Cr levels were elevated in the later samples (572.17 ± 62.82 ng/g ww) compared to the early samples (382.81 ± 95.35 ng/g ww) and to the other species. The mean values of the metals analyzed were mostly below effect levels-the level that has a

  1. [Determination of 10 elements in the feather of brown-eared pheasant by ICP and AAS].

    Science.gov (United States)

    Wu, Yu-Zhen; Zhang, Feng; Wang, Meng-Ben; Zhao, Gen-Gui

    2008-03-01

    Crossoptilon mantchuricum (brown-eared pheasant) is an endemic to northern China and one of the state first-protection animals, which is now confined to scattered localities in Guandi Mountains, Guancen Mountains, Luliang Ranges of western Shanxi, and the mountains of north-western Hebei, western Beijing and central Shaanxi. Its range is fragmented by habitat loss because of human activity and other intervention, and isolated populations are resulting in facing the extinction risk from further forest destroyed and other pressures. The trace elements are very important to the growth and development of brown-eared pheasant, and these elements in the feather are closely correlated to the contents in the organs of the bird. By research on the elements contents in the feather, the authors are able to get more information about the growth, development, reproduction, immunity and metabolism function for this bird. The aim of this study is to try providing scientific basis for further enhancing the protection and the artificial breeding. Ten elements including Mo, Zn, Ni, Fe, Mn, Cr, Cu, K, Pb and Cd were determined in the feather of brown-eared pheasant by ICP and AAS, respectively. For the analysis two samples were from Luya Mountain Natural Reserve and Pangquangou Natural Reserve, and one was from Taiyuan Zoo, Shanxi. The contents of the elements in the feather of wild and captive brown-eared pheasants were compared each other. The results showed that the contents of the eight elements the feather from the Zoo were lower than those from Luya Mountain Natural Reserve and Pangquangou Natural Reserve. Moreover, Fe is the highest among those ten elements, Cd was not found, and Mo and Cr were much lower than the others. It is suggested that varying habitats have obvious effects on the elements contents of wild bird body, and wild habitant is more beneficial to the bird growth and development. Applying the results to wild animal management would be favorable to the protection

  2. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  3. Lead accumulation in feathers of nestling black-crowned night-herons (Nycticorax nycticorax) experimentally treated in the field

    Science.gov (United States)

    Golden, N.H.; Rattner, B.A.; Cohen, J.B.; Hoffman, D.J.; Russek-Cohen, E.; Ottinger, M.A.

    2003-01-01

    Although lead can attain high concentrations in feathers, interpretation of the biological significance of this phenomenon is difficult. As part of an effort to develop and validate non-invasive methods to monitor contaminant exposure in free-ranging birds, lead uptake by feathers of nestling black-crowned night-herons (Nycticorax nycticorax) was evaluated in a controlled exposure study. Four to six day-old heron nestlings (one/nest) at Chincoteague Bay, Virginia, received a single intraperitoneal injection of dosing vehicle (control; n=7) or a dose of lead nitrate in water (0.01, 0.05, or 0.25 mg Pb/g body weight of nestling; n=6 or 7/dose) chosen to yield feather lead concentrations found at low to moderately polluted sites. Nestlings were euthanized at 15 days of age. Lead accumulation in feathers was associated with concentrations in bone, kidney, and liver (r = 0.32 - 0.74, p < 0.02), but exhibited only modest dose-dependence. Blood delta-aminolevulinic acid dehydratase activity was inhibited by lead, although effects on other biochemical endpoints were marginal. Tarsus growth rate was inversely related to feather lead concentration. Culmen growth rate was depressed in nestlings treated with the highest dose of lead, but not correlated with feather lead concentration. These findings provide evidence that feathers of nestling herons are a sensitive indicator of lead exposure and have potential application for the extrapolation of lead concentrations in other tissues and the estimation of environmental lead exposure in birds.

  4. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  5. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  6. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  7. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  8. Air Base Wing and Air Mobility Wing Consolidating on AMC-LED Joint Bases: A Delphi Study

    Science.gov (United States)

    2014-06-13

    AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY GRADUATE RESEARCH PAPER Mason E. MacGarvey... DELPHI STUDY GRADUATE RESEARCH PAPER Presented to the Faculty Graduate School of Engineering Management Air Force Institute of Technology...iv AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY Mason E. MacGarvey, BS, MBA

  9. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  10. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  11. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  12. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  13. Chemical evaluation of winged beans ( Psophocarpus ...

    African Journals Online (AJOL)

    Chemical evaluation of winged beans ( Psophocarpus Tetragonolobus ), Pitanga cherries ( Eugenia uniflora) and orchid fruit ( Orchid fruit myristic a) ... The acid value ranged between 0.71 and 2.82 mg/KOH/g while iodine value ranged between 91.15 and 144.57. The refractive index ranged between 1.465 and 1.474 in all ...

  14. ``Schooling'' of wing pairs in flapping flight

    Science.gov (United States)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  15. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium.

    Science.gov (United States)

    Börstler, Jessica; Lühken, Renke; Rudolf, Martin; Steinke, Sonja; Melaun, Christian; Becker, Stefanie; Garms, Rolf; Krüger, Andreas

    2014-06-01

    The reliability of the length of wing radial vein r(2/3) as a character for the morphological discrimination of the two potential arbovirus vectors Culex pipiens s.s. and Cx. torrentium from Germany was reassessed, after this character had been neglected for more than 40 years. Additionally, multivariate morphometric analyses were applied to evaluate wing shape variation between both species. Although high-throughput molecular tools are now available to differentiate the two species, a simple, low-cost routine alternative may be useful in the absence of a molecular laboratory, such as under semi-field conditions. A thin-plate splines transformation confirmed that primarily the shrinkage of vein r(2/3) is responsible for the wing differences between the two species. In the bivariate analysis, the r(2/3)/r3 indices of Cx. pipiens s.s. and Cx. torrentium were 0.185 and 0.289, respectively, resulting in a correct classification of more than 91% of all tested specimens. Using the absolute length of vein r(2/3) alone still allowed for more than 90% accurate discrimination. Furthermore, classification accuracy of linear discriminant analysis exceeded 97%. © 2014 The Society for Vector Ecology.

  16. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  17. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S

    2017-01-23

    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    International Nuclear Information System (INIS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-01-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from −2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings

  19. Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations.

    Science.gov (United States)

    Speller, Camilla F; Nicholas, George P; Yang, Dongya Y

    2011-07-28

    The ability to accurately identify bird species is crucial for wildlife law enforcement and bird-strike investigations. However, such identifications may be challenging when only partial or damaged feathers are available for analysis. By applying vigorous contamination controls and sensitive PCR amplification protocols, we found that it was feasible to obtain accurate mitochondrial (mt)DNA-based species identification with as few as two feather barbs. This minimally destructive DNA approach was successfully used and tested on a variety of bird species, including North American wild turkey (Meleagris gallopavo), Canada goose (Branta canadensis), blue heron (Ardea herodias) and pygmy owl (Glaucidium californicum). The mtDNA was successfully obtained from 'fresh' feathers, historic museum specimens and archaeological samples, demonstrating the sensitivity and versatility of this technique. By applying appropriate contamination controls, sufficient quantities of mtDNA can be reliably recovered and analyzed from feather barbs. This previously overlooked substrate provides new opportunities for accurate DNA species identification when minimal feather samples are available for forensic analysis.

  20. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  2. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  3. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  4. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti.

    Science.gov (United States)

    Jirakanjanakit, N; Leemingsawat, S; Thongrungkiat, S; Apiwathnasorn, C; Singhaniyom, S; Bellec, C; Dujardin, J P

    2007-11-01

    Variation in wing length among natural populations of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) is associated with different vectorial capacities. Geometric morphometrics allowed us to use a more powerful estimator of wing size ('centroid size'), as well as to visualize the variation of wing shape, to describe the effects of density or food variation at larval stage on 20 anatomical landmarks of the wing of A. aegypti. Almost perfect correlations between (centroid) size and larval density or size and larval food were observed in both sexes: a negative correlation with increasing density and a positive one with increasing amount of food. The allometric component of shape change was always highly significant, with stronger contribution of size to shape under food effects. Within each experiment, either food or density effects, and excluding extreme conditions, allometric trends were similar among replicates and sexes. However, they differed between the two experiments, suggesting different axes of wing growth. Aedes aegypti size is highly sensible to food concentration or population density acting at larval stages. As larger individuals could be better vectors, and because of the stronger effect of food concentration on size, vector control activities should pay more attention in eliminating containers with rich organic matter. Furthermore, as a simple reduction in larval density could significantly increase the size of the survivors, turning them into potentially better vectors, the control activities should try to obtain a complete elimination of the domestic populations.

  5. Structure of a novel winged-helix like domain from human NFRKB protein.

    Directory of Open Access Journals (Sweden)

    Abhinav Kumar

    Full Text Available The human nuclear factor related to kappa-B-binding protein (NFRKB is a 1299-residue protein that is a component of the metazoan INO80 complex involved in chromatin remodeling, transcription regulation, DNA replication and DNA repair. Although full length NFRKB is predicted to be around 65% disordered, comparative sequence analysis identified several potentially structured sections in the N-terminal region of the protein. These regions were targeted for crystallographic studies, and the structure of one of these regions spanning residues 370-495 was determined using the JCSG high-throughput structure determination pipeline. The structure reveals a novel, mostly helical domain reminiscent of the winged-helix fold typically involved in DNA binding. However, further analysis shows that this domain does not bind DNA, suggesting it may belong to a small group of winged-helix domains involved in protein-protein interactions.

  6. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  7. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  8. Performance Comparison between Optimised Camber and Span for a Morphing Wing

    Directory of Open Access Journals (Sweden)

    Christopher Simon Beaverstock

    2015-09-01

    Full Text Available Morphing technology offers a strategy to modify the wing geometry, and the wing planform and cross-sectional parameters can be optimised to the flight conditions. This paper presents an investigation into the effect of span and camber morphing on the mission performance of a 25-kg UAV, with a straight, rectangular, unswept wing. The wing is optimised over two velocities for various fixed wing and morphing wing strategies, where the objective is to maximise aerodynamic efficiency or range. The investigation analyses the effect of the low and high speed velocity selected, the weighting of the low and high velocity on the computation of the mission parameter, the maximum allowable span retraction and the weight penalty on the mission performance. Models that represent the adaptive aspect ratio (AdAR span morphing concept and the fish bone active camber (FishBAC camber morphing concept are used to investigate the effect on the wing parameters. The results indicate that generally morphing for both span and camber, the aerodynamic efficiency is maximised for a 30%–70% to 40%–60% weighting between the low and high speed flight conditions, respectively. The span morphing strategy with optimised fixed camber at the root can deliver up to 25% improvement in the aerodynamic efficiency over a fixed camber and span, for an allowable 50% retraction with a velocity range of 50–115 kph. Reducing the allowable retraction to 25% reduces the improvement to 8%–10% for a 50%–50% mission weighting. Camber morphing offers a maximum of 4.5% improvement approximately for a velocity range of 50–90 kph. Improvements in the efficiency achieved through camber morphing are more sensitive to the velocity range in the mission, generally decreasing rapidly by reducing or increasing the velocity range, where span morphing appears more robust for an increase in velocity range beyond the optimum. However, where span morphing requires considerable modification to the

  9. Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11.

    Science.gov (United States)

    Yang, Lian; Wang, Hui; Lv, Yi; Bai, Yingguo; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Yao, Bin

    2016-01-13

    Keratinase is essential to degrade the main feather component, keratin, and is of importance for wide industrial applications. In this study, Bacillus amyloliquefaciens strain K11 was found to have significant feather-degrading capacity (completely degraded whole feathers within 24 h). The keratinase encoding gene, kerK, was expressed in Bacillus subtilis SCK6. The purified recombinant KerK showed optimal activity at 50 °C and pH 11.0 and degraded whole feathers within 0.5 h in the presence of DTT. The recombinant plasmids harboring kerK were extracted from B. subtilis SCK6 and transformed into B. amyloliquefaciens K11. As a result, the recombinant B. amyloliquefaciens K11 exhibited enhanced feather-degrading capacity with shortened reaction time within 12 h and increased keratinolytic activity (1500 U/mL) by 6-fold. This efficient and rapid feather-degrading character makes the recombinant strain of B. amyloliquefaciens K11 have potential for applications in feather meal preparation and waste feather disposal.

  10. POSTMORTEM DIAGNOSIS OF ONE POPULATION OF BLUE-WINGED TEAL (Anas discors IN THE STATE OF VERACRUZ

    Directory of Open Access Journals (Sweden)

    Lorena López-De-Buen

    2011-11-01

    Full Text Available The health status of 30 Blue-winged Teal (Anas discors hunted in Amatitlán, in the central region of the state of Veracruz, Mexico, was assessed. The ducks were weighed, the wings were morphometrically measured, and of each organ the appearance, weight and length were evaluated, making comparisons between males and females, and between adults and immatures. The males weighed more than the females (n = 30, F(1,28 = 9.525, P = 0.004 and the adults more than the immatures (n = 19, F(1,17 = 6.526, P = 0.020. In all the groups the length of the wings was similar, as well as the internal organs had normal color, texture and location. The weight and size of lungs (5.4 g, 441 mm, liver (8.8 g, 608 mm, pancreas (1.5 g, 572 mm, gizzard (20.03 g, 448 mm and intestines (21 g were also similar among groups; however, the heart (3.8 g, 290 mm was larger in the males (n = 30, F(1,28 = 13.513, P = 0.0009, and the kidneys (3 g, 505 mm were heavier in the immature males (n = 19, F(1,17 = 7.417, P = 0.014. It was concluded that the Blue-winged Teal were in good health when hunted.

  11. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts.

    Science.gov (United States)

    Weiss, Ingrid M; Kirchner, Helmut O K

    2010-12-01

    The feathers in the train of the peacock serve not for flying but for sexual display. They are long, slender beams loaded in bending by their own weight. An outer circular conical shell, the cortex, is filled by a closed foam of 7.6% relative density, the medulla, both of feather keratin. Outer diameter and thickness of the cortex decrease linearly from the body toward the tip. This self-similar geometry leads to a division of labor. The cortex (longitudinal Young's modulus 3.3 GPa, transverse modulus 1 GPa) provides 96% of the longitudinal strength and bending rigidity of the feather. The medulla (Young's modulus 10 MPa) provides 96% of the transverse compressive rigidity. Fracture stress of the cortex, both longitudinal and transverse, is 120 MPa. Copyright © 2010 Wiley-Liss, Inc., A Wiley Company.

  12. A high prevalence of beak and feather disease virus in non-psittacine Australian birds.

    Science.gov (United States)

    Amery-Gale, Jemima; Marenda, Marc S; Owens, Jane; Eden, Paul A; Browning, Glenn F; Devlin, Joanne M

    2017-07-01

    Beak and feather disease virus (BFDV) is a circovirus and the cause of psittacine beak and feather disease (PBFD). This disease is characterized by feather and beak deformities and is a recognized threat to endangered Psittaciformes (parrots and cockatoos). The role that non-psittacine birds may play as reservoirs of infection is unclear. This study aimed to begin addressing this gap in our knowledge of PBFD. Liver samples were collected from birds presented to the Australian Wildlife Health Centre at Zoos Victoria's Healesville Sanctuary for veterinary care between December 2014 and December 2015, and tested for BFDV DNA using polymerase chain reaction coupled with sequencing and phylogenetic analyses.Results/Key findings. Overall BFDV was detected in 38.1 % of 210 birds. BFDV was detected at high prevalence (56.2 %) in psittacine birds, in the majority of cases without any observed clinical signs of PBFD. We also found that BFDV was more common in non-psittacine species than previously recognized, with BFDV detected at 20.0 % prevalence in the non-psittacine birds tested, including species with no clear ecological association with psittacines, and without showing any detectable clinical signs of BFDV infection. Further research to determine the infectivity and transmissibility of BFDV in non-psittacine species is indicated. Until such work is undertaken the findings from this study suggest that every bird should be considered a potential carrier of BFDV, regardless of species and clinical presentation. Veterinary clinics and wildlife rehabilitation facilities caring for birds that are susceptible to PBFD should reconsider biosecurity protocols aimed at controlling BFDV.

  13. Handheld XRF analysis of a 16th century Mexican Feather Headdress

    International Nuclear Information System (INIS)

    Karydas, A.G; Padilla-Alvarez, R.; Drozdenko, M.; Korn, M.; Moreno Guzmán, M.O.

    2014-01-01

    The 16th century feather headdress in the Weltmuseum Wien (WMW), an affiliated institution of the Kunsthistorisches Museum (KHM) in Vienna, is the most renowned of the few remaining pre-Columbian “Arte Plumaria” artefacts, which were made by feather artisans (Amantecas) using traditional techniques in the territory of present day Mexico. The recorded history of the headdress begins in 1596, when it is first mentioned in the estate inventory of the art collection of Archduke Ferdinand II of Tyrol at Ambras Castle. Due to its age, the variety of materials used, its history and former restoration treatments, the artefact is today one of the most sensitive and demanding care objects of the museum. Despite the object’s long history, very little documentation on past interventions exists. From 2010-2012, a binational research project between Mexico (Instituto Nacional de Antropología e Historia) and Austria (Weltmuseum Wien) performed a systematic investigation focused on the identification of manufacturing techniques and the various materials, the old restoration measures and its conservation. Handheld x-ray fluorescence (XRF) spectrometers are extremely useful for the study of art works in museum collections. The possibility of bringing the instrument to inspect the objects on-site facilitates the study of artefacts that cannot be moved either due to their extreme fragility or due to their large size and/or weight. In addition, non-destructive analysis constitutes a preferred alternative to invasive sampling techniques, which are usually not allowed in the study of unique or extremely valuable objects. The aim of the XRF analysis was twofold: to investigate the possible presence of inorganic toxic elements that could be associated to the use of pesticides in past conservation interventions and; to characterize the chemical composition of the authentic gold and the gilded brass ornaments, which were added in the 19th century. The results of the XRF analytical

  14. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  15. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    Science.gov (United States)

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  16. Photonic Crystals with an Eye Pattern Similar to Peacock Tail Feathers

    Directory of Open Access Journals (Sweden)

    Minghui Wang

    2016-08-01

    Full Text Available A facile fabrication of photonic crystals (PCs with an eye pattern similar to peacock tail feathers has been demonstrated by self-assembly of colloidal particles in a sandwich mode. The sandwich mode is formed by superhydrophilic flat substrate sandwiching the poly(styrene-methyl methacrylate-arylic acid (Poly(St-MMA-AA latex suspension (2 wt% by the hydrophobic one. The patterns are characterized by optical microscopy images, reflection spectra, and the relative scanning electronic microscope images. This work will provide beneficial help for the understanding of the self-assembly process of colloidal crystals.

  17. Effects of declawing and cage shape on productivity, feathering, and fearfulness of egg-type chickens.

    Science.gov (United States)

    Vanskike, K P; Adams, A W

    1983-04-01

    Declawing day-old egg-type chicks did not significantly (P less than .05) alter 20-week body weight. However, declawed hens tended to mature earlier and lay more eggs than the intact hens. Hens housed in shallow cages tended to be better feathered than those housed in deep cages. Neither declawing nor cage shape had a significant effect on the time required for birds to return to feeding after exposure to a noise stimulus, which was used as an indicator of fearfulness.

  18. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  19. Adjoint-based optimization for flapping wings

    Science.gov (United States)

    Xu, Min; Wei, Mingjun

    2012-11-01

    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  20. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.