WorldWideScience

Sample records for wing inertia forces

  1. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.

    Directory of Open Access Journals (Sweden)

    Attila J Bergou

    Full Text Available The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.

  2. A vacuum--generated inertia reaction force

    International Nuclear Information System (INIS)

    Rueda, Alfonso; Haisch, Bernard

    2001-01-01

    A clear and succinct covariant approach shows that, in principle, there must be a contribution to the inertia reaction force on an accelerated object by the surrounding vacuum electromagnetic field in which the object is embedded. No details of the vacuum to object electromagnetic interaction need to be specified other than the fact that the object is made of electromagnetically interacting particles. Some interesting consequences of this feature are discussed. This analysis strongly supports the concept that inertia is indeed an opposition of the vacuum fields to any attempt to change the uniform state of motion of material bodies. This also definitely shows that inertia should be viewed as extrinsic to mass and that causing agents and/or mechanisms responsible for the inertia reaction force are neither intrinsic to the notion of mass nor to the entities responsible for the existence of mass in elementary particles (as, e.g., the Higgs field). In other words the mechanism that produces the inertia-reaction-force requires an explicit explanation. This explicit explanation is that inertia is an opposition of the vacuum fields to the accelerated motion of any material entities, i.e., of entities that possess mass. It is briefly commented why the existence of a Higgs field responsible for the generation of mass in elementary particles does not contradict the view presented here. It is also briefly discussed why a strict version of Mach's Principle does really contradict this view, though a broad sense version of Mach's Principle may be in agreement

  3. The role of resonance in propulsion of an elastic pitching wing with or without inertia

    Science.gov (United States)

    Zhang, Yang; Zhou, Chunhua; Luo, Haoxiang; Luo Team; Zhou Team

    2016-11-01

    Flapping wings of insects and undulating fins of fish both experience significant elastic deformations during propulsion, and it has been shown that in both cases, the deformations are beneficial to force enhancement and power efficiency. In fish swimming, the inertia of the fin structure is negligible and the hydrodynamic force is solely responsible for the deformation. However, in insect flight, both the wing inertia and aerodynamic force can be important factors leading to wing deformation. This difference raises the question about the role of the system (fluid-structure) resonance in the performance of propulsion. In this study, we use a 2D pitching foil as a model wing and vary its bending rigidity, pitching frequency, and mass ratio to investigate the fluid-structure interaction near resonance. The results show that at low mass ratios, i.e., a scenario of swimming, the system resonance greatly enhances thrust production and power efficiency, which is consistent with previous experimental results. However, at high mass ratios, i.e., a scenario of flying, the system resonance leads to overly large deformation that actually does not bring benefit any more. This conclusion thus suggests that resonance plays different roles in flying and in swimming. Supported by the NNSF of China and the NSF of US.

  4. Einstein's equivalence principle instead of the inertia forces

    International Nuclear Information System (INIS)

    Herreros Mateos, F.

    1997-01-01

    In this article I intend to show that Einstein's equivalence principle substitutes advantageously the inertia forces in the study and resolution of problems in which non-inertial systems appear. (Author) 13 refs

  5. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  6. Inertia compensated force and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bill, B.; Engeler, P.; Gossweiler, C. [Kistler Instrumente AG, Winterthur (Switzerland)

    2001-07-01

    Any moving structure is affected by inertial effects. In case of force and pressure sensors, inertial effects cause measurement errors. The paper deals with novel signal conditioning methods and mechanical design features to minimize inertial effects. A novel solution for passive compensation of pressure sensors is presented. (orig.)

  7. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  8. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  9. The Inertia Reaction Force and Its Vacuum Origin

    Science.gov (United States)

    Rueda, Alfonso; Haisch, Bernard

    By means of a covariant approach we show that there must be a contribution to the inertial mass and to the inertial reaction force on an accelerated massive object by the zero-point electromagnetic field. This development does not require any detailed model of the accelerated object other than the knowledge that it interacts electromagnetically. It is shown that inertia can indeed be construed as an opposition of the vacuum fields to any change to the uniform state of motion of an object. Interesting insights originating from this result are discussed. It is argued why the proposed existence of a Higgs field in no way contradicts or is at odds with the above statements. The Higgs field is responsible for assigning mass to elementary particles. It is argued that still the underlying reason for the opposition to acceleration that massive objects present requires an explanation. The explanation proposed here fulfills that requirement.

  10. Importance of Upper-Limb Inertia in Calculating Concentric Bench Press Force

    OpenAIRE

    RAMBAUD, O; RAHMANI, A; MOYEN, B; BOURDIN, M

    2008-01-01

    The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 6 4.1 years, 184.6 6 5.5 cm, 99.5 6 18.6 kg) ...

  11. Moving the Weber fraction: the perceptual precision for moment of inertia increases with exploration force

    NARCIS (Netherlands)

    Debats, N.B.; Kingma, I.; Beek, P.J.; Smeets, J.B.J.

    2012-01-01

    How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's "angular mass") under different force conditions, using the Weber fraction to quantify

  12. Importance of upper-limb inertia in calculating concentric bench press force.

    Science.gov (United States)

    Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel

    2008-03-01

    The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.

  13. Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force

    Science.gov (United States)

    Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.

    2012-01-01

    How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437

  14. Analysis of Dynamic Inertia Forces at Main Bearing of Ship Reciprocating Engines

    Directory of Open Access Journals (Sweden)

    F. Louhenapessy Louhenapessy,

    2010-11-01

    Full Text Available During operation, a ship reciprocating engine will vibrate due to the force resulting from the cycle movement of the dynamic components. Soon or later, the vibration will cause wear of engine components. Therefore, the cause of vibration should be early identified so that the propagation of wear can be anticipated. The study modeled the ship reciprocating engine as a two stroke engine, and analyzed one of the causes of the engine vibration, i.e. the force acting on main bearing, using a numerical simulation. An experimental study was also carried out for measuring the acceleration of vibration response due to the numerical dynamic inertia force. The results showed that the dynamic inertia force acting on the main bearing is the main cause of the vibration of engine.

  15. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  16. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Science.gov (United States)

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  17. The effect of inertia force in water lubricated thrust bearings of canned reactor coolant pump

    International Nuclear Information System (INIS)

    Deng Liping

    1994-01-01

    The water lubricated thrust bearings are analyzed. According to characteristic of low viscosity of water the lubricated equation for design and calculation of water lubricated thrust bearings is established. The calculation and analyses show that the effect of inertia force in water lubricated thrust bearings should not be neglected except the conditions of low speed, high angle of inclination and low radius ratio of pad

  18. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  19. The Use of Force Sensors and a Computer System to Introduce the Concept of Inertia at a School

    Science.gov (United States)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A classical experiment used to introduce the concept of body inertia, breaking of a thread below and above a hanging weight, is described mathematically and presented in a new way, using force sensors and a computer system.

  20. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment

    Directory of Open Access Journals (Sweden)

    Olivier eWhite

    2015-02-01

    Full Text Available In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force, normal to the finger/object contact, in anticipation of the expected tangential load force, resulting from the combination of the gravitational and the inertial forces. In many contexts, grip force and load force are linearly coupled. A few studies have examined how we adjust the parameters - gain and offset - of this linear relationship. However, the question remains open as to how the brain adjusts grip force regardless of whether load force is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of load force by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust grip force, the brain is sensitive to how load forces are produced at the fingertips. This provides clear evidence that the analysis of the origin of load force is performed centrally, and not only at the periphery.

  1. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  2. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-01-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  3. The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Thomas Hagemann

    2017-01-01

    Full Text Available This paper presents a combination of experimental data, CFD analyses, and bearing code predictions on emergence of convective inertia fluid forces within the lube oil flow of tilting-pad journal bearings. Concordantly, experimental data and CFD analyses show a significant rise of local pressure at the transition between inlet and leading edge of tilting-pad, especially for high-speed applications with surface speeds up to 100 m/s. This effect can be related to convective inertia forces within fluid flow as cross-sections and flow character rapidly change at the pad entrance. An energy-based approach is implemented in the bearing code in order to provide enhanced boundary conditions for Reynolds equation considering this effect. As a result, predictions of bearing code achieved significant improved correlation with measured pressure distributions and CFD-data. Further, beside the local influence, a nonnegligible impact on characteristic parameters of bearing operation such as maximum temperature and stiffness and damping coefficients is observed. Finally, the results are critically analyzed and requirements to gain more distinct and reliable data are specified.

  4. A study on forces acting on a flapping wing

    Directory of Open Access Journals (Sweden)

    Cetiner O.

    2013-04-01

    Full Text Available In order to study the forces acting on a flapping wing, an experimental investigation is performed in steady water flow. In this study, a SD7003 airfoil undergoes combined pitching and plunging motion which simulates the forward flight of small birds. The frequency of pitching motion is equal to the frequency of plunging motion and pitch leads the plunge by a phase angle of 90 degrees. The experiments are conducted at Reynolds numbers of 2500 ≤ Re ≤ 13700 and the vortex formation is recorded using the digital particle image velocimetry (DPIV technique. A prediction of thrust force and efficiency is calculated from the average wake deficit of DPIV data, the near-wake vorticity patterns and time dependent velocity vectors are determined to comment on the thrust and drag indication. Direct force measurements are attempted using a Force/Torque sensor which is capable of measuring forces and moments in three axial directions.

  5. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    Science.gov (United States)

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  6. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment

    Science.gov (United States)

    White, Olivier

    2015-01-01

    In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery. PMID:25717293

  7. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    Directory of Open Access Journals (Sweden)

    Jairo Vázquez-Guerrero

    Full Text Available The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010 and peak force output differed between all loads for each condition (P < 0.045. Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001. There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  8. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  9. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  10. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  11. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  12. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  13. Effect of compressive force on aeroelastic stability of a strut-braced wing

    Science.gov (United States)

    Sulaeman, Erwin

    2002-01-01

    Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce

  14. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes

    International Nuclear Information System (INIS)

    Park, Hyungmin; Choi, Haecheon

    2012-01-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α md ) and mid-upstroke (α mu ), and the duration (Δτ) and time of initiation (τ p ) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α md and low α mu produces larger vertical force with less aerodynamic power, and low α md and high α mu is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α md and high α mu is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present

  16. Inaction inertia

    NARCIS (Netherlands)

    van Putten, M.; Zeelenberg, M.; van Dijk, E.; Tykocinski, O.E.

    2013-01-01

    Inaction inertia occurs when bypassing an initial action opportunity has the effect of decreasing the likelihood that subsequent similar action opportunities will be taken. This overview of the inaction inertia literature demonstrates the impact of inaction inertia on decision making. Based on

  17. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  18. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    Science.gov (United States)

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  19. Magnus force and inertia properties of magnetic vortices in weak ferromagnets

    International Nuclear Information System (INIS)

    Zvezdin, A.K.; Zvezdin, K.A.

    2010-01-01

    The question of the Magnus force in weak ferromagnets acting on magnetic vortices (Bloch lines), within domain boundary has been investigated and the general formula of the Magnus force has been derived. It is shown that the Magnus force is non-zero in most types domain boundaries and determined by the average sublattice magnetization, Dzyaloshinskii coupling constants and exchange interaction between the sublattices. Generalized expressions have been obtained for the effective Langrangian and Rayleigh functions in weak ferromagnets allowing for their vortex structure. The mass of a vortex was considered and the value m * ∼ 10 -14 g/cm was obtained for YFeO 3 . The dynamic bending of the domain boundary in the presence of a moving vortex has been analyzed. A formula has been obtained, which describes the dependence of the vortex velocity in a motionless domain boundary upon the magnetic-field.

  20. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  1. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  2. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Science.gov (United States)

    Horstmann, Jan T; Henningsson, Per; Thomas, Adrian L R; Bomphrey, Richard J

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  3. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Directory of Open Access Journals (Sweden)

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  4. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  5. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  6. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  7. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  8. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  9. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  10. Inertia and Decision Making.

    Science.gov (United States)

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.

  11. Clap and Fling Interaction of Bristled Wings: Effects of Varying Reynolds Number and Bristle Spacing on Force Generation and Flow Structures

    Science.gov (United States)

    Kasoju, Vishwa Teja

    The smallest flying insects with body lengths under 1 mm, such as thrips and fairyflies, typically show the presence of long bristles on their wings. Thrips have been observed to use wing-wing interaction via 'clap and fling' for flapping flight at low Reynolds number (Re) on the order of 10, where a wing pair comes into close contact at the end of upstroke and fling apart at the beginning of downstroke. We examined the effects of varying the following parameters on force generation and flow structures formed during clap and fling: (1) Re ranging from 5 to 15 for a bristled wing pair (G/D = 17) and a geometrically equivalent solid wing pair; and (2) ratio of spacing between bristles to bristle diameter (G/D) for Re = 10. The G/D ratio in 70 thrips species were quantified from published forewing images. Scaled-up physical models of three bristled wing pairs of varying G/D (5, 11, 17) and a solid wing pair (G/D = 0) were fabricated. A robotic model was used for this study, in which a wing pair was immersed in an aquarium tank filled with glycerin and driven by stepper motors to execute clap and fling kinematics. Dimensionless lift and drag coefficients were determined from strain gauge measurements. Phase-locked particle image velocimetry (PIV) measurements were used to examine flow through the bristles. Chordwise PIV was used to visualize the leading edge vortex (LEV) and trailing edge vortex (TEV) formed over the wings during clap and fling. With increasing G/D, larger reduction was observed in peak drag coefficients as compared to reduction in peak lift coefficients. Net circulation, defined as the difference in circulation (strength) of LEV and TEV, diminished with increasing G/D. Reduction in net circulation resulted in reducing lift generated by bristled wings as compared to solid wings. Leaky, recirculating flow through the bristles provided large drag reduction during fling of a bristled wing pair. If flight efficiency is defined as the ratio of lift to drag

  12. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    Science.gov (United States)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  13. Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data

    Science.gov (United States)

    Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael

    2014-01-01

    Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.

  14. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta

  15. Mars Thermal Inertia

    Science.gov (United States)

    2001-01-01

    This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  16. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    Science.gov (United States)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  17. Growth, unemployment and wage inertia

    OpenAIRE

    Raurich, Xavier; Sorolla, Valeri

    2014-01-01

    We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without wage inertia. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show...

  18. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  19. Inertia effects in rheometrical flow systems

    NARCIS (Netherlands)

    Waterman, H.A.

    1976-01-01

    The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily

  20. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  1. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  2. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  3. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    Science.gov (United States)

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  4. Air Force Host and Tenant Agreements Between the 50th Space Wing, the Joint National Integration Center, and Tenants

    National Research Council Canada - National Science Library

    2007-01-01

    .... The 50th Space Wing makes available by permit two buildings on the base's real property records, 720 and 730, to the Joint National Integration Center, a Component of the Missile Defense Agency...

  5. Compensations for increased rotational inertia during human cutting turns.

    Science.gov (United States)

    Qiao, Mu; Brown, Brian; Jindrich, Devin L

    2014-02-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.

  6. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    Science.gov (United States)

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  7. A flight investigation of oscillating air forces: Equipment and technique

    Science.gov (United States)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  8. Treating inertia in passive microbead rheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    attenuated inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead. We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and the oscillation of MSD is suppressed if fluid density and bead density are comparable. © 2012 American Physical Society

  9. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  10. Response of the rf-extraction-wing balcony and floor, and the storage ring to forced and ambient vibration excitation and coupling to tunnel/basemat

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.; Rosas-Velez, P.

    1993-08-01

    To ensure successful operation of the APS, vibration of the storage ring quadrupole magnets must be limited to very low levels for frequencies >10 Hz. There will be many sources of vibration, such as pumps, fans, compressors, generators, and other rotating and reciprocating machinery when the APS is operational. In general, such vibration sources are isolated from the structural components and base foundations by vibration dampers and isolators. Pumps are typically mounted on seismic isolators, which are massive bases with response frequencies of <10 Hz, and fans are mounted with elastic-type isolators to minimize vibration coupling. The attenuation of expansion/isolation joints is a very important factor in predicting the response of the storage ring basemat to the various excitation sources. Several 75-hp pumps are located on the balcony of the rf extraction wing, which is close to the storage ring basemat. The pumps per se may prove to be a vibration excitation source of concern. Additional pumps will be placed in the RF extraction building and could add to the vibration levels. If the dynamic unbalance force of the pump motor, and the efficiency of the associated expansion joints were known, one could predict the response of the storage ring basemat. This information would also be useful in determining the placement of additional pumps. This report discusses vibration tests and measurements that were performed on July 28, 1993, in the rf extraction building. The purpose of the investigation was to study the efficiency of two specific expansion joints: (1) the joint that separates a structural column pad from the extraction wing floor, and (2) the joint that separates the extraction wing floor from the roof of the storage ring tunnel. A small electrodynamic exciter, with a maximum RMS force output of ∼0.5 lb at the frequencies of interest, was used

  11. Selective effects of weight and inertia on maximum lifting.

    Science.gov (United States)

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Free piston inertia compressor

    Science.gov (United States)

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  13. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  14. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  15. Therapeutic Inertia and Treatment Intensification.

    Science.gov (United States)

    Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D

    2018-01-29

    This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.

  16. Collective inertia in paired systems

    International Nuclear Information System (INIS)

    Arve, P.O.; Bertsch, G.F.; Michigan State Univ., East Lansing

    1988-01-01

    Two definitions of the collective inertia are examined. One of them was recently proposed and applied in a calculation of exotic radioactivity. The other expression is the Inglis cranking formula. It is shown that the new formula corresponds to rapid collective motion while the cranking corresponds to slow collective motion. It is also seen that the two forms of the inertia differ only in the choice of the collective momentum. (orig.)

  17. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  18. Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.

    1979-01-01

    The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)

  19. Scaling of rotational inertia of primate mandibles.

    Science.gov (United States)

    Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B

    2017-05-01

    The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion

  20. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  1. From resistance to relational inertia

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    -network-theory as a point of departure a new concept – relational inertia – is developed. In this view change agents are theorized as translators who interacts with humans as well as non-humans (objects) in order to construct different types of socio-technical systems which are constructed to perform certain “wished...... inertia that had to be handled in order to succeed with constructing a performative socio-technical risk-management system in practice. Finally it is discussed how this view supplements the resistance to change view and other views with a focus on barriers to change....

  2. Moment of Inertia by Differentiation

    Science.gov (United States)

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  3. Inertia thermonuclear reactor

    International Nuclear Information System (INIS)

    Imon, Toshiharu; Nakamura, Norio; Oomura, Hiroshi.

    1983-01-01

    Purpose: To eliminate the requirement of power for controlling the flow velocity of coolants flowing through a porous structure blanket, as well as establish a uniform and stable coolant layer. Constitution: Breeding blanket is made with mesh-like or fiberous porous body, and liquid lithium is introduced into the porous body. The porous body functions as a resistive member to inhibit the free fall of the liquid lithium, so the coolant flowing velocity can be determined to a desired value by appropriately selecting the porosity therein. Further, since liquid lithium flows downwardly at a uniform speed under the effect of the gravitational force, the layer thickness is made uniform to effectively recover neutron energy. Also, while waves are formed at the boundary surface of the liquid lithium layer other than for the porous body due to the collision of fine balls or the likes, they are instantly eliminated by the porous body and the flow can be stabilized. (Yoshino, Y.)

  4. Inertia thermonuclear device

    International Nuclear Information System (INIS)

    Madarame, Haruki; Nakamura, Norio; Oomura, Hiroshi.

    1983-01-01

    Purpose: To enable effective recovery of the thermonuclear reaction energy and effective protection of a cylinder metal against thermal destruction by forming a uniform and stable liquid metal wall to the inside of a cylindrical member. Constitution: Cylindrical body having a lateral axis is rotatably supported so that a liquid metal wall for use in the wet wall type thermonuclear device is formed centrifugally. A liquid metal injection port for injecting the liquid metal to the cylindrical member is disposed to the lateral axis and a liquid metal exit for flowing out the injected liquid metal is disposed to the body of the cylindrical member, so as to form a moving liquid metal layer flowing from the injection port through the inner circumferential surface of the cylindrical member to the liquid metal exit port. Then, the liquid metal is centrifugally forced to the inner surface of the cylindrical body to form a uniform and stable liquid metal wall at the inner surface of the cylindrical body, whereby the reaction energy can effectively be recovered and the cylinder metal can effectively be protected against thermal destruction. (Yoshihara, H.)

  5. The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    Science.gov (United States)

    Eppink, Jenna L.; Shishkov, Olga; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2016-01-01

    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence.

  6. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  7. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  8. Phylogenetic inertia and Darwin's higher law.

    Science.gov (United States)

    Shanahan, Timothy

    2011-03-01

    The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. On the origin of inertia

    International Nuclear Information System (INIS)

    Culetu, H.

    1990-09-01

    A dynamical origin to the Minkowski geometry is suggested in this paper. The Minkowski internal (-x α x α ) 1/2 plays the role of the fifth dimension. We found the energy-momentum vector p μ (associated to a ''motion in scale'') of a ''free'' relativistic particle in position-dependent. When x i and ''t'' are not independent, we are naturally led to the law of inertia. (author). 10 refs

  10. Problem of Vortex Turbulence behind Wings (II),

    Science.gov (United States)

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  11. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  12. Primary uterine inertia in four labrador bitches.

    Science.gov (United States)

    Davidson, Autumn P

    2011-01-01

    Uterine inertia is a common cause of dystocia in the bitch and is designated as primary (i.e., uterine contractions fail to ever be initiated) or secondary (i.e., uterine contractions cease after a period of time but before labor is completed). The etiology of primary uterine inertia is not well understood. The accurate diagnosis of primary uterine inertia requires the use of tocodynamometry (uterine monitoring). Primary uterine inertia has been postulated to result from a failure of luteolysis resulting in persistently elevated progesterone concentrations. In this study, primary uterine inertia was diagnosed in a series of four bitches in which luteolysis was documented suggesting some other etiopathogenesis for primary uterine inertia.

  13. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  14. WAYS TO MANAGE HEATING INERTIA

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2017-08-01

    Full Text Available Purpose. The research paper proposes to estimate the effect of heat inertia of the water heating system, in transient operation modes, on the temperature condition in the passenger car, as well as to offer technical solutions intended to reduce the heating system inertia effect and to maintain a stable temperature condition in the passenger car premises in transitional modes of the heating system. Methodology. The author developed the method for controlling the heat transfer of heating system pipes with the help of regulating casing. To control the heating system and the heat transfer of heating pipes, two types of temperature control sensors were used in the passenger car: certain sensors interacted with regulatory casings, while the others interacted with high-voltage tubular heating element control devices. To assess the efficiency of heat interchange regulation of heating pipes and the heating system control, with installed regulating casings, the operation of the heating system with regulating casings and two types of sensors was mathematically modelled. Mathematical modelling used the experimental test data. The results of experimental tests and mathematical modelling were compared. Findings. Currently in operated passenger cars, control of heating appliances is not constructively provided. Automatic maintenance of the set temperature in a passenger car is limited to switching on and off of high-voltage tubular heating elements. The use of regulating casings on heating pipes allows reducing the effects of heat inertia and maintaining stable thermal conditions in a passenger car, using the heating system as a heat accumulator, and also provides the opportunity to realize an individual control of air temperature in the compartment. Originality. For the first time, the paper studied the alternative ways of regulating the temperature condition in a passenger car. Using of the heating system as a heat accumulator. Practical value. The

  15. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  16. Clinical Inertia and Outpatient Medical Errors

    National Research Council Canada - National Science Library

    O'Connor, Patrick J; Sperl-Hillen, JoAnn M; Johnson, Paul E; Rush, William A; Biltz, George

    2005-01-01

    .... Clinical inertia is a major factor that contributes to inadequate chronic disease care in patients with diabetes mellitus, hypertension, dyslipidemias, depression, coronary heart disease, and other conditions...

  17. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at the Eastern Range... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape... navigable waters of the United States, as defined at 33 CFR part 329, within the Banana River contiguous to...

  18. Environmental Assessment for Construction of BRAC Infrastructure Upgrades and the Human Performance Wing Complex in the Area B Hilltop District, Wright-Patterson Air Force Base

    Science.gov (United States)

    2007-09-01

    leucocephala), killdeer, English sparrow (Passer domesticus), mockingbird (Mimus polyglottos), and red-winged blackbird also are often observed within...people who would be injured or killed if an aircraft crashed. Three safety zones are designated at the end of all active runways: Clear Zone, APZ I

  19. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.

    Science.gov (United States)

    Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik

    2017-07-01

    The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.

  20. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  1. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  2. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  3. Dynamical moments of inertia for superdeformed nuclei

    International Nuclear Information System (INIS)

    Obikhod, T.V.

    1995-01-01

    The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd

  4. On the carrier of inertia

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2018-03-01

    Full Text Available A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism share the similar functional form because both are carried by the vacuum photons as paired and unpaired.

  5. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  6. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  7. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  8. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  9. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  10. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  11. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system......’s inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...

  12. A Reevaluation of the Attentional Inertia Concept

    NARCIS (Netherlands)

    W.J.M.I. Verbeke (Willem)

    1992-01-01

    textabstractAnderson's (1983) theory about children's attention behavior during television viewing hypothesizes that attention behavior is affected by positive feedback (the inertia hypothesis) and the degree to which a child understands the television program. During an experiment, neither

  13. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  14. Social inertia and diversity in collaboration networks

    Science.gov (United States)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  15. An Application of CFD to Guide Forced Boundary-Layer Transition for Low-Speed Tests of a Hybrid Wing-Body Configuration

    Science.gov (United States)

    Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.

    2016-01-01

    A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.

  16. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  17. Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV

    Science.gov (United States)

    Phan, Hoang Vu; Park, Hoon Cheol

    2016-04-01

    In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.

  18. Testing quantised inertia on emdrives with dielectrics

    Science.gov (United States)

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  19. On the origin of the inertia: The modified Newtonian dynamics theory

    International Nuclear Information System (INIS)

    Gine, Jaume

    2009-01-01

    It is shown that the identity between inertial mass and gravitational mass is an assumption to establish the equivalence principle. In the context of Sciama's inertia theory, the identity between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from Assis' inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [Gine J. On the origin of the anomalous precession of Mercury's perihelion. . Gine J. On the origin of deflection of the light. Chaos, Solitons and Fractals 2008;35(1):1-6]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder whether the theory of inertia of Assis is included in the framework the General Relativity. In the context of the inertia developed in the present paper, we establish the relation between the constant acceleration a 0 , that appears in the classical modified Newtonian dynamics (MOND) theory, with the Hubble constant H 0 , i.e. a 0 ∼ cH 0 .

  20. The Problem of Inertia in a Friedmann Universe

    Science.gov (United States)

    Kazanas, Demosthenes

    2012-01-01

    In this talk I will discuss the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass $m$ by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form $F = -kma$ where the constant $k < 1 $ depends on the choice of the cosmological parameters such as $\\Omega_{M},\\ \\Omega_{\\Lambda}, $ and $\\Omega_{R}$. The values of $k$ obtained suggest that inertial contribution from dark matter can be the source for the missing part of the inertial force.

  1. The significance of moment-of-inertia variation in flight manoeuvres of butterflies

    International Nuclear Information System (INIS)

    Lin, T; Zheng, L; Mittal, R; Hedrick, T

    2012-01-01

    The objective of this study is to understand the role that changes in body moment of inertia might play during flight manoeuvres of insects. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight manoeuvres; the 3D kinematics of the centre of masses of the various body parts of the insect is determined experimentally. Measurements of the mass properties of the insect are used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analysis indicate that changes in moment of inertia during flight are large enough to influence the manoeuvres of these insects. (communication)

  2. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  3. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar; Ghommem, Mehdi

    2013-01-01

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras

  4. Christoffel symbols and inertia in flat space-time theory. [Curvilinear coordinate systems

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-11-01

    A necessary and sufficient criterion of inertia is presented, for the flat space-time theory of general frames of reference, in terms of the vanishing of some typical components of the affine connection pertaining to curvilinear coordinate systems. The physical identification of inertial forces thus arises in the context of the special theory of relativity.

  5. Inertia effects in rheometrical flow systems Part 2: The balance rheometer

    NARCIS (Netherlands)

    Waterman, H.A.

    1976-01-01

    The flow field of a linear viscoelastic fluid in the balance rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian fluid is included in this solution as a special case. The forces and couples on the hemispheres are

  6. Virtual Inertia: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Ujjwol Tamrakar

    2017-06-01

    Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

  7. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  8. Kπ=0+ band moment of inertia anomaly

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology

    1990-01-01

    The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory

  9. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  10. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  11. Effects of Roughness and Inertia on Precursors to Frictional Sliding

    Science.gov (United States)

    Robbins, Mark O.; Salerno, K. Michael

    2012-02-01

    Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)

  12. Acquisition of Inertia by a Moving Crack

    Science.gov (United States)

    Goldman, Tamar; Livne, Ariel; Fineberg, Jay

    2010-03-01

    We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].

  13. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  14. Measurement of whole-body human centers of gravity and moments of inertia.

    Science.gov (United States)

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.

  15. Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    International Nuclear Information System (INIS)

    Ahedo, Eduardo; Merino, Mario

    2012-01-01

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.

  16. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness.

    Science.gov (United States)

    Trotti, Lynn M

    2017-10-01

    The transition from sleep to wake is marked by sleep inertia, a distinct state that is measurably different from wakefulness and manifests as performance impairments and sleepiness. Although the precise substrate of sleep inertia is unknown, electroencephalographic, evoked potential, and neuroimaging studies suggest the persistence of some features of sleep beyond the point of awakening. Forced desynchrony studies have demonstrated that sleep inertia impacts cognition differently than do homeostatic and circadian drives and that sleep inertia is most intense during awakenings from the biological night. Recovery sleep after sleep deprivation also amplifies sleep inertia, although the effects of deep sleep vary based on task and timing. In patients with hypersomnolence disorders, especially but not exclusively idiopathic hypersomnia, a more pronounced period of confusion and sleepiness upon awakening, known as "sleep drunkenness", is common and problematic. Optimal treatment of sleep drunkenness is unknown, although several medications have been used with benefit in small case series. Difficulty with awakening is also commonly endorsed by individuals with mood disorders, disproportionately to the general population. This may represent an important treatment target, but evidence-based treatment guidance is not yet available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  18. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  19. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  20. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...

  1. Effects of Inertia on Evolutionary Prisoner's Dilemma Game

    Science.gov (United States)

    Du, Wen-Bo; Cao, Xian-Bin; Liu, Run-Ran; Wang, Zhen

    2012-09-01

    Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.

  2. Effects of Inertia on Evolutionary Prisoner's Dilemma Game

    International Nuclear Information System (INIS)

    Du Wenbo; Cao Xianbin; Liu Runran; Wang Zhen

    2012-01-01

    Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society. (interdisciplinary physics and related areas of science and technology)

  3. Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid

    International Nuclear Information System (INIS)

    Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A

    2007-01-01

    In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized

  4. Dependence of nuclear moments of inertia on the triaxial parameter

    International Nuclear Information System (INIS)

    Helgesson, J.; Hamamoto, Ikuko

    1989-01-01

    The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)

  5. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics

    Directory of Open Access Journals (Sweden)

    Esmail Pishbin

    2016-12-01

    Full Text Available The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions. Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s and also efficient mixing in centrifugal microfluidic platforms.

  6. Effect of liquid inertia on bubble growth in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Wagner, L.Y.; Lykoudis, P.S.

    1977-01-01

    Liquid metal bubble growth in the presence of a magnetic field has previously been examined by Lykoudis under the assumption that the process is heat transfer controlled. In the present work, the growth of a bubble under the influence of a magnetic field is considered when the effect of the liquid inertia is included. This yields a better description of the phenomena for liquid metals, due to the greater portion of the growth cycle that is dominated by the liquid inertia forces. The results indicate that liquid inertia can significantly affect the growth of a liquid metal bubble when compared with the heat transfer-controlled case. The overall effect of the magnetic field forces the heat transfer-controlled growth to occur earlier in the life of the bubble. Hence, heat transfer effects dominate the growth stage more as the magnetic field is increased. The inertia effects are damped and, in the limit of high magnetic fields, growth is only heat transfer controlled. The heat transfer estimates made in the fashion of Forster and Zuber indicate that the magnetic field reduces the energy transport in nucleate boiling. 5 figures

  7. Nonlinear transient waves in coupled phase oscillators with inertia.

    Science.gov (United States)

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  8. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  9. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  10. The latent effect of inertia in the modal choice

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios

    2014-01-01

    The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...... approaches. We assume that inertia is revealed by past behaviour and affects also the initial condition, but we recognise that past behaviour is only an indicator of habitual behaviour, the true process behind the formation of habitual behaviour being latent. We estimate a hybrid choice model using a set...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency...

  11. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  12. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  13. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  14. Exploring inertia in a typical state organisation

    Directory of Open Access Journals (Sweden)

    G. J. Louw

    2004-10-01

    Full Text Available Those organisations which do not change according to environmental pressures, suffer from organisational inertia. The purpose of this study is to explore the manifestation of organisational inertia in the target organisation. The target population for this study was a group of trainees, representing the geographic and demographic levels of a particular state department. In South Africa, surveys of this nature were only executed in the corporate sector. The results indicate that organisational inertia is a phenomenon that affects both corporate and governmental organisations. Opsomming Organisasies wat nie ooreenkomstig omgewingsdruk verander nie, ly aan organisasietraagheid. Die doel van die studie is om organisasietraagheid te konseptualiseer en die manifestasie daarvan in die teikenorganisasie te ondersoek. Die teikenpopulasie bestaan uit ’n groep kursusgangers wat die demografiese en geografiese samestelling van ‘n tipiese staatsdepartement verteenwoordig. In Suid -Afrika is navorsing van hierdie aard nog net in die korporatiewe sektor uitgevoer. Die resultate toon aan dat organisasietraagheid ‘n faktor is wat beide die korporatiewe omgewing en staatsorganisasies beïnvloed.

  15. CFD Analysis of a T-38 Wing Fence

    Science.gov (United States)

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...fences have been used to improve the aerodynamic performance of hundreds of aircraft. Flow control is commonly added after the final phase of design...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of

  16. Transient filament stretching rheometer I: force balance analysis

    DEFF Research Database (Denmark)

    Szabo, Peter

    1997-01-01

    The filament stretching device which is used increasingly as an apparatus for measuring extensional properties of polymeric liquids isanalysed. A force balance that includes the effects of inertia and surface tension is derived.The force balance may be used to correct for the effects of inertia...

  17. Inertia in strategy switching transforms the strategy evolution.

    Science.gov (United States)

    Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long

    2011-12-01

    A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.

  18. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés

    2012-04-01

    We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the

  19. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  20. Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......-based system using-real time digital simulator (RTDS) to propose the best one for the synthetic inertia controller. From the comparative simulation results, it can be concluded that the method using a combination of both the frequency deviation and derivative as input signals, and the under-frequency trigger...

  1. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  2. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  3. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  4. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  5. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  6. Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2014-03-27

    predicts forces and moments for the class of flapping wing fliers that makes up most insects and hummingbirds. Large bird and butterfly “clap- and...Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles DISSERTATION Garrison J. Lindholm, Captain, USAF AFIT-ENY-DS-14-M-02 DEPARTMENT...States Air Force, Department of Defense, or the United States Government. AFIT-ENY-DS-14-M-02 Closed-Loop Control of Constrained Flapping Wing Micro Air

  7. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  8. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  9. On the moment of inertia of a quantum harmonic oscillator

    International Nuclear Information System (INIS)

    Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-01-01

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  10. Nuclear inertia for fission in a generalized cranking model

    International Nuclear Information System (INIS)

    Kunz, J.; Nix, J.R.

    1984-01-01

    A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value

  11. Moment of inertia and the interacting boson model

    International Nuclear Information System (INIS)

    Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.

    1989-01-01

    Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)

  12. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  13. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  14. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  15. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    Science.gov (United States)

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  16. Zero-G experimental validation of a robotics-based inertia identification algorithm

    Science.gov (United States)

    Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou

    2010-04-01

    The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.

  17. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  18. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  19. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  20. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  1. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  2. Progress in establishing a connection between the electromagnetic zero-point field and inertia

    International Nuclear Information System (INIS)

    Haisch, Bernhard; Rueda, Alfonso

    1999-01-01

    We report on the progress of a NASA-funded study being carried out at the Lockheed Martin Advanced Technology Center in Palo Alto and the California State University in Long Beach to investigate the proposed link between the zero-point field of the quantum vacuum and inertia. It is well known that an accelerating observer will experience a bath of radiation resulting from the quantum vacuum which mimics that of a heat bath, the so-called Davies-Unruh effect. We have further analyzed this problem of an accelerated object moving through the vacuum and have shown that the zero-point field will yield a non-zero Poynting vector to an accelerating observer. Scattering of this radiation by the quarks and electrons constituting matter would result in an acceleration-dependent reaction force that would appear to be the origin of inertia of matter (Rueda and Haisch 1998a, 1998b). In the subrelativistic case this inertia reaction force is exactly newtonian and in the relativistic case it exactly reproduces the well known relativistic extension of Newton's Law. This analysis demonstrates then that both the ordinary, F-vector=ma-vector, and the relativistic forms of Newton's equation of motion may be derived from Maxwell's equations as applied to the electromagnetic zero-point field. We expect to be able to extend this analysis in the future to more general versions of the quantum vacuum than just the electromagnetic one discussed herein

  3. Inertia effects on the rigid displacement approximation of tokamak plasma vertical motion

    International Nuclear Information System (INIS)

    Carrera, R.; Khayrutdinov, R.R.; Azizov, E.A.; Montalvo, E.; Dong, J.Q.

    1991-01-01

    Elongated plasmas in tokamaks are unstable to axisymmetric vertical displacements. The vacuum vessel and passive conductors can stabilize the plasma motion in the short time scale. For stabilization of the plasma movement in the long time scale an active feedback control system is required. A widely used method of plasma stability analysis uses the Rigid Displacement Model (RDM) of plasma behavior. In the RDM it is assumed that the plasma displacement is small and usually plasma inertia effects are neglected. In addition, it is considered that no changes in plasma shape, plasma current, and plasma current profile take place throughout the plasma motion. It has been demonstrated that the massless-filament approximation (instantaneous force-balance) accurately reproduces the unstable root of the passive stabilization problem. Then, on the basis that the instantaneous force-balance approximation is correct in the passive stabilization analysis, the massless approximation is utilized also in the study of the plasma vertical stabilization by active feedback. The authors show here that the RDM (without mass effects included) does not provide correct stability results for a tokamak configuration (plasma column, passive conductors, and feedback control coils). Therefore, it is concluded that inertia effects have to be retained in the RDM system of equations. It is shown analytically and numerically that stability diagrams with and without plasma-mass corrections differ significantly. When inertia effects are included, the stability region is more restricted than obtained in the massless approximation

  4. Flapping Wings of an Inclined Stroke Angle: Experiments and Reduced-Order Models in Dual Aerial/Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Triantafyllou, Michael

    2016-11-01

    Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.

  5. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    Science.gov (United States)

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  7. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  8. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  9. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  10. Moments of Inertia of Disks and Spheres without Integration

    Science.gov (United States)

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  11. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  12. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    Science.gov (United States)

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    Science.gov (United States)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  14. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  15. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  16. Development of inertia-increased reactor internal pump

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Matsumura, Seiichi; Kikushima, Jun; Kawamura, Shinichi; Yamashita, Norimichi; Kurosaki, Toshikazu; Kondo, Takahisa

    2000-01-01

    The Reactor Internal Pump (RIP) was adopted for the Reactor Recirculation System (RRS) of Advanced Boiling Water Reactor (ABWR) plants, and ten RIPs are located at the bottom of the reactor pressure vessel. In order to simplify the power supply system for the RIPs, a new inertia-increased RIP was developed, which allows to eliminate the Motor-Generator (M-G) sets. The rotating inertia was increased approximately 2.5 times of current RIP inertia by addition of flywheel on its main shaft. A full scale proving test of the inertia-increased RIP under actual plant operating conditions using full scale test loop was performed to evaluate vibration characteristics and coast down characteristics. From the results of this proving test, the validity of the new inertia-increased RIP and its power supply system (without M-G sets) was confirmed. (author)

  17. Clinical inertia, uncertainty and individualized guidelines.

    Science.gov (United States)

    Reach, G

    2014-09-01

    Doctors often do not follow the guidelines of good practice based on evidence-based medicine, and this "clinical inertia" may represent an impediment to efficient care. The aims of this article are as follows: 1) to demonstrate that this phenomenon is often the consequence of a discrepancy between the technical rationality of evidence-based medicine and the modes of reasoning of physicians practiced in "real-life", which is marked by uncertainty and risk; 2) to investigate in this context the meaning of the recent, somewhat paradoxical, concept of "individualized guidelines"; and 3) to revisit the real, essentially pedagogical, place of guidelines in medical practice. Copyright © 2014. Published by Elsevier Masson SAS.

  18. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  19. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression.

    Science.gov (United States)

    Kanady, Jennifer C; Harvey, Allison G

    2015-10-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.

  20. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  1. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    International Nuclear Information System (INIS)

    Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark

    2015-01-01

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces

  2. Therapeutic inertia amongst general practitioners with interest in diabetes.

    Science.gov (United States)

    Seidu, Samuel; Than, Tun; Kar, Deb; Lamba, Amrit; Brown, Pam; Zafar, Azhar; Hussain, Rizwan; Amjad, Ahmed; Capehorn, Mathew; Martin, Elizabeth; Fernando, Kevin; McMoran, Jim; Millar-Jones, David; Kahn, Shahzada; Campbell, Nigel; Brice, Richard; Mohan, Rahul; Mistry, Mukesh; Kanumilli, Naresh; St John, Joan; Quigley, Richard; Kenny, Colin; Khunti, Kamlesh

    2018-02-01

    As the therapeutic options in the management of type 2 diabetes increase, there is an increase confusion among health care professionals, thus leading to the phenomenon of therapeutic inertia. This is the failure to escalate or de-escalate treatment when the clinical need for this is required. It has been studied extensively in various settings, however, it has never been reported in any studies focusing solely on primary care physicians with an interest in diabetes. This group is increasingly becoming the focus of managing complex diabetes care in the community, albeit with the support from specialists. In this retrospective audit, we assessed the prevalence of the phenomenon of therapeutic inertia amongst primary care physicians with an interest in diabetes in UK. We also assessed the predictive abilities of various patient level characteristics on therapeutic inertia amongst this group of clinicians. Out of the 240 patients reported on, therapeutic inertia was judged to have occurred in 53 (22.1%) of patients. The full model containing all the selected variables was not statistically significant, p=0.59. So the model was not able to distinguish between situations in which therapeutic inertia occurred and when it did not occur. None of the patient level characteristics on its own was predictive of therapeutic inertia. Therapeutic inertia was present only in about a fifth of patient patients with diabetes being managed by primary care physicians with an interest in diabetes. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  3. Emotional inertia contributes to depressive symptoms beyond perseverative thinking.

    Science.gov (United States)

    Brose, Annette; Schmiedek, Florian; Koval, Peter; Kuppens, Peter

    2015-01-01

    The autocorrelation or inertia of negative affect reflects how much negative emotions carry over from moment to moment and has been associated with increased depressive symptoms. In this study, we posed three challenges to this association by examining: (1) whether emotional inertia is relevant for depressive symptoms when assessed on a longer timescale than usual; (2) whether inertia is uniquely related to depressive symptoms after controlling for perseverative thoughts; and (3) whether inertia is related to depressive symptoms over and above the within-person association between affect and perseverative thoughts. Participants (N = 101) provided ratings of affect and perseverative thoughts for 100 days; depressive symptoms were reported before and after the study, and again after 2.5 years. Day-to-day emotional inertia was related to depressive symptoms over and above trait and state perseverative thoughts. Moreover, inertia predicted depressive symptoms when adjusting for its association with perseverative thoughts. These findings establish the relevance of emotional inertia in depressive symptoms independent of perseverative thoughts.

  4. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    Science.gov (United States)

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  5. The cranking moment of inertia in a static potential

    International Nuclear Information System (INIS)

    Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.

    1978-01-01

    Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)

  6. Moments of inertia for solids of revolution and variational methods

    International Nuclear Information System (INIS)

    Diaz, Rodolfo A; Herrera, William J; Martinez, R

    2006-01-01

    We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods

  7. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    OpenAIRE

    Nakata, Toshiyuki; Liu, Hao

    2011-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...

  8. Medicaid program choice, inertia and adverse selection.

    Science.gov (United States)

    Marton, James; Yelowitz, Aaron; Talbert, Jeffery C

    2017-12-01

    In 2012, Kentucky implemented Medicaid managed care statewide, auto-assigned enrollees to three plans, and allowed switching. Using administrative data, we find that the state's auto-assignment algorithm most heavily weighted cost-minimization and plan balancing, and placed little weight on the quality of the enrollee-plan match. Immobility - apparently driven by health plan inertia - contributed to the success of the cost-minimization strategy, as more than half of enrollees auto-assigned to even the lowest quality plans did not opt-out. High-cost enrollees were more likely to opt-out of their auto-assigned plan, creating adverse selection. The plan with arguably the highest quality incurred the largest initial profit margin reduction due to adverse selection prior to risk adjustment, as it attracted a disproportionate share of high-cost enrollees. The presence of such selection, caused by differential degrees of mobility, raises concerns about the long run viability of the Medicaid managed care market without such risk adjustment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Independent particle Schroedinger Fluid: moments of inertia

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1977-10-01

    This philosophy of the Single Particle Schroedinger Fluid, especially as regards the velocity fields which find such a natural role therein, is applied to the study of the moments of inertia of independent Fermion system. It is shown that three simplified systems exhibit the rigid-body rotational velocity field in the limit of large A, and that the leading deviations, both on the average and fluctuating, from this large A limit can be described analytically, and verified numerically. For a single particle in a Hill-Wheeler box the moments are studied numerically, and their large fluctuations identified with the specific energy level degeneracies of its parallelepiped shape. The full assemblage of these new and old results is addressed to the question of the necessary and sufficient condition that the moment have the rigid value. Counterexamples are utilized to reject some conditions, and the conjecture is argued that Unconstrained Shape Equilibrium might be the necessary and sufficient condition. The spheroidal square well problem is identified as a promising test case

  10. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  11. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  13. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  14. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  15. The effect of inertia, viscous damping, temperature and normal ...

    Indian Academy of Sciences (India)

    Nitish Sinha

    2018-04-16

    Apr 16, 2018 ... physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic ... However, the present study has shown the appearance of chaos for the specific .... Although chaos is a general man-.

  16. On the moment of inertia of a proto neutron star

    International Nuclear Information System (INIS)

    Zhao Xianfeng; Zhang Hua; Jia Huanyu

    2010-01-01

    The influences of σ * and Φ mesons,temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, Λ , Σ - , Σ 0 , Σ + , Ξ - , Ξ 0 } system. It is found that, compared with that without considering σ * and Φ mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ * and Φ mesons. (authors)

  17. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  18. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  19. A new inertia weight control strategy for particle swarm optimization

    Science.gov (United States)

    Zhu, Xianming; Wang, Hongbo

    2018-04-01

    Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.

  20. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  1. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  2. Pneumatic artificial muscle and its application on driving variable trailing-edge camber wing

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Liu, Yanju; Leng, Jinsong

    2010-04-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, the experimental setup to measure the static output force of pneumatic artificial muscle was designed and the relationship between the static output force and the air pressure was investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. A variable camber wing based on the pneumatic artificial muscle was developed and the variable camber wing model was manufactured to validate the variable camber concept. Wind tunnel tests were conducted in the low speed wind tunnel. Experimental result shows that the wing camber increases with increasing air pressure.

  3. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  4. Effects of moment of inertia on restricted motion swing speed.

    Science.gov (United States)

    Schorah, David; Choppin, Simon; James, David

    2015-06-01

    In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.

  5. Development of an Inertia-Increased ABWR Internal Pump

    International Nuclear Information System (INIS)

    Shirou Takahashi; Kousei Umemori; Kooji Shiina; Tetsuya Totani; Akihiro Sakashita; Norimichi Yamashita; Takahisa Kondo

    2002-01-01

    It is possible to simplify the reactor internal pump power supply system in the ABWR without affecting the core flow supply when a trip of all RIPs event occurs by eliminating the motor-generator sets and increasing the rotating inertia of the RIPs. This inertia increase due to an additional flywheel, which leads to a gain in weight and length, requires a larger diameter nozzle with a thicker sleeve. However, a thicker sleeve nozzle and a longer and heavier motor casing may change the RIP performance. In the present study, the inertia-increased RIP was verified through full-scale tests. The rotating inertia time constant for coast-down characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP was doubled compared with the current RIP. The inertia-increased RIP with the thicker sleeve nozzle maintained good performance and its power supply system without motor-generator sets was judged appropriate for the ABWR. (authors)

  6. Neural predictors of emotional inertia in daily life.

    Science.gov (United States)

    Waugh, Christian E; Shing, Elaine Z; Avery, Bradley M; Jung, Youngkyoo; Whitlow, Christopher T; Maldjian, Joseph A

    2017-09-01

    Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia-the influence of one's emotional state at one time point on one's emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. © The Author (2017). Published by Oxford University Press.

  7. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    Science.gov (United States)

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2011-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive

  8. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  9. A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing

    NARCIS (Netherlands)

    Ferreira, J.P.; De Breuker, R.

    2016-01-01

    This study describes the development of a morphing wing concept for a Portuguese Air Force Unmanned Air Vehicle (UAV), the UAS-30. Nowadays, optimized fuel efficiency is a primary requirement in the aerospace industry, and it can be significantly improved by designing adaptive wings which can change

  10. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.

    Science.gov (United States)

    Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W

    2016-10-01

    Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.

  11. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  12. Therapeutic inertia in the outpatient management of dyslipidemia in patients with ischemic heart disease. The inertia study.

    Science.gov (United States)

    Lázaro, Pablo; Murga, Nekane; Aguilar, Dolores; Hernández-Presa, Miguel A

    2010-12-01

    Studies indicate that dyslipidemia is undertreated. Numerous systematic reviews have shown that, even when therapeutic targets set by clinical practice guidelines have not been met, treatment remains unchanged despite the availability of alternatives approaches. The result is increased morbidity and mortality. Our aims were to investigate this phenomenon, known as therapeutic inertia, in patients with dyslipidemia and ischemic heart disease, and to determine its possible causes. national, multicenter, observational study of data obtained from physicians by questionnaire and from the clinical records of patients with ischemic heart disease. Main variable: therapeutic inertia during a consultation, defined as treatment remaining the same despite a change being indicated (e.g. low-density lipoprotein cholesterol >100 mg/dl or >70 mg/dl in diabetics). Covariates: physician, patient and consultation characteristics. multivariate logistic regression analysis of factors associated with therapeutic inertia during a consultation. Overall, 43% of consultations involved therapeutic inertia, and an association with coronary risk factors, including diabetes, did not result in a change in treatment. Therapeutic inertia occurred more frequently when there was a long time between the diagnosis and treatment of dyslipidemia and that of ischemic heart disease. Undertreatment was particularly common in women despite a greater overall risk. The more experienced physicians treated younger patients more appropriately. Clinical practice was improved by educational sessions at conferences. Therapeutic inertia was common in patients with chronic ischemic heart disease and dyslipidemia, irrespective of overall cardiovascular risk. Factors associated with the patient, disease and physician had an influence.

  13. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  14. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  15. Apparent thermal inertia and the surface heterogeneity of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  16. Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-12-01

    Full Text Available We investigated the aerodynamic characteristics of a three-dimensional (3D wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE moved laterally to a greater extent than that of a wing-without-endplate (WOE. This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  17. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    Science.gov (United States)

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of

  18. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  19. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  20. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100wind turbines at much higher Reynolds numbers suggest that even large flying animals could potentially exploit LEV-based force augmentation during slow hovering flight, take-offs or landing

  1. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  2. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  3. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945

  4. Observing the variation of asteroid thermal inertia with heliocentric distance

    Science.gov (United States)

    Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.

    2018-06-01

    Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.

  5. Inertia in nursing care of hospitalised patients with urinary incontinence.

    Science.gov (United States)

    Artero-López, Consuelo; Márquez-Hernández, Verónica V; Estevez-Morales, María Teresa; Granados-Gámez, Genoveva

    2018-04-01

    To assess the existence of therapeutic inertia in the nursing care of patients with urinary incontinence during the patient's time in hospital, together with the sociodemographic and professional variables involved. Inertia in care is a problem which appears in the nursing care process. Actions related to inertia can be attributed to not adhering to protocols, clinical guidelines and the lack of prevention measures which have undesirable effects on the efficiency of care. This was a prospective observational study. A total of 132 nursing professionals participated over two consecutive months. Data were collected randomly through the method of systematic, nonparticipative observation of medical practice units and patients' medical records. The results showed a pattern of severely compromised action in the assessment of the pattern of urinary elimination, in actions related to urinary continence, in therapeutic behaviour and in patient satisfaction and were found to be consistent with professional experience (p inertia exists in nursing care in the hospital environment while the patient is hospitalised, in prevention care, in the treatment of urinary incontinence and in the management of records. Contributing to the understanding of the existence of inertia in nursing care raises questions regarding its causes and interventions to predict or monitor it. © 2018 John Wiley & Sons Ltd.

  6. Inertia and Double Bending of Light from Equivalence

    Science.gov (United States)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  7. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.

  8. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  9. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  10. Wing in Ground Effect over a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Valentin Adrian Jean BUTOESCU

    2018-06-01

    Full Text Available A vortex method has been used to investigate the effect of a wavy ground on the aerodynamic forces acting on a wing that flies in its proximity. The air is considered inviscid and incompressible. The problem is obviously unsteady, and the solutions were found numerically.

  11. Effects of structural flexibility of wings in flapping flight of butterfly

    International Nuclear Information System (INIS)

    Senda, Kei; Yokoyama, Naoto; Obara, Takuya; Kitamura, Masahiko; Hirai, Norio; Iima, Makoto

    2012-01-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability. (paper)

  12. Effects of structural flexibility of wings in flapping flight of butterfly.

    Science.gov (United States)

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  13. Aerodynamic comparison of a butterfly-like flapping wing–body model and a revolving-wing model

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kosuke; Yoshino, Masato, E-mail: kosuzuki@shinshu-u.ac.jp [Institute of Engineering, Academic Assembly, Shinshu University, Nagano 380-8553 (Japan)

    2017-06-15

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50–1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models. (paper)

  14. Aerodynamic comparison of a butterfly-like flapping wing–body model and a revolving-wing model

    International Nuclear Information System (INIS)

    Suzuki, Kosuke; Yoshino, Masato

    2017-01-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50–1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models. (paper)

  15. Study on airflow characteristics of rear wing of F1 car

    Science.gov (United States)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  16. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  17. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  18. Moment of inertia of liquid in a tank

    Directory of Open Access Journals (Sweden)

    Gyeong Joong Lee

    2014-03-01

    Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

  19. Inertia of rough and vicinal surfaces of helium-4 crystals

    International Nuclear Information System (INIS)

    Amrit, J.; Legros, P.; Poitrenaud, J.

    1995-01-01

    This paper reports a study of the inertia of rough and vicinal of 4 He crystals. We have measured the transmission coefficient of ultrasonic waves at frequencies 10, 30, 50 and 70 MHz, across the liquid-solid interface. The experiments are carried out at temperatures ranging between 0.4 and 1.0 K for four crystallographic orientations. Two important phenomena are put to evidence for the first time. We have found the first experimental evidence that the inertia of rough surfaces depends on temperature. For vicinal surfaces, we have shown the strong increase of the inertia as the tilt angle decreases. Our experimental results agree very well with the theoretical predictions

  20. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  1. Factors associated with clinical inertia: an integrative review

    Science.gov (United States)

    Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P

    2014-01-01

    Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181

  2. Reduction of nuclear moment of inertia due to pairing interaction

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.

    1994-01-01

    The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found

  3. Electron inertia effects on the planar plasma sheath problem

    International Nuclear Information System (INIS)

    Duarte, V. N.; Clemente, R. A.

    2011-01-01

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  4. Particle number fluctuations in the moment of inertia

    International Nuclear Information System (INIS)

    Allal, N.H.; Fellah, M.

    1991-01-01

    The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%

  5. Inertia Wheel on Low-Noise Active Magnetic Suspension

    Science.gov (United States)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    precision in force measuring or vibration isolation which are required. Note that the stiffness of a magnetic suspension usually increases when it must compensate for a large static force and the increase of stiffness changes drastically the vibration isolation characteristics. It is also possible to support the rotor using a separate controlled electromagnet, but the latter will introduce disturbances which make impossible to evaluate the performances of the magnetic levitation system. Moreover, the sensitivity of the device to the operating conditions makes testing in conditions so different from the actual ones of very little significance. This is particularly true when accurate force measuring or vibration isolation is required or when low power consumption is one of the design specifications. Finally, if an external electromagnetic device is used for compensating for weight, its presence changes the stiffness of the system, to the point of altering drastically its stability characteristics. Parabolic flight is not a solution for this problem: the duration of low gravity conditions during parabolic flights is too short to perform significant experiments on magnetic suspension systems, particularly if the natural frequency of the suspension is very low as is typical of devices aimed at the isolation from low frequency vibrations. The environment in which parabolic flight testing is performed is also too rough for accurate testing. The availability of the space station changes deeply this situation: magnetic levitation systems built for space application can be tested in conditions which are very close to the operating ones. Although the space station environment is not vibrationally so clean as it would be necessary for some application, it is nevertheless far better than any simulated environment on the ground. The present paper deals with the design and construction of an engineering model of an inertia wheel on AMB. The aim of the project is to test the performance of

  6. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  7. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  8. Hysteretic transitions in the Kuramoto model with inertia.

    Science.gov (United States)

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  9. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...

  10. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  11. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  12. Implementation and validation of synthetic inertia support employing series produced electric vehicles

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio

    2017-01-01

    The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....

  13. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  14. Moments of inertia and the shapes of Brownian paths

    International Nuclear Information System (INIS)

    Fougere, F.; Desbois, J.

    1993-01-01

    The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs

  15. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...

  16. Crustal fraction of moment of inertia in pulsars

    International Nuclear Information System (INIS)

    Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.

    2015-01-01

    In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar

  17. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  18. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  19. On the classical Maxwell-Lorentz electrodynamics, the electron inertia problem, and the Feynman proper time paradigm

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Bogolubov, J.R.

    2016-01-01

    The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived in the framework of the Feynman proper time paradigm and the related vacuum field theory approach. The classical Ampere law origin is rederived, and its relationship with the Feynman proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation principle of stochastic electrodynamics. The modified Abraham-Lorentz damping radiation force is derived and the electromagnetic electron mass origin is argued

  20. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.

    Science.gov (United States)

    Hassanalian, M; Abdelmoula, H; Ben Ayed, S; Abdelkefi, A

    2017-05-01

    The thermal impact of the birds' color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10°C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolated colonic inertia is not usually the cause of chronic constipation.

    Science.gov (United States)

    Ragg, J; McDonald, R; Hompes, R; Jones, O M; Cunningham, C; Lindsey, I

    2011-11-01

    Chronic constipation is classified as outlet obstruction, colonic inertia or both. We aimed to determine the incidence of isolated colonic inertia in chronic constipation and to study symptom pattern in those with prolonged colonic transit time. Chronic constipation patients were classified radiologically by surgeon-reported defaecating proctography and transit study into four groups: isolated outlet obstruction, isolated colonic inertia, outlet obstruction plus colonic inertia, or normal. Symptom patterns were defined as stool infrequency (twice weekly or less) or frequent unsuccessful evacuations (more than twice weekly). Of 541 patients with chronic constipation, 289 (53%) were classified as isolated outlet obstruction, 26 (5%) as isolated colonic inertia, 159 (29%) as outlet obstruction plus colonic inertia and 67 (12%) as normal. Of 448 patients (83%) with outlet obstruction, 35% had additional colonic inertia. Only 14% of those with prolonged colonic transit time had isolated colonic inertia. Frequent unsuccessful evacuations rather than stool infrequency was the commonest symptom pattern in all three disease groups (isolated outlet obstruction 86%, isolated colonic inertia 54% and outlet obstruction plus colonic inertia 63%). Isolated colonic inertia is an unusual cause of chronic constipation. Most patients with colonic inertia have associated outlet obstruction. These data question the clinical significance of isolated colonic inertia. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  2. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft

    Directory of Open Access Journals (Sweden)

    Junhui ZHANG

    2018-01-01

    Full Text Available Electro-hydrostatic actuator (EHA pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.

  3. System Inertia in the Changing Paradigm for Biodiversity ...

    African Journals Online (AJOL)

    The aim of this paper is to show that while there has been a change, at a policy level, from the old “conservation without a human face” to the new development for sustainable development, inertia in the policy implementation agencies has meant that the provisions of these new policy frameworks have not been translated ...

  4. Organic food consumption in China: the moderating role of inertia

    Directory of Open Access Journals (Sweden)

    Yen Tsai-Fa

    2018-01-01

    Full Text Available Despite the progressive development of the organic food sector across Taiwan Strait, little is known about how consumers’ self congruity will influence organic food decision through various degrees of attitude and whether or not consumers with various degrees of inertia will vary in their intention to buy organic foods. The current study aims to examine the effect of consumption self congruity on behavioral intention related to organic food consumption under the mediating role of attitude as well as the moderating role of inertia. Research data were collected from organic food consumers across Taiwan Strait via a questionnaire survey, eventually obtaining 500 valid questionnaires for analysis. This study tested the overall model fit and hypotheses through structural equation modeling method (SEM. The results show that consumer attitude significantly mediates the effects of self congruity on organic food purchase intention. Moreover, the moderating effect of inertia is statistical significance, indicating that the relationship between attitude and purchase intention becomes weaker in the condition of consumers with higher degree of inertia. Several implications and suggestions are also discussed for organic food providers and marketers.

  5. Role of inertia in the fracture of rock

    International Nuclear Information System (INIS)

    Passman, S.L.; Grady, D.E.; Rundle, J.B.

    1980-01-01

    A theory for the accumulation of damage in one dimension in fast deformation of a brittle material is developed. The theory is consistent with thermodynamics and takes crack inertia into account. The problem of damage accumulation due to a step pulse in strain is solved, and shows good agreement with experimental results

  6. The inertia system coordinate transformation based on the Lobachevsky function

    International Nuclear Information System (INIS)

    Fadeev, N.G.

    2001-01-01

    Based on the interpretation of the Lobachevsky function cosΠ(ρ/k) = thρ/k as the function which expresses the constant light velocity principle at k = c (k is the Lobachevsky constant, c is the light velocity), the inertia system coordinate transformation of two kinds (one of them known as Lorentz transformation) have been obtained

  7. Chimera states in coupled Kuramoto oscillators with inertia

    International Nuclear Information System (INIS)

    Olmi, Simona

    2015-01-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry

  8. Chimera states in coupled Kuramoto oscillators with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)

    2015-12-15

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  9. Time to wake up: reactive countermeasures to sleep inertia.

    Science.gov (United States)

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2016-12-07

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.

  10. Chimera states in coupled Kuramoto oscillators with inertia.

    Science.gov (United States)

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  11. Moment of Inertia of a Ping-Pong Ball

    Science.gov (United States)

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  12. Inaction inertia, regret, and valuation : A closer look

    NARCIS (Netherlands)

    Zeelenberg, Marcel; Nijstad, Bernard A.; van Putten, Marijke; van Dijk, Eric

    Inaction inertia is the phenomenon that one is not likely to act on an attractive opportunity after having bypassed an even more attractive opportunity. So far, all published work has assumed a causal role for the emotion regret in this effect. In a series of 5 experiments we found no support for

  13. Determinacy, stock market dynamics and monetary policy inertia

    DEFF Research Database (Denmark)

    Pfajfar, Damjan; Santoro, Emiliano

    2011-01-01

    We study equilibrium determinacy in a New-Keynesian model where the Central Bank responds to asset prices growth. Unlike Taylor-type rules that react to asset prices, the proposed alternative does not harm dynamic stability and in certain cases promotes determinacy by inducing interest-rate inertia....

  14. The Zone of Inertia: Absorptive Capacity and Organizational Change

    Science.gov (United States)

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  15. Obstacles to Reasoning about Inertia in Different Contexts

    Science.gov (United States)

    Yerdelen-Damar, Sevda

    2015-01-01

    The present study investigated the underlying reasons for difficulties faced by students when they applied the concept of inertia across varying contexts. The participants of the study included five high school students. Data obtained from interviews were interpreted from the perspectives of the coordination class and epistemological framing…

  16. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  17. Supplemental Environmental Assessment for the Mid-Bay Bridge Connector Phases 2 and 3, Eglin Air Force Base, Florida

    Science.gov (United States)

    2010-08-03

    D. Rodriigue;c 96 CEGICEVS PEPARTMENT OF THE AWR FORCE HEADQUARTERS 96TH AIR &ASE WING (AFMC) EGUN AJR FORCE BASE, FLORIDA 501 Deleon Stteet...Supplemental Environmental Assessment Maria D. Rodriguez 96CEG/CEVS DEPARTMENT OF THE AiR FORCE HEADQUARTERS 96Tit AIR BASE WING (I’ fMC) EGUN AIR FORCE...BASE WING (AFMC) EGUN AIR fORCE BASE, FLORIDA Historic Preservation Specialist Old Post Office Building 1100 Pennsylvania Avenue, NW, Suite 803

  18. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  19. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  20. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  1. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  2. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  3. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  4. Effectiveness and clinical inertia in patients with antidiabetic therapy.

    Science.gov (United States)

    Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique

    2017-06-01

    To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; Pinertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.

  5. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  6. Smoothelin expression in the gastrointestinal tract: implication in colonic inertia.

    Science.gov (United States)

    Chan, Owen T M; Chiles, Lauren; Levy, Mary; Zhai, Jing; Yerian, Lisa M; Xu, Haodong; Xiao, Shu-Yuan; Soffer, Edy E; Conklin, Jeffrey L; Dhall, Deepti; Kahn, Melissa E; Balzer, Bonnie L; Amin, Mahul B; Wang, Hanlin L

    2013-10-01

    Colonic inertia is a frustrating motility disorder to patients, clinicians, and pathologists. The pathogenesis is largely unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific contractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in patients with colonic inertia. A total of 57 resections of the normal GI tract (distal esophagus to left colon) were obtained from patients without GI motor dysfunction. Sixty-one colon resections were obtained from patients with a clinical diagnosis of colonic inertia. Smoothelin immunostaining was conducted on full-thickness tissue sections. In the nondysmotile controls, strong and diffuse cytoplasmic staining for smoothelin was observed in both the inner circular and outer longitudinal layers of the muscularis propria (MP) throughout the entire GI tract. The muscularis mucosae (MM) and muscular vessel walls were either completely negative or only patchily and weakly stained. The 1 exception to this pattern was observed in the distal esophagus, in which the MM was also diffusely and strongly stained. In cases with colonic inertia, a moderate to marked reduction of smoothelin immunoreactivity was observed in 15 of 61 (24.6%) colon resections, selectively seen in the outer layer of the MP. The data demonstrate that smoothelin is differentially expressed in the MP and MM of the normal GI tract and suggest that defective smoothelin expression may play a role in the pathogenesis of colonic inertia in a subset of patients.

  7. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  8. Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state

    International Nuclear Information System (INIS)

    Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao

    1998-01-01

    We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)

  9. Fast estimation of space-robots inertia parameters: A modular mathematical formulation

    Science.gov (United States)

    Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2016-10-01

    This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.

  10. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  11. Assessment of DoD-Provided Healthcare for Members of the United States Armed Forces Reserve Components

    Science.gov (United States)

    2014-10-08

    Force Base, Texas • Air National Guard Combat Readiness Training Center, Alpena, Michigan • 113th Air Support Operations Squadron, Terre Haute...Wing, Terre Haute, Indiana • 185th Air Refueling Wing, Sioux City, Iowa • 349 Air Mobility Wing, Travis Air Force Base, California • 434 Air

  12. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.129-00 Section 86.129-00 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. Applicability. Section 86.129-94 (a) applies... testing using paragraphs (e)(1) and (e)(2) of this section. (f)(1) Required test dynamometer inertia...

  13. 40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) Flywheels, electrical or other means of... weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up to 1,062 1,000 1,000 1...

  14. Microscopic modulation of mechanical properties in transparent insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin; Singh, Kamal P., E-mail: kpsingh@iisermohali.ac.in; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 (India)

    2014-02-10

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodic organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.

  15. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  16. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  17. Differential pressure distribution measurement for the development of insect-sized wings

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-01-01

    This paper reports on the measurement of the differential pressure distribution over a flat, thin wing using a micro-electro-mechanical systems sensor. Sensors featuring a piezoresistive cantilever were attached to a polyimide/Cu wing. Because the weight of the cantilever element was less than 10 ng, the sensor can measure the differential pressure without interference from inertial forces, such as wing flapping motions. The dimensions of the sensor chips and the wing were 1.0 mm × 1.0 mm × 0.3 mm and 100 mm × 30 mm × 1 mm, respectively. The differential pressure distribution along the wing's chord direction was measured in a wind tunnel at an air velocity of 4.0 m s –1 by changing the angle of attack. It was confirmed that the pressure coefficient calculated by the measured differential pressure distribution was similar to the value measured by a load cell. (paper)

  18. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  19. On the influence of microscale inertia on dynamic ductile crack extension

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  20. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  1. Remarks on manipulator classification and reversibility - deflection - backlash - inertia - balance and friction trade off

    International Nuclear Information System (INIS)

    Vertut, Jean.

    1976-01-01

    In a previous work the author proposed a time efficiency quotient based on time to perform a task for a man controlling a manipulator (RO MAN SY 73). This quotient is also a global evaluation of a man-manipulator system, and can be extended to teaching programmed manipulators. Classification based on this quotient emphasizes the importance of force feed-back to the operator, and enables to project the same concept to computer control. This paper concentrates on characteristics reflecting directly to the mechanics of the arm, to the actuators and to the control. They need delicate trade off: reversibility is key to force feed-back, deflection reflects on arm dynamics (oscillation) and precision, backlash allows lower friction but limits servo performances, inertia is high when limited deflection is required, friction is limiting the man in the loop performances, force transducers can compensate irreversibility and/or friction but lead to control sophistication. These trade offs are developed, and some proposed constants are given for force feed-back manipulators

  2. The inertial effect of acceleration fields on a self-decoupled wheel force transducer

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available AbstractWheel force transducer (WFT is a tool which can measure the three-axis forces and three-axis torques applied to the wheel in vehicle testing applications. However, the transducer is generally mounted on the wheel of a moving vehicle, when abruptly accelerating or braking, the mass/inertia of the transducer itself has extra effects on the sensor response so that inertia/mass loads will be detected and coupled into the signal outputs. This is the inertia coupling effect that decreases the sensor accuracy and should be avoided. In this paper, the inertia coupling problem induced by six dimensional accelerations is investigated for a universal WFT. Inertia load distribution of the WFT is solved based on the principle of equivalent mass and rotary inertia firstly, thus then its impact can be identified with the theoretical derivation. FEM simulation and experimental verification are performed as well. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear respectively. The relative errors are acceptable within less than 5% and the maximum impact of inertia loads on the signal output is about 1.5% in the measuring range.

  3. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting

  4. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  5. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  6. Calculations of mass and moment of inertia for neutron stars

    International Nuclear Information System (INIS)

    Moelnvik, T.; Oestgaard, E.

    1985-01-01

    Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)

  7. More about the moment of inertia of Mars

    International Nuclear Information System (INIS)

    Kaula, W.M.; Sleep, N.H.; Phillips, R.J.

    1989-01-01

    The maximum allowable mean moment-of-inertia I of Mars is 0.3650 ·MR 2 because the rate-of-adjustment of the rotation axis is much faster than the rate-of-generation of density heterogeneities, as with any planet. But Mars differs from the other terrestrial planets in that its gravity field is rougher, in the sense of stress-difference implication, and its global tectonics is dominated by one feature, centered on the Tharsis Plateau. Plausible tectonic models of Mars require generation and support that are almost axially symmetric about Tharsis. Hence, unlike other terrestrial planets, Mars likely has two non-hydrostatic components of moments-of-inertia that are nearly equal, and the most probable value of I/MR 2 is slightly less than 0.3650

  8. Motion, inertia and special relativity-a novel perspective

    International Nuclear Information System (INIS)

    Masreliez, C Johan

    2007-01-01

    A recent paper by the author proposes that the phenomenon of inertia may be explained if the four metrical coefficients in the Minkowskian line element were to change as a consequence of acceleration. A certain scale factor multiplying the four metrical coefficients was found, which depends solely on velocity. This dynamic scale factor, which is [1-(v/c) 2 )], models inertia as a gravitational-type phenomenon. With this metric the geodesic of general relativity is an identity, and all accelerating trajectories are geodesics. This paper shows that the same scale factor also agrees with special relativity, but offers a new perspective. A new kind of dynamic process involving four-dimensional scale transition is proposed

  9. Effects of training with a dynamic moment of inertia bat on swing performance.

    Science.gov (United States)

    Liu, Chiang; Liu, Ya-Chen; Kao, Ying-Chieh; Shiang, Tzyy-Yuang

    2011-11-01

    The purpose of this study was to investigate the effects of the 8-week dynamic moment of inertia (DMOI) bat training on swing velocity, batted-ball speed, hitting distance, muscle power, and grip force. The DMOI bat is characterized in that the bat could be swung more easily by reducing the moment of inertia at the initial stage of swing without decreasing the bat weight and has a faster swing velocity and lower muscle activity. Seventeen varsity baseball players were randomly assigned to the DMOI bat training group (n = 9) and the normal bat training group (n = 8). The training protocol was 7 swings each set, 5-8 sets each time, 3 times each week, and 8 weeks' training period. The results showed that the swing training with the DMOI bat for 8 weeks significantly increased swing velocity by about 6.20% (96.86 ± 8.48 vs. 102.82 ± 9.93 km·h(-1)), hitting distance by about 6.69% (80.06 ± 9.16 vs. 84.99 ± 7.26 m), muscle power of the right arm by about 12.04% (3.34 ± 0.41 vs. 3.74 ± 0.61 m), and muscle power of the left arm by about 8.23% (3.36 ± 0.46 vs. 3.61 ± 0.39 m) (p bat training group had a significantly better change percentage in swing velocity, hitting distance, and grip force of the left hand than did the normal bat training group (p bat has a positive benefit on swing performance and that the DMOI bat could be used as a new training tool in baseball.

  10. Electron-inertia effects on driven magnetic field reconnection

    International Nuclear Information System (INIS)

    Al-Salti, N.; Shivamoggi, B.K.

    2003-01-01

    Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place

  11. Testing for clinical inertia in medication treatment of bipolar disorder.

    Science.gov (United States)

    Hodgkin, Dominic; Merrick, Elizabeth L; O'Brien, Peggy L; McGuire, Thomas G; Lee, Sue; Deckersbach, Thilo; Nierenberg, Andrew A

    2016-11-15

    Clinical inertia has been defined as lack of change in medication treatment at visits where a medication adjustment appears to be indicated. This paper seeks to identify the extent of clinical inertia in medication treatment of bipolar disorder. A second goal is to identify patient characteristics that predict this treatment pattern. Data describe 23,406 visits made by 1815 patients treated for bipolar disorder during the STEP-BD practical clinical trial. Visits were classified in terms of whether a medication adjustment appears to be indicated, and also whether or not one occurred. Multivariable regression analyses were conducted to find which patient characteristics were predictive of whether adjustment occurred. 36% of visits showed at least 1 indication for adjustment. The most common indications were non-response to medication, side effects, and start of a new illness episode. Among visits with an indication for adjustment, no adjustment occurred 19% of the time, which may be suggestive of clinical inertia. In multivariable models, presence of any indication for medication adjustment was a predictor of receiving one (OR=1.125, 95% CI =1.015, 1.246), although not as strong as clinical status measures. The associations observed are not necessarily causal, given the study design. The data also lack information about physician-patient communication. Many patients remained on the same medication regimen despite indications of side effects or non-response to treatment. Although lack of adjustment does not necessarily reflect clinical inertia in all cases, the reasons for this treatment pattern merit further examination. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Analysis of neoclassical edge plasma transport with gyroviscosity and inertia

    International Nuclear Information System (INIS)

    Rogister, A.; Antonov, N.

    1996-01-01

    It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)

  13. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T

    2013-01-01

    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  14. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao; Tanaka, Hiroto

    2012-01-01

    An insect can perform various flight maneuvers. However, the aerodynamic force generated by real insect wings during free flight has never been measured directly. In this study, we present the direct measurement of the four points of the differential pressures acting on the wing surface of a flying insect. A small-scale differential pressure sensor of 1.0 mm × 1.0 mm × 0.3 mm in size was developed using microelectromechanical systems (MEMS) and was attached to a butterfly wing. Total weight of the sensor chip and the flexible electrode on the wing was 4.5 mg, which was less than 10% of the wing weight. Four points on the wing were chosen as measurement points, and one sensor chip was attached in each flight experiment. During takeoff, the wing's flapping motion induced a periodic and symmetric differential pressure between upstroke and downstroke. The average absolute value of the local differential pressure differed significantly with the location: 7.4 Pa at the forewing tip, 5.5 Pa at the forewing center, 2.1 Pa at the forewing root and 2.1 Pa at the hindwing center. The instantaneous pressure at the forewing tip reached 10 Pa, which was ten times larger than wing loading of the butterfly. (paper)

  15. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  16. On the Inertia Term of Projectile's Penetration Resistance

    Directory of Open Access Journals (Sweden)

    Yu Shan

    2013-01-01

    Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.

  17. Moment of inertia of liquid in a tank

    Directory of Open Access Journals (Sweden)

    Lee Gyeong Joong

    2014-03-01

    Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

  18. Explicit expression for effective moment of inertia of RC beams

    Directory of Open Access Journals (Sweden)

    K.A. Patel

    Full Text Available AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entire practical range of reinforcement. Three significant structural parameters have been identified that govern the change in effective moment of inertia and therefore deflection. These three parameters are chosen as inputs to train neural network. The training data sets for neural network are generated using finite element software ABAQUS. The explicit expression has been validated for a number of simply supported and continuous beams and it is shown that the predicted deflections have reasonable accuracy for practical purpose. A sensitivity analysis has been performed, which indicates substantial dependence of effective moment of inertia on the selected input parameters.

  19. Nuclear inertia for fission in a generalized cranking model

    International Nuclear Information System (INIS)

    Kunz, J.; Nix, J.R.

    1984-01-01

    The Inglis cranking model has been widely used to calculate the nuclear inertia associated with collective degrees of freedom. After the inclusion of pairing correlations, theoretical results obtained with the cranking model for nuclear rotations and γ-vibrations were in relatively good agreement with experimental data. Calculations of β-vibrational inertias were also performed in the cranking model for fission deformations. Theoretical results were several times the irrotational values and gave reasonable agreement with experimental spontaneous-fission lifetimes, although in one study a renormalization factor of 0.8 was required. However, as pointed out by many authors, the Inglis cranking model possesses two serious deficiencies. First, problems arise when the single-particle potential contains momentum-dependence terms. Second, in the limit of large pairing strength the inertia approaches zero instead of a finite (irrotational) limit. Alternative approaches to the cranking model which did not lead to such unacceptable results were developed by Migdal, Belyaev and Thouless and Valatin. They showed that these deficiencies of the cranking model are due to a lack of self-consistency, since the reaction of the mean field to the collective motion is neglected in the Inglis model. Previously we used their arguments and developed a generalized cranking model for stationary collective motion. Here it is shown how to develop a time-dependent formalism appropriate to β-vibrations and fission. 10 references

  20. Testing and Validation of the Dynamic Inertia Measurement Method

    Science.gov (United States)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions.

  1. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  2. Waterproof and translucent wings at the same time: problems and solutions in butterflies.

    Science.gov (United States)

    Goodwyn, Pablo Perez; Maezono, Yasunori; Hosoda, Naoe; Fujisaki, Kenji

    2009-07-01

    Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered "super-hydrophobic" because the contact angle (CA) with a water drop exceeds 150 degrees. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160 degrees, whereas P. glacialis did not (CA = 100-135 degrees). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30 degrees, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long

  3. A finite wake theory for two-dimensional rotary wing unsteady aerodynamics

    OpenAIRE

    Couch, Mark A.

    1993-01-01

    Approved for public release; distribution is unlimited. The unsteady aerodynamic forces and moments of an oscillating airfoil for the fixed wing case were determined by Theodorsen along with the development of a lift deficiency function. Loewy subsequently developed an analogous lift deficiency function for the rotary wing case in which there are an infinite number of layers of shed vorticity, or wakes, below the reference airfoil. With the advent of computer panel codes that calculate the...

  4. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    shape affected performance during flapping but not gliding flight. Extended wings outperformed swept wings by about a third in flapping flight. This finding contrasts previous work that showed wing shape didn't affect performance in flapping flight (Usherwood and Ellington, 2002a, 2002b). This work provided key insights that inspired the second and third chapters of my dissertation. The second chapter examines the significance of wing tip slots across 135 avian species, ranging from small passerines to large seabirds. This research was completed with the help of an undergraduate international researcher, Ho Kwan Tang, and is currently in press at the Journal of Morphology (Klaassen van Oorschot, in press). These slots are caused by asymmetric emarginations missing from the leading and trailing edge of the primary feathers. We used a novel metric of primary feather emargination that allowed us to show that wing tip slots are nearly ubiquitous across the avian clade. We also showed that emargination is segregated according to habitat and behavioral metrics like flight style. Finally, we showed that emargination scaled with mass. These findings illustrated that wing tip slots may be an adaptation for efficacy during vertical takeoff rather than efficiency during gliding flight. In the third chapter, I sought to better understand the function of these slotted primary feathers. In an effort to bridge biology and aeronautics, I collaborated with Richard Choroszucha, an aeronautical engineer from the University of Michigan, on this work. These feathers deflect under aerodynamic load, and it has been hypothesized that they reduce induced drag during gliding flight (Tucker, 1993, 1995). We exposed individual primary feathers to different speeds in the wind tunnel and measured deflection such as bend, twist, and sweep. We found that feather deflection reoriented force, resulting in increased lateral stability and delayed stall characteristics compared to a rigid airfoil. These

  5. ON WINGS OF EAGLES; SOUTH AFRICA'S MILITARY AVIATION HISTORY

    OpenAIRE

    Ian Van der Waag

    2012-01-01

    With this book, Major Dave Becker has addressed an important hiatus in the military aviation history of South Africa. On Wings of Eagles is the first all-inclusive history of the South African Air Force to be published since 1970, when the SAAF (mistakenly!) celebrated their golden jubilee. The 1970 publication, Per Aspera ad Astra, was nonetheless a useful brochure and embodied the first attempt to present the entire history of the SAAF within one cover. It was, however, too superficial and ...

  6. A Wind Tunnel Investigation of Joined Wing Scissor Morphing

    Science.gov (United States)

    2006-06-01

    would use the low sweep for carrier landing and subsonic cruise, and use the high sweep for 12 supersonic flight [13]. According to Raymer [19...Wright-Patterson AFB, Ohio: Air Force Institute of Technology, 2005. 12. Katz, Joseph, Shaun Byrne, and Robert Hahl. "Stall Resistance Features of...Lifting-Body Airplane Configurations." Journal of Aircraft 2nd ser. 36 (1999): 471-474. 13. Kress, Robert W. "Variable Sweep Wing Design." AIAA 83

  7. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  8. The role of inertia in modeling decisions from experience with instance-based learning.

    Science.gov (United States)

    Dutt, Varun; Gonzalez, Cleotilde

    2012-01-01

    One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.

  9. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  10. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  11. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  12. An electromagnetic basis for inertia and gravitation: What are the implications for 21st century physics and technology?

    International Nuclear Information System (INIS)

    Haisch, Bernhard; Rueda, Alfonso

    1998-01-01

    The basis of most modern technology is the manipulation of electromagnetic phenomena. Haisch, Rueda and Puthoff (1994a) published a controversial but substantive formulation of a concept proposing an explanation of inertia of matter as an electromagnetic phenomenon originating in the zero-point field (ZPF) of the quantum vacuum. This suggests that Newton's equation of motion can be derived from Maxwell's equations of electrodynamics, in that inertial mass is postulated to be not an intrinsic property of matter but rather a kind of electromagnetic drag force (which temporarily is a place holder for a more general quantum vacuum reaction effect) that proves to be acceleration dependent by virtue of the spectral characteristics of the ZPF. Moreover the principle of equivalence implies that in this view gravitation would also be electromagnetic in origin along the lines proposed by Sakharov (1968). A NASA-funded research effort has been underway at the Lockheed Martin Advanced Technology Center in Palo Alto and at California State University in Long Beach to develop and test these ideas. An effort to generalize the 1994 ZPF-inertia concept into a proper relativistic formulation has been successful. With regard to the goals of the NASA Breakthrough Propulsion Physics Program we can, on the basis of the ZPF-inertia concept, definitively rule out one speculatively hypothesized propulsion mechanism: matter possessing negative inertial mass, a concept originated by Bondi (1957). The existence of this is shown to be logically impossible. On the other hand, the linked ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of manipulation of inertia and gravitation, since both are postulated to be electromagnetic phenomena. Whether this will translate into actual technological potential, especially with respect to spacecraft propulsion and future interstellar travel capability, is an open question. The (possibly comparable) time scale for translation of Einstein

  13. Accounting for inertia in modal choices: some new evidence using a RP/SP dataset

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Manca, Francesco

    2011-01-01

    effect is stable along the SP experiments. Inertia has been studied more extensively with panel datasets, but few investigations have used RP/SP datasets. In this paper we extend previous work in several ways. We test and compare several ways of measuring inertia, including measures that have been...... proposed for both short and long RP panel datasets. We also explore new measures of inertia to test for the effect of “learning” (in the sense of acquiring experience or getting more familiar with) along the SP experiment and we disentangle this effect from the pure inertia effect. A mixed logit model...... is used that allows us to account for both systematic and random taste variations in the inertia effect and for correlations among RP and SP observations. Finally we explore the relation between the utility specification (especially in the SP dataset) and the role of inertia in explaining current choices....

  14. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device

    International Nuclear Information System (INIS)

    Wen, Li; Lauder, George

    2013-01-01

    Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a ‘critically-oscillated’ amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that ‘critically-oscillated’ peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the ‘non-oscillated’ and ‘critically-oscillated’ states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes. (paper)

  15. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  16. Test of neural inertia in humans during general anaesthesia.

    Science.gov (United States)

    Kuizenga, M H; Colin, P J; Reyntjens, K M E M; Touw, D J; Nalbat, H; Knotnerus, F H; Vereecke, H E M; Struys, M M R F

    2018-03-01

    Neural inertia is defined as the tendency of the central nervous system to resist transitions between arousal states. This phenomenon has been observed in mice and Drosophila anaesthetized with volatile anaesthetics: the effect-site concentration required to induce anaesthesia in 50% of the population (C 50 ) was significantly higher than the effect-site concentration for 50% of the population to recover from anaesthesia. We evaluated this phenomenon in humans using propofol or sevoflurane (both with or without remifentanil) as anaesthetic agents. Thirty-six healthy volunteers received four sessions of anaesthesia with different drug combinations in a step-up/step-down design. Propofol or sevoflurane was administered with or without remifentanil. Serum concentrations of propofol and remifentanil were measured from arterial blood samples. Loss and return of responsiveness (LOR-ROR), response to pain (PAIN), Patient State Index (PSI) and spectral edge frequency (SEF) were modeled with NONMEM®. For propofol, the C 50 for induction and recovery of anaesthesia was not significantly different across the different endpoints. For sevoflurane, for all endpoints except SEF, significant differences were found. For some endpoints (LOR and PAIN) the difference was significant only when sevoflurane was combined with remifentanil. Our results nuance earlier findings with volatile anaesthetics in mice and Drosophila. Methodological aspects of the study, such as the measured endpoint, influence the detection of neural inertia. A more thorough definition of neural inertia, with a robust methodological framework for clinical studies is required to advance our knowledge of this phenomenon. NCT 02043938. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  17. High-inertia drive motors and their starting characteristics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref

  18. A dynamic marketing model with best reply and inertia

    International Nuclear Information System (INIS)

    Bischi, Gian Italo; Cerboni Baiardi, Lorenzo

    2015-01-01

    In this paper we consider a nonlinear discrete-time dynamic model proposed by Farris et al. (2005) as a market share attraction model with two firms that decide marketing efforts over time according to best reply strategies with naïve expectations. The model also considers an adaptive adjustment toward best reply, a form of inertia or anchoring attitude, and we investigate the effects of heterogeneities among firms. A rich scenario of local and global bifurcations is obtained even with just two competing firms, and a comparison is proposed with apparently similar duopoly models based on repeated best reply dynamics with naïve expectations and adaptive adjustment.

  19. A dynamic inertia weight particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Gu Xingsheng

    2008-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly

  20. An object oriented implementation of the Yeadon human inertia model.

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K; Hubbard, Mont

    2014-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.

  1. An object oriented implementation of the Yeadon human inertia model

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K.; Hubbard, Mont

    2015-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365

  2. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  3. Evaluating the impact of investments in information technology on structural inertia in health organizations.

    Science.gov (United States)

    Bewley, Lee W

    2010-01-01

    Structural inertia is the overall capacity of an organization to adapt within a market environment. This paper reviews the impact of healthcare investments in information management/information technology (IM/IT) on the strategic management concept of structural inertia. Research indicates that healthcare executives should consider the relative state of structural inertia for their firms and match them with potential IM/IT solutions. Additionally, organizations should favorably consider IM/IT solutions that are comparatively less complex.

  4. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  5. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  6. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    Science.gov (United States)

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  7. Changes in inertia and effect on turning effort across different wheelchair configurations.

    Science.gov (United States)

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.

  8. Physician and patient characteristics associated with clinical inertia in blood pressure control.

    Science.gov (United States)

    Harle, Christopher A; Harman, Jeffrey S; Yang, Shuo

    2013-11-01

    Clinical inertia, the failure to adjust antihypertensive medications during patient visits with uncontrolled hypertension, is thought to be a common problem. This retrospective study used 5 years of electronic medical records from a multispecialty group practice to examine the association between physician and patient characteristics and clinical inertia. Hierarchical linear models (HLMs) were used to examine (1) differences in physician and patient characteristics among patients with and without clinical inertia, and (2) the association between clinical inertia and future uncontrolled hypertension. Overall, 66% of patients experienced clinical inertia. Clinical inertia was associated with one physician characteristic, patient volume (odds ratio [OR]=0.998). However, clinical inertia was associated with multiple patient characteristics, including patient age (OR=1.021), commercial insurance (OR=0.804), and obesity (OR=1.805). Finally, patients with clinical inertia had 2.9 times the odds of uncontrolled hypertension at their final visit in the study period. These findings may aid the design of interventions to reduce clinical inertia. ©2013 Wiley Periodicals, Inc.

  9. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  10. IMPROVING THE AERODYNAMICS OF A TRANSPORT AIRCRAFT WING USING A DELTA PLANFORM WINGTIP LEADING EDGE EXTENSION

    Directory of Open Access Journals (Sweden)

    D. Gueraiche

    2018-01-01

    Full Text Available The article explores the possibility of improving the aerodynamic properties of a supercritical-airfoil wing, typical for a modern passenger aircraft, using delta planform passive devices of large relative areas, installed along the leading edge at the wing tip. Delta extensions of various configurations were considered to be used as wingtip devices, potentially improving or completely replacing classical R. Whitcomb winglets. As a result of two- and three-dimensional CFD simulations performed on DLR-F4 wing-body prototype, the potential advantage of these devices was confirmed, particularly when they are installed in a combination with an elliptical planform, largely swept, raked winglet in terms of reducing the induced drag and increasing the aerodynamic lift-to-drag ratio at flight angles of attack. The growth in lift-to-drag ratio applying these devices owes it solely to the drop in drag, without increasing the lift force acting on the wing. In comparison to the classical winglets that lead to a general increase in lifting and lateral forces acting on the wing structure, resulting in a weight penalty, the Wingtip Ledge Edge Triangular Extension (WLETE yields the same L/D ratio increase, but with a much smaller increase in the wing loading. A study has been made of the characteristics of the local (modified airfoil in the WLETE zone in a two-dimensional flow context, and a quantitative analysis has been conducted of the influence of WLETE on both the profile and induced drag components, as well as its influence on the overall lift coefficient of the wing. The resulted synthesis of the WLETE influence on the wing L/D ratio will consist of its influence on each of these components. A comparison of the efficiency of using delta extensions against classical winglets was carried out in a multidisciplinary way, where in addition to the changes in aerodynamic coefficients of lift and drag, the increments of magnitude and distribution of the loads

  11. Optical Forces Near Microfabricated Devices

    Science.gov (United States)

    2013-08-01

    gravitational, buoyant, brownian , electrostatic and those forces that develop from the interaction 4 15 between an external electromagnetic field and a...average Brownian force can be shown to be ∼ 1× 10−4 pN. For this system the Reynolds number is ∼ 1 × 10−7. At a low Reynolds number, the inertia plays no...modulator or any movement of the beam or sample, it can be easily adapted for a variety of integrated, lab-on-a-chip applications. Finally, by tuning

  12. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    Science.gov (United States)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  13. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  14. Independent effects of adding weight and inertia on balance during quiet standing.

    Science.gov (United States)

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  15. Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Soma Chakraborty

    Full Text Available Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence. In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle. Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.

  16. Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Chakraborty, Soma; Bartussek, Jan; Fry, Steven N; Zapotocky, Martin

    2015-01-01

    Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.

  17. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  18. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Science.gov (United States)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  19. Joint Force Quarterly. Number 3, Winter 1993-94

    Science.gov (United States)

    1994-01-01

    Winter 1993–94 This article is based on the winning entry in the 1992 LtCol Richard Higgins, USMC, memorial essay contest sponsored by the National War...TRANSCOM pledges to develop a new system that lives up to Winston Churchill’s dictum: “Victory is the beautiful bright coloured flower. Transport is...fighter wings 7 Reserve fighter wings 7 Reserve fighter wings 10 Reserve fighter wings Force Enchancements 1803 Ltrs & JW Rev 3/27/04 7:31 AM Page 107

  20. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  1. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  2. Sulfates on Mars: TES Observations and Thermal Inertia Data

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  3. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers

    Science.gov (United States)

    Re, Richard J.

    2005-01-01

    Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.

  4. Forces. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    Forces are all around. Without them, there would be no movement. In fact, Sir Isaac Newton theorized that a force called inertia actually works to keep things exactly as they are at any given moment! Students will learn about Newton's laws and about how forces affect many aspects of life. With clear demonstrations and a unique hands-on activity,…

  5. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  6. Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens

    2012-01-01

    Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic

  7. Inertia in travel choice : The role of risk aversion and learning

    NARCIS (Netherlands)

    Chorus, C.; Dellaert, B.

    2009-01-01

    This paper contributes to literature by showing how travellers that make normatively rational choices exhibit inertia during a series of risky choices. Our analyses complement other studies that conceive inertia as the result of boundedly rational or even non-deliberate, habitual decision-making. We

  8. 40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Road load power, test weight, and inertia weight class determination. 86.1772-99 Section 86.1772-99 Protection of Environment ENVIRONMENTAL... for Light-Duty Vehicles and Light-Duty Trucks § 86.1772-99 Road load power, test weight, and inertia...

  9. Inertia and advance in the organic sector: food education in Denmark

    DEFF Research Database (Denmark)

    Dahl, Astrid; Kristensen, Niels Heine

    2005-01-01

    Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK......Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK...

  10. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  11. Calculation of nuclear moment of inertia with proper treatment of pairing interaction

    International Nuclear Information System (INIS)

    Tazaki, S.; Ando, Y.; Hasegawa, M.

    1997-01-01

    An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)

  12. Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei

    International Nuclear Information System (INIS)

    Hamamoto, I.; Nazarewicz, W.

    1994-01-01

    The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes

  13. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.

    Science.gov (United States)

    Bimbard, Gaëlle; Kolomenskiy, Dmitry; Bouteleux, Olivier; Casas, Jérôme; Godoy-Diana, Ramiro

    2013-09-15

    Up to now, the take-off stage has remained an elusive phase of insect flight that was relatively poorly explored compared with other maneuvers. An overall assessment of the different mechanisms involved in force production during take-off has never been explored. Focusing on the first downstroke, we have addressed this problem from a force balance perspective in butterflies taking off from the ground. In order to determine whether the sole aerodynamic wing force could explain the observed motion of the insect, we have firstly compared a simple analytical model of the wing force with the acceleration of the insect's center of mass estimated from video tracking of the wing and body motions. Secondly, wing kinematics were also used for numerical simulations of the aerodynamic flow field. Similar wing aerodynamic forces were obtained by the two methods. However, neither are sufficient, nor is the inclusion of the ground effect, to predict faithfully the body acceleration. We have to resort to the leg forces to obtain a model that best fits the data. We show that the median and hind legs display an active extension responsible for the initiation of the upward motion of the insect's body, occurring before the onset of the wing downstroke. We estimate that legs generate, at various times, an upward force that can be much larger than all other forces applied to the insect's body. The relative timing of leg and wing forces explains the large variability of trajectories observed during the maneuvers.

  14. DOES CLINICAL INERTIA VARY BY PERSONALIZED A1C GOAL? A STUDY OF PREDICTORS AND PREVALENCE OF CLINICAL INERTIA IN A U.S. MANAGED-CARE SETTING.

    Science.gov (United States)

    Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip

    2016-02-01

    Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.

  15. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  16. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  17. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    Science.gov (United States)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  18. On the moment of inertia and surface redshift of neutron star

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result

  19. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Fang, Jingyang; Li, Hongchang; Tang, Yi

    2018-01-01

    Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...

  20. Semiclassical shell structure of moments of inertia in deformed Fermi systems

    International Nuclear Information System (INIS)

    Magner, A.G.; Gzhebinsky, A.M.; Sitdikov, A.S.; Khamzin, A.A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures. (author)

  1. Kidney organ donation: developing family practice initiatives to reverse inertia

    Science.gov (United States)

    2010-01-01

    Background Kidney transplantation is associated with greater long term survival rates and improved quality of life compared with dialysis. Continuous growth in the number of patients with kidney failure has not been matched by an increase in the availability of kidneys for transplantation. This leads to long waiting lists, higher treatment costs and negative health outcomes. Discussion Misunderstandings, public uncertainty and issues of trust in the medical system, that limit willingness to be registered as a potential donor, could be addressed by community dissemination of information and new family practice initiatives that respond to individuals' personal beliefs and concerns regarding organ donation and transplantation. Summary Tackling both personal and public inertia on organ donation is important for any community oriented kidney donation campaign. PMID:20478042

  2. Therapeutic Inertia in the New Landscape of Multiple Sclerosis Care

    Directory of Open Access Journals (Sweden)

    Gustavo Saposnik

    2018-03-01

    Full Text Available The landscape of multiple sclerosis (MS treatment is constantly changing. Significant heterogeneity exists in the efficacy and risks associated with these therapies. Therefore, clinicians have the challenge to tailor treatment based on several factors (disease activity level, risk of progression, individual patient preferences and characteristics, personal expertise, etc., to identify the optimal balance between safety and efficacy. However, most clinicians have limited education in decision-making and formal training in risk management. Together, these factors may lead to therapeutic inertia (TI; defined as the absence of treatment initiation or intensification when therapeutic goals are unmet. TI may lead to suboptimal treatments choices, worse clinical outcomes, and more disability. This article provides a succinct overview on factors influencing TI in MS care.

  3. The Dynamics of Online Purchase Visits: Inertia or Switching?

    Institute of Scientific and Technical Information of China (English)

    Zelin Zhang; Xia Wang; Peter T.L.Popkowski Leszczyc; Xiao Zuo

    2016-01-01

    This paper studies the dynamics of online purchase patterns,focusing on the impact of the channel used on conversion probability,as well as the transition of channel use over time.A novel data set from a major Chinese online travel agency is used for analysis,consisting of four months of data with 24,337 store visits through three types of channels:direct visit,search advertising and referral.Results of a Bayesian multinomial logit model show that the search channel significantly affects consumers' conversion probability,and show a high degree of inertia in channel use.This finding contrasts sharply with suggestions of previous research that most future purchases will converge to the direct-visit channel.

  4. The Early Lunar Orbit and Principal Moments of Inertia

    Science.gov (United States)

    Garrick-Bethell, I.; Zuber, M. T.

    2007-12-01

    If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a

  5. Parallel algorithms for computation of the manipulator inertia matrix

    Science.gov (United States)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  6. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  7. The earth's equatorial principal axes and moments of inertia

    Science.gov (United States)

    Liu, H. S.; Chao, B. F.

    1991-01-01

    The earth's equatorial principal moments of inertia are given as A and B, where A is less than B, and the corresponding principal axes are given as a and b. Explicit formulas are derived for determining the orientation of a and b axes and the difference B - A using C(22) and S(22), the two gravitational harmonic coefficients of degree 2 and order 2. For the earth, the a axis lies along the (14.93 deg W, 165.07 deg E) diameter, and the b axis lies perpendicular to it along the (75.07 deg E, 104.93 deg W) diameter. The difference B - A is 7.260 x 10 to the -6th MR2. These quantities for other planets are contrasted, and geophysical implications are discussed.

  8. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones

  9. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  10. Family physician clinical inertia in glycemic control among patients with type 2 diabetes.

    Science.gov (United States)

    Bralić Lang, Valerija; Bergman Marković, Biserka; Kranjčević, Ksenija

    2015-02-05

    Many patients with diabetes do not achieve target values. One of the reasons for this is clinical inertia. The correct explanation of clinical inertia requires a conjunction of patient with physician and health care system factors. Our aim was to determine the rate of clinical inertia in treating diabetes in primary care and association of patient, physician, and health care setting factors with clinical inertia. This was a national, multicenter, observational, cross-sectional study in primary care in Croatia. Each family physician (FP) provided professional data and collected clinical data on 15-25 type 2 diabetes (T2DM) patients. Clinical inertia was defined as a consultation in which treatment change based on glycated hemoglobin (HbA1c) levels was indicated but did not occur. A total of 449 FPs (response rate 89.8%) collected data on 10275 patients. Mean clinical inertia per FP was 55.6% (SD ±26.17) of consultations. All of the FPs were clinically inert with some patients, and 9% of the FPs were clinically inert with all patients. The main factors associated with clinical inertia were: higher percentage of HbA1c, oral anti-diabetic drug initiated by diabetologist, increased postprandial glycemia and total cholesterol, physical inactivity of patient, and administration of drugs other than oral antidiabetics. Clinical inertia in treating patients with T2DM is a serious problem. Patients with worse glycemic control and those whose therapy was initiated by a diabetologist experience more clinical inertia. More research on causes of clinical inertia in treating patients with T2DM should be conducted to help achieve more effective diabetes control.

  11. Factors associated with therapeutic inertia in hypertension: validation of a predictive model.

    Science.gov (United States)

    Redón, Josep; Coca, Antonio; Lázaro, Pablo; Aguilar, Ma Dolores; Cabañas, Mercedes; Gil, Natividad; Sánchez-Zamorano, Miguel Angel; Aranda, Pedro

    2010-08-01

    To study factors associated with therapeutic inertia in treating hypertension and to develop a predictive model to estimate the probability of therapeutic inertia in a given medical consultation, based on variables related to the consultation, patient, physician, clinical characteristics, and level of care. National, multicentre, observational, cross-sectional study in primary care and specialist (hospital) physicians who each completed a questionnaire on therapeutic inertia, provided professional data and collected clinical data on four patients. Therapeutic inertia was defined as a consultation in which treatment change was indicated (i.e., SBP >or= 140 or DBP >or= 90 mmHg in all patients; SBP >or= 130 or DBP >or= 80 in patients with diabetes or stroke), but did not occur. A predictive model was constructed and validated according to the factors associated with therapeutic inertia. Data were collected on 2595 patients and 13,792 visits. Therapeutic inertia occurred in 7546 (75%) of the 10,041 consultations in which treatment change was indicated. Factors associated with therapeutic inertia were primary care setting, male sex, older age, SPB and/or DBP values close to normal, treatment with more than one antihypertensive drug, treatment with an ARB II, and more than six visits/year. Physician characteristics did not weigh heavily in the association. The predictive model was valid internally and externally, with acceptable calibration, discrimination and reproducibility, and explained one-third of the variability in therapeutic inertia. Although therapeutic inertia is frequent in the management of hypertension, the factors explaining it are not completely clear. Whereas some aspects of the consultations were associated with therapeutic inertia, physician characteristics were not a decisive factor.

  12. Patient and Provider Factors Affecting Clinical Inertia in Patients With Type 2 Diabetes on Metformin Monotherapy.

    Science.gov (United States)

    Mahabaleshwarkar, Rohan; Gohs, Frank; Mulder, Holly; Wilkins, Nick; DeSantis, Andrea; Anderson, William E; Ejzykowicz, Flavia; Rajpathak, Swapnil; Norton, H James

    2017-08-01

    Our aim was to determine the extent of clinical inertia and the associated patient and provider factors in patients with type 2 diabetes on metformin monotherapy (MM) at a large integrated health care system in the United States. The study cohort included patients with type 2 diabetes aged 18 to 85 years, on MM between January 2009 and September 2013, who experienced MM failure (had an uncontrolled glycosylated hemoglobin [HbA 1c ] reading (≥8.0% [64 mmol/mol]) after at least 90 days of MM). Clinical inertia was defined as absence of treatment intensification with an add-on therapy within 180 days after the MM failure (index date). The impact of patient and provider factors on clinical inertia was determined using generalized estimating equations. The study cohort consisted of 996 patients; 58% were men and 59% were white, with a mean age of 53 (11.8) years. Of these, 49.8% experienced clinical inertia. Lower HbA 1c at index date, absence of liver diseases, absence of renal diseases, and greater provider age were associated with clinical inertia. The clinical inertia rate in a secondary analysis considering HbA 1c inertia. Considerable clinical inertia rates were observed in our real-world patient population, suggesting the need of interventions to reduce clinical inertia in clinical practice. Information about patient and provider factors affecting clinical inertia provided by this study could help healthcare policymakers plan and implement such interventions. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  13. Aerostructural Level Set Topology Optimization for a Common Research Model Wing

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2014-01-01

    The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.

  14. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  15. Interaction of the elytra and hind wing of a rhinoceros beetle (Trypoxylus dichotomus) during a take-off mode

    Science.gov (United States)

    Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.

  16. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  18. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  19. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  20. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  1. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, inertia... Procedures § 86.129-94 Road load power, test weight, inertia weight class determination, and fuel temperature... duty trucks 1,2,3 Test weightbasis 4,5 Test equivalent test weight(pounds) Inertia weight class(pounds...

  2. Power Requirements for Bi-Harmonic Amplitude and Bias Modulation Control of a Flapping Wing Micro Air Vehicle

    Science.gov (United States)

    2013-03-01

    nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...Insect exoskeletons are formed from a complex blend of polymer-based chains that make up the body, limbs, and wings, which act as a barrier between the...reducing weight, increasing agility, and integrating robotics in future forces. [38] Increasing agility and integrating robotics indicates that control is a

  3. Japan's Orientation towards Foreign Investments: Inertia Effects and Driving Force of Institutional Changes

    OpenAIRE

    Nir Kshetri; Ralf Bebenroth

    2012-01-01

    We use an institutional perspective to develop a framework for understanding the contexts, mechanisms and processes associated with institutions and institutional changes related to foreign investment in Japan. We examine power dynamics and relational boundaries between diverse actors and analyze why and how some components of institutions have changed and others have not. Also explored in this paper are the conflicting discourses that have been raised in regards to the participation of forei...

  4. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    lines; Procrustes analysis; wing shape; wing size. ... Models of stochastic gene expression pre- dict that intrinsic noise ... Quantitative parameters of wing size and shape asymmetries ..... the residuals of a regression on centroid size produced.

  5. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  6. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  7. Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings

    Science.gov (United States)

    Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.

    2018-05-01

    The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.

  8. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  9. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle

    International Nuclear Information System (INIS)

    Nakata, T; Liu, H; Nishihashi, N; Wang, X; Sato, A; Tanaka, Y

    2011-01-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s −1 , operate in a Reynolds number regime of 10 5 or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4–3.0 g and a wingspan of 10–12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  10. Emotional Inertia is Associated with Lower Well-Being Controlling for Differences in Emotional Context

    Directory of Open Access Journals (Sweden)

    Peter eKoval

    2016-01-01

    Full Text Available Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 & 202 examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE and negative emotions (NE are related to both positive (e.g., life satisfaction and negative (e.g., depressive symptoms indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that a NE inertia was more strongly associated with lower well-being than PE inertia; b emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms than positive indicators (e.g., life satisfaction of well-being; and c these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may indicate increased vulnerability to depression.

  11. Emotional Inertia is Associated with Lower Well-Being when Controlling for Differences in Emotional Context.

    Science.gov (United States)

    Koval, Peter; Sütterlin, Stefan; Kuppens, Peter

    2015-01-01

    Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions) with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 and 202) examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE) and negative emotions (NE) relates to positive (e.g., life satisfaction) and negative (e.g., depressive symptoms) indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that (a) NE inertia was more strongly associated with lower well-being than PE inertia; (b) emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms) than positive indicators (e.g., life satisfaction) of well-being; and (c) these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may be an indicator of increased vulnerability to depression.

  12. Thermal inertia mapping of Mars from 60°S to 60°N

    Science.gov (United States)

    Palluconi, Frank Don; Kieffer, Hugh H.

    1981-01-01

    Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than  being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.

  13. Impact of clinical inertia on cardiovascular risk factors in patients with diabetes.

    Science.gov (United States)

    Whitford, David L; Al-Anjawi, Hussam A; Al-Baharna, Marwa M

    2014-07-01

    To determine whether clinical inertia is associated with simpler interventions occurring more often than complex changes and the association between clinical inertia and outcomes. Prevalence of clinical inertia over a 30 month period for hyperglycaemia, hypertension and dyslipidaemia was calculated in a random sample (n=334) of patients attending a diabetes clinic. Comparisons between prevalence of clinical inertia and outcomes for each condition were examined using parametric tests of association. There was less clinical inertia in hyperglycaemia (29% of consultations) compared with LDL (80% of consultations) and systolic BP (68% of consultations). Consultations where therapy was intensified had a greater reduction in risk factor levels than when no change was made. No association was found between treatment intensity scores and changes in HbA1c, LDL or blood pressure over 30 months. Physicians are no more likely to intervene in conditions where simple therapeutic changes are necessary as opposed to complex changes. Greater clinical inertia leads to poorer outcomes. There continues to be substantial clinical inertia in routine clinical practice. Physicians should adopt a holistic approach to cardiovascular risk reduction in patients with diabetes, adhere more closely to established management guidelines and emphasize personal individualized target setting. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  14. Development of ABWR inertia-increased reactor internal pump and thicker sleeve nozzle

    International Nuclear Information System (INIS)

    Takahashi, Shirou; Shiina, Kouji; Matsumura, Seiichi

    2002-01-01

    The conventional reactor internal pumps (RIPs) in the ABWR have an inertia moment coming from the shafts and Motor-Generator sets, enabling the RIPs to continue running for a few seconds, when a trip of all RIPs event occurs. It is possible to simplify the RIPs' power supply system without affecting the core flow supply when the above event occurs by eliminating M-G sets, if the rotating inertia is increased. This inertia increase due to an additional flywheel, which leads to gains in weight and length, requires the larger diameter nozzle with the thicker sleeve. However, too large a nozzle diameter may change the hydraulic performance. In authors' previous study, the optimum nozzle diameter (492 mm) was selected through 1/5-scale test. In this study, the 492 mm nozzle and the inertia-increased RIP were verified through the full-scale tests. The rotating inertia time constant on coastdown characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP doubled compared with the current RIP. The casing and the shaft vibration were also confirmed to satisfy the design criteria. Moreover, hydraulic performance and heat increase in the motor casing due to the flywheel were evaluated. The inertia increased RIP with the 492 mm nozzle maintained good performance. (author)

  15. Right wing parties join forces / Louise O'Dwyer

    Index Scriptorium Estoniae

    O'Dwyer, Louise

    2008-01-01

    Leedu konservatiivne Isamaaliit ja Kristlik-Demokraatlik Partei kirjutasid ühiskongressil alla kahe partei ühinemiskokkuleppele. Uue poliitilise jõu nimetuseks on Isamaaliit - Leedu Kristlikud Demokraadid

  16. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    diameter stainless steel wire. A high speed camera was used to record the smoke pattern at 1000 frame/s. 2.1 Aerodynamics of static/dynamic trailing...turbulent recirculation, Journal of Fluid Mechanics 683 (2011) 395- 416 . [27] H. Dong, R. Mittal, F.M. Najjar, Wake topology and hydrodynamic

  17. Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-08-01

    Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re Greater-Than-Or-Slanted-Equal-To 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re Less-Than-Or-Slanted-Equal-To 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 Less-Than-Or-Slanted-Equal-To Re Less-Than-Or-Slanted-Equal-To 300 and Froude numbers in the range 3 Less-Than-Or-Slanted-Equal-To Fr Less-Than-Or-Slanted-Equal-To 60 and identify the region where upward flight is possible. (paper)

  18. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    Science.gov (United States)

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles

    Science.gov (United States)

    2012-08-26

    by introducing viscous dampers , cψA and cψB , applied at the hinges A and B, respectively. Choose as generalized coordinates q = [ ψA φ ψB ]T , where...aerodynamic and inertial forces cause passive wing rotation [11]. Many compu- tational fluid dynamic studies have been conducted regarding the complex fluid ...aerofoils. The lossed in the hinges are modeled as a single damper , cφ applied at the hinge at O. To properly model the unsteady aerodynamics and the

  20. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  1. Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain.

    Science.gov (United States)

    Palazón-Bru, Antonio; Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco

    2015-01-01

    Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2-52.7]); associated factors were TC ≥ 6.20 mmol/L, high or "not measured" BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1-52.7]); associated factors were REGICOR high and high or "not measured" BMI. In the SCORE sample the rate of diagnostic inertia was 51.7% (95% CI [50.9-52.5]); associated factors were SCORE high and high or "not measured" BMI. Diagnostic inertia existed in over half the patients and was associated with a greater cardiovascular risk.

  2. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether

  3. The Inertia Weight Updating Strategies in Particle Swarm Optimisation Based on the Beta Distribution

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2015-01-01

    Full Text Available The presented paper deals with the comparison of selected random updating strategies of inertia weight in particle swarm optimisation. Six versions of particle swarm optimization were analysed on 28 benchmark functions, prepared for the Special Session on Real-Parameter Single Objective Optimisation at CEC2013. The random components of tested inertia weight were generated from Beta distribution with different values of shape parameters. The best analysed PSO version is the multiswarm PSO, which combines two strategies of updating the inertia weight. The first is driven by the temporally varying shape parameters, while the second is based on random control of shape parameters of Beta distribution.

  4. A class of parallel algorithms for computation of the manipulator inertia matrix

    Science.gov (United States)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  5. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  6. The influence of electron inertia on the modulational instability of ion-acoustic waves

    International Nuclear Information System (INIS)

    Parkes, E.J.

    1993-01-01

    The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)

  7. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  8. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    Science.gov (United States)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  9. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  10. Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts.

    Science.gov (United States)

    Handel, Benjamin R

    2013-12-01

    This paper investigates consumer inertia in health insurance markets, where adverse selection is a potential concern. We leverage a major change to insurance provision that occurred at a large firm to identify substantial inertia, and develop and estimate a choice model that also quantifies risk preferences and ex ante health risk. We use these estimates to study the impact of policies that nudge consumers toward better decisions by reducing inertia. When aggregated, these improved individual-level choices substantially exacerbate adverse selection in our setting, leading to an overall reduction in welfare that doubles the existing welfare loss from adverse selection.

  11. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  12. Flight mechanics and control of escape manoeuvres in hummingbirds. II. Aerodynamic force production, flight control and performance limitations.

    Science.gov (United States)

    Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan

    2016-11-15

    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.

  13. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  14. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  15. Graphical analysis of electron inertia induced acoustic instability

    International Nuclear Information System (INIS)

    Karmakar, P.K.; Deka, U.; Dwivedi, C.B.

    2005-01-01

    Recently, the practical significance of the asymptotic limit of m e /m i →0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative energy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented

  16. Geometrodynamic steering principle reveals the determiners of inertia

    International Nuclear Information System (INIS)

    Wheeler, J.A.

    1988-01-01

    What shall the authors need to grasp the essence of quantum gravity? One requirement, at least, is essential: to understand the steering principle of classical geometrodynamics. The authors outline here the physical content of that steering principle - heat of the so-called initial value problem - in its J.W. York, Jr. formulation. The central idea epitomizes itself in a single simple sentence: Mass-energy there determines inertia here. They spell out this steering principle both in its precise form and in its poor man's version. At both levels of analysis considerations of physics and mathematics alike require that the effective mass-energy of gravity waves must make itself felt on the spacetime geometry - and therefore on the gyro-defined local inertial frame of reference - on the same level as matter itself. Additional to the (mass)/(distance) Newtonian potential so familiar as measure of the effect of a nearby mass on the local frame is the Thirring and Lense gravitomagnetic potential, proportional to (angular momentum) x (distance vector)/(distance). The recent proposal of Ciufolini for a dual laser-ranged LAGEOS satellite to detect the thus-predicted gravitomagnetism of the earth is briefly described

  17. Emotion regulation and the temporal dynamics of emotions: Effects of cognitive reappraisal and expressive suppression on emotional inertia.

    Science.gov (United States)

    Koval, Peter; Butler, Emily A; Hollenstein, Tom; Lanteigne, Dianna; Kuppens, Peter

    2015-01-01

    The tendency for emotions to be predictable over time, labelled emotional inertia, has been linked to low well-being and is thought to reflect impaired emotion regulation. However, almost no studies have examined how emotion regulation relates to emotional inertia. We examined the effects of cognitive reappraisal and expressive suppression on the inertia of behavioural, subjective and physiological measures of emotion. In Study 1 (N = 111), trait suppression was associated with higher inertia of negative behaviours. We replicated this finding experimentally in Study 2 (N = 186). Furthermore, in Study 2, instructed suppressors and reappraisers both showed higher inertia of positive behaviours, and reappraisers displayed higher inertia of heart rate. Neither suppression nor reappraisal were associated with the inertia of subjective feelings in either study. Thus, the effects of suppression and reappraisal on the temporal dynamics of emotions depend on the valence and emotional response component in question.

  18. Analogy between a flapping wing and a wind turbine with a vertical axis of revolution

    Science.gov (United States)

    Gorelov, D. N.

    2009-03-01

    Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness.

  19. A new VTOL propelled wing for flying cars: critical\\ud bibliographic analysis

    OpenAIRE

    Trancossi, Michele; Hussain, Mohammad; Shivesh, Sharma; Pascoa, J

    2017-01-01

    This paper is a preliminary step in the direction of the definition of a radically new wing concept that has been conceived to maximize the lift even at low speeds. It is expected to equip new aerial vehicle concepts that aim to compete against helicopters and tilt rotors. They aim achieving very good performance at very low speed (5 to 30 m/s) by mean of an innovative concept of morphing ducted-fan propelled wing that has been designed to maximize the lift force. This paper presents an effec...

  20. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  1. Semiclassical moment of inertia shell-structure within the phase-space approach

    International Nuclear Information System (INIS)

    Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P

    2015-01-01

    The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)

  2. Don't just do something, stand there! The value and art of deliberate clinical inertia.

    Science.gov (United States)

    Keijzers, Gerben; Cullen, Louise; Egerton-Warburton, Diana; Fatovich, Daniel M

    2018-04-01

    It can be difficult to avoid unnecessary investigations and treatments, which are a form of low-value care. Yet every intervention in medicine has potential harms, which may outweigh the potential benefits. Deliberate clinical inertia is the art of doing nothing as a positive response. This paper provides suggestions on how to incorporate deliberate clinical inertia into our daily clinical practice, and gives an overview of current initiatives such as 'Choosing Wisely' and the 'Right Care Alliance'. The decision to 'do nothing' can be complex due to competing factors, and barriers to implementation are highlighted. Several strategies to promote deliberate clinical inertia are outlined, with an emphasis on shared decision-making. Preventing medical harm must become one of the pillars of modern health care and the art of not intervening, that is, deliberate clinical inertia, can be a novel patient-centred quality indicator to promote harm reduction. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  3. Patient inertia and the status quo bias: when an inferior option is preferred.

    Science.gov (United States)

    Suri, Gaurav; Sheppes, Gal; Schwartz, Carey; Gross, James J

    2013-09-01

    Medical noncompliance is a major public-health problem. One potential source of this noncompliance is patient inertia. It has been hypothesized that one cause of patient inertia might be the status quo bias-which is the tendency to select the default choice among a set of options. To test this hypothesis, we created a laboratory analogue of the decision context that frequently occurs in situations involving patient inertia, and we examined whether participants would stay with a default option even when it was clearly inferior to other available options. Specifically, in Studies 1 and 2, participants were given the option to reduce their anxiety while waiting for an electric shock. When doing nothing was the status quo option, participants frequently did not select the option that would reduce their anxiety. In Study 3, we demonstrated a simple way to overcome status quo bias in a context relevant to patient inertia.

  4. Characterizing Center of Mass and Moment of Inertia of Soldiers' Loads Packed for Combat

    National Research Council Canada - National Science Library

    Hasselquist, Leif; Bensel, Carolyn K; Norton, Karen; Piscitelle, Louis; Schiffman, Jeffrey M

    2004-01-01

    ...) location and moment of inertia (MOI) may be influenced in combat load packing. In addition, the physical properties of the combat loads were compared to the properties of a laboratory fabricated backpack...

  5. Grid Frequency Support by Single-Phase Electric Vehicles Employing an Innovative Virtual Inertia Controller

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Zecchino, Antonio; Pertl, Michael

    2016-01-01

    The displacement of conventional generation by converter connected resources reduces the available rotational inertia in the power system, which leads to faster frequency dynamics and consequently a less stable frequency behavior. Virtual inertia, employing energy storage systems, could be used...... of adjusting the battery charging process (i.e., power flow) according to pre-defined algorithms. On the other hand, in case of islanded operation (i.e., low inertia), some of the EV's technical constraints might cause oscillations. This study presents two control algorithms which show that the EVs are capable...... of providing virtual inertia support. The first controller employs a traditional droop control, while the second one is equipped with an innovative control algorithm to eliminate likely oscillations. It is shown that, the proposed innovative control algorithm compared to the traditional droop control, assures...

  6. Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game

    Science.gov (United States)

    Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya

    2018-01-01

    Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.

  7. Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Chu, M.S.

    1996-01-01

    The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics

  8. An inertia-free filter line-search algorithm for large-scale nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-02-15

    We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.

  9. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  10. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  11. [The concentration of ionized and total calcium in the blood of female dogs with uterine inertia].

    Science.gov (United States)

    Kraus, A; Schwab, A

    1990-12-01

    Blood values of calcium, inorganic phosphate and magnesium were estimated in 26 bitches one day before parturition, on the day of parturition and daily for 6 days post partum. In 17 of these 26 animals the diagnosis was dystocia because of uterine inertia. A comparison of calcium levels between those bitches giving birth spontaneously and those requiring assistance gave no indication that blood calcium deficiency was the cause of uterine inertia.

  12. Effect on the variation of the moment of inertia in band K=1/2

    International Nuclear Information System (INIS)

    Liu Yanxin; Yu Shaoying; Inner Mongolia Univ. for Nationalities, Tongliao; Chinese Academy of Sciences, Beijing

    2004-01-01

    The effect on the variation of the moment of inertia in band 171 Yb[521]1/2 is investigated using the particle number conserving (PNC) method for treating the cranked shell model with monopole and Y 20 quadrupole pairing interactions. The experimental moments of inertia of 171 Yb[521]1/2 (signature α=±1/2) and the blocking effect of proton are reproduced well by the PNC calculation, in which no free parameter is involved. (authors)

  13. Nuclear moments of inertia inferred from wobbling motion in the triaxial superdeformed nuclei

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi

    2003-01-01

    The three moments of inertia associated with the wobbling mode built on the triaxial superdeformed states in Lu-Hf region are investigated by means of the cranked shell model plus random-phase approximation to the configurations with aligned quasiparticle(s). The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle(s)so as to realize T x > T y in positive-γ shapes. (author)

  14. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    International Nuclear Information System (INIS)

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  15. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive

  16. Cicada (Tibicen linnei steers by force vectoring

    Directory of Open Access Journals (Sweden)

    Samane Zeyghami

    2016-03-01

    Full Text Available To change flight direction, flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass, or relative to the flight path to produce centripetal force that curves the trajectory. In employing the latter, the direction of aerodynamic force remains fixed in the body frame and rotations of the body redirect the force. While both aforementioned techniques are essential for flight, it is critical to investigate how an animal balances the two to achieve aerial locomotion. Here, we measured wing and body kinematics of cicada (Tibicen linnei in free flight, including flight periods of both little and substantial body reorientations. It is found that cicadas employ a common force vectoring technique to execute all these flights. We show that the direction of the half-stroke averaged aerodynamic force relative to the body is independent of the body orientation, varying in a range of merely 20 deg. Despite directional limitation of the aerodynamic force, pitch and roll torque are generated by altering wing angle of attack and its mean position relative to the center of mass. This results in body rotations which redirect the wing force in the global frame and consequently change the flight trajectory.

  17. Research on Biomimetic Models and Nanomechanical Behaviour of Membranous Wings of Chinese Bee Apis cerana cerana Fabricius

    Directory of Open Access Journals (Sweden)

    Yanru Zhao

    2018-01-01

    Full Text Available The structures combining the veins and membranes of membranous wings of the Chinese bee Apis cerana cerana Fabricius into a whole have excellent load-resisting capacity. The membranous wings of Chinese bees were taken as research objects and the mechanical properties of a biomimetic model of membranous wings as targets. In order to understand and learn from the biosystem and then make technical innovation, the membranous wings of Chinese bees were simulated and analysed with reverse engineering and finite element method. The deformations and stress states of the finite element model of membranous wings were researched under the concentrated force, uniform load, and torque. It was found that the whole model deforms evenly and there are no unusual deformations arising. The displacements and deformations are small and transform uniformly. It was indicated that the veins and membranes combine well into a whole to transmit loads effectively, which illustrates the membranous wings of Chinese bees having excellent integral mechanical behaviour and structure stiffness. The realization of structure models of the membranous wings of Chinese bees and analysis of the relativity of structures and performances or functions will provide an inspiration for designing biomimetic thin-film materials with superior load-bearing capacity.

  18. Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution

    Directory of Open Access Journals (Sweden)

    Prabha Umapathy

    2010-01-01

    Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.

  19. Magnetic moment of inertia within the torque-torque correlation model.

    Science.gov (United States)

    Thonig, Danny; Eriksson, Olle; Pereiro, Manuel

    2017-04-19

    An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

  20. Effectiveness and clinical inertia in the management of hypertension in patients in Colombia.

    Science.gov (United States)

    Machado-Duque, Manuel Enrique; Ramírez-Valencia, Diana Marcela; Medina-Morales, Diego Alejandro; Machado-Alba, Jorge Enrique

    2015-11-01

    Determine the effectiveness of treatment and the frequency of clinical inertia in the management of hypertension in Colombian patients. A retrospective study with prospective follow-up of individuals on antihypertensive medication who were treated on medical consultation for 1 year was conducted in 20 Colombian cities. Clinical inertia was considered when no modification of therapy occurred despite not achieving control goals. A total of 355 hypertensive patients were included. From a total of 1142 consultations, therapy was effective in 81.7% of cases. In 18.3% of the cases, the control goal was not achieved, and of these, 81.8% were considered clinical inertia. A logistic regression showed that the use of antidiabetics (odds ratio: 2.31; 95% confidence interval: 1.290-4.167; P = .008) was statistically associated with an increased risk of clinical inertia. With a determination of the frequency of inertia and the high effectiveness of antihypertensive treatment, valuable information can be provided to understand the predictors of clinical inertia. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    International Nuclear Information System (INIS)

    Yang, C X; Li, S T

    2013-01-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia

  2. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng

    2013-10-28

    A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.

  3. Emotional inertia and external events: The roles of exposure, reactivity, and recovery.

    Science.gov (United States)

    Koval, Peter; Brose, Annette; Pe, Madeline L; Houben, Marlies; Erbas, Yasemin; Champagne, Dominique; Kuppens, Peter

    2015-10-01

    Increased moment-to-moment predictability, or inertia, of negative affect has been identified as an important dynamic marker of psychological maladjustment, and increased vulnerability to depression in particular. However, little is known about the processes underlying emotional inertia. The current article examines how the emotional context, and people's responses to it, are related to emotional inertia. We investigated how individual differences in the inertia of negative affect (NA) are related to individual differences in exposure, reactivity, and recovery from emotional events, in daily life (assessed using experience sampling) as well as in the lab (assessed using an emotional film-clip task), among 200 participants commencing their first year of tertiary education. This dual-method approach allowed us to assess affective responding on different timescales, and in response to standardized as well as idiographic emotional stimuli. Our most consistent finding, across both methods, was that heightened NA inertia is related to decreased NA recovery following negative stimuli, suggesting that higher levels of inertia may be mostly driven by impairments in affect repair following negative events. (c) 2015 APA, all rights reserved).

  4. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  5. Decoupling Identification for Serial Two-Link Two-Inertia System

    Science.gov (United States)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  6. Analysis on the influence of the pump start transient performance with different inertia impeller

    International Nuclear Information System (INIS)

    Tang, Y; Cheng, J; Liu, E H; Tang, L D

    2012-01-01

    Centrifugal pump start-up time is very short, in the boot process, the instantaneous head and flow will have an impact role to the pipeline, and however the moment of inertia is one of the main factors affecting centrifugal pump boot acceleration. We analyzed the pump start-up transient characteristics with the different moment of inertia of the impeller corresponding to the different materials, there are three different moment of inertia of the impeller have been selected. At first, we use the 'Flowmaster' fluid system simulation software do the outer characteristics simulation to the selected-model, get the time - flow and the time - speed curve. Then, do the experiments research in the process when pump start-up, and compare with the simulation result. At last use the outer characteristics simulation result as the boundary, using the ANASYS CFX software do the transient simulation to the three groups with different inertia pump impeller, and draw the pressure distribution picture. In according to the analysis, we can confirm that the impact of inertia is one of the factors in the stability during the pump star, and we can get that the greater moment of inertia, the longer the boot stable. We also can get that combined Flowmaster with ANSYS can solved engineering practice problem in fluid system conveniently, and take it easy to solve the similar problem.

  7. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  8. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  9. In the wings of physics

    CERN Document Server

    Jacob, Maurice René Michel

    1995-01-01

    In physics research, many activities occur backstage or to continue the theatrical metaphor, in the wings of physics. This book focuses on two such activities: the editing of physics journals and the operation of physical societies. The author was editor of Physics Letters B for particle physics and then of Physics Reports for a total of 18 years, as well as being president of the French Physical Society and later of the European Physical Society. This book puts together papers dealing with such activities which he has written at various times in his career. It takes the reader into the inner circles of scientific editing and of physical societies. Each introduced by a foreword, these papers can be read separately.

  10. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    Science.gov (United States)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  11. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  12. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    Science.gov (United States)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  13. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  14. Pitching motion control of a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  15. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  16. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  17. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  18. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  19. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  20. Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT

    Science.gov (United States)

    Ozaki, Takashi; Hamaguchi, Kanae

    2018-02-01

    We present a prototype flapping-wing actuator with a direct-driven mechanism to generate lift in micro- and nano-aerial vehicles. This mechanism has an advantage of simplicity because it has no transmission system between the actuator and wing. We fabricated the piezoelectric unimorph actuator from single-crystal PIN-PMN-PT, which achieved a lift force up to 1.45 mN, a value about 1.9 times larger than the mass of the actuator itself. This is the first reported demonstration of an insect-scale actuator with a direct-driven mechanism that can generate a lift force greater than its own weight.