WorldWideScience

Sample records for wing leading-edge deflection

  1. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  2. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  3. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  4. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  5. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability

  6. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  7. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  8. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  9. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100wind turbines at much higher Reynolds numbers suggest that even large flying animals could potentially exploit LEV-based force augmentation during slow hovering flight, take-offs or landing

  10. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  11. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    Science.gov (United States)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  12. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  13. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  14. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  15. Topology optimization of compliant adaptive wing leading edge with composite materials

    Directory of Open Access Journals (Sweden)

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  16. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  17. Simulating Bird Strike on Aircraft Composite Wing Leading Edge.

    OpenAIRE

    Ericsson, Max

    2012-01-01

    In this master thesis project the possibility to model the response of a wing when subjected to bird strike using finite elements is analyzed. Since this transient event lasts only a few milliseconds the used solution method is explicit time integration. The wing is manufactured using carbon fiber laminate. Carbon fiber laminates have orthotropic material properties with different stiffness in different directions. Accordingly, there are damage mechanisms not considered when using metal that ...

  18. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  19. Shuttle Wing Leading Edge Root Cause NDE Team Findings and Implementation of Quantitative Flash Infrared Thermography

    Science.gov (United States)

    Burke, Eric R.

    2009-01-01

    Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.

  20. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    Science.gov (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  1. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    Science.gov (United States)

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  2. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  3. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  4. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  5. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    Science.gov (United States)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  6. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  7. IMPROVING THE AERODYNAMICS OF A TRANSPORT AIRCRAFT WING USING A DELTA PLANFORM WINGTIP LEADING EDGE EXTENSION

    Directory of Open Access Journals (Sweden)

    D. Gueraiche

    2018-01-01

    Full Text Available The article explores the possibility of improving the aerodynamic properties of a supercritical-airfoil wing, typical for a modern passenger aircraft, using delta planform passive devices of large relative areas, installed along the leading edge at the wing tip. Delta extensions of various configurations were considered to be used as wingtip devices, potentially improving or completely replacing classical R. Whitcomb winglets. As a result of two- and three-dimensional CFD simulations performed on DLR-F4 wing-body prototype, the potential advantage of these devices was confirmed, particularly when they are installed in a combination with an elliptical planform, largely swept, raked winglet in terms of reducing the induced drag and increasing the aerodynamic lift-to-drag ratio at flight angles of attack. The growth in lift-to-drag ratio applying these devices owes it solely to the drop in drag, without increasing the lift force acting on the wing. In comparison to the classical winglets that lead to a general increase in lifting and lateral forces acting on the wing structure, resulting in a weight penalty, the Wingtip Ledge Edge Triangular Extension (WLETE yields the same L/D ratio increase, but with a much smaller increase in the wing loading. A study has been made of the characteristics of the local (modified airfoil in the WLETE zone in a two-dimensional flow context, and a quantitative analysis has been conducted of the influence of WLETE on both the profile and induced drag components, as well as its influence on the overall lift coefficient of the wing. The resulted synthesis of the WLETE influence on the wing L/D ratio will consist of its influence on each of these components. A comparison of the efficiency of using delta extensions against classical winglets was carried out in a multidisciplinary way, where in addition to the changes in aerodynamic coefficients of lift and drag, the increments of magnitude and distribution of the loads

  8. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  9. Method for a Leading Edge Slat on a Wing of an Aircraft

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2016-01-01

    A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  10. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    Science.gov (United States)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  11. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings

    Science.gov (United States)

    Luckring, James M.

    2010-01-01

    A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.

  12. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  13. Thermostructural Evaluation of Joggle Region on the Shuttle Orbiter's Wing Leading Edge

    Science.gov (United States)

    Walker, Sandra P.; Warren, Jerry E.

    2012-01-01

    An investigation was initiated to determine the cause of coating spallation occurring on the Shuttle Orbiter's wing leading edge panels in the slip-side joggle region. The coating spallation events were observed, post flight, on differing panels on different missions. As part of the investigation, the high re-entry heating occurring on the joggles was considered here as a possible cause. Thus, a thermostructural evaluation was conducted to determine the detailed state-of-stress in the joggle region during re-entry and the feasibility of a laboratory test on a local joggle specimen to replicate this state-of-stress. A detailed three-dimensional finite element model of a panel slip-side joggle region was developed. Parametric and sensitivity studies revealed significant stresses occur in the joggle during peak heating. A critical interlaminar normal stress concentration was predicted in the substrate at the coating interface and was confined to the curved joggle region. Specifically, the high interlaminar normal stress is identified to be the cause for the occurrence of failure in the form of local subsurface material separation occurring in the slip-side joggle. The predicted critical stresses are coincident with material separations that had been observed with microscopy in joggle specimens obtained from flight panels.

  14. Turbulent Wing-Leading-Edge Correlation Assessment for the Shuttle Orbiter

    Science.gov (United States)

    King, Rudolph A.; Vaughan, Matthew P.

    2009-01-01

    This study was conducted in support of the Orbiter damage assessment activity that takes place for each Shuttle mission since STS-107 (STS - Space Transportation System). As part of the damage assessment activity, the state of boundary layer (laminar or turbulent) during reentry needs to be estimated in order to define the aerothermal environment on the Orbiter. Premature turbulence on the wing leading edge (WLE) is possible if a surface irregularity promotes early transition and the resulting turbulent wedge flow contaminates the WLE flow. The objective of this analysis is to develop a criterion to determine if and when the flow along the WLE experiences turbulent heating given an incoming turbulent boundary layer that contaminates the attachment line. The data to be analyzed were all obtained as part of the MH-13 Space Shuttle Orbiter Aerothermodynamic Test conducted on a 1.8%-scale Orbiter model at Calspan/University of Buffalo Research Center in the Large Energy National Shock Tunnels facility. A rational framework was used to develop a means to assess the state of the WLE flow on the Orbiter during reentry given a contaminated attachment-line flow. Evidence of turbulent flow on the WLE has been recently documented for a few STS missions during the Orbiter s flight history, albeit late in the reentry trajectory. The criterion developed herein will be compared to these flight results.

  15. Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  16. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  17. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  18. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  19. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  20. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.

    Science.gov (United States)

    Nabawy, Mostafa R A; Crowther, William J

    2017-07-01

    The presence of a stable leading edge vortex (LEV) on steadily revolving wings increases the maximum lift coefficient that can be generated from the wing and its role is important to understanding natural flyers and flapping wing vehicles. In this paper, the role of LEV in lift augmentation is discussed under two hypotheses referred to as 'additional lift' and 'absence of stall'. The 'additional lift' hypothesis represents the traditional view. It presumes that an additional suction/circulation from the LEV increases the lift above that of a potential flow solution. This behaviour may be represented through either the 'Polhamus leading edge suction' model or the so-called 'trapped vortex' model. The 'absence of stall' hypothesis is a more recent contender that presumes that the LEV prevents stall at high angles of attack where flow separation would normally occur. This behaviour is represented through the so-called 'normal force' model. We show that all three models can be written in the form of the same potential flow kernel with modifiers to account for the presence of a LEV. The modelling is built on previous work on quasi-steady models for hovering wings such that model parameters are determined from first principles, which allows a fair comparison between the models themselves, and the models and experimental data. We show that the two models which directly include the LEV as a lift generating component are built on a physical picture that does not represent the available experimental data. The simpler 'normal force' model, which does not explicitly model the LEV, performs best against data in the literature. We conclude that under steady conditions the LEV as an 'absence of stall' model/mechanism is the most satisfying explanation for observed aerodynamic behaviour. © 2017 The Author(s).

  1. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  2. Comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing

    Science.gov (United States)

    Murman, Earll M.; Powell, Kenneth G.

    1987-01-01

    Calculations are presented for a 75-deg swept flat plate wing tested at a freestream Mach number of 1.95 and 10 degrees angle of attack. Good agreement is found between computational data and previous experimental pitot pressure measurements in the core of the vortex, suggesting that the total pressure losses predicted by the Euler equation solvers are not errors, but realistic predictions. Data suggest that the magnitude of the total pressure loss is related to the circumferential velocity field through the vortex, and that it increases with angle of attack and varies with Mach number and sweep angle.

  3. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  4. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  5. Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Hassan Pahange

    2016-08-01

    Full Text Available Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics (SPH method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance (ANOVA is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.

  6. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    Science.gov (United States)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best

  7. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  8. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE

    2004-01-01

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel.

  9. Leading-edge vortex lifts swifts.

    Science.gov (United States)

    Videler, J J; Stamhuis, E J; Povel, G D E

    2004-12-10

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.

  10. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    Science.gov (United States)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  11. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  12. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  13. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation

    Science.gov (United States)

    Saini, Aditya

    The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient. The performance of the algorithm is assessed using computational and experimental data in the literature for airfoils under different ow conditions. The results show good correlation between the actual and predicted aerodynamic quantities within the pre-stall regime, even for a rotating blade section. Sensing the deviation of the aerodynamic behavior from the linear regime requires additional information on the location of ow separation on the airfoil surface. Bio-inspired artificial hair sensors were explored as a part of the current research for stall detection. The response of such artificial micro-structures can identify critical ow characteristics, which relate directly to the stall behavior. The response of the microfences was recorded via an optical microscope for

  14. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    2010-05-01

    Full Text Available Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function.Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head.In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  15. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Science.gov (United States)

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  16. Deflection

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-08-01

    Full Text Available In this paper, deflection prediction of a cantilever beam subjected to static co-planar loading is investigated using the Differential Transformation Method (DTM and the Homotopy Perturbation Method (HPM. An axial compressive force, FA, and a transverse force, QA, are applied to the beam. It is considered that these forces are follower forces, i.e., they will rotate with the end section of the beam during the deformation, and they will remain tangential and perpendicular at all times, respectively. Comparison between DTM and HPM through numerical results demonstrates that DTM can be an exact and highly efficient procedure for solving these kind of problems. Also the influence of the effect of some parameters appeared in mathematical formulations such as area moment of inertia (I, Young’s modulus (E, transverse force (QA and compressive force (FA on slope variation are investigated in the present study. The results show that slope parameter as well as compressive force increases. By increasing the QA, slope parameter is increased significantly. By increasing the E, due to stiffness of the material, slope variation is decreased. It is evident that when the size of the beam section increases, the area moment of inertia (I will be increased and so the slope variation will be decreased.

  17. Low-Speed Wind-Tunnel Investigation of Blowing Boundary-Layer Control on Leading- and Trailing-Edge Flaps of a Large-Scale, Low-Aspect-Ratio, 45 Swept-wing Airplane Configuration

    Science.gov (United States)

    Maki, Ralph L.

    1959-01-01

    Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.

  18. The leading-edge vortex of yacht sails

    Science.gov (United States)

    Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    We experimentally show, for the first time, that a stable Leading-Edge Vortex (LEV) can be formed on an asymmetric spinnaker, which is a high-lift sail used by yachts to sail downwind. We tested a 3D printed rigid sail in a water flume at a chord-based Reynolds number of ca. 104. We found that on the leeward side of the sail (the suction side), the flow separates at the leading edge reattaching further downstream and forming a stable LEV. The LEV grows in diameter from the root to the tip of the sail, where it merges with the tip vortex. We detected the LEV using the γ criterion, and we verified its stability over time. The lift contribution provided by the LEV was computed solving a complex potential model of each sail section. This analysis indicated that the LEV provides a substantial contribution to the total sail's lift. These findings suggest that the maximum lift of low-aspect-ratio wings with a sharp leading edge, such as spinnakers, can be enhanced by promoting a stable LEV. This work was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT).

  19. Control of leading edge vortex breakdown by blowing

    Science.gov (United States)

    Visser, K. D.; Iwanski, K. P.; Nelson, R. C.; Ng, T. T.

    1988-01-01

    An investigation into the effects of using a jet of air to control the vortex breakdown position on a 70 degree delta wing is presented. The specific objectives focused on optimizing the blowing positions in terms of maximum lift increments obtained for minimum blowing rates. The tests were conducted at chord Reynolds numbers of 150,000, 200,000, and 250,000 at angles of incidence of 30 and 35 degrees. Visualization and force data is presented to show the effect of the jet on the wing aerodynamic characteristics. The results indicate a jet position located at and aligned parallel to the leading edge to be the optimum. Nearness to the apex and tangency to the upper surface were also crucial factors. The influence of the jet on the leading edge vortex structure was examined using laser Doppler anemometry. Velocity surveys through the vortex showed that at high blowing rates the parallel velocity in the outer swirling region of the vortex increased and the normal velocity decreased. This resulted in a decrease in the swirling angle in the outer region. The peak core velocity was reduced and the vortex breakdown was delayed.

  20. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes.

    Directory of Open Access Journals (Sweden)

    Matthias Weger

    Full Text Available Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations.Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis, a larger tip displacement angle (the angle between the tip of the serration and the base of the serration and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations.Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations.

  1. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes)

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2016-01-01

    Background Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations. Results Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis), a larger tip displacement angle (the angle between the tip of the serration and the base of the serration) and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations. Conclusions Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations. PMID:26934104

  2. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    Science.gov (United States)

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  3. Roughness Effects on the Formation of a Leading Edge Vortex

    Science.gov (United States)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface. This patterning is an important natural flow control mechanism that is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. The increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test this theory, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Particle Image Velocimetry (PIV) captured images of the LEV generated by the plate when towed upwards through the particle-seeded flow. Codes written in MatLab were used to automatically track and determine the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding provided by NSF REU site Grant EEC 1358991 and CBET 1628600.

  4. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Science.gov (United States)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  5. Roughness Effects on the Formation of a Leading Edge Vortex

    Science.gov (United States)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2017-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface that acts as a natural energy capture mechanism. This patterning is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. Increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test how this roughness effects LEV formation, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Images were captured of the LEV generated when the plate was towed upwards through the particle-seeded flow. These images were used to determine the XY velocity of the particles using a technique called Digital Particle Image Velocimetry (DPIV). Codes written in MATLAB were used to track and measure the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding for this research project was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (REU Supplement CBET 1628600 under CBET 1335848).

  6. On the effects of leading edge vortex generators on an OA209 airfoil

    OpenAIRE

    Heine, Benjamin; Mulleners, Karen; Gardner, Anthony; Mai, Holger

    2009-01-01

    Leading edge vortex generators have been found to significantly increase the aerodynamic performance of an airfoil under dynamic stall conditions. However, the principle of operation of these devices is still unclear. Therefore static wind and water tunnel experiments as well as CFD simulations have been conducted on a rotary aircraft wing profile OA209. A POD analysis applied to the vector fields generated by PIV measurements showed that the vortex generators break larger flow structures...

  7. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  8. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  9. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    Science.gov (United States)

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°    15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  10. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  11. Potential environmental effects of the leading edge hydrokinetic energy technology.

    Science.gov (United States)

    2017-05-01

    The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...

  12. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  13. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  14. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    Science.gov (United States)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  15. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    Abstract. A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discrim- inators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a ...

  16. A Unit-Problem Investigation of Blunt Leading-Edge Separation Motivated by AVT-161 SACCON Research

    Science.gov (United States)

    Luckring, James M.; Boelens, Okko J.

    2011-01-01

    A research effort has been initiated to examine in more detail some of the challenging flow fields discovered from analysis of the SACCON configuration aerodynamics. This particular effort is oriented toward a diamond wing investigation specifically designed to isolate blunt leading-edge separation phenomena relevant to the SACCON investigations of the present workshop. The approach taken to design this new effort is reviewed along with the current status of the program.

  17. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  18. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  19. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  20. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows

    Science.gov (United States)

    Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.

    2018-04-01

    A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.

  1. PIV Study on Flow around Leading-Edge Slat of 30P30N Airfoil

    Science.gov (United States)

    Ando, Ryosuke; Onishi, Yusaku; Sakakibara, Jun

    2017-11-01

    We measured flow velocity distribution around leading-edge slat using PIV. Simultaneously, noise measurement using microphone was also performed. A leading-edge slat and main wing model having a chord length of 160 mm was placed in the tunnel with free stream velocity of about 26m/s and chord Reynolds number of 2.8 x 105. Angle of attack was changed from 4 degrees to 10 degrees at two degree intervals. In this experiment, we investigated the relationship between the unsteady flow condition and the noise. At 4 degrees in the angle of attack, vortices shedding from the slat cusp were moved to the downstream. At 6 degrees or more, flow velocity distributions show that vortices were reattached on the slat lower surface and the flow in the slat cove recirculated. In FFT analysis of noise measurement, at 6 degrees in the angle of attack, there were some peaks on low frequency area and dominant peak on high frequency area was found. At 8 degrees or more, there were also some peaks on low frequency area. But dominant peak on high frequency area disappeared.

  2. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  3. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    Science.gov (United States)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  4. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    Science.gov (United States)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  5. Leading edge analysis of transcriptomic changes during pseudorabies virus infection

    Directory of Open Access Journals (Sweden)

    Damarius S. Fleming

    2016-12-01

    Full Text Available Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO (GSE74473 database.

  6. Leading edge analysis of transcriptomic changes during pseudorabies virus infection.

    Science.gov (United States)

    Fleming, Damarius S; Miller, Laura C

    2016-12-01

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP) which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi) that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA) to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO) (GSE74473) database.

  7. An experimental investigation of the shear-layer and acoustic sources produced by a leading edge slat

    Science.gov (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph; Turbulence; Flow Noise Laboratory Team

    2013-11-01

    Leading edge slats are a common addition to airfoils as part of a high lift configuration employed during take-off and landing; the unsteady flow caused by these slats is a major contributor to the overal airframe noise. As the next generation of aircraft seeks to reduce these noise concerns, a better understanding of the sources of aeroacoustic noise generation is sought. Particle Image Velocimetry (PIV) and simultaneous multipoint measurements of the unsteady surface pressure are used herein to investigate the unsteady flow around a leading edge slat coupled with an airfoil for several different configurations and a range of Reynolds numbers (Re = 156 , 000 to Re = 1 . 2 million based on the wing chord). Shear-layer development off the slat cusp and the related unsteady vortex structures are examined in detail to better establish and understand the mechanisms responsible for the generation of aeroacoustic slat noise. The authors are grateful for the support provided by GARDN.

  8. Leading Edge Asynchronous Propeller (LEAPTech) Distributed Electric Propulsion (DEP) Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Semi-Tandem Electric Distributed Wing Zip Aviation Advanced Concept Project" was renamed to LEAPTech DEP to better align with the content of the work. This...

  9. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  10. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    Science.gov (United States)

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology.

  11. Impact of Leading-Edge Orientation and Shape on Performance of Compressor Blades

    National Research Council Canada - National Science Library

    Powell, Jonathan D

    2005-01-01

    This thesis presents a Computation Fluid Dynamics (CFD) analysis of the aerodynamic performance of circular and elliptical leading edges of compressor blades, with a range of leading edge droop angles...

  12. The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2012-12-01

    Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.

  13. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    Science.gov (United States)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  14. Mechanisms of leading edge protrusion in interstitial migration

    Science.gov (United States)

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  15. Rotary balance data for a typical single-engine general aviation design for an angle of attack range of 8 deg to 90 deg. 1: Low wing model C. [wind tunnel tests

    Science.gov (United States)

    Mulcay, W. J.; Rose, R. A.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine, low wing, general aviation model (model C). The configurations tested included the basic airplane and control deflections, wing leading edge and fuselage modification devices, tail designs and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering an omega b/2v range from 0 to .9.

  16. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model C

    Science.gov (United States)

    Hultberg, R. S.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin g tunnel are presented in plotted form for a 1/6 scale, single engine, high wing, general aviation model. The configurations tested included the basic airplane and control deflections, wing leading edge devices, tail designs, and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering a spin coefficient range from 0 to 0.9.

  17. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    Science.gov (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  18. What is the critical height of leading edge roughness for aerodynamics?

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Olsen, Anders Smærup

    2016-01-01

    -C2-18 and at three different Reynolds numbers with two different leading edge roughness tape heights. Firstly, an analysis of the momentum thickness as function of Reynolds number was carried out based on the boundary layer theory by Thwaites. Secondly, the wind tunnel measurements combined......In this paper the critical leading edge roughness height is analyzed in two cases: 1) leading edge roughness influencing the lift-drag ratio and 2) leading edge roughness influencing the maximum lift. The analysis was based on wind tunnel measurements on the airfoils NACA0015, Risoe-B1-18 and Risoe...

  19. A Lifting Surface Theory for Wings Experiencing Leading-Edge Separation

    Science.gov (United States)

    1977-06-30

    CSR -CHCRÜ TO SPAN RATIO N-l N’SECIION NO. INDICAIOR FORM SCALES TO KURHALUt E0U»T|CNS Fl • 2.» ALEA /IP|»P| I fi ■ AIFA...Documentation Center Cameron Station, Bldg. 5 Alexandria, VA 22314 12 Nielsen Engineering & Research, Inc. 510 Clyde Avenue Mountain View, CA 94043 1 RASA

  20. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds

    International Nuclear Information System (INIS)

    Muijres, Florian T; Christoffer Johansson, L; Hedenström, Anders; Winter, York

    2014-01-01

    Slow and hovering animal flight creates high demands on the lift production of animal wings. Steady state aerodynamics is unable to explain the forces required and the most commonly used mechanism to enhance the lift production is a leading edge vortex (LEV). Although LEVs increase the lift, they come at the cost of high drag. Here we determine the flow above the wing of lesser long-nosed bats at slow and cruising speed using particle image velocimetry (PIV). We find that a prominent LEV is present during the downstroke at slow speed, but not at cruising speed. Comparison with previously published LEV data from a robotic flapper inspired by lesser long-nosed bats suggests that bats should be able to generate LEVs at cruising speeds, but that they avoid doing so, probably to increase flight efficiency. In addition, at slow flight speeds we find LEVs of opposite spin at the inner and outer wing during the upstroke, potentially providing a control challenge to the animal. We also note that the LEV stays attached to the wing throughout the downstoke and does not show the complex structures found in insects. This suggests that bats are able to control the development of the LEV and potential control mechanisms are discussed. (papers)

  1. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  2. Investigation of the Three-Dimensional Hinge Moment Characteristics Generated by the ONERA-M6 Wing with an Aileron

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The hinge moment characteristics for ONERA-M6 wing with aileron configuration have been investigated numerically based on the different gaps and deflecting angles. The results show that the effects on the wing made by the deflecting aileron are notable. Comparing with the nonaileron case, the chordwise pressure coefficient distribution for the wing with aileron has shown the totally different trends. The small gap can force the air flow through and form the extremely strong spraying flow. It can directly destroy the previously formed leading edge vortex (LEV. Due to the presence of the positive deflecting angle, the trailing edge vortex (TEV will begin to generate at the trailing edge of the aileron. The induced secondary LEV will be mixed with the developing TEVs and form the stronger TEVs at the downstream position. Comparing with the subsonic flow, the curve for the supersonic flow has shown a good linear. The corresponding hinge moments are also extremely sensitive to the changing angle of attack, and the slope of curves is also bigger than that of the subsonic flow. The bigger gap and deflecting angle can result in the curve of hinge moment bending upward at high angle of attack. The corresponding pressure cloud and streamlines have also been obtained computationally and analyzed in detail.

  3. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 4. Boston Arts Academy

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  4. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 6. Perspectives Charter School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  5. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    Science.gov (United States)

    Wilroy, Jacob Aaron

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.

  6. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  7. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.; Mitsudharmadi, Hatsari; Winoto, S. H.; Lua, K. B.; Low, H. T.

    2016-01-01

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out

  8. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    Science.gov (United States)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating

  9. An Elongated Leading Edge Facilitates Rotation Flap Closure: In Vivo Demonstration.

    Science.gov (United States)

    Lichon, Vanessa; Barbosa, Naiara; Gomez, Doug; Goldman, Glenn

    2016-01-01

    Variation in the design of a rotation flap may affect wound closure tension. Lengthening the leading edge of a rotation flap has been a method of reducing the tension of closure in the primary motion. An in vitro study negating this tenant has been published. The authors set out to design an in vivo experiment to determine if lengthening the leading edge of a rotation flap has the effect of reducing closure tension in the primary motion of the repair. An animal study approved by Institutional Animal Care and Use Committee was undertaken in a pig model. A tension-measuring apparatus was designed using Teflon-coated wires and digital tensiometers. Rotation flaps of a standard design and with elongated leading edges were incised on the flanks of pigs under general anesthesia. Flap closure tensions were measured at points along the leading edge of the flap and in the secondary motion. Elongating the leading edge of a flap led to a statistically significant reduction in closure tension in the primary motion of the flap and at the flap tip. The secondary motion closure tensions were essentially unaffected. The authors confirm that elongating the leading edge of a standard rotation flap will reduce closure tension in the primary flap motion.

  10. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  11. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  12. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper.Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0.It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain

  13. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  14. Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise

    Directory of Open Access Journals (Sweden)

    Thomas Geyer

    2012-01-01

    Full Text Available The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil.

  15. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells☆

    Science.gov (United States)

    Falke, Joseph J.; Ziemba, Brian P.

    2014-01-01

    The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca2+ signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca2+, while highlighting key questions for future research. PMID:24451847

  16. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells.

    Science.gov (United States)

    Falke, Joseph J; Ziemba, Brian P

    2014-09-01

    The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca(2+) signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca(2+), while highlighting key questions for future research. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  18. Modification of the NACA 632-415 leading edge for better aerodynamic performance

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.

    2002-01-01

    Double stall causes more than one power level when stall-regulated wind turbines operate in stall. This involves significant uncertainty on power production and loads. To avoid double stall, a new leading edge was designed for the NACA 632-415 airfoil, an airfoil that is often used in the tip...... region of wind turbines. A numerical optimization tool incorporating XFOIL was used with a special formulation for the airfoil leading edge shape. The EllipSys2D CFD code was used to analyze the modified airfoil. In theory and in wind tunnel tests, the modified airfoil showed smooth and stable stall...... stall and aerodynamic damping characteristics for the modified airfoil and the NACA 632-415 airfoil were the same. The modified airfoil with leading edge roughness in general had better characteristics compared with the NACA 632-415 airfoil. ©2002 ASME...

  19. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex.

    Science.gov (United States)

    Suraneni, Praveen; Fogelson, Ben; Rubinstein, Boris; Noguera, Philippe; Volkmann, Niels; Hanein, Dorit; Mogilner, Alex; Li, Rong

    2015-03-01

    Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis. © 2015 Suraneni et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Development flight tests of JetStar LFC leading-edge flight test experiment

    Science.gov (United States)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  1. Effect of guide wall on jet impingement cooling in blade leading edge channel

    International Nuclear Information System (INIS)

    Zhao, Qing-Yang; Chung, Heeyoon; Choi, Seok Min; Cho, Hyung Hee

    2016-01-01

    The characteristics of fluid flow and heat transfer, which are affected by the guide wall in a jet impinged leading edge channel, have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis via the shear stress transport turbulence model and gamma theta transitional turbulence model. A constant wall heat flux condition has been applied to the leading edge surface. The jet-to-surface distance is constant, which is three times that of the jet diameter. The arrangement of the guide wall near the jet hole is set as a variable. Results presented in this study include the Nusselt number contour, velocity vector, streamline with velocity, and local Nusselt number distribution along the central line on the leading edge surface. The average Nusselt number and average pressure loss between jet nozzle and channel exit are calculated to assess the thermal performance. The application of the guide wall is aimed at improving heat transfer uniformity on the leading edge surface. Results indicated that the streamwise guide wall ensures the vertical jet impingement flow intensity and prevents the flow after impingement to reflux into jet flow. Thus, a combined rectangular guide wall benefits the average heat transfer, thermal performance and heat transfer distribution uniformity

  2. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  3. The Leading Edge of Early Childhood Education: Linking Science to Policy for a New Generation

    Science.gov (United States)

    Lesaux, Nonie K., Ed.; Jones, Stephanie M., Ed.

    2016-01-01

    "The Leading Edge of Early Childhood Education" aims to support the effort to simultaneously scale up and improve the quality of early childhood education by bringing together relevant insights from emerging research to provide guidance for this critical, fledgling field. It reflects the growing recognition that early childhood…

  4. Leading-Edge Noise Prediction of General Airfoil Profiles with Spanwise-Varying Inflow Conditions

    NARCIS (Netherlands)

    Miotto, Renato Fuzaro; Wolf, William Roberto; De Santana, Leandro Dantas

    2018-01-01

    This paper presents a study of the leading-edge noise radiated by an airfoil undergoing a turbulent inflow. The noise prediction of generic airfoil profiles subjected to spanwise-varying inflow conditions is performed with the support of Amiet’s theory and the inverse strip technique. In the

  5. New approach to the suction force at the leading edge of a profile with zero thickness

    NARCIS (Netherlands)

    Sparenberg, JA; de Jager, EM

    2004-01-01

    This paper considers the suction force at the leading edge of a profile with zero thickness in an incompressible and inviscid fluid flow. The theory is linear, and the approach to the suction force is from the innerside of the profile. It is shown that the suction force can be considered as an

  6. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, A.; van der Heide, Emile

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be

  7. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  8. Leading-Edge Noise Prediction of General Airfoil Profiles with Spanwise-Varying Inflow Conditions

    NARCIS (Netherlands)

    Miotto, Renato Fuzaro; Wolf, William Roberto; De Santana, Leandro Dantas

    This paper presents a study of the leading-edge noise radiated by an airfoil undergoing a turbulent inflow. The noise prediction of generic airfoil profiles subjected to spanwise-varying inflow conditions is performed with the support of Amiet’s theory and the inverse strip technique. In the

  9. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  10. Deformation measurement in the wind tunnel for an UAV leading edge with a morphing mechanism

    NARCIS (Netherlands)

    Radestock, M.; Riemenschneider, J.; Monner, H.P.; Huxdorf, O.; Werter, N.P.M.; De Breuker, R.

    2016-01-01

    In a wind tunnel experiment a morphing wing with span extension and camber morphing was investigated. The considered aircraft is an unmanned aerial vehicle (UAV) with a span of 4 m. During the investigations a half wing model was analysed with pressure and structural measurement. The half wing model

  11. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  12. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  13. Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels

    Science.gov (United States)

    Delorme-Walker, Violaine; Seo, Ji-Yeon; Gohla, Antje; Fowler, Bruce; Bohl, Ben; DerMardirossian, Céline

    2015-01-01

    Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase–, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion. PMID:26324884

  14. A fence barrier method of leading edge cell capture for explorative biochemical research.

    Science.gov (United States)

    Wager, Lucas J; Murray, Rachael Z; Thompson, Erik W; Leavesley, David I

    2017-09-03

    The scratch or wound-healing assay is used ubiquitously for investigating re-epithelialisation and has already revealed the importance of cells comprising the leading edge of healing epithelial wounds. However it is currently limited to studying the effect of known biochemical agents on the tissue of choice. Here we present an adaptation that extends the utility of this model to encompass the collection of cells from the leading edge of migrating epithelial sheets making available explorative biochemical analyses. The method is scalable and does not require expensive apparatus, making it suitable for large and small laboratories alike. We detail the application of our method and exemplify proof of principle data derived from primary human keratinocyte cultures.

  15. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics

    Science.gov (United States)

    Luckring, James M.; Boelens, Okko J.

    2015-01-01

    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  16. Methodology for heat flux investigation on leading edges using infrared thermography

    Czech Academy of Sciences Publication Activity Database

    Corre, Y.; Gardarein, J.-L.; Dejarnac, Renaud; Gaspar, J.; Gunn, J. P.; Aumeunier, M.-H.; Courtois, X.; Missirlian, M.; Rigollet, F.

    2017-01-01

    Roč. 57, č. 1 (2017), č. článku 016009. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : IR thermography * leading edge * heat flux * limiter Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/57/1/016009/meta

  17. Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

    OpenAIRE

    A. Badarudin; C. S. Oon; S. N. Kazi; N. Nik-Ghazali; Y. J. Lee; W. T. Chong

    2013-01-01

    An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appro...

  18. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    Science.gov (United States)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  19. ARF1 recruits RAC1 to leading edge in neutrophil chemotaxis.

    Science.gov (United States)

    Mazaki, Yuichi; Onodera, Yasuhito; Higashi, Tsunehito; Horinouchi, Takahiro; Oikawa, Tsukasa; Sabe, Hisataka

    2017-10-02

    The small GTPase ARF1 mediates membrane trafficking mostly from the Golgi, and is essential for the G protein-coupled receptor (GPCR)-mediated chemotaxis of neutrophils. In this process, ARF1 is activated by the guanine nucleotide exchanger GBF1, and is inactivated by the GTPase-activating protein GIT2. Neutrophils generate the Gβγ-PAK1-αPIX-GIT2 linear complex during GPCR-induced chemotaxis, in which αPIX activates RAC1/CDC42, which then employs PAK1. However, it has remained unclear as to why GIT2 is included in this complex. We investigated the association between ARF1 and RAC1/CDC42 during the fMLP-stimulated chemotaxis of HL60 cells. We found that the silencing of GBF1 significantly impaired the recruitment of RAC1 to the leading edges, but not PAK1, αPIX, RAC2, or CDC42. A significant population of RAC1 colocalized with ARF1 at the leading edges in stimulated cells, whereas fMLP activated both ARF1 and ARF5. Consistently, the silencing of ARF1, but not ARF5, impaired the recruitment of RAC1, whereas the silencing of RAC1 did not affect the recruitment of ARF1 to the leading edges. Our results indicated that the activation of ARF1 triggers the plasma membrane recruitment of RAC1 in GPCR-mediated chemotaxis, which is essential for cortical actin remodeling. Thus, membrane remodeling at the leading edges appears to precede actin remodeling in chemotaxis. Together with the fact that GIT2, which inactivates ARF1, is an integral component of the machinery activating RAC1, we proposed a model in which the ARF1-RAC1 linkage enables the regulation of ARF1 by repetitive on/off cycles during GPCR-mediated neutrophil chemotaxis.

  20. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    Science.gov (United States)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  1. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reduced innate immunity of Cuban Treefrogs at leading edge of range expansion.

    Science.gov (United States)

    Goetz, Scott M; Romagosa, Christina M; Appel, Arthur G; Guyer, Craig; Mendonça, Mary T

    2017-12-01

    During geographic range expansion, populations of non-indigenous species at the invasion front may benefit from directing resources away from immune defense. To test this hypothesis, we investigated the strength of two innate immune components in populations of invasive Cuban Treefrogs (Osteopilus septentrionalis) in a long-colonized area (core region) and at the invasion front (leading-edge region). First, we compared the region-specific metabolic response of frogs injected with an endotoxin that induces systemic inflammation (lipopolysaccharide, LPS) to sham-injected control frogs pooled from both regions. Males and females were analyzed independently because we detected a sex-related difference in mass-independent metabolism of control frogs, with males exhibiting a significantly higher metabolic rate (F 1, 21  = 29.02, P leading-edge populations, there was no significant difference in the metabolic rate of LPS-injected and control frogs (males, P  = 0.195; females, P  = 0.132). Second, we directly compared bacterial killing ability of frog blood plasma between regions. Bactericidal ability of plasma was significantly greater in frogs from the core region in comparison with those at the leading edge (F 1, 26   = 28.67, P < 0.001). For both immune components that we examined, populations from the core exhibited stronger immune responses. Our findings support hypotheses predicting an inverse relationship between immunity and range expansion. © 2018 Wiley Periodicals, Inc.

  3. Rapid and dynamic arginylation of the leading edge β-actin is required for cell migration.

    Science.gov (United States)

    Pavlyk, Iuliia; Leu, Nicolae A; Vedula, Pavan; Kurosaka, Satoshi; Kashina, Anna

    2018-04-01

    β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration. We found that arginylated β-actin is concentrated at the leading edge of lamellipodia and that this enrichment is abolished after serum starvation as well as in contact-inhibited cells in confluent cultures, suggesting that arginylated β-actin at the cell leading edge is coupled to active migration. Arginylated actin levels exhibit dynamic changes in response to cell stimuli, lowered after serum starvation and dramatically elevating within minutes after cell stimulation by readdition of serum or lysophosphatidic acid. These dynamic changes require active translation and are not seen in confluent contact-inhibited cell cultures. Microinjection of arginylated actin antibodies into cells severely and specifically inhibits their migration rates. Together, these data strongly suggest that arginylation of β-actin is a tightly regulated dynamic process that occurs at the leading edge of locomoting cells in response to stimuli and is integral to the signaling network that regulates cell migration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Numerical and experimental study on the ability of dynamic roughness to alter the development of a leading edge vortex

    Science.gov (United States)

    Griffin, Christopher D.

    Dynamic stall is an unsteady aerodynamic phenomenon garnering much research interest because it occurs in a variety of applications. For example, dynamic stall is known to occur on helicopter rotor blades, wind turbines, high maneuvering military aircraft, and flapping wings. Dynamic stall occurs when an aerodynamic lifting device, such as an airfoil, wing, or turbomachine blade, undergoes a rapid pitching motion. It also occurs on lifting devices that are impulsively started at high angles of attack. Dynamic stall can "delay" aerodynamic stall to angles of attack that are significantly beyond the static stall angle of attack. During dynamic stall a large leading edge vortex (LEV) is formed, which creates greater fluid acceleration over the wing or airfoil, thus sustaining lift. As this vortex is shed downstream stall eventually occurs and there is an abrupt increase in drag and a large shift in pitching moment. Research has been performed to better understand the mechanisms occurring during dynamic stall in an effort to find ways to best take advantage of the increased lift associated with dynamic stall, but avoid the downfalls that occur once stall is initiated. Few attempts have been made to alter the LEV, and these attempts have used methods associated with laminar boundary layer separation control. Although these methods have shown promise, they suffer from the drawback that they exhaust more energy than is gained by flow control, while also only being effective at certain flight regimes. The research described herein documents the first study on the ability of dynamic roughness to alter the LEV encountered on a rapidly pitching airfoil. Both numerical and experimental studies were performed, including two-dimensional and three-dimensional computational fluid dynamics (CFD) simulations as well as stereo and planar particle image velocimetry (PIV) experiments. Evidence for the ability of small scale dynamic roughness to alter the development of the LEV was

  5. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    Science.gov (United States)

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  6. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 5. Life Academy of Health and Bioscience

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  7. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 8. High Tech High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  8. Case Studies of Leading Edge Small Urban High Schools. Personalization Strategic Designs: 9. MetWest High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  9. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 7. TechBoston Academy

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  10. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 3. University Park Campus School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  11. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 1. Academy of the Pacific Rim

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  12. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 2. Noble Street Charter High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  13. An analytically-based method for predicting the noise generated by the interaction between turbulence and a serrated leading edge

    Science.gov (United States)

    Mathews, J. R.; Peake, N.

    2018-05-01

    This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.

  14. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  15. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    Science.gov (United States)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  16. Event review: How Interesting Archaeology Is! - Captivating and Leading-Edge Student Research

    Directory of Open Access Journals (Sweden)

    Atsushi Uemine

    2015-03-01

    Full Text Available Kyoto City Archaeological Museum situated in Kansai region, the central part of Honshu Island, Japan, has held special exhibitions in collaboration with external organizations every year since 2011. From 2011 to 2013, several universities and even a high school have participated projects, and in 2014, the Kansai Archaeological Association for Students (KAAS played an important role as partner, producing the exhibit “ここまでわかる!考古学―学生が魅せる最先端” (“How Interesting Archaeology Is! - Captivating and Leading-Edge Student Research”.

  17. A Time-Walk Correction Method for PET Detectors Based on Leading Edge Discriminators.

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P; Judenhofer, Martin S; Di, Kun; Yang, Yongfeng; Cherry, Simon R

    2017-09-01

    The leading edge timing pick-off technique is the simplest timing extraction method for PET detectors. Due to the inherent time-walk of the leading edge technique, corrections should be made to improve timing resolution, especially for time-of-flight PET. Time-walk correction can be done by utilizing the relationship between the threshold crossing time and the event energy on an event by event basis. In this paper, a time-walk correction method is proposed and evaluated using timing information from two identical detectors both using leading edge discriminators. This differs from other techniques that use an external dedicated reference detector, such as a fast PMT-based detector using constant fraction techniques to pick-off timing information. In our proposed method, one detector was used as reference detector to correct the time-walk of the other detector. Time-walk in the reference detector was minimized by using events within a small energy window (508.5 - 513.5 keV). To validate this method, a coincidence detector pair was assembled using two SensL MicroFB SiPMs and two 2.5 mm × 2.5 mm × 20 mm polished LYSO crystals. Coincidence timing resolutions using different time pick-off techniques were obtained at a bias voltage of 27.5 V and a fixed temperature of 20 °C. The coincidence timing resolution without time-walk correction were 389.0 ± 12.0 ps (425 -650 keV energy window) and 670.2 ± 16.2 ps (250-750 keV energy window). The timing resolution with time-walk correction improved to 367.3 ± 0.5 ps (425 - 650 keV) and 413.7 ± 0.9 ps (250 - 750 keV). For comparison, timing resolutions were 442.8 ± 12.8 ps (425 - 650 keV) and 476.0 ± 13.0 ps (250 - 750 keV) using constant fraction techniques, and 367.3 ± 0.4 ps (425 - 650 keV) and 413.4 ± 0.9 ps (250 - 750 keV) using a reference detector based on the constant fraction technique. These results show that the proposed leading edge based time-walk correction method works well. Timing resolution obtained

  18. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  19. Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    Science.gov (United States)

    Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.

  20. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  1. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  2. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    Science.gov (United States)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  3. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  4. Experimental investigation of wavy leading edges on rod-aerofoil interaction noise

    Science.gov (United States)

    Chen, Weijie; Qiao, Weiyang; Tong, Fan; Wang, Liangfeng; Wang, Xunnian

    2018-05-01

    Experimental studies are performed to investigate the effect of wavy leading edges on rod-aerofoil interaction noise in an open-jet anechoic wind tunnel. NACA 0012 aerofoils with straight and wavy leading edges (denoted by SLE and WLE, respectively) are embedded in the wake of a circular rod. The WLEs are in the form of sinusoidal profiles of amplitude, A, and wavelength, W. Parametric studies of the amplitude and wavelength characteristics are conducted to understand the effect of WLEs on noise reduction. It is observed that the sound power reduction level is sensitive to both the amplitude and wavelength of the WLEs. The WLE with the largest amplitude and smallest wavelength can achieve the most considerable noise reduction effect of up to 4 dB. The influences of rod diameter, d, and free-stream velocity, U0, on the noise reduction effect of the WLEs are also investigated. In addition, a parametric study of the influence of separating rod-aerofoil distance on the acoustic radiation of the SLE case and on the sound power reduction level of the WLE cases is performed. It is found that a critical spacing exists where the acoustic radiation and noise reduction can be divided into two different "modes".

  5. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  6. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2017-01-01

    Full Text Available This article presents a numerical investigation of the effects of leading-edge protuberances on airfoil stall and post-stall performance. An improved delayed detached eddy simulation (IDDES method was adopted. As a result, to clarify the effects of ‘bi-periodic’ phenomenon around stall region, it was found that the flow separation at troughs was the main inducement of aerodynamic lift degradation within pre-stall regime and the flow pattern where vortices diverged was predominant. It was also found that the variations in flow patterns led to the gentle stall process. Furthermore, to study the statistical characteristics of unsteady vortex shedding, corresponding spectrum characteristics were also analyzed from another perspective, suggesting that the vortex shedding frequency was higher where vortices converged. Eventually, the improved performances of tubercled airfoil within post-stall regime could be attributed to the strong streamwise vortices generated by the leading-edge protuberances. Deploying the methods of vortex dynamics, the generation and evolution of the streamwise vortices were depicted. It turned out that the primary and secondary vortices were induced by spanwise pressure gradient at airfoil surface; meanwhile, vortex stretching played a key role in primary vortex evolution, which initially enhanced the strength of vortices corresponding to the acceleration of streamwise velocity.

  7. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    Science.gov (United States)

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  8. Development of an aerodyanmic theory capable of predicting surface loads on slender wings with vortex flow

    Science.gov (United States)

    Gloss, B. B.; Johnson, F. T.

    1976-01-01

    The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.

  9. Computational Fluid Dynamics Investigation of Vortex Breakdown for a Delta Wing at High Angle of Attack

    National Research Council Canada - National Science Library

    Freeman, Jacob

    2003-01-01

    ... (a) in preparation for investigation of active control of vortex breakdown using steady, along- core blowing A flat delta-shaped half-wing with sharp leading edge and sweep angle of 600 was modeled...

  10. Characterization and Control of Vortex Breakdown over a Delta Wing at High Angles of Attack

    National Research Council Canada - National Science Library

    Mitchell, Anthony

    2000-01-01

    .... The goal of this research is the control of leading-edge vortex breakdown by open-loop, along-the-core blowing near the apex of a delta wing to improve lift and maneuverability at high angles of attack...

  11. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  12. Numerical Prediction of the Impact of Non-Uniform Leading Edge Coatings On the Aerodynamic Performance of Compressor Airfoils

    National Research Council Canada - National Science Library

    Elmstrom, Michael

    2004-01-01

    A computational fluid dynamic (CFD) investigation is presented that provides predictions of the aerodynamic impact of uniform and non-uniform coatings applied to the leading edge of a compressor airfoil in a cascade. Using a NACA 65(12...

  13. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.; Mitsudharmadi, Hatsari; Winoto, S.H.; Low, H.T.; Lua, K.B.

    2017-01-01

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns

  14. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  15. Deflection system of a high-speed streak camera in the form of a delay line

    International Nuclear Information System (INIS)

    Korzhenevich, I.M.; Fel'dman, G.G.

    1993-01-01

    This paper presents an analysis of the operation of a meander deflection system, well-known in oscillography, when it is used to scan the image in a streak-camera tube. Effects that are specific to high-speed photography are considered. It is shown that such a deflection system imposes reduced requirements both on the steepness and on the duration of the linear leading edges of the pulses of the spark gaps that generate the sweep voltage. An example of the design of a meander deflection system whose sensitivity is a factor of two higher than for a conventional system is considered. 5 refs., 3 figs

  16. Next-generation science information network for leading-edge applications

    International Nuclear Information System (INIS)

    Urushidani, S.; Matsukata, J.

    2008-01-01

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines

  17. Next-generation science information network for leading-edge applications

    Energy Technology Data Exchange (ETDEWEB)

    Urushidani, S. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: urushi@nii.ac.jp; Matsukata, J. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)

    2008-04-15

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines.

  18. MHD forced and free convection boundary layer flow near the leading edge

    International Nuclear Information System (INIS)

    Hossain, M.A.; Ahmed, M.

    1988-07-01

    Magnetohydrodynamic forced and free convection flow of an electrically conducting viscous incompressible fluid past a vertical flat plate with uniform heat flux in the presence of a magnetic field acting normal to the plate that moves with the fluid has been studied near the leading edge of the plate. The coupled non-linear equations are solved by the method of superposition for the values of the Prandtl number ranges from 0.01 to 10.0. The velocity and the temperature profiles are presented graphically and the values of the wall shear-stress as well as the heat transfer rate are presented in tabular form showing the effect of the buoyancy force and the applied magnetic field. To show the accuracy of the present method some typical values are compared with the available one. (author). 17 refs, 3 figs, 2 tabs

  19. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Science.gov (United States)

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  20. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  1. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  2. RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance

    Energy Technology Data Exchange (ETDEWEB)

    Langel, Christopher M. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; Chow, Raymond C. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; van Dam, C. P. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2017-10-01

    The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With this motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 633 -418 airfoil

  3. α-Crystallin localizes to the leading edges of migrating lens epithelial cells

    International Nuclear Information System (INIS)

    Maddala, Rupalatha; Vasantha Rao, P.

    2005-01-01

    α-crystallin (αA and αB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of αA and αB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of αB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While αB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of αB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. αA-crystallin, which has 60% sequence identity to αB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of αB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of αB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated αB-crystallin in SB202190-treated migrating lens epithelial cells. αB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, αB-crystallin exhibited a clear co-localization with the actin meshwork, β-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE

  4. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  5. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  6. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    Science.gov (United States)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  7. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  8. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  9. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  10. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  11. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  12. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  13. The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight

    Energy Technology Data Exchange (ETDEWEB)

    Rival, David; Prangemeier, Tim; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Institute of Fluid Mechanics and Aerodynamics

    2009-05-15

    The formation process of leading-edge vortices has been investigated experimentally using Particle Image Velocimetry. Various airfoil kinematics have been tested, including asymmetric and peak-shifted plunging motions, and are evaluated for Re = 30,000 and a reduced frequency range of 0.2{<=}k{<=}0.33. By measuring the growth in the leading-edge vortex during the dynamic-stall process, the vortex pinch-off process is examined based on the concept of an optimal vortex formation time. The various kinematics are then evaluated with respect to their associated vortex strength, timing and convection into the wake. (orig.)

  14. Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    Science.gov (United States)

    Daso, Endwell O. (Inventor); Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Blankson, Isaiah M. (Inventor); Plotkin, Kenneth J. (Inventor)

    2015-01-01

    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.

  15. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators

    Energy Technology Data Exchange (ETDEWEB)

    Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J, E-mail: desco@mce.hggm.e [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)

    2010-08-07

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s{sup -1} when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.

  16. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators

    Science.gov (United States)

    Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.

    2010-08-01

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.

  17. Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge.

    Science.gov (United States)

    Brayford, Simon; Bryce, Nicole S; Schevzov, Galina; Haynes, Elizabeth M; Bear, James E; Hardeman, Edna C; Gunning, Peter W

    2016-05-23

    At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  19. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    Science.gov (United States)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.

  20. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    Science.gov (United States)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  1. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  2. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

    Science.gov (United States)

    Yadong, HUANG; Benmou, ZHOU

    2018-05-01

    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  3. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    Science.gov (United States)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  4. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  5. NUMERICAL AND EXPERIMENTAL INVESTIGATION ON THE FLUTTER OF CANTILEVERED PLATES WITH FREE LEADING EDGE IN AXIAL FLOW

    Directory of Open Access Journals (Sweden)

    I. P. G. SOPAN RAHTIKA

    2017-10-01

    Full Text Available This paper reports the results of the numerical and experimental investigation on the flutter of cantilevered thin flat plates with free leading edge in axial flow. Three methods of in-vacuo modal analyses of the plates are presented and compared in this paper, namely the finite element modal analysis using ANSYS STUDENT Modal, the analytical beam model, and the experimental modal analysis. In this study, the numerical Fluid Structure Interaction was performed using the ANSYS STUDENT Structural Transient Analysis and ANSYS STUDENT CFX to obtain the system response in the time domain. Furthermore, the experimental investigation was conducted in the smooth flow of a wind tunnel to observe the flutter speeds of the plates and their vibration characteristics. The plates’ vibration behaviors were mapped on the normalized air speed. The normalized air speed can be divided into four speed zones based on the experimental plates’ vibration characteristics. A new finding observed during the experiments is the presence of intermittent vibration behavior that is unique to the free leading edge configuration and has not been reported by other researchers in the earlier references of the clamped leading edge configuration. The potential application of this Fluid Structure Interaction configuration to wind harvesting is inquired.

  6. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    Science.gov (United States)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  7. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    Science.gov (United States)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  8. Unsteady behavior of leading-edge vortex and diffuser stall in a centrifugal compressor with vaned diffuser

    Science.gov (United States)

    Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka

    2016-02-01

    The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.

  9. Myosin X is recruited to nascent focal adhesions at the leading edge and induces multi-cycle filopodial elongation.

    Science.gov (United States)

    He, Kangmin; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Watanabe, Tomonobu M; Ikebe, Mitsuo

    2017-10-20

    Filopodia protrude from the leading edge of cells and play important roles in cell motility. Here we report the mechanism of myosin X (encoded by Myo10)-induced multi-cycle filopodia extension. We found that actin, Arp2/3, vinculin and integrin-β first accumulated at the cell's leading edge. Myosin X was then gathered at these sites, gradually clustered by lateral movement, and subsequently initiated filopodia formation. During filopodia extension, we found the translocation of Arp2/3 and integrin-β along filopodia. Arp2/3 and integrin-β then became localized at the tip of filopodia, from where myosin X initiated the second extension of filopodia with a change in extension direction, thus producing long filopodia. Elimination of integrin-β, Arp2/3 and vinculin by siRNA significantly attenuated the myosin-X-induced long filopodia formation. We propose the following mechanism. Myosin X accumulates at nascent focal adhesions at the cell's leading edge, where myosin X promotes actin convergence to create the base of filopodia. Then myosin X moves to the filopodia tip and attracts integrin-β and Arp2/3 for further actin nucleation. The tip-located myosin X then initiates the second cycle of filopodia elongation to produce the long filopodia.

  10. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  11. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  12. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  13. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  14. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive

  15. Aerodynamic characteristics of a large-scale semispan model with a swept wing and an augmented jet flap with hypermixing nozzles. [Ames 40- by 80-Foot Wind Tunnel and Static Test Facility

    Science.gov (United States)

    Aiken, T. N.; Falarski, M. D.; Koenin, D. G.

    1979-01-01

    The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.

  16. Superior Reproducibility of the Leading to Leading Edge and Inner to Inner Edge Methods in the Ultrasound Assessment of Maximum Abdominal Aortic Diameter

    DEFF Research Database (Denmark)

    Borgbjerg, Jens; Bøgsted, Martin; Lindholt, Jes S

    2018-01-01

    Objectives: Controversy exists regarding optimal caliper placement in ultrasound assessment of maximum abdominal aortic diameter. This study aimed primarily to determine reproducibility of caliper placement in relation to the aortic wall with the three principal methods: leading to leading edge...

  17. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  18. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Directory of Open Access Journals (Sweden)

    Brian P Ziemba

    Full Text Available The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while

  19. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    Science.gov (United States)

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  20. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  1. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  2. Flow deflection over a foredune

    Science.gov (United States)

    Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin

    2015-02-01

    Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.

  3. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    , governs deflections produced by prisms of refractive index n. The refractive power, n − 1, of most materials is of the order of unity for visible light, which therefore gets deflected through several degrees by a prism. X-rays and neutrons however ...

  4. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  5. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  6. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  7. Unsteady lift and thrust of a 2D flapping thin airfoil in the presence of additional leading edge vortices

    Science.gov (United States)

    Alaminos-Quesada, Javier; Fernandez-Feria, Ramon

    2017-11-01

    The effect of leading-edge vortices (LEVs) on the lift, thrust and moment of a two-dimensional heaving and pitching foil is analyzed from the unsteady, linear potential theory. General expressions taking into account the effect of unsteady point vortices interacting with the oscillatory trailing wake are first derived. Then, simplified expressions for the initial stages of the growing LEV on each half-stroke are used to obtain analytical closed expressions for the main contribution of these vortices to the lift, thrust and moment. It is found that, within the linear potential framework and the Brown-Michael model, the LEV contributes to the aerodynamic forces and moment only for combined pitching and heaving motions of the foil, being a relevant contribution for sufficiently large values of the product of the reduced frequency and the amplitude of the heaving and/or pitching motions. The results are compared with available experimental data and numerical simulations. Supported by the Ministerio de Economia y Competitividad of Spain Grants No. DPI2013-40479-P and DPI2016-76151-C2-1-R.

  8. A leading-edge hardware family for diagnostics applications and low-level RF in CERN's ELENA ring

    CERN Document Server

    Angoletta, M E; Jaussi, M; Leiononen, P; Levens, T E; Molendijk, J C; Sanchez-Quesada, J; Simonin, J

    2013-01-01

    The CERN Extra Low ENergy Antiproton (ELENA) Ring is a new synchrotron that will be commissioned in 2016 to further decelerate the antiprotons transferred from the CERN’s Antiproton Decelerator (AD). The requirements for the acquisition and treatment of signals for longitudinal diagnostics are very demanding, owing to the revolution frequency swing as well as to the digital signal processing required. The requirements for the Low-Level Radio-Frequency (LLRF) system are very demanding as well, especially in terms of revolution frequency swing, dynamic range and low noise required by the cavity voltage control and digital signal processing to be performed. Both sets of requirements will be satisfied by using a leading-edge hardware family, developed to cover the LLRF needs of all synchrotrons in the Meyrin site; it will be first deployed in 2014 in the CERN’s PSB and in the medical machine MedAustron. This paper gives an overview of the main building blocks of the hardware family and of th...

  9. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  10. CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Azlan

    2017-01-01

    Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.

  11. Do rapid 'superbug' tests pay off? Balance the costs and benefits of leading-edge technology. Interview by Alan Joch.

    Science.gov (United States)

    Morgan, Margie Ann

    2009-02-01

    As hospitals become increasingly sensitive to the health and financial consequences of health care-associated infections (HAIs), a new generation of molecular-based testing technologies promises to significantly shorten the time required to identify "superbugs" and other bacterial infections. The leading-edge techniques promise to reduce costs by helping hospitals quickly determine which patients to isolate because they carry active methicillin-resistant Staphylococcus aureus (MRSA) infections, for example, or which ones to release from prophylactic isolation because they ultimately tested negative for a dangerous infection. But diagnostic speed comes at a price--the costs to perform molecular tests are significantly higher than conventional methods. This challenges hospitals to balance health care expenses with medical efficacy, says molecular testing veteran Margie Morgan, Ph.D., scientific director at Cedars-Sinai Medical Center, Los Angeles. "The rapid methods can be extreme time savers and possibly help a great deal with the isolation of patients. But some of the tests may cost five times what manual methods might be, so there is a price for seeing so much of a reduction in time," she says.

  12. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    Science.gov (United States)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  13. Transition over C4 leading edge and measurement of intermittency factor using PDF of hot-wire signal

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, B.K.; Hirsch, C. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Fluid Mechanics

    1997-07-01

    The variation of intermittency factors in the transition region of a C4 leading edge flat plate is measured at three incidence angles in a low-turbulence free stream. During the determination of intermittency factor, the threshold value of the detector function and the validity of conditional averaging are verified by a method based on the direct application of PDF of the hot-wire output. As the angle of incidence is increased, the transition progressively moves through all the three modes on the suction surface: at zero incidence the bypass transition, at 2 deg incidence the natural transition, and at 4 deg incidence the separated-flow transition occur, respectively. All three modes of transition exhibited the chordwise intermittency factor variation in accordance with Narasinha`s universal intermittency distribution; thus, the method based on spot production rate is applicable to all the three modes of transition. In the transition zone of the attached boundary layers, the conditionally averaged interturbulent profiles are fuller than the Blasius profile, while the conditionally averaged turbulent profiles follow a logarithmic profile with a variable additive parameter.

  14. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  15. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation.

    Science.gov (United States)

    Hara, Yusuke; Nagayama, Kazuaki; Yamamoto, Takamasa S; Matsumoto, Takeo; Suzuki, Makoto; Ueno, Naoto

    2013-10-15

    Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone. © 2013 Elsevier Inc. All rights reserved.

  17. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  18. The Lived Experiences of Leading Edge Certified Elementary School Teachers Who Use Instructional Technology to Foster Critical Thinking, Collaboration, Creativity, and Communication in Their Classrooms: A Phenomenological Study

    Science.gov (United States)

    Ruddell, Natalie

    2017-01-01

    Purpose: The purpose of this phenomenological study was to describe the perceptions of current and former Leading Edge Certified (LEC) elementary school teachers regarding instructional technology practices that facilitate students' development of critical thinking, collaboration, communication, and creativity (4Cs) in one-to-one computer…

  19. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  20. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  1. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  2. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    Science.gov (United States)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  3. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  4. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  5. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  6. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  7. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    Science.gov (United States)

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  8. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  9. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  10. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  11. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge.

    Science.gov (United States)

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  12. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  13. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  14. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  15. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  16. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  17. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  18. AMC’s Future Strategic Airlifter: The Blended Wing Body?

    Science.gov (United States)

    2010-06-01

    winglets and deflected upwards. Not only does the noise reduction help reduce noise pollution, but it increases the stealth capability of the airlifter...addressed: wing sizing, aerodynamics , stability and control, propulsion, structure, interior, safety and environment, and performance. The requirements...being blended into the aircraft’s body. For aerodynamics , Navier Stokes computational fluid dynamics analysis was performed to identify lift

  19. Deflection system for charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Bates, T

    1982-01-13

    A system is described for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprising three successive magnetic deflection means which deflect the beam alternately in opposite directions; the first and second deflect by angles of less than 50/sup 0/ and the third by an angle of at least 90/sup 0/. Particles with different respective energies are transversely spaced as they enter the third deflection means, but emerge completely superimposed in both position and direction and may be brought to a focus in each of two mutually perpendicular planes, a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system. It is suitable for deflecting a beam of electrons from a linear accelerator so producing a vertical beam of electron (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.

  20. Field distribution analysis in deflecting structures

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V.V. [Joint Inst. for Nuclear Research, Moscow (Russian Federation)

    2013-02-15

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE{sub 1} and HM{sub 1}. The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  1. Field distribution analysis in deflecting structures

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2013-02-01

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE 1 and HM 1 . The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  2. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  3. Modulus of Subgrade Reaction and Deflection

    Directory of Open Access Journals (Sweden)

    Austin Potts

    2009-01-01

    Full Text Available Differential equations govern the bending and deflection of roads under a concentrated load. Identifying critical parameters, such as the maximum deflection and maximum bending moments of a street supported by an elastic subgrade, is key to designing safe and reliable roadways. This project solves the underlying differential equation in pavement deflection and tests various parameters to highlight the importance in selecting proper foundation materials.

  4. Application of slender wing benefits to military aircraft

    Science.gov (United States)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  5. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    Science.gov (United States)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  6. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  7. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  8. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  9. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  10. Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing

    Science.gov (United States)

    Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin

    2017-11-01

    The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.

  11. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    Science.gov (United States)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  12. Wave drag as the objective function in transonic fighter wing optimization

    Science.gov (United States)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  13. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  14. How lizards fly: A novel type of wing in animals.

    Science.gov (United States)

    Dehling, J Maximilian

    2017-01-01

    Flying lizards of the genus Draco are renowned for their gliding ability, using an aerofoil formed by winglike patagial membranes and supported by elongated thoracic ribs. It remains unknown, however, how these lizards manoeuvre during flight. Here, I present the results of a study on the aerial behaviour of Dussumier's Flying Lizard (Draco dussumieri) and show that Draco attaches the forelimbs to the leading edge of the patagium while airborne, forming a hitherto unknown type of composite wing. The attachment of the forelimbs to the patagium suggests that that aerofoil is controlled through movements of the forelimbs. One major advantage for the lizards is that the forelimbs retain their complete range of movement and functionality for climbing and running when not used as a part of the wing. These findings not only shed a new light on the flight of Draco but also have implications for the interpretation of gliding performance in fossil species.

  15. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Science.gov (United States)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  16. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.

  17. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Gerontakos, P.; Lee, T. [McGill University, Department of Mechanical Engineering, Montreal, Quebec (Canada)

    2008-12-15

    The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C{sub m,peak}, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C{sub l,max}, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C{sub m,peak}, due to the large pressure increase on the lower surface of the flap, was also observed. (orig.)

  18. Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines

    Science.gov (United States)

    Beyhaghi, Saman

    as compared to the baseline DES. In the second part of this study, the focus is on improving the aerodynamic performance of airfoils and wind turbines in terms of lift and drag coefficients and power generation. One special type of add-on feature for wind turbines and airfoils, i.e., leading-edge slots are investigated through numerical simulation and laboratory experiments. Although similar slots are designed and employed for aircrafts, a special slot with a reversed flow direction is drilled in the leading edge of a sample wind turbine airfoil to study its influence on the aerodynamic performance. The objective is to vary the five main geometrical parameters of slot and characterize the performance improvement of the new design under different operating conditions. A number of Design of Experiment and optimization studies are conducted to determine the most suitable slot configuration to maximize the lift or lift-over-drag ratio. Results indicate that proper sizing and placement of slot can improve the lift coefficient, while it has negligible negative impact on the drag. Some recommendations for future investigation on slot are proposed at the end. The performance of a horizontal axis wind turbine blade equipped with leading-edge slot is also studied, and it is concluded that slotted blades can generate about 10% more power than solid blades, for the two operating conditions investigated. The good agreement between the CFD predictions and experimental data confirms the validity of the model and results.

  19. Numerical simulation of the effects of variation of angle of attack and sweep angle on vortex breakdown over delta wings

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    In the present investigation of the vortical flowfield structure over delta wings at high angles of attack, three-dimensional Navier-Stokes numerical simulations were conducted to predict the complex leeward flowfield characteristics; these encompass leading-edge separation, secondary separation, and vortex breakdown. Attention is given to the effect on solution accuracy of circumferential grid-resolution variations in the vicinity of the wing leading edge, and well as to the effect of turbulence modeling on the solutions. When a critical angle-of-attack was reached, bubble-type vortex breakdown was found. With further angle-of-attack increase, a change from bubble-type to spiral-type vortex breakdown was predicted by the numerical solution.

  20. Mexico East-West Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  1. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  2. Mexico North-South Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  3. Large membrane deflection via capillary force actuation

    Science.gov (United States)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  4. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  5. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  6. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  7. Shielded serpentine traveling wave tube deflection structure

    Science.gov (United States)

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  8. Light deflection in gadolinium molybdate ferroelastic crystals

    International Nuclear Information System (INIS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-01-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle α i on the sample at room temperature. The A and B deflected beams do not cross each other during the α i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction. (author)

  9. RANS-based numerical simulation and visualization of the horseshoe vortex system in the leading edge endwall region of a symmetric body

    International Nuclear Information System (INIS)

    Levchenya, A.M.; Smirnov, E.M.; Goryachev, V.D.

    2010-01-01

    This contribution is aimed at analyzing the capabilities of popular two-equation turbulence models to predict features of 3D flow fields and endwall heat transfer near the blunt edge of a symmetric body mounted on a plate. The configuration studied experimentally by Praisner and Smith is considered. Results obtained with the in-house CFD code SINF and the commercial package ANSYS-CFX are presented and compared. Prediction capabilities of the low-Re Wilcox turbulence model and two versions of the Menter SST model, the original and the modified one, are analyzed in comparison with the experimental data. Special attention is paid to grid sensitivity of the numerical solutions. Advanced visualization of the vortex structures computed is performed with author's visualization tool HDVIS. It has been established that the Wilcox model is not capable of predicting the development of a multiple-vortex system observed in the experiment upstream of the body leading edge. Both versions of the MSST model produce qualitatively correct results, with a considerable superiority of the modified version when compared with the quantitative data.

  10. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  11. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  12. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  13. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  14. Effect of external jet-flow deflector geometry on OTW aero-acoustic characteristics. [Over-The-Wing

    Science.gov (United States)

    Von Glahn, U.; Groesbeck, D.

    1976-01-01

    The effect of geometry variations in the design of external deflectors for use with OTW configurations was studied at model scale and subsonic jet velocities. Included in the variations were deflector size and angle as well as wing size and flap setting. A conical nozzle (5.2-cm diameter) mounted at 0.1 chord above and downstream of the wing leading edges was used. The data indicate that external deflectors provide satisfactory take-off and approach aerodynamic performance and acoustic characteristics for OTW configurations. These characteristics together with expected good cruise aerodynamics, since external deflectors are storable, may provide optimum OTW design configurations.

  15. Nonlinear core deflection in injection molding

    Science.gov (United States)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  16. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  17. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  18. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  19. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  20. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  1. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  2. Calibration of optical cantilever deflection readers

    International Nuclear Information System (INIS)

    Hu Zhiyu; Seeley, Tim; Kossek, Sebastian; Thundat, Thomas

    2004-01-01

    Because of its ultrahigh sensitivity, the optical lever detection method similar to that used in the atomic force microscope (AFM) has been widely employed as a standard technique for measuring microcantilever deflection. Along with the increasing interest in using the microcantilever as a sensing platform, there is also a requirement for a reliable calibration technique. Many researchers have used the concept of optical lever detection to construct microcantilever deflection readout instruments for chemical, physical, and biological detection. However, without an AFM piezo z scanner, it is very difficult to precisely calibrate these instruments. Here, we present a step-by-step method to conveniently calibrate an instrument using commercially available piezoresistive cantilevers. The experimental results closely match the theoretical calculation. Following this procedure, one can easily calibrate any optical cantilever deflection detection system with high reproducibility, precision, and reliability. A detailed discussion of the optical lever readout system design has been addressed in this article

  3. The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading.

    Science.gov (United States)

    Copsey, Alice C; Cooper, Simon; Parker, Robert; Lineham, Ella; Lapworth, Cuzack; Jallad, Deema; Sweet, Steve; Morley, Simon J

    2017-08-30

    DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5' untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading. © 2017 The Author(s).

  4. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  5. Deflection of massive neutrinos by gravitational fields

    International Nuclear Information System (INIS)

    Fargion, D.

    1981-01-01

    The curvature undergone by massive neutrino trajectories, passing by a mass M at a distance b from the center of a body, is examined. Calculations led to the following angle of deflection: δ rho = 2GM/b#betta# 2 sub(infinity)C 2 (1 + #betta# 2 sub(infinity)), where #betta#sub(infinity) is the dimensionless velocity of the particle at infinity. The ultrarelativistic limit (#betta#sub(infinity) = 1) coincides with the usual massless deflection. Physical consequences are considered. (author)

  6. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  7. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  8. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    Science.gov (United States)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  9. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  10. Superior Reproducibility of the Leading to Leading Edge and Inner to Inner Edge Methods in the Ultrasound Assessment of Maximum Abdominal Aortic Diameter.

    Science.gov (United States)

    Borgbjerg, Jens; Bøgsted, Martin; Lindholt, Jes S; Behr-Rasmussen, Carsten; Hørlyck, Arne; Frøkjær, Jens B

    2018-02-01

    Controversy exists regarding optimal caliper placement in ultrasound assessment of maximum abdominal aortic diameter. This study aimed primarily to determine reproducibility of caliper placement in relation to the aortic wall with the three principal methods: leading to leading edge (LTL), inner to inner edge (ITI), and outer to outer edge (OTO). The secondary aim was to assess the mean difference between the OTO, ITI, and LTL diameters and estimate the impact of using either of these methods on abdominal aortic aneurysm (AAA) prevalence in a screening program. Radiologists (n=18) assessed the maximum antero-posterior abdominal aortic diameter by completing repeated caliper placements with the OTO, LTL, and ITI methods on 50 still abdominal aortic images obtained from an AAA screening program. Inter-observer reproducibility was calculated as the limit of agreement with the mean (LoA), which represents expected deviation of a single observer from the mean of all observers. Intra-observer reproducibility was assessed averaging the LoA for each observer with their repeated measurements. Based on data from an AAA screening trial and the estimated mean differences between the three principal methods, AAA prevalence was estimated using each of the methods. The inter-observer LoA of the OTO, ITI, and LTL was 2.6, 1.9, and 1.9 mm, whereas the intra-observer LoA was 2.0, 1.6, and 1.5 mm, respectively. Mean differences of 5.0 mm were found between OTO and ITI measurements, 2.6 mm between OTO and LTL measurements, and 2.4 mm between LTL and ITI measurements. The prevalence of AAA almost doubled using OTO instead of ITI, while the difference between ITI and LTL was minor (3.3% vs. 4.0% AAA). The study shows superior reproducibility of LTL and ITI compared with the OTO method of caliper placement in ultrasound determination of maximum abdominal aortic diameter, and the choice of caliper placement method significantly affects the prevalence of AAAs in screening programs

  11. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton

    2013-01-01

    . In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...

  12. Particle beam and crabbing and deflecting structure

    Science.gov (United States)

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  13. Determining large deflections in rectangular combined loaded ...

    Indian Academy of Sciences (India)

    (Bisshopp & Drucker 1945; Scott et al 1955; Lau 1982; Rao & Rao 1986; Baker 1993; Lee et al 1993; Frisch-Fay 1962; Fertis 1999). Prathap and Varadan (1976) had calculated large deflections in cantilever beams made of non-linear Ramberg–Osgood type material on which concentrated load effected on the free end.

  14. Moth tails divert bat attack: evolution of acoustic deflection.

    Science.gov (United States)

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  15. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  16. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  17. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    International Nuclear Information System (INIS)

    Han Menghu; Li Jun; Liang Hua; Zhao Guangyin; Niu Zhongguo

    2015-01-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. (paper)

  18. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  19. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  20. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  1. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  2. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  3. Dark matter prospects in deflected mirage mediation

    International Nuclear Information System (INIS)

    Holmes, Michael; Nelson, Brent D.

    2009-01-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms

  4. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  5. Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50

    Science.gov (United States)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.

  6. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  7. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  8. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  9. Characterisation of a Mechanical Deflection Sensor

    CSIR Research Space (South Africa)

    Miyambo, M

    2012-10-01

    Full Text Available Mechanical Defl ection Sensor M MIYAMBO AND T PANDELANI CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, South Africa, 0001 Email: mmiyambo@csir.co.za ? www.csir.co.za INTRODUCTION The CSIR Defence, Peace, Safety and Security (DPSS...-time duration, which is integrated over time to provide the total measured impulse of a shallow-buried explosive charge near-field blast (Snyman et al, 2006). The Mechanical Deflection Sensor (MDS) was developed by the CSIR LS, in conjunction with Conical...

  10. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  11. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  12. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  13. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  14. Photothermal deflection spectroscopy investigations of uranium electrochemistry

    International Nuclear Information System (INIS)

    Russo, R.E.; Rudnicki, J.D.

    1993-01-01

    Photothermal Deflection Spectroscopy (PDS) has been successfully applied to the study of uranium oxide electrochemistry. A brief description of PDS and preliminary results that demonstrate the technique are presented. Concentration gradients formed at the electrode surface are measured by this technique. The gradients give insight into the reaction mechanisms. There is some evidence of the initiation of non-electrochemical dissolution of the uranium oxide. Optical absorption by the uranium oxide is measured by PDS and the first results indicate that the absorption of the surface does not change during electrochemical experiments. This result is contrary to literature measurements of bulk samples that indicate that the optical absorption should be strongly changing

  15. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    Science.gov (United States)

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  16. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  17. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  18. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  19. Deflection of electron beams by ground planes

    International Nuclear Information System (INIS)

    Fernsler, R.F.; Lampe, M.

    1991-01-01

    Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well

  20. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  1. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    Science.gov (United States)

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  2. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    Science.gov (United States)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  3. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    shape affected performance during flapping but not gliding flight. Extended wings outperformed swept wings by about a third in flapping flight. This finding contrasts previous work that showed wing shape didn't affect performance in flapping flight (Usherwood and Ellington, 2002a, 2002b). This work provided key insights that inspired the second and third chapters of my dissertation. The second chapter examines the significance of wing tip slots across 135 avian species, ranging from small passerines to large seabirds. This research was completed with the help of an undergraduate international researcher, Ho Kwan Tang, and is currently in press at the Journal of Morphology (Klaassen van Oorschot, in press). These slots are caused by asymmetric emarginations missing from the leading and trailing edge of the primary feathers. We used a novel metric of primary feather emargination that allowed us to show that wing tip slots are nearly ubiquitous across the avian clade. We also showed that emargination is segregated according to habitat and behavioral metrics like flight style. Finally, we showed that emargination scaled with mass. These findings illustrated that wing tip slots may be an adaptation for efficacy during vertical takeoff rather than efficiency during gliding flight. In the third chapter, I sought to better understand the function of these slotted primary feathers. In an effort to bridge biology and aeronautics, I collaborated with Richard Choroszucha, an aeronautical engineer from the University of Michigan, on this work. These feathers deflect under aerodynamic load, and it has been hypothesized that they reduce induced drag during gliding flight (Tucker, 1993, 1995). We exposed individual primary feathers to different speeds in the wind tunnel and measured deflection such as bend, twist, and sweep. We found that feather deflection reoriented force, resulting in increased lateral stability and delayed stall characteristics compared to a rigid airfoil. These

  4. Gravitational light deflection in the Solar System

    International Nuclear Information System (INIS)

    Cowling, S.A.

    1984-01-01

    The problems of defining the bending of a light path in general stationary space-times are discussed. It is shown how in situations of axial symmetry the use of 'triangulation lines' leads to a coordinate invariant definition of the bending angle between arbitrary points on a light path. An exact expression is derived for the bending angle in a static, spherically symmetric space-time of arbitrarily strong curvature. This formulation is used to calculate, to second PPN order, the apparent positional shift which is measured when observing, for example, an asteroid or a spacecraft situated close to superior conjunction with the Sun. The possibilities of measuring light deflection effects using modern observational facilities are considered. (author)

  5. Force-deflection behavior of piezoelectric actuators

    Science.gov (United States)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  6. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  7. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  8. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  9. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  10. Verification of a smart wing design for a micro-air-vehicle through simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wickramasinghe, V.; Chen, Y.; Nejad-Ensan, M.; Martinez, M. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Aerospace Research; Wong, F. [Defence Research and Development Canada, Valcartier, PQ (Canada); Kraemer, K. [Department of National Defence, Ottawa, ON (Canada). Directorate of Technical Airworthiness and Engineering Support

    2008-07-01

    Micro-air-vehicles (MAV) are small, light-weight aircraft that perform a variety of missions. This paper described a smart wing structure consisting of a composite spar and ailerons with integrated piezoceramic fibre actuators that was designed for MAV use. This fixed-wing MAV can hover vertically like a rotary-wing vehicle through a flight manoeuvre known as prop-hanging. In order to maintain MAV orientation, the hover manoeuvre requires roll control of the fixed-wing aircraft through differential aileron deflection. Since conventional aileron control systems have components that add weight, it is necessary to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV with less power requirements. This paper proposed a smart wing structure that consists of a composite spar and ailerons that have bimorph active ribs consisting of piezoceramic fiber actuators with interdigitated electrodes. Actuation is enhanced by preloading the piezoceramic fiber actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electro active polymer (EAP) skin that wraps around the airfoil. The EAP skin enhances the actuation by providing a electrostatic effect of the dielectric polymer. Analytical modeling and finite element analysis showed that the proposed smart wing concept achieved a target deflection of 30 degrees in both the wind-off and wind-on flight conditions. The smart structure approach with active materials enabled the design of a lightweight, robust wing by reducing the number of components typically associated with conventional aileron control systems. 11 refs., 2 tabs., 5 figs.

  11. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    Science.gov (United States)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  12. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    Science.gov (United States)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  13. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  14. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  15. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  16. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  17. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  18. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: High-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.

  19. Breaking down the delta wing vortex: The role of vorticity in the breakdown process

    Science.gov (United States)

    Nelson, R. C.; Visser, Kenneth Dale

    1991-01-01

    Experimental x-wire measurements of the flowfield above a 70 degree and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 degrees and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown region and the amount of vorticity present appears to reach a maximum immediately preceding breakdown. The axial velocity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wing sweep or angle of attack, in direct contrast to the visible components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced to a single curve.

  20. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  1. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  2. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  3. Synthesis of focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Szilagyi, M.; Mui, P.H.

    1995-01-01

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a ±2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. copyright 1995 American Vacuum Society

  4. Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings

    Science.gov (United States)

    Nicolas, Matthew James

    The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.

  5. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  6. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    Science.gov (United States)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  7. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  8. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  9. Integrating Innovation: Keeping the Leading Edge

    Science.gov (United States)

    2015-08-01

    access inside Army com- mand posts. Commercial innovation also can be built directly into our con- tract structure. Just as today’s smartphones ...moving to publish detailed guidance this year on how gov- ernment and industry partners will comply with the Modular Open Systems Architecture...which outlines design principles and interface characteristics allowing for modular hardware While the Army cannot predict the future or design

  10. The simulation of automated leading edge assembly

    OpenAIRE

    Song, Qingming

    2015-01-01

    Aircraft manufacturers are experiencing a fierce competition worldwide. Improving productivity, increasing throughput and reducing costs are influencing aircraft manufacturer’s future development. In order to improve competitiveness and provide sufficient and high quality products, it should reduce operations of aircraft assembly,majority of which are still in manual process, which limit production output. In contrast, these processes can be automated to replace manual opera...

  11. Leading Edge Aeronautics Research for NASA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The LEARN Project explores the creation of novel concepts and processes with the potential to create new capabilities in aeronautics research through awards to the...

  12. Shielded helix traveling wave cathode ray tube deflection structure

    Science.gov (United States)

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  13. PR/VI North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  14. Hawaiian Islands East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  15. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  16. PR/VI East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  17. U.S. East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  18. U.S. North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  19. Hawaiian Islands North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  20. Measurement of vertical track deflection from a moving rail car.

    Science.gov (United States)

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  1. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  2. Superconducting multi-cell trapped mode deflecting cavity

    Science.gov (United States)

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  3. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    Science.gov (United States)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  4. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  5. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    Science.gov (United States)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  6. Study on pipe deflection by using numerical method

    Science.gov (United States)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  7. Static aeroelastic analysis and tailoring of a single-element racing car wing

    Science.gov (United States)

    Sadd, Christopher James

    This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.

  8. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies YiRo:2010,Vi:2011b,CaWaGuVi:2012, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the sAR=2 wing is found to significantly exceed that of the sAR=1 wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for thesAR=2 case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing ofsAR=2 was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50% spanwise position, similar to previous observations by Calderon et al., and Yilmaz and Rockwell. At that location, the circulation contribution

  9. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  10. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  11. Clap and Fling Interaction of Bristled Wings: Effects of Varying Reynolds Number and Bristle Spacing on Force Generation and Flow Structures

    Science.gov (United States)

    Kasoju, Vishwa Teja

    The smallest flying insects with body lengths under 1 mm, such as thrips and fairyflies, typically show the presence of long bristles on their wings. Thrips have been observed to use wing-wing interaction via 'clap and fling' for flapping flight at low Reynolds number (Re) on the order of 10, where a wing pair comes into close contact at the end of upstroke and fling apart at the beginning of downstroke. We examined the effects of varying the following parameters on force generation and flow structures formed during clap and fling: (1) Re ranging from 5 to 15 for a bristled wing pair (G/D = 17) and a geometrically equivalent solid wing pair; and (2) ratio of spacing between bristles to bristle diameter (G/D) for Re = 10. The G/D ratio in 70 thrips species were quantified from published forewing images. Scaled-up physical models of three bristled wing pairs of varying G/D (5, 11, 17) and a solid wing pair (G/D = 0) were fabricated. A robotic model was used for this study, in which a wing pair was immersed in an aquarium tank filled with glycerin and driven by stepper motors to execute clap and fling kinematics. Dimensionless lift and drag coefficients were determined from strain gauge measurements. Phase-locked particle image velocimetry (PIV) measurements were used to examine flow through the bristles. Chordwise PIV was used to visualize the leading edge vortex (LEV) and trailing edge vortex (TEV) formed over the wings during clap and fling. With increasing G/D, larger reduction was observed in peak drag coefficients as compared to reduction in peak lift coefficients. Net circulation, defined as the difference in circulation (strength) of LEV and TEV, diminished with increasing G/D. Reduction in net circulation resulted in reducing lift generated by bristled wings as compared to solid wings. Leaky, recirculating flow through the bristles provided large drag reduction during fling of a bristled wing pair. If flight efficiency is defined as the ratio of lift to drag

  12. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    International Nuclear Information System (INIS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-01-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from −2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings

  13. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  14. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  15. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  16. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    This paper presents a study on different methods of analysis that are currently used by design codes to predict the short-term and long-term deflection of reinforced concrete slab systems and compares the predicted deflections with measured deflections. The experimental work to measure deflections involved the testing of ...

  17. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  18. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  19. Development of sacrificial support fixture using deflection analysis

    Science.gov (United States)

    Ramteke, Ashwini M.; Ashtankar, Kishor M.

    2018-04-01

    Sacrificial support fixtures are the structures used to hold the part during machining while rotating the part about the fourth axis of CNC machining. In Four axis CNC machining part is held in a indexer which is rotated about the fourth axis of rotation. So using traditional fixturing devices to hold the part during machining such as jigs, v blocks and clamping plates needs a several set ups, manufacturing time which increase the cost associated with it. Since the part is rotated about the axis of rotation in four axis CNC machining so using traditional fixturing devices to hold the part while machining we need to reorient the fixture each time for particular orientation of part about the axis of rotation. So our proposed methodology of fixture design eliminates the cost associate with the complicated fixture design for customized parts which in turn reduces the time of manufacturing of the fixtures. But while designing the layout of the fixtures it is found out that the machining the part using four axis CNC machining the accurate machining of the part is directly proportional to the deflection produced in a part. So to machine an accurate part the deflection produced in a part should be minimum. We assume that the deflection produced in a part is a result of the deflection produced in a sacrificial support fixture while machining. So this paper provides the study of the deflection checking in a part machined using sacrificial support fixture by using FEA analysis.

  20. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  1. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  2. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  3. Heavy colored SUSY partners from deflected anomaly mediation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min; Zhang, Yang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)

    2015-07-27

    We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g{sub μ}−2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g{sub μ}−2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.

  4. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  5. Force-deflection analysis of offset indentations on pressurised pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2007-01-01

    The indenter force vs. deflection characteristics of pressurised pipes with long offset indentations under plane strain conditions have been investigated using finite element (FE) and analytical methods with four experimental tests performed on aluminium rings. Two different materials and five different geometries were used to investigate their effects on the elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results indicates that the analytical formulation developed in this paper, for predicting the force-deflection curves for pressurised pipes with offset indenters, is reasonably accurate. Also, all of the analyses presented in this paper indicate that by using a representative flow stress, which is defined as the average of the yield and ultimate tensile stresses, the analytical method can accurately predict the force-deflection curves

  6. Large deflection of viscoelastic beams using fractional derivative model

    International Nuclear Information System (INIS)

    Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad

    2013-01-01

    This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.

  7. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  8. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  9. Deflection of light and particles by moving gravitational lenses

    International Nuclear Information System (INIS)

    Wucknitz, Olaf; Sperhake, Ulrich

    2004-01-01

    Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies

  10. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  11. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  12. A wind-tunnel investigation at high subsonic speeds of the lateral control characteristics of various plain spoiler configurations on a 3-percent-thick 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G

    1954-01-01

    Results are presented of wind-tunnel investigations at Mach numbers of 0.60 to 0.94 and angles of attack of -2 degrees to about 24 degrees to determine the lateral control characteristics of spoilers with various wing chord-wise and spanwise locations and spoiler spans and deflections on thin 60 degree delta wing of NACA 65a003 airfoil section parallel to free stream.

  13. Strong deflection lensing by a Lee–Wick black hole

    Directory of Open Access Journals (Sweden)

    Shan-Shan Zhao

    2017-11-01

    Full Text Available We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very closed to the event horizon of the black hole. We estimate its observables for the supermassive black hole in our Galactic center. It is found that the Lee–Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects when the UV scale is not very large, but the requiring resolution is much higher than current capability.

  14. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  15. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    Science.gov (United States)

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  16. Permanent deformation and deflection relationship from pavement condition assessment

    Directory of Open Access Journals (Sweden)

    Fabricio Leiva-Villacorta

    2017-07-01

    Full Text Available The development of permanent deformation in flexible pavements has been a research topic for several decades. Currently there are models included in the structural design of pavements that can predict this type of failure. However, the variables required for the prediction of this distress are complex or difficult to obtain in the field, making its application in pavement evaluation also difficult. Measurement of the deflection of pavement structures by means of non-destructive testing is a technique used to assess the condition of the pavement. This research study seeks to correlate data from deflections of the pavement surface with probable permanent deformation in time. In addition, prediction of the remaining life of the pavement structure using a specified criterion is also analyzed. In order to accomplish these objectives, data acquired from 4 different full scale accelerated pavement test tracks was used to develop a permanent deformation model as a function of deflection, load repetitions and pavement layer thickness. The developed model considered a time series model that incorporates an Auto-regressive parameter of order 1. The proposed model presents an advantage over currently available models because it reduces the required parameters to predict the permanent deformation and/or remaining life in the structure and because these variables can be easily found and updated in a pavement management system. Keywords: HVS, Permanent deformation, Deflections, APT, Time series, Instrumentation

  17. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  18. Focused ion beam induced deflections of freestanding thin films

    International Nuclear Information System (INIS)

    Kim, Y.-R.; Chen, P.; Aziz, M. J.; Branton, D.; Vlassak, J. J.

    2006-01-01

    Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50 keV gallium focused ion beam for ion doses between 10 14 and 10 17 ions/cm 2 . Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation

  19. Application of the mechanical deflection sensor in blast research

    CSIR Research Space (South Africa)

    Pandelani, T

    2013-10-01

    Full Text Available the occupants. To enable the development of protection solutions for occupants inside military vehicles, the occupant loading must be thoroughly understood. The aim is to show the capability to measure the positive dynamic deflection of the hull plate using...

  20. Correlation function of gravitational deflection angles of light paths

    International Nuclear Information System (INIS)

    Watanabe, Kazuya; Tomita, Kenji.

    1990-04-01

    The correlation function of gravitational deflection angles of light paths is investigated in a simplified cosmological model universe. Under several reasonable assumptions, an analytic formula for the correlation function is derived. The implication to the cosmic microwave background anisotropy and the distance defined by the observed angular (linear) scale of a source is also discussed. (author)

  1. Deflection routing scheme for GMPLS-based OBS networks

    DEFF Research Database (Denmark)

    Eid, Arafat; Mahmood, Waqar; Alomar, Anwar

    2010-01-01

    Integrating the Generalized Multi-Protocol Label Switching (GMPLS) framework into an Optical Burst Switching (OBS) Control Plane is a promising solution to alleviating most of OBS performance and design issues. However, implementing the already proposed OBS deflection routing schemes is not appli...

  2. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  3. Deflecting cavity for beam diagnostics at Cornell ERL injector

    International Nuclear Information System (INIS)

    Belomestnykh, Sergey; Bazarov, Ivan; Shemelin, Valery; Sikora, John; Smolenski, Karl; Veshcherevich, Vadim

    2010-01-01

    A single-cell, 1300-MHz, TM110-like mode vertically deflecting cavity is designed and built for beam slice emittance measurements, and to study the temporal response of negative electron affinity photocathodes in the ERL injector at Cornell University. We describe the cavity shape optimization procedure, RF and mechanical design, its performance with beam.

  4. To test photon statistics by atomic beam deflection

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Yudan; Huang Weigang; Liu Liang

    1985-02-01

    There exists a simple relation between the photon statistics in resonance fluorescence and the statistics of the momentum transferred to an atom by a plane travelling wave [Cook, R.J., Opt. Commun., 35, 347(1980)]. Using an atomic beam deflection by light pressure, we have observed sub-Poissonian statistics in resonance fluorescence of two-level atoms. (author)

  5. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  6. Interferometric weak value deflections: Quantum and classical treatments

    International Nuclear Information System (INIS)

    Howell, John C.; Starling, David J.; Dixon, P. Ben; Vudyasetu, Praveen K.; Jordan, Andrew N.

    2010-01-01

    We derive the weak value deflection given in an article by Dixon et al.[P. B. Dixon et al. Phys. Rev. Lett. 102 173601 (2009)] both quantum mechanically and classically, including diffraction effects. This article is meant to cover some of the mathematical details omitted in that article owing to space constraints.

  7. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity

    Science.gov (United States)

    Prudic, Kathleen L.; Stoehr, Andrew M.; Wasik, Bethany R.; Monteiro, Antónia

    2015-01-01

    Some eyespots are thought to deflect attack away from the vulnerable body, yet there is limited empirical evidence for this function and its adaptive advantage. Here, we demonstrate the conspicuous ventral hindwing eyespots found on Bicyclus anynana butterflies protect against invertebrate predators, specifically praying mantids. Wet season (WS) butterflies with larger, brighter eyespots were easier for mantids to detect, but more difficult to capture compared to dry season (DS) butterflies with small, dull eyespots. Mantids attacked the wing eyespots of WS butterflies more frequently resulting in greater butterfly survival and reproductive success. With a reciprocal eyespot transplant, we demonstrated the fitness benefits of eyespots were independent of butterfly behaviour. Regardless of whether the butterfly was WS or DS, large marginal eyespots pasted on the hindwings increased butterfly survival and successful oviposition during predation encounters. In previous studies, DS B. anynana experienced delayed detection by vertebrate predators, but both forms suffered low survival once detected. Our results suggest predator abundance, identity and phenology may all be important selective forces for B. anynana. Thus, reciprocal selection between invertebrate and vertebrate predators across seasons may contribute to the evolution of the B. anynana polyphenism. PMID:25392465

  8. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  9. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  10. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  11. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    Science.gov (United States)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  12. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  13. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  14. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  15. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  16. Simulating and visualizing deflections of a remote handling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu, E-mail: hannu.saarinen@vtt.fi [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Esqué, Salvador [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  17. Simulating and visualizing deflections of a remote handling mechanism

    International Nuclear Information System (INIS)

    Saarinen, Hannu; Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko; Esqué, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  18. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  19. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    Science.gov (United States)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  20. Rotary balance data for a single engine general aviation design having a high aspect-ratio canard for an angle-of-attack range of 30 deg to 90 deg

    Science.gov (United States)

    Mulcay, W. J.; Rose, R.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form. The configurations tested included the basic airplane, various control deflections, two canard locations, and wing leading edge modifications, as well as airplane components.

  1. Deflecting modes of the side-coupled cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM{sub 1} passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at {pi}/10 exceeds 50 M{Omega}/m if the quality value of the mode is around 12000.

  2. Deflecting modes of the side-coupled cavity structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000

  3. Calculating the momentum enhancement factor for asteroid deflection studies

    International Nuclear Information System (INIS)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert

    2017-01-01

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.

  4. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  5. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Kim, Ian-Woo

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  6. Strong deflection gravitational lensing by a modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2017-05-15

    A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)

  7. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  8. Normal Conducting Deflecting Cavity Development at the Cockcroft Institute

    CERN Document Server

    Burt, G; Dexter, A C; Woolley, B; Jones, R M; Grudiev, A; Dolgashev, V; Wheelhouse, A; Mackenzie, J; McIntosh, P A; Hill, C; Goudket, P; Buckley, S; Lingwood, C

    2013-01-01

    Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CERN linear collider CLIC and one for bunch slice diagnostics on low energy electron beams for Electron Beam Test Facility EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Prototypes for both cavities have been manufactured and results will be presented.

  9. Progress on the gyrocon deflection-modulated amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1982-01-01

    The gyrocon is a high-power deflection-modulated amplifier that can have excellent spatial bunching and, hence, high dc-to-rf conversion efficiency. A program to design and build a prototype amplifier at 450 MHz is discussed. Peak powers of 150 kW and conversion efficiencies of 23% have been measured; the testing program is being pursued to improve this performance. Some possible mechanisms for the difference between the experimental and calculated performance are discussed

  10. Deflection of weakly magnetic materials by superconducting OGMS

    International Nuclear Information System (INIS)

    Boehm, J.; Gerber, R.; Fletcher, D.; Parker, M.R.

    1988-01-01

    Applications of a superconducting Open Gradient Magnetic Separator to fractional separation in air of weakly magnetic materials are presented. The dependence of particle deflection of these materials on the magnetic field strength, release location, magnetic susceptibility, particle density and other properties is investigated. The aim is to maximise the deflection of the magnetically stronger component of the feed to facilitate its separation from the particle stream round the magnet. Materials (e.g. CuSO/sub 4/, MnO/sub 2/) with chi/rho- ratios of the order of 7 x 10/sup -8/ m/sup 3//kg have been deflected. The applicability of dry magnetic separation has thus been considerably extended since up to now the separation of such materials has been restricted to High Gradient Magnetic Separation. The dependence of the separation efficiency upon the method of feeding and the influence of the residence time are studied in order to establish the optimum parameters for the recovery of the desired fraction. The experimental results are compared with predictions of a theory that is based upon novel approximative calculations of magnetic fields in which the use of elliptic integrals is avoided

  11. Angular deflection of rotary nickel titanium files: a comparative study

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2009-12-01

    Full Text Available A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF, Profile, K3 and M2 (NRT. All instruments tested had the same dimensions (taper 0.06 and tip size 25. Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05, than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files.

  12. Experimental modeling of eddy currents and deflections for tokamak limiters

    International Nuclear Information System (INIS)

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field

  13. Moduli stabilization and supersymmetry breaking in deflected mirage mediation

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kaehler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.

  14. A study of the deflections of metal road guardrail elements

    Directory of Open Access Journals (Sweden)

    O. Prentkovskis

    2009-09-01

    Full Text Available Statistical data on traffic accidents in 2008 in Lithuania is presented. Referring to statistical data, ‘grounding on an obstacle’ makes one-tenth of all registered traffic accidents – 9.4% (an obstacle may be a road guardrail, a lamp post, a tree, a bar, a gate, etc.. Road guardrails of various types are installed on the shoulders and dividing strips of urban and suburban roads. They are as follows: reinforced concrete guardrails, cable guardrails and metal guardrails. Metal guardrails, consisting of Σ-shape metal posts and a protective W-shape horizontal beam, are most popular. The authors of the present paper examine the deformation processes of the elements of the above mentioned guardrail. A mathematical model of metal road guardrail was developed. Metal road guardrail was modelled using one-dimensional first-order finite elements, taking into account only elastic deformations, as well as the effect of soil on the buried post section of the guardrail. Based on the developed mathematical model of metal road guardrail, the deflections of its elements caused by the impact of a vehicle moving at varying speed were determined. The obtained values of deflections of guardrail elements (a protective W-shape horizontal beam and a Σ-shape post presented in paper do not exceed the admissible values (of beam deflections.

  15. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap

    International Nuclear Information System (INIS)

    Kyriakou, Marilena; Missirlis, Dimitrios; Yakinthos, Kyros

    2010-01-01

    The flow development over delta wings is highly complicated since the interaction of the angle of attack with the delta-wing geometry leads to the appearance of a pair of well-organized counter-rotating leading-edge vortical structures. For relatively moderate angles of attack, these vortices remain robust and contribute to the enhancement of the overall lift performance. However, at higher angles of attack the vortices develop instabilities leading to the well-known vortex breakdown phenomenon, resulting in a deterioration of the aerodynamic properties. Thus, delaying vortex breakdown at higher angles of attack, is important and for this reason various techniques have been developed to control the breakdown mechanism. Such a technique is the use of trailing-edge jet-flaps. In the present work, an attempt to model the vortex breakdown together with its control, above a delta wing at high angles of attack, for cases with and without a trailing-edge jet-flap, is presented. To model the turbulent stresses, the low-Reynolds-number stress-omega model was used. The computational results were in good agreement with the available experimental data regarding the prediction of the onset of vortex breakdown and showed that the use of jet-flaps can lead to a significant delay of the breakdown process.

  16. Breaking down the delta wing vortex: The role of vorticity in the breakdown process. Ph.D. Thesis Final Report

    Science.gov (United States)

    Nelson, Robert C.; Visser, Kenneth D.

    1990-01-01

    Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.

  17. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  18. Large CYBER-205-model of the Euler equations for vortex-stretched turbulent flow around Delta wings

    International Nuclear Information System (INIS)

    Rizzi, A.; Purcell, C.J.

    1985-01-01

    The large-scale numerical simulation of fluid flow is described as a discipline within the field of software engineering. As an example of such work, a vortex flow field is analyzed for its essential physical flow features, an appropriate mathematical description is presented (the Euler equations with an artificial viscosity model), a numerical algorithm to solve mathematical equations is described, and the programming methodology which allows us to attain a very high degree of vectorization on the CYBER 205 is discussed. Four simulated flowfields with vorticity shed from wing edges are computed with up to as many as one million grid points and verify the realism of the simulation model. The computed solutions show all of the qualitative features that are expected in these flows. The twisted cranked-and-cropped delta case is one where the leading-edge vortex is highly stretched and unstable, displaying ultimately inviscid large-scale turbulent-like phenomena

  19. Blue-wing enhancement of the chromospheric Mg II h and k lines in a solar flare

    Science.gov (United States)

    Tei, Akiko; Sakaue, Takahito; Okamoto, Takenori J.; Kawate, Tomoko; Heinzel, Petr; UeNo, Satoru; Asai, Ayumi; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-05-01

    We performed coordinated observations of AR 12205, which showed a C-class flare on 2014 November 11, with the Interface Region Imaging Spectrograph (IRIS) and the Domeless Solar Telescope (DST) at Hida Observatory. Using spectral data in the Si IV 1403 Å, C II 1335 Å, and Mg II h and k lines from IRIS and the Ca II K, Ca II 8542 Å, and Hα lines from DST, we investigated a moving flare kernel during the flare. In the Mg II h line, the leading edge of the flare kernel showed an intensity enhancement in the blue wing and a smaller intensity of the blue-side peak (h2v) than that of the red-side one (h2r). The blueshift lasted for 9-48 s with a typical speed of 10.1 ± 2.6 km s-1, which was followed by a high intensity and a large redshift with a speed of up to 51 km s-1 detected in the Mg II h line. The large redshift was a common property for all six lines, but the blueshift prior to it was found only in the Mg II lines. Cloud modeling of the Mg II h line suggests that the blue-wing enhancement with such a peak difference could have been caused by a chromospheric-temperature (cool) upflow. We discuss a scenario in which an upflow of cool plasma is lifted up by expanding hot plasma owing to the deep penetration of non-thermal electrons into the chromosphere. Furthermore, we found that the blueshift persisted without any subsequent redshift in the leading edge of the flare kernel during its decaying phase. The cause of such a long-lasting blueshift is also discussed.

  20. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    wing vortex generators. → The active vortex generators, made from Ti-Ni, protruded into the flow stream at high temperatures and resume a low profile position at a low temperature set point. → By considering wing spacing and the distance from the leading edge of the fin stack, heat transfer enhancements of up to 37%, compared to plane fin stacks, were achieved. → By replacing the fixed delta wings with the active vortex generators, heat transfer enhancements of up to 16% was achieved and the pressure loss associated with flow obstructions was effectively managed.

  1. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  2. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  3. Mechanisms in wing-in-ground effect aerodynamics

    Science.gov (United States)

    Jones, Marvin Alan

    back to the leading edge. Regions of reversed flow can occur and their effects, with regard to downforce production and racing car undertray design, are considered. In Chapter 6 we consider 'wing-in-tunnel' effects.

  4. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  5. Three-dimensional transition after wake deflection behind a flapping foil

    Science.gov (United States)

    Deng, Jian; Caulfield, C. P.

    2015-04-01

    We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ | indicates an unstable "short wavelength" mode at wave number β =30 , or wavelength λ =0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=U c /ν ≃600 , where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β =6 (λ =1.05 ) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.

  6. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  7. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  8. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider

  9. Angular dispersion and deflection function for heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing

    2007-01-01

    The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)

  10. Calculation of deflection for cross laminated timber floor panel

    Directory of Open Access Journals (Sweden)

    Kozarić Ljiljana M.

    2016-01-01

    Full Text Available In this paper analytically calculated values of effective flexural stiffness and deflections of five-layer CLT panels height 14 cm due to the payload defined in Eurocode 1 for floors in residential buildings are compared. Effective flexural stiffness was calculated using Gamma method, K-method and Kreuzinger's analogy. Three floor panels with identical height but with different combinations of lamination thicknesses in cross-layers were analyzed. The panels are 4.5 meters long and 1 meter wide. Lamination thicknesses in cross-sections of panels are 33,4 cm+21,9 cm, then 33 cm+22,5 cm and 52,8 cm.

  11. Transit time spreads in biased paracentric hemispherical deflection analyzers

    International Nuclear Information System (INIS)

    Sise, Omer; Zouros, Theo J.M.

    2016-01-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  12. Transit time spreads in biased paracentric hemispherical deflection analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@sdu.edu.tr [Dept. of Science Education, Faculty of Education, Suleyman Demirel Univ., 32260 Isparta (Turkey); Zouros, Theo J.M. [Dept. of Physics, Univ. of Crete, P.O. Box 2208, GR 71003 Heraklion (Greece); Tandem Lab, INPP, NCSR Demokritos, P.O. Box 60228, GR 15310 Ag. Paraskevi (Greece)

    2016-02-15

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  13. Transit time spreads in biased paracentric hemispherical deflection analyzers

    Science.gov (United States)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  14. Gyrocon: a deflection-modulated, high-power microwave amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1977-10-01

    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  15. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  16. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  17. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  18. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    Science.gov (United States)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  19. SECONDARY POPULATION OF INTERSTELLAR NEUTRALS seems deflected to the side

    Science.gov (United States)

    Nakagawa, H.; Bzowski, M.; Yamazaki, A.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.

    Recently the neutral hydrogen flow in the inner heliosphere was found to be deflected relative to the helium flow by about 4 degrees Lallement et al 2005 The explanation of this delfection offered was a distortion of the heliosphere under the action of an ambient interstellar magnetic field In a separate study a number of data sets pertaining to interstellar neutral atoms obtained with various techniques were compiled and interpreted as due to an inflow of interstellar gas from an ecliptic longitude shifted by 10 - 40 degrees from the canonical upstream interstellar neutral flow direction at 254 degrees Collier et al 2004 The origin and properties of such a flow is still under debate We have performed a cross-experiment analysis of the heliospheric hydrogen and helium photometric observations performed simltaneously by the Nozomi spacecraft between the Earth and Mars orbit and explored possible deflection of hydrogen and helium flows with respect to the canonical upwind direction For the interpretation we used predictions of a state of the art 3D and fully time-dependent model of the neutral gas in the heliosphere with the boundary conditions ionization rates and radiation pressure taken from literature The model includes two populations of the thermal interstellar hydrogen predicted by the highly-reputed Moscow Monte Carlo model of the heliosphere The agreement between the data and simulations is not satifactory when one assumes that the upwind direction is the same for both populations and identical with the direction derived from inerstellar helium

  20. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  1. Deflection of resilient materials for reduction of floor impact sound.

    Science.gov (United States)

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  2. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  3. Distribution of flexural deflection in the worldwide outer rise area

    Science.gov (United States)

    Lin, Zi-Jun; Lin, Jing-Yi; Lin, Yi-Chin; Chin, Shao-Jinn; Chen, Yen-Fu

    2015-04-01

    The outer rise on the fringe of a subduction system is caused by an accreted load on the flexed oceanic lithosphere. The magnitude of the deflection is usually linked to the stress state beard by the oceanic plate. In a coupled subduction zone, the stress is abundantly accumulated across the plate boundary which should affect the flexural properties of the subducted plate. Thus, the variation of the outer rise in shape may reflect the seismogenic characteristics of the subduction system. In this study, we intent to find the correlation between the flexure deflection (Wb) of the outer rise and the subduction zone properties by comparing several slab parameters and the Wb distribution. The estimation of Wb is performed based on the available bathymetry data and the statistic analysis of earthquakes is from the global ISC earthquake catalog for the period of 1900-2015. Our result shows a progressive change of Wb in space, suggesting a robust calculation. The average Wb of worldwise subduction system spreads from 348 to 682 m. No visible distinction in the ranging of Wb was observed for different subduction zones. However, in a weak coupling subduction system, the standard variation of Wb has generally larger value. Relatively large Wb generally occurs in the center of the trench system, whereas small Wb for the two ends of trench. The comparison of Wb and several slab parameters shows that the Wb may be correlated with the maximal magnitude and the number of earthquakes. Otherwise, no clear relationship with other parameters can be obtained.

  4. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  5. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    Science.gov (United States)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  6. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  7. The role of flow field structure in determining the aerodynamic response of a delta wing

    Science.gov (United States)

    Addington, Gregory Alan

    Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This

  8. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    Science.gov (United States)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  9. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  10. The Effect of Material and Side Walls on Hull Deflection during a Blast Event

    Science.gov (United States)

    2017-12-13

    ARL-CR-0822 ● DEC 2017 US Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event...Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event prepared by Danielle Abell SURVICE...Walls on Hull Deflection during a Blast Event 5a. CONTRACT NUMBER W911QX-16-D-0014 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  11. Effective Moment Of Inertia And Deflections Of Reinforced Concrete Beams Under Long-Term Loading

    OpenAIRE

    Mahmood, Khalid M.; Ashour, Samir A.; Al-Noury, Soliman I.

    1995-01-01

    The paper presents a method for estimating long-term deflections of reinforced concrete beams by considering creep and shrinkage effects separately. Based on equilibrium and compatibility conditions a method is developed for investigating the properties of a cracked transformed section under sustained load. The concept of effective moment of inertia is extended to predict initial-plus-creep deflections. Long-term deflections computed by the proposed method are compared with the experimental r...

  12. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  13. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  14. Micropipette Deflection Measurements of Agar-Glass Adhesion

    Science.gov (United States)

    Parg, Richard; Shelton, Erin; Dutcher, John

    Micropipette deflection experiments were used to study the adhesive strength at an agar-glass interface. Agar is a hydrogel commonly used in biological research; however, many of the mechanical properties of this hydrogel are not well characterized. By measuring the peak force required to slide an agar puck supported by a Teflon ring across a clean glass slide, we are able to compare the adhesive strength of 1 % w/w and 1.5 % w/w agar. On average, the force required to break the agar-glass interface was approximately a factor of 2 larger for 1.5 % w/w agar than for 1 % w/w agar. We discuss this result within the context of a simple model of agar adhesion. Additional experiments were performed to measure the kinetic friction between agar and glass to obtain insight into its dependence on agar concentration.

  15. Modified method for registration of particle deflection by bent crystal

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Kovalenko, A.D.; Kuznetsov, V.N.; Romanov, S.V.; Sajfulin, Sh.Z.; Taratin, A.M.; Volkov, V.I.; Voevodin, M.A.; Bojko, V.V.

    2003-01-01

    The modified method for registration of particle deflection by a bent crystal was proposed and studied at the external proton beam of the Nuclotron. The telescope of scintillation counters was placed at the angle that was smaller than a crystal bending angle. The count dependence of the telescope on the crystal orientation was formed by the particles, which passed in channeling states only some part of the crystal length. Two maximums were observed in the dependencies due to particles captured into the channeling states on the crystal surface and in the crystal volume. This allows one to obtain, using the telescope and high-intensity beams, useful data about the particle channeling and the crystal, which usually demands more complicated registration by means of the coordinate detectors

  16. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Seonghwan; Chae, Inseok; Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  17. Fabrication and Testing of Deflecting Cavities for APS

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  18. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  19. Current deflection NDE for pipeline inspection and monitoring

    Science.gov (United States)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  20. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.