WorldWideScience

Sample records for wing flow problems

  1. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  2. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  3. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  4. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  5. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  6. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  7. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  8. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  9. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  10. A parametric wing design study for a modern laminar flow wing

    Science.gov (United States)

    Koegler, J. A., Jr.

    1979-01-01

    The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used.

  11. Experimental and computational study of transonic flow about swept wings

    Science.gov (United States)

    Bertelrud, A.; Bergmann, M. Y.; Coakley, T. J.

    1980-01-01

    An experimental investigation of NACA 0010 and 10% circular arc wing models, swept at 45 deg, spanning a channel, and at zero angle of attack is described. Measurements include chordwise and spanwise surface pressure distributions and oil-flow patterns for a range of transonic Mach numbers and Reynolds numbers. Calculations using a new three-dimensional Navier-Stokes code and a two-equation turbulence model are included for the circular-arc wing flow. Reasonable agreement between measurements and computations is obtained.

  12. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  13. Method for solving an inverse problem of wing type by using a simple panel method; Kanbenna panel ho ni yoru yokugata gyaku mondai no ichikaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ando, J.; Matsumoto, D.; Maita, S.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes one method for solving an inverse problem of wing type based on the source and quasi continuous vortex lattice method (SQCM) in designing marine propellers and underwater wings. With the SQCM, vortices and control points are distributed on wing camber according to the QCM, and wing surface is divided into certain number of panels. This is the method to decide vortex intensity and blow-out intensity simultaneously from the condition that vertical speed on the camber and the wing surface is zero, upon having distributed blow-out with certain intensity inside the panel. The method solves the inverse problem with the following process: specific point distribution is so determined that the targeted velocity on the wing surface is satisfied when wing surface pressure distribution and uniform flow velocity are given; and then the panels are so rearranged as in parallel with direction of the flow on the surface of the wing calculated by using these specific points to derive the targeted wing shape. This paper describes the problem solving procedure in great detail. It also introduces examples of numerical calculations. It shows one method for solving the inverse problem in wing type using the SQCM as a simple panel method, whereas its good convergence and stability were verified. Considerations on effects of free surface and expansion of the method into three-dimensional problems will be implemented in the future. 11 refs., 8 figs.

  14. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  15. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  16. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...... re-compress the upstream flow and the gas Mach number decreases correspondingly. However, the Mach number does not vary significantly from the small, medium and large delta wing configurations. The small delta wing generates a swirl near its surface, but has minor influences on the flow above it....... On the contrary, the use of the large delta wing produces a strong swirling flow in the whole downstream region. For the large delta wing, the collection efficiency reaches 70% with 2 μm particles, indicating a good separation performance of the proposed supersonic separator....

  17. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  18. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  19. A further note on the force discrepancy for wing theory in Euler flow

    Indian Academy of Sciences (India)

    As in the two previous papers by the authors on wing theory in Euler flow [E Chadwick, ... It is over 250 years since Euler presented the Euler equations for fluid flow [11], and they have proven extraordinarily ... dard aerodynamic theory for flow past wings, a further assumption is made by supposing a discontinuous trailing ...

  20. The inverse problems of wing panel manufacture processes

    Science.gov (United States)

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  1. Material development for laminar flow control wing panels

    Science.gov (United States)

    Meade, L. E.

    1977-01-01

    The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

  2. Three-dimensional flow and load characteristics of flexible revolving wings at low Reynolds number

    NARCIS (Netherlands)

    van de Meerendonk, R.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio flat plate wings undergoing a revolving motion starting from rest. Three wings with different degree of chordwise flexural stiffness (i.e., rigid, moderate flexibility and high flexibility) have been

  3. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow

    Science.gov (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.

    1996-01-01

    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  4. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  5. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  6. Air Forces and Moments on Triangular and Related Wings With Subsonic Leading Edges Oscillating in Supersonic Potential Flow

    National Research Council Canada - National Science Library

    Watkins, Charles

    1961-01-01

    This analysis treats the air forces and moments in supersonic potential flow on oscillating triangular wings and a series of sweptback and arrow wings with subsonic leading edges and supersonic trailing edges...

  7. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  8. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  9. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  10. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  11. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  12. Volumetric PIV Behind a Flapping Wing in an Incoming Vortex Flow

    Science.gov (United States)

    Curet, Oscar; Finkel, Cyndee; von Ellenrieder, Karl; Bissell, Daniel

    2013-11-01

    The propulsive surfaces of flying and swimming animals interact with vortices shed by their own bodies or other animals, if they are traveling in groups. The interaction of the propulsive surface with these structured vortices might be fundamental for stability and/or decreasing the cost of transport. In this work, we investigate the wake generated by a flapping wing in an incoming vortex flow. We used a NACA0012 wing model with aspect ratio of 2, and a d-profile cylinder to generated the incoming vortices. The model was tested in a water channel at a Reynolds number of approximately 10,000, which is relevant to many biological swimmers and flyers. The flow structure generated by the flapping wing was measured using three-dimensional Particle Image Velocimetry (3-D PIV). A series of experiments were performed for different Strouhal numbers, St = fL/U, where f is the flapping frequency, L is the amplitude of oscillation, and U is the incoming flow speed. We present the 3-D flow field of the flapping wing in an incoming vortex flow and compare it with the structure of a flapping wing with an undisturbed incoming flow.

  13. Topology optimization of flow problems

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund

    2007-01-01

    transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... of the computed topology design using standard, credible analysis tools with a body-fitted mesh. Also, the thesis encompasses work on how to utilize the finite volume method (FVM) in the topology optimization context. This is motivated by the momentous position the FVM has in the fluid dynamics community...

  14. Flow cytometry determination of ploidy level in winged bean ...

    African Journals Online (AJOL)

    Ploidy determination and mutation breeding of crop plants are inseparable twins given that mutation breeding is hinged majorly on polyploidization of crop's chromosome number. The present research was aimed at determining the ploidy level of 20 accessions of winged bean (Psophoscarpus tetragonolobus) using known ...

  15. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  16. Automatic analysis and characterization of the hummingbird wings motion using dense optical flow features

    International Nuclear Information System (INIS)

    Martínez, Fabio; Romero, Eduardo; Manzanera, Antoine

    2015-01-01

    A new method for automatic analysis and characterization of recorded hummingbird wing motion is proposed. The method starts by computing a multiscale dense optical flow field, which is used to segment the wings, i.e., pixels with larger velocities. Then, the kinematic and deformation of the wings were characterized as a temporal set of global and local measures: a global angular acceleration as a time function of each wing and a local acceleration profile that approximates the dynamics of the different wing segments. Additionally, the variance of the apparent velocity orientation estimates those wing foci with larger deformation. Finally a local measure of the orientation highlights those regions with maximal deformation. The approach was evaluated in a total of 91 flight cycles, captured using three different setups. The proposed measures follow the yaw turn hummingbird flight dynamics, with a strong correlation of all computed paths, reporting a standard deviation of 0.31 rad/frame 2 and 1.9 (rad/frame) 2 for the global angular acceleration and the global wing deformation respectively. (paper)

  17. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  18. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  19. Effects of leading-edge flap oscillation on unsteady delta wing flow and rock control

    Science.gov (United States)

    Kandil, Osama A.; Salman, Ahmed A.

    1991-01-01

    The isolated and interdisciplinary problems of unsteady fluid dynamics and rigid-body dynamics and control of delta wings with and without leading-edge flap oscillation are considered. For the fluid dynamics problem, the unsteady, compressible, thin-layer Navier-Stokes (NS) equations, which are written relative to a moving frame of reference, are solved along with the unsteady, linearized, Navier-displacement (ND) equations. The NS equations are solved for the flowfield using an implicit finite-volume scheme. The ND equations are solved for the grid deformation, if the leading-edge flaps oscillate, using an ADI scheme. For the dynamics and control problem, the Euler equation of rigid-body rolling motion for a wing and its flaps are solved interactively with the fluid dynamics equations for the wing-rock motion and subsequently for its control. A four-stage Runge-Kutta scheme is used to explicitly integrate the dynamics equation.

  20. An Experimental Investigation of Flow past a Wing at high Angles of Attack

    Science.gov (United States)

    Dalela, Vipul; Mukherjee, Rinku

    2017-11-01

    The aerodynamic characteristics for post-stall angles of attack past a single and/or multiple 3D wing(s) have been studied using a novel `decambering technique' assuming the flow to be steady. It is expected that the location of separation as well as the strength of the separated flow is unsteady. The objective of this work therefore is to investigate flow at high angles of attack considering unsteady behavior. The numerical technique used for this purpose that accounts for loss in camber due to flow separation is termed as `decambering'. Two linear functions are used to define the `decambering' for the steady case, located at the leading edge and anywhere between 50%-80% chord. Wind tunnel experiments are to be conducted to study the unsteady nature of separated flow using flow visualization techniques. An estimation of the unsteady wake will be of paramount importance. It is expected to get an experimental corroboration for the numerical decambering. A NACA 4415 wing section is being tested for a range of Reynolds numbers. It is observed from the preliminary results that the drag becomes more dominant after increasing the Reynolds number from Re = 0.093 ×106 to Re = 0.128 ×106 resulting a gentle decrease in the lift coefficient, Cl.

  1. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    Science.gov (United States)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  2. Flow interactions lead to orderly formations of flapping wings in forward flight

    Science.gov (United States)

    Ramananarivo, Sophie; Fang, Fang; Oza, Anand; Zhang, Jun; Ristroph, Leif

    2016-11-01

    Classic models of fish schools and flying formations of birds are built on the hypothesis that the preferred locations of an individual are determined by the flow left by its upstream neighbor. Lighthill posited that arrangements may in fact emerge passively from hydro- or aerodynamic interactions, drawing an analogy to the formation of crystals by intermolecular forces. Here, we carry out physical experiments aimed at testing the Lighthill conjecture and find that self-propelled flapping wings spontaneously assume one of multiple arrangements due to flow interactions. Wings in a tandem pair select the same forward speed, which tends to be faster than a single wing, while maintaining a separation distance that is an integer multiple of the wavelength traced out by each body. When perturbed, these locomotors robustly return to the same arrangement, and direct hydrodynamic force measurements reveal springlike restoring forces that maintain group cohesion. We also use these data to construct an interaction potential, showing how the observed positions of the follower correspond to stable wells in an energy landscape. Flow visualization and vortex-based theoretical models reveal coherent interactions in which the follower surfs on the periodic wake left by the leader. These results indicate that, for the high-Reynolds-number flows characteristic of schools and flocks, collective locomotion at enhanced speed and in orderly formations can emerge from flow interactions alone. If true for larger groups, then the view of collectives as ordered states of matter may prove to be a useful analogy.

  3. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  4. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol

    2013-09-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.

  5. Three-Dimensional Unsteady Flow Elicited by Finite Wings and Complex Configurations.

    Science.gov (United States)

    1987-01-01

    flow. Anemometric measurements added quantitative magnitudes and spatial verification to the visualized flow structures. The experiments were designed... anemometric measurements were taken at each span location and chordwise at 0.00c(leading edge), 0.17c, 0.33c, 0.50c, 0.67c, 0.83c and 1.00c. " An X...The hot wire recorded the absolute velocity of the flow field during the cyclic motion history of the three wings. The anemometric measurements were

  6. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  7. Flow Field Analysis of Fully Coupled Computations of a Flexible Wing undergoing Stall Flutter

    Science.gov (United States)

    2016-01-01

    instantaneously measure the wing deformation . Clearly, these sensors rely upon the structural deformation for determining the extent of the defor...Torsion Figure 3. Modal structural model containing both bending and torsional modes. which can be simplified to Cµ = U2j A j U2∞Are f (6) since the...orthogonal decomposition (POD) was used on the pressure in the flow field.? Because the mesh is deforming due to the fluid-structure coupling and the

  8. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  9. Flow around a corrugated wing over the range of dragonfly flight

    Science.gov (United States)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  10. The problem of defining contemporary right-wing extremism in political theory

    Directory of Open Access Journals (Sweden)

    Đorić Marija

    2016-01-01

    Full Text Available The subject matter of research in this paper is theoretical controversy related to the definition of right-wing extremism. Given the fact that extremism is a variable, amorphous and insufficiently researched phenomenon, largely conditioned by time, space, political and cultural differences, there is a great confusion in the field of political science when defining right-wing extremism. The problem of researching right-wing extremism is additionally complicated by various terms that are being used in the contemporary literature as its synonyms, such as right-wing radicalism, neo-Fascism, ultra-radicalism, etc. In order to provide the most valid theoretical determination of right-wing extremism, the author provides a detailed analysis of all the components constituting this phenomenon and examines their causality. In the political praxis, the term extremism is extensively abused, which additionally complicates its determination. Videlicet, politicians often use term 'extremist' in order to discredit their political opponents. While during the French revolution aristocracy saw the bourgeoisie as extremists, the members of the working class later stated that the bourgeoisie were extremists. The problem lies in the fact that, in politics, extremists are not only the ones who use violence as modus operandi; indeed, it is also used by political opponents who do not belong to the extreme political option. Another aggravating factor in defining right-wing extremism is that many administrative and academic definitions do not make a clear distinction between extremism and related phenomena, such as terrorism, radicalism and populism. Extremism is most often equaled with terrorism, which gives rise to another problem in defining this phenomenon. The relation between extremism and terrorism is the relation of general and specific. Namely, every act of terrorism is concurrently considered to be an act of extremism, but not vice versa, given the fact that

  11. Solving the minimum flow problem with interval bounds and flows

    Indian Academy of Sciences (India)

    and Ciurea et al (2008b) solved the minimum flow problem for bipartite networks, and Ciurea. & Deaconu (2007) solved the ... In Ghiyasvand (2011), a new method to solve the minimum cost flow problem with interval .... multiplication of convex sets, when the fuzzification uses Definition 1 for max–min and order operations.

  12. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  13. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    A linear time method to decide if any inverse maximum flow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to ...

  14. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  15. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  16. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  17. Topology optimization of Channel flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.

    2005-01-01

    This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...... function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical...

  18. Simulation of wing-body junction flows with hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Fu Song; Xiao Zhixiang; Chen Haixin; Zhang Yufei; Huang Jingbo

    2007-01-01

    In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5 o angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k-ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements

  19. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.

    1977-01-01

    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  20. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  1. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.

  2. Blowing jets as a circulation flow control to enhancement the lift of wing or generated power of wind turbine

    Directory of Open Access Journals (Sweden)

    Alexandru DUMITRACHE

    2014-06-01

    Full Text Available The goal of this paper is to provide a numerical flow analysis based on RANS equations in two directions: the study of augmented high-lift system for a cross-section airfoil of a wing up to transonic regime and the circulation control implemented by tangentially blowing jet over a highly curved surface due to Coanda effect on a rotor blade for a wind turbine. This study were analyzed the performance, sensitivities and limitations of the circulation control method based on blowing jet for a fixed wing as well as for a rotating wing. Directions of future research are identified and discussed.

  3. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  4. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  5. Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings

    Science.gov (United States)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.

  6. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert

    2017-04-01

    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  7. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  8. Experimental study of the vortex flow behavior on a generic fighter wing at subsonic and transonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Rogers, Lawrence W.

    1987-01-01

    A subsonic and transonic investigation of the vortex flow behavior of a generic fighter configuration with 55-deg cropped delta wing has been conducted in order to improve current understanding of vortical motions on a wing with deflected leading edge flap at moderate and high angles-of-attack. The leading edge vortex strength was reduced, and the vortex was flatter and closer to the wing surface, as the Mach number increased. Transonically, at high angles-of-attack, the test data suggested the development of a cross-flow shock wave above the vortex sheet which coexisted with a rear shock wave. Subsonically, a deflected leading edge flap was able to sustain a concentrated vortex on the forward-facing surface.

  9. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  10. The stability of two-phase flow over a swept-wing

    Science.gov (United States)

    Coward, Adrian; Hall, Philip

    1994-01-01

    We use numerical and asymptotic techniques to study the stability of a two-phase air/water flow above a flat porous plate. This flow is a model of the boundary layer which forms on a yawed cylinder and can be used as a useful approximation to the air flow over swept wings during heavy rainfall. We show that the interface between the water and air layers can significantly destabilize the flow, leading to traveling wave disturbances which move along the attachment line. This instability occurs for lower Reynolds numbers than in the case of the absence of a water layer. We also investigate the instability of inviscid stationary modes. We calculate the effective wavenumber and orientation of the stationary disturbance when the fluids have identical physical properties. Using perturbation methods we obtain corrections due to a small stratification in viscosity, thus quantifying the interfacial effects. Our analytical results are in agreement with the numerical solution which we obtain for arbitrary fluid properties.

  11. Investigation of the interference effects of mixed flow long duct nacelles on a DC-10 wing

    Science.gov (United States)

    Patel, S. P.; Donelson, J. E.

    1982-01-01

    Wind tunnel test results utilizing a 4.7 percent scale semispan model in the 11 foot transonic wind tunnel are presented. A low drag long duct nacelle installation for the DC-10 jet transport was developed. A long duct nacelle representative of a CF6-50 mixed flow configuration was investigated on the DC-10-30. The results showed that the long duct nacelle installation located in the same position as the current short duct nacelle and with the current production symmetrical pylon is a relatively low risk installation for the DC-10 aircraft. Tuft observations and analytical boundary layer analysis confirmed that the flow on the nacelle afterbody was attached. A small pylon fairing was evaluated and found to reduce channel peak suction pressures, which resulted in a small drag improvement. The test also confirmed that the optimum nacelle incidence angle is the same as for the short duct nacelle, thus the same engine mount as for the production short duct nacelle can be used for the long duct nacelle installation. Comparison of the inboard wing pylon nacelle channel pressure distributions, with flow through and powered long duct nacelles showed that the power effects did not change the flow mechanism; hence, power effects can be considered negligible.

  12. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  13. Waterproof and translucent wings at the same time: problems and solutions in butterflies

    Science.gov (United States)

    Perez Goodwyn, Pablo; Maezono, Yasunori; Hosoda, Naoe; Fujisaki, Kenji

    2009-07-01

    Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered “super-hydrophobic” because the contact angle (CA) with a water drop exceeds 150°. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160°, whereas P. glacialis did not (CA = 100-135°). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30°, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long life and migration

  14. Force production and time-averaged flow structure around thin, non-slender delta wings

    Science.gov (United States)

    Tu, Han; Green, Melissa

    2017-11-01

    Experimental force measurement and time-averaged three dimensional flow visualization of low Reynolds number baseline cases have been carried out on a steady flat plate delta wing. Current data will serve as steady reference for future unsteady flow and actuation cases. The comprehensive study will compare force production in highly unsteady environments, which is necessary to consider in unmanned combat aerial vehicle (UCAV) control strategies. Force measurements are carried out at angles of attack 10, 15, 20, 25 and 30 degrees. The coefficient of drag increases with angle of attack, while the coefficient of lift reaches a maximum value at 20 degrees. Time-averaged flow visualization conducted at angles of attack of 20, 25 and 30 degrees shows vortices with larger magnitude that persist farther into wake are generated at higher angles of attack. These results compare analogously with similar steady baseline experiment results of high Reynolds number conducted by collaborators. This work was supported by the Office of Naval Research under ONR Award No. N00014-16-1-2732. We also acknowledge the collaborative support of Dr. David Rival and Mr. Matthew Marzanek at Queen's University.

  15. Using "The West Wing" for Problem-Based Learning in Public Relations Courses

    Science.gov (United States)

    Smudde, Peter M.; Luecke, John R.

    2005-01-01

    Integrating "The West Wing" in public relations courses can effectively dramatize the concrete and abstract dimensions of public relations. In turn, students see public relations in action (albeit fictionally so) and learn much about it through structured lessons. From individual writing assignments about situations in "The West Wing," to the…

  16. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  17. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  18. Flow characteristics of air in square duct using delta wing vortex generators

    Directory of Open Access Journals (Sweden)

    Mahesh R. Ingalagi

    2016-09-01

    Full Text Available Performance improvement in terms of improving heat transfer coefficient and reducing pressure drop becomes essential in heat exchange applications and a large number of methods for reducing pressure drop exist in the literature and the present work is an investigation on use of delta wings as vortex generators for reducing pressure drop. Methodology includes air from a blower entering the test section through orificemeter and differential-micro manometer to measure the flow rate and pressure drop across the test section. Depending upon the pressure drops, friction factors for smooth and rough surface of the duct are estimated. The effect of geometrical parameters of delta wing and duct aspect ratio on friction factor ratios are reported Based on Reynolds number in the range of 8000−24000. The geometrical parameters of vortex generators varied in this study were the pitch-to-vortex generator height ratio (p/e, vortex generator height to duct hydraulic diameter ratio (e/Dh, aspect ratio of vortex generator (ar. Results are reported for 0.1 < e/Dh < 0.5, p/e = 4,8,12,16, (ar = 1.6,2.3,4, N = 1 in ducts having aspect ratio AR = 1, Detailed friction factor analysis for Re 8000−24000 has been presented for different configurations of vortex generators used in the square duct. The experimental results of the present study for friction factor in smooth square duct matches well with values taken from formula proposed by Blasius. The friction factor ratio increases with increase in e/Dh value, which may be attributed to increased blockage of the flow passage. For a given p/e, increasing e/Dh ratio for the same (ar has the effect of increasing circulation strength and core size of the vortex thereby offering more resistance to flow that results into a higher friction factor ratio. The results have been presented in the form of the friction factor ratio of the roughened and smooth ducts operating at equal Reynolds numbers. Semi

  19. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  20. Flow Control and High-Lift Performance for Flying-Wing Unmanned Combat Air Vehicle Configurations by inserting slots

    Directory of Open Access Journals (Sweden)

    U Ali

    2016-06-01

    Full Text Available The objectives of the present study on Unmanned Combat Air Vehicles (UCAVs are two-fold: first to control the flow by inserting leading-edge and cross-flow slots and analysing the viscous flow development over the outer panels of a flying-wing configuration to maximise the performance of the elevons control surfaces; second to predict high-lift performance particularly the maximum-lift characteristics. This is demonstrated using a variety of inviscid Vortex Lattice Method (VLM and Euler, and viscous CFD Reynolds Averaged Navier-Stokes (RANS methods. The computational results are validated against experiment measured in a wind tunnel. Two flying-wing planforms are considered based around a generic 40˚ edge-aligned configuration. The VLM predicts a linear variation of lift and pitching moment with incidence angle, and substantially under-predicts the induced drag. Results obtained from RANS and Euler agree well with experiment.

  1. The Aerodynamic Behavior of a Harmonically Oscillating Finite Sweptback Wing in Supersonic Flow

    National Research Council Canada - National Science Library

    Chang, Chieh-Chien

    1951-01-01

    By an extension of Evvard's "diaphragm" concept outside the wing tip, the present paper presents two approximate methods for calculating the aerodynamic behavior of harmonically oscillating, sweptback...

  2. Aerodynamic characteristics and flow field of delta wings with the canard

    Directory of Open Access Journals (Sweden)

    Mochizuki Saya

    2018-01-01

    Full Text Available Now, many kinds of explorations for outer planets have been proposed around the world. Among them Mars attracts much attention for future exploration. Orbiters and landers have been used for Mars exploration. Recently as a new exploration method, the usage of an airplane has been seriously considered and there are some development projects for Mars airplane. However, the airplane flying on the Earth atmosphere cannot fly on the Mars atmosphere, because atmospheric conditions are much different each other. Therefore, we focused on the usage of the airplane with unfolding wings for Mars exploration. These unfolding wings are designed as delta wings. However, delta wings do not have enough aerodynamics characteristics in a low speed region. In this study, to improve the aerodynamic characteristics of delta wings, we have proposed the usage of canard wings. The purpose of this study is to examine the effectiveness of canard wings to improve aerodynamic characteristics in a low speed region. CFD analysis is performed using four wing models with different canard shapes. The result shows that the usage of canards is effective to improve aerodynamic characteristics of delta wings in a low speed region. In addition, increasing lift coefficient is possible by changing the shape of canards.

  3. Intergration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transport

    Science.gov (United States)

    Lamb, Milton; Carlson, John R.; Pendergraft, Odis C., Jr.

    1987-01-01

    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at freestream Mach numbers from 0.70 to 0.82 and angles of attack from -3.0 to 4.0 deg to determine the integration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the aft-mounted nacelle/pylon produced an increase in lift over that of the wing-body configuration by pressurizing much of the wing lower surface in front of the pylon. For the D-shaped nacelle, a substantial region of supersonic flow over the wing, aft of the lip of the nacelle, cancelled the reduction in drag caused by the increase in pressures ahead of the lip, to increase interference and form drag compared with a similar circular-shaped nacelle. The installed drag of the D=shaped nacelle was essentially the same as that of an aft-mounted circular nacelle from a previous investigation.

  4. SALLY LEVEL II- COMPUTE AND INTEGRATE DISTURBANCE AMPLIFICATION RATES ON SWEPT AND TAPERED LAMINAR FLOW CONTROL WINGS WITH SUCTION

    Science.gov (United States)

    Srokowski, A. J.

    1994-01-01

    The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.

  5. A Structural Design Concept for a Multi-Shell Blended Wing Body with Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Majeed Bishara

    2018-02-01

    Full Text Available Static and fatigue analyses are presented for a new blended wing body (BWB fuselage concept considering laminar flow control (LFC by boundary layer suction in order to reduce the aerodynamic drag. BWB aircraft design concepts profit from a structurally beneficial distribution of lift and weight and allow a better utilization of interior space over conventional layouts. A structurally efficient design concept for the pressurized BWB cabin is a vaulted layout that is, however, aerodynamically disadvantageous. A suitable remedy is a multi-shell design concept with a separate outer skin. The synergetic combination of such a multi-shell BWB fuselage with a LFC via perforation of the outer skin to attain a drag reduction appears promising. In this work, two relevant structural design aspects are considered. First, a numerical model for a ribbed double-shell design of a fuselage segment is analyzed. Second, fatigue aspects of the perforation in the outer skin are investigated. A design making use of controlled fiber orientation is proposed for the perforated skin. The fatigue behavior is compared to perforation methods with conventional fiber topologies and to configurations without perforations.

  6. The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale

    NARCIS (Netherlands)

    Thielicke, William; Stamhuis, Eize J.

    The effect of airfoil design parameters, such as airfoil thickness and camber, are well understood in steady-state aerodynamics. But this knowledge cannot be readily applied to the flapping flight in insects and birds: flow visualizations and computational analyses of flapping flight have identified

  7. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  8. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle

    Science.gov (United States)

    Helms, V. T., III; Bradley, P. F.

    1984-01-01

    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  9. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    Science.gov (United States)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  10. Integration effects of underwing forward- and rearward-mounted separate-flow, flow-through nacelles on a high-wing transport

    Science.gov (United States)

    Lamb, M.; Abeyounis, W. K.

    1986-01-01

    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 to 4.0 degrees to determine the integration effects of pylon-mounted underwing forward and rearward separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the installed drag of the nacelle/pylon in the rearward location was slightly less than that of the nacelle/pylon in the forward location. This reduction was due to the reduction in calculated skin friction of the nacelle/pylon configuration. In all cases the combined value of form, wave, and interference drag was excessively high. However, the configuration with the nacelle/pylon in a rearward location produced an increase in lift over that of the basic wing-body configuration.

  11. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  12. A viscous/potential flow interaction analysis method for multi-element infinite swept wings, volume 1

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.

    1974-01-01

    An analysis method and computer program have been developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element infinite swept wings in incompressible flow. The wing configuration consisting at the most of a slat, a main element and double slotted flap is represented in the method by a large number of panels. The inviscid pressure distribution about a given configuration in the normal chord direction is determined using a two dimensional potential flow program employing a vortex lattice technique. The boundary layer development over each individual element of the high lift configuration is determined using either integral or finite difference boundary layer techniques. A source distribution is then determined as a function of the calculated boundary layer displacement thickness and pressure distributions. This source distribution is included in the second calculation of the potential flow about the configuration. Once the solution has converged (usually after 2-5 iterations between the potential flow and boundary layer calculations) lift, drag, and pitching moments can be determined as functions of Reynolds number.

  13. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  14. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond.

    Science.gov (United States)

    Zhang, Qinghua; Xue, Shengzhang; Yan, Chenghu; Wu, Xia; Wen, Shumei; Cong, Wei

    2015-12-01

    To reduce the dead zone and enhance the flashing light effect, a novel open raceway pond with flow deflectors and wing baffles was developed. The hydrodynamics and light characteristics in the novel open raceway pond were investigated using computational fluid dynamics. Results showed that, compared with the control pond, pressure loss in the flow channel of the pond with optimized flow deflectors decreased by 14.58%, average fluid velocity increased by 26.89% and dead zone decreased by 60.42%. With wing baffles built into the raceway pond, significant swirling flow was produced. Moreover, the period of average L/D cycle was shortened. In outdoor cultivation of freshwater Chlorella sp., the biomass concentration of Chlorella sp. cultivated in the raceway pond with wing baffles was 30.11% higher than that of the control pond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A further note on the force discrepancy for wing theory in Euler flow

    Indian Academy of Sciences (India)

    the horseshoe vortices tends to zero, an integral distribution of infinitesimal horseshoe vortices over the vortex sheet is obtained. The contribution to the force on the wing due to the presence of one of the infinitesimal horseshoe vortices in the distribution is focused upon. Most of the algebra in the force calculation is ...

  16. Solving the minimum flow problem with interval bounds and flows

    Indian Academy of Sciences (India)

    ... with crisp data. In this paper, the idea of Ghiyasvand was extended for solving the minimum flow problem with interval-valued lower, upper bounds and flows. This problem can be solved using two minimum flow problems with crisp data. Then, this result is extended to networks with fuzzy lower, upper bounds and flows.

  17. POD Analysis of Flow Behind a Four-wing Vortex Generator

    Science.gov (United States)

    Hosseinali, Mahdi; Wilkins, Stephen; Hall, Joseph

    2015-11-01

    Wing-tip vortices that persist long after the passage of large aircraft are of major concern to aircraft controllers and are responsible for considerable delays between aircraft take-off times. Understanding these vortices is extremely important, with the ultimate goal to reduce or eliminate delays altogether. Simple theoretical models of vortices can be studied experimentally using a four-wing vortex generator. The cross-stream planes are measured with a two-component Particle Image Velocimetry (PIV) system, and the resulting vector fields were analyzed with a Proper Orthogonal Decomposition (POD) via the method of snapshots. POD analysis will be employed both before and after removing vortex core meandering to investigate the meandering effect on POD modes for a better understanding of it.

  18. Multiple Objective Minimum Cost Flow Problems: A Review

    DEFF Research Database (Denmark)

    Hamacher, H.W.; Pedersen, Christian Roed; Ruzika, S.

    2005-01-01

    In this paper, theory and algorithms for solving the multiple objective minimum cost flow problem are reviewed. For both the continuous and integer case exact and approximation algorithms are presented. In addition, a section on compromise solutions summarizes corresponding results. The reference...... list consists of all papers known to the authors which deal with the multiple objective minimum cost flow problem....

  19. A deficit scaling algorithm for the minimum flow problem

    Indian Academy of Sciences (India)

    Ciupal˘a L, Ciurea E 2003 An algorithm for the minimum flow problem. Sixth Int. Conf. of Economic. Informatics, pp 565–569. Ciurea E, Ciupal˘a L 2001 Algorithms for minimum flows. Comput. Sci. J. Moldova 9: 275–290. Ciurea E, Ciupal˘a L 2004 Sequential and parallel algorithms for minimum flows. J. Appl. Math. Comput.

  20. A finite element method for flow problems in blast loading

    International Nuclear Information System (INIS)

    Forestier, A.; Lepareux, M.

    1984-06-01

    This paper presents a numerical method which describes fast dynamic problems in flow transient situations as in nuclear plants. A finite element formulation has been chosen; it is described by a preprocessor in CASTEM system: GIBI code. For these typical flow problems, an A.L.E. formulation for physical equations is used. So, some applications are presented: the well known problem of shock tube, the same one in 2D case and a last application to hydrogen detonation

  1. Design studies of Laminar Flow Control (LFC) wing concepts using superplastics forming and diffusion bonding (SPF/DB)

    Science.gov (United States)

    Wilson, V. E.

    1980-01-01

    Alternate concepts and design approaches were developed for suction panels and techniques were defined for integrating these panel designs into a complete LFC 200R wing. The design concepts and approaches were analyzed to assure that they would meet the strength, stability, and internal volume requirements. Cost and weight comparisions of the concepts were also made. Problems of integrating the concepts into a complete aircraft system were addressed. Methods for making splices both chordwise and spanwise, fuel light joints, and internal duct installations were developed. Manufacturing problems such as slot aligment, tapered slot spacing, production methods, and repair techniques were addressed. An assessment of the program was used to developed recommendations for additional research in the development of SPF/DB for LFC structure.

  2. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    OpenAIRE

    S. Fanati Rashidi; A. A. Noora

    2010-01-01

    Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...

  3. Using a genetic algorithm to solve fluid-flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R.J. (Sandia National Lab., Albuquerque, NM (USA))

    1990-06-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.

  4. Using a genetic algorithm to solve fluid-flow problems

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1990-01-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe

  5. Innovative scaling laws for aeroelastic and aeroservoelastic problems in compressible flow

    Science.gov (United States)

    Presente, Eyal

    Active flutter suppression of a two dimensional wing section in subsonic flow is studied. The equations of motion of a typical cross section are presented in nondimensional form. A two degree of freedom problem, with pitch and plunge dynamics, combined with a trailing-edge control surface is considered. Aerodynamic loads are expressed in the time-domain using Roger's approximation. Augmented aerodynamic states are reconstructed using a Kalman filter, and linear optimal control is used to design a full-state feedback regulator for flutter suppression. Recent advances in the area of adaptive materials, smart structures, have led to the use of such materials as actuators for aeroservoelastic applications. The attractiveness of such materials consists of their potential to introduce continuous structural deformations of the lifting surface that can be exploited to manipulate the unsteady aerodynamic loads and prevent undesirable aeroelastic effects such as flutter. A general formulation of the aerodynamic loads, based on thin airfoil theory, and the deformation of a flat plate wing section are used to calculate the amount of power required to twist a wing along its span with piezoelectric patches. Composite materials enhance bend/twist coupling, which is used to modify the aerodynamic loads for the purpose of flutter suppression. Scaling laws of aeroservoelastic systems are addressed. Scaling parameters required for maintaining similarity between a full-scale system and a model are studied. An innovative two-pronged approach is used to obtain "similarity solutions" of the aeroservoelastic problem. Changes of structural and aerodynamic variables between a full scale configuration and its scaled models facilitate similarity between the systems. Two cases of scaled models are examined, a geometrically scaled model and an aeroelastically scaled one. Flutter suppression of a typical cross section employing a trailing edge control surface is compared with that of a typical

  6. On Howard's conjecture in heterogeneous shear flow problem

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Abstract. Howard's conjecture, which states that in the linear instability problem of inviscid heterogeneous parallel shear flow growth rate of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows ...

  7. Numerical solution of pipe flow problems for generalized Newtonian fluids

    International Nuclear Information System (INIS)

    Samuelsson, K.

    1993-01-01

    In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)

  8. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  9. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    Science.gov (United States)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  10. Topology Optimization in wave-propagation and flow problems

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Gersborg-Hansen, A.

    2004-01-01

    We discuss recent extensions of the topology optimization method to wave-propagation and flow problems. More specifically, we optimize material distribution in scalar wave propagation problems modelled by Helmholtz equation. Moreover, we investigate the influence of the inertia term on the optimal...

  11. Isospectral Flows for the Inhomogeneous String Density Problem

    Science.gov (United States)

    Górski, Andrzej Z.; Szmigielski, Jacek

    2018-02-01

    We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynomials in negative powers of the spectral parameter. We illustrate the theory with concrete examples of isospectral flows of discrete mass densities which we prove to be Hamiltonian and for which we provide explicit solutions of equations of motion in terms of Stieltjes continued fractions and Hankel determinants.

  12. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    Directory of Open Access Journals (Sweden)

    S. Fanati Rashidi

    2010-06-01

    Full Text Available Using the concept of possibility proposed by zadeh, luhandjula ([4,8] and buckley ([1] have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7] used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. In this paper we shall consider the general form of this problem where all of the parameters and variables are fuzzy and also a model for solving is proposed

  13. Mean flow characteristics of two-dimensional wings in ground effect

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-06-01

    Full Text Available The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-ε model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length (0.1≤h/C ≤ 1.25 for the angles of attack (0° ≤ α ≤ 10° in the pre-stall regime at a Reynolds number (Re of 2×106 based on free stream velocity U∞ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at α = 4° and h/C = 0.1. Under the conditions of α = 4° and h/C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of 2× 10 5 ≤ Re ≤ 2× 109. As Re increases, Cl and Cd augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

  14. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    Stereoscopic particle image velocimetry measurements have been executed in a low speed wind tunnel in spanwise planes in the flow past a row of vortex generators, mounted on a bump in a fashion producing counter-rotating vortices. The measurement technique is a powerful tool which provides all...... to measure and resolve. The flow behaves as expected, in the sense that the vortices transport high momentum fluid into the boundary layer, making it thinner and more resistant to the adverse pressure gradient with respect to separation. The amount of reversed flow is significantly reduced when vortex...

  15. Time Accurate Euler Calculations of Vortical Flow over a Delta Wing in Rolling Motion

    National Research Council Canada - National Science Library

    Fritz, W

    2003-01-01

    .... An important component of the program were the Common Exercises (CE), which promoted the exchange of knowledge between the participating nations and aided the development of computational methods to predict vortical flows...

  16. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  17. Maximum-Flow Neural Network: A Novel Neural Network for the Maximum Flow Problem

    Science.gov (United States)

    Sato, Masatoshi; Aomori, Hisashi; Tanaka, Mamoru

    In advance of network communication society by the internet, the way how to send data fast with a little loss becomes an important transportation problem. A generalized maximum flow algorithm gives the best solution for the transportation problem that which route is appropriated to exchange data. Therefore, the importance of the maximum flow algorithm is growing more and more. In this paper, we propose a Maximum-Flow Neural Network (MF-NN) in which branch nonlinearity has a saturation characteristic and by which the maximum flow problem can be solved with analog high-speed parallel processing. That is, the proposed neural network for the maximum flow problem can be realized by a nonlinear resistive circuit where each connection weight between nodal neurons has a sigmodal or piece-wise linear function. The parallel hardware of the MF-NN will be easily implemented.

  18. 3D Topology optimization of Stokes flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Dammann, Bernd

    of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model...... geometry is non-trivial as typically seen in topology design. The presentation elaborates on effects caused by 3D fluid modelling on the design. Numerical examples relevant for optimal micro fluidic mixer design are shown where the design is planar - compliant with micro fabrication techniques - and where...... fields as solid mechanics and optics and is due to the method's flexibility in the (rough) parametrization of the design, see [1] and the reference therein for an overview. Borrvall and Petersson [2] is the seminal reference for topology optimization in fluid flow problems. They considered design...

  19. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    Science.gov (United States)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  20. Urban stormwater runoff: a new class of environmental flow problem.

    Science.gov (United States)

    Walsh, Christopher J; Fletcher, Tim D; Burns, Matthew J

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5-10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such

  1. Urban stormwater runoff: a new class of environmental flow problem.

    Directory of Open Access Journals (Sweden)

    Christopher J Walsh

    Full Text Available Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5-10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve

  2. Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings

    Science.gov (United States)

    2016-09-02

    understanding the dynamics of these unsteady flows, and uses state-of-the- art techniques, both for measuring these phenomena in experiments (using an... art techniques, both for measuring these phenomena in experiments (using an unsteady wind tunnel at IIT), and for analyzing the data and developing...domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197:2131–2146, 2008. [35] Laurent Cordier, El Majd, B

  3. Application of meshless EFG method in fluid flow problems

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    two-dimensional fluid flow problems and have proposed a new exponential weight function. In the EFG method ... The coefficients aj (x) are found by minimizing the quadratic functional J(x) given by. J(x) = n. ∑. I=1 ..... Dolbow J, Belytschko T 1998 An introduction to programming the meshless element-free Galerkin method.

  4. Boundary Layer Transition, Separation and Flow Control on Airfoils, Wings and Bodies in CFD, Wind-Tunnel and In-Flight Studies

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Šimurda, David; Součková, Natálie

    2011-01-01

    Roč. 35, č. 4 (2011), s. 97-104 ISSN 0744-8996 R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : airfoil * wing-fuselage interaction * flow control Subject RIV: BK - Fluid Dynamics

  5. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer

    2016-10-01

    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  6. Structural development of laminar flow control aircraft chordwise wing joint designs

    Science.gov (United States)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  7. Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

    DEFF Research Database (Denmark)

    Tierney, Kevin; Askelsdottir, Björg; Jensen, Rune Møller

    2015-01-01

    We solve a central problem in the liner shipping industry called the liner shipping fleet repositioning problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between routes in a liner shipping network. Liner carriers wish...... introduce a novel mathematical model and a simulated annealing algorithm for the LSFRP with cargo flows that makes use of a carefully constructed graph; we evaluate these approaches using real-world data from our industrial collaborator. Additionally, we compare the performance of our approach against...... to solve the LSFRP....

  8. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  9. Topology optimization of 3D Stokes flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Sigmund, Ole; Bendsøe, Martin P.

    particular at micro scales since they are easily manufacturable and maintenance free. Here we consider topology optimization of 3D Stokes flow problems which is a reasonable fluid model to use at small scales. The presentation elaborates on effects caused by 3D fluid modelling on the design. Numerical......The design of MEMS devices have benefitted from the topology optimization tool and complicated layout problems have been solved, see [1] for an overview. This research is aimed at micro fluidic devices known as micro-Total-Analysis-Systems (muTAS) where the main physical phenomena originate from...... fluid mechanics. In future practice a muTAS could be used by doctors, engineers etc. as a hand held device with short reaction time that provides on-site analysis of a flowing substance such as blood, polluted water or similar. Borrvall and Petersson [2] paved the road for using the topology...

  10. The zonal satellite problem - I: Near-collision flow

    Directory of Open Access Journals (Sweden)

    Mioc V.

    1998-01-01

    Full Text Available The force field described by a potential function of the form U = Σn k=1 ak/rk (r = distance between particles, ak = real parameters models various concrete situations belonging to astronomy, physics, mechanics, astrodynamics, etc. The two-body problem is being tackled in such a field. The motion equations and the first integrals of energy and angular momentum are established. The McGehee-type coordinates are used to blow up the collision singularity and to paste the resulting manifold on the phase space. The flow on the collision manifold is depicted. Then, using the rotational symmetry of the problem and the angular momentum integral, the local flow near collision is described and interpreted in terms of physical motion.

  11. Progress with multigrid schemes for hypersonic flow problems

    International Nuclear Information System (INIS)

    Radespiel, R.; Swanson, R.C.

    1995-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab

  12. On convergence of multigrid method in multiphase flow problems

    Science.gov (United States)

    Filatov, M.; Maksimov, D.

    2013-12-01

    Standard multigrid methods often become inefficient in multiphase flow problems because the coarse grid operators are constructed disregarding heterogeneous saturation distribution. This may lead to inefficient residual smoothing and significantly reduce convergence rate. Here we study the convergence behavior of geometric multigrid method in case when the upscaling methods (incl. multiphase) are employed in construction of coarse grid operators. The application for nonlinear multigrid method is also discussed.

  13. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    Science.gov (United States)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-01-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  14. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-12-01

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  15. Flow-shop scheduling problem under uncertainties: Review and trends

    Directory of Open Access Journals (Sweden)

    Eliana María González-Neira

    2017-03-01

    Full Text Available Among the different tasks in production logistics, job scheduling is one of the most important at the operational decision-making level to enable organizations to achieve competiveness. Scheduling consists in the allocation of limited resources to activities over time in order to achieve one or more optimization objectives. Flow-shop (FS scheduling problems encompass the sequencing processes in environments in which the activities or operations are performed in a serial flow. This type of configuration includes assembly lines and the chemical, electronic, food, and metallurgical industries, among others. Scheduling has been mostly investigated for the deterministic cases, in which all parameters are known in advance and do not vary over time. Nevertheless, in real-world situations, events are frequently subject to uncertainties that can affect the decision-making process. Thus, it is important to study scheduling and sequencing activities under uncertainties since they can cause infeasibilities and disturbances. The purpose of this paper is to provide a general overview of the FS scheduling problem under uncertainties and its role in production logistics and to draw up opportunities for further research. To this end, 100 papers about FS and flexible flow-shop scheduling problems published from 2001 to October 2016 were analyzed and classified. Trends in the reviewed literature are presented and finally some research opportunities in the field are proposed.

  16. Adjoint-based optimization for flapping wings

    Science.gov (United States)

    Xu, Min; Wei, Mingjun

    2012-11-01

    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  17. Combined, nonlinear aerodynamic and structural method for the aeroelastic design of a three-dimensional wing in supersonic flow

    Science.gov (United States)

    Pittman, J. L.; Giles, G. L.

    1986-01-01

    An iterative procedure for the static aeroelastic design of a flexible wing at supersonic speeds has been developed. The procedure combines a nonlinear, full-potential solver (NCOREL) with an equivalent plate structural analysis method. The NCOREL method yields significantly improved aerodynamic estimates compared to linear theory. The equivalent plate structural analysis method demonstrates an order of magnitude reduction in computer memory and execution time compared to finite-element methods. A highly swept wing is analyzed at high lift using this aeroelastic procedure. The results indicate that the wing deforms favorably due to aerodynamic loading and, consequently, that the inviscid drag levels do not vary at the required lift coefficient although the angle of attack varies significantly. A sensitivity analysis of the type required for optimization studies was also performed with the aeroelastic design procedure.

  18. Effect of external jet-flow deflector geometry on OTW aero-acoustic characteristics. [Over-The-Wing

    Science.gov (United States)

    Von Glahn, U.; Groesbeck, D.

    1976-01-01

    The effect of geometry variations in the design of external deflectors for use with OTW configurations was studied at model scale and subsonic jet velocities. Included in the variations were deflector size and angle as well as wing size and flap setting. A conical nozzle (5.2-cm diameter) mounted at 0.1 chord above and downstream of the wing leading edges was used. The data indicate that external deflectors provide satisfactory take-off and approach aerodynamic performance and acoustic characteristics for OTW configurations. These characteristics together with expected good cruise aerodynamics, since external deflectors are storable, may provide optimum OTW design configurations.

  19. NETWORK FLOW ORIENTED APPROACHES FOR VEHICLE SHARING RELOCATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Alain Quilliot

    Full Text Available ABSTRACT Managing a one-way vehicle sharing system means periodically moving free access vehicles from excess to deficit stations in order to avoid local shortages. We propose and study here several network flow oriented models and algorithms which deal with a static version of this problem while unifying preemption and non preemption as well as carrier riding cost, vehicle riding time and carrier number minimization. Those network flow models are vehicle driven, which means that they focus on the way vehicles are exchanged between excess and deficit stations. We perform a lower bound and approximation analysis which leads us to the design and test of several heuristics. One of them involves implicit dynamic network handling.

  20. Experimental studies of vertical mixing patterns in open channel flow generated by two delta wings side-by-side

    Science.gov (United States)

    Vaughan, Garrett

    Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for

  1. Topology optimization of mass distribution problems in Stokes flow

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Berggren, Martin; Dammann, Bernd

    enabled an evaluation of the design with a body fitted mesh in a standard analysis software relevant in engineering practice prior to design manufacturing. This work investigates the proper choice of a maximum penalization value during the optimization process that ensures that the target outflow rates......We consider topology optimization of mass distribution problems in 2D and 3D Stokes flow with the aim of designing devices that meet target outflow rates. For the purpose of validation, the designs have been post processed using the image processing tools available in FEMLAB. In turn, this has...

  2. Robust quadratic assignment problem with budgeted uncertain flows

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Feizollahi

    2015-12-01

    Full Text Available We consider a generalization of the classical quadratic assignment problem, where material flows between facilities are uncertain, and belong to a budgeted uncertainty set. The objective is to find a robust solution under all possible scenarios in the given uncertainty set. We present an exact quadratic formulation as a robust counterpart and develop an equivalent mixed integer programming model for it. To solve the proposed model for large-scale instances, we also develop two different heuristics based on 2-Opt local search and tabu search algorithms. We discuss performance of these methods and the quality of robust solutions through extensive computational experiments.

  3. Topology optimization of 3D Stokes flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    flow [3]. Furthermore, it is questionable if such a coupling can be captured by a 2D model especially in non-trivial geometries as typically seen in topology design. This statement is widely accepted in the fluid mechanics community, i.e. that planar fluid models are useful for academic test problems...... fundamental aspects of the topology optimization method applied to the Stokes equations as described below. This work consists of two parts. The main part elaborates on effects caused by 3D fluid modelling on the design. Numerical examples are shown where the design is planar - relevant to micro fluidic...... are discussed which is the critical bottleneck for the 3D problem. The implementation uses semi--analytical sensitivities to drive a gradient based optimization algorithm. [1] M. P. Bendsøe and O. Sigmund, Topology Optimization - Theory, Methods and Applications, Springer Verlag, Berlin Heidelberg, 2003. [2] T...

  4. Effect of square wings in multiple square perforated twisted tapes on fluid flow and heat transfer of heat exchanger tube

    Directory of Open Access Journals (Sweden)

    Amar Raj Singh Suri

    2017-09-01

    Full Text Available This work presents, an experimental study on Nusselt number (Nurs and friction factor (frs of heat exchanger circular tube fitted with multiple square perforated with square wing twisted tape inserts. The experimental determination encompassed the geometrical parameters namely, wing depth ratio (Wd/WT of 0.042–0.167, perforation width ratio (a/WT of 0.250, twist ratio (TL/WT of 2.5, and number of twisted tapes (NT of 4.0. The effect of multiple square perforated twisted tape with square wing has been investigated for the range of Reynolds number (Ren varied from 5000 to 27,000. The maximum enhancement in Nurs and frs is observed to be 6.96 and 8.34 times of that of the plain circular tube, respectively. Correlations of Nurs, frs and ηp are established in term of Ren and geometrical parameters of wings twisted tape which can be used to predict the values of Nurs, frs and ηp with considerably good accuracy.

  5. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  6. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  7. Heating and flow-field studies on a straight-wing hypersonic reentry vehicle at angles of attack from 20 to 80 deg with simulation of real-gas trends

    Science.gov (United States)

    Hunt, J. L.

    1973-01-01

    Data are presented from a series of phase-change heat transfer and flow visualization tests at Mach 7.4, 8, and 10.3 in air, Mach 19.5 in nitrogen, Mach 20.3 in helium, and Mach 6 in tetrafluoromethane (CF4) on the windward surface of a straight wing hypersonic reentry configuration for angles of attack from 20 deg to 80 deg. The results indicate that: (1) for hypersonic stream Mach numbers, the flow field over the straight-wing configuration is essentially independent of Mach number, (2) transition Reynolds number decreases with increasing angle of attack, (3) at some critical angle of attack, the wing-shock standoff distance is greatly increased and the stagnation line moves downstream from the wing leading edge, (4) value of the critical angle of attack is very sensitive to the flow shock density ratio or effective gamma, and (5) at angles of attack above the critical value for all gases, the nondimensional level of heat transfer to the wing is higher for the higher shock density ratio flows.

  8. Problems in vibration measurement by laser techniques through combusting flows

    Science.gov (United States)

    Paone, Nicola; Revel, Gian M.

    1996-08-01

    A study of the metrologic problems connected to performing laser vibrometer measurements through combusting flows has been presented in this paper, in order to test the real applicability of laser vibrometer techniques to carry out measurements on full-scale burners. A model of the instrument is developed to describe main effects on the measurement system due to time varying refractive index within the flame; measurement uncertainty sources are discussed. Variations in the optical path length of the measuring arm of the interferometer due to changes in the laser beam wavelength and propagation direction caused by refractive index gradients seem to be the most influent effects and they are modulated at the natural flickering frequency of the flame. Experimental results from measurements performed by a single-point laser vibrometer through an unconfined CH4 flame from a Bunsen burner are in agreement with the model and provide an explanation of the phenomena which affect uncertainty in these particular measurements.

  9. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  10. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    Science.gov (United States)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  11. An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion

    Science.gov (United States)

    Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo

    2017-11-01

    Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.

  12. A note on Fenchel cuts for the single-node flow problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    The single-node flow problem, which is also known as the single-sink fixed-charge transportation problem, consists in finding a minimum cost flow from a number of nodes to a single sink. The flow cost comprise an amount proportional to the quantity shipped as well as a fixed charge. In this note......, some structural properties of Fenchel cutting planes for this problem are described. Such cuts might then be applied for solving, e.g., fixed-charge transportation problems and more general fixed-charge network flow problems....

  13. A new approach to flow problems past a screen

    Science.gov (United States)

    Inoue, O.; Kuwahara, K.

    1985-01-01

    A new method to simulate flows past a two-dimensional porous plate is proposed. The method is a simple application of a discrete vortex method which has been well established for flows past an inclined flat plate. In this method, a flow past a porous plate is described as superposition of the velocity potential of a uniform flow on that of a flow past a flat plate. The effect of porosity is replaced by that of a mass flow rate of the approaching freestream passing through the plate. Calculated flow features are compared with experiments. It is shown that the present method is effective in the simulation of the flow past a porous plate.

  14. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  15. Real-Time Wing-Vortex and Pressure Distribution Estimation on Wings Via Displacements and Strains in Unsteady and Transitional Flight Conditions

    Science.gov (United States)

    2016-09-07

    LES ) flow solver coupled with a linear elastic membrane wing model. The focus of the study was to evaluate the effect of aeroelastic cambering on...inverse problem that is not solvable, consider a rectangular membrane made of isotropic material, with Poisson coefficient ν = 0, and subjected to a

  16. The Liner Shipping Fleet Repositioning Problem with Cargo Flows

    DEFF Research Database (Denmark)

    Tierney, Kevin; Jensen, Rune Møller

    2012-01-01

    We solve an important problem for the liner shipping industry called the Liner Shipping Fleet Repositioning Problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between services in a liner shipping network. Shippers wish...

  17. On Howard's conjecture in heterogeneous shear flow problem

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    This conjecture of Howard has also drawn the attention of researchers. Banerjee et al [1] were able to validate the correctness of this conjecture for the special case of inviscid homogeneous parallel shear flows. Their approach consisted of combining the governing equations and boundary conditions in an innovative way ...

  18. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  19. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  20. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Pruess (editor), K.

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

  1. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  2. An integrated approach to combating flow assurance problems

    Energy Technology Data Exchange (ETDEWEB)

    Abney, Laurence; Browne, Alan [Halliburton, Houston, TX (United States)

    2005-07-01

    Any upset to the internal pipe surface of a pipeline can significantly impact both pipeline through-put and energy requirements for maintaining design flow rates. Inefficient flow through pipelines can have a significant negative impact on operating expense (Opex) and the energy requirements necessary to maintain pipeline through-put. Effective flow maintenance helps ensure that Opex remains within budget, processing equipment life is extended and that excessive use of energy is minimized. A number of events can result in debris generation and deposition in a pipeline. Corrosion, hydrate formation, paraffin deposition, asphaltene deposition, development of 'black powder' and scale formation are the most common sources of pipeline debris. Generally, a combination of pigging and chemical treatments is used to remove debris; these two techniques are commonly used in isolation. Incorporation of specialized fluids with enhanced solid-transport capabilities, specialized dispersants, or specialized surfactants can improve the success of routine pigging operations. An array of alternative and often complementary remediation technologies can be used to effect the removal of deposits or even full restrictions from pipelines. These include the application of acids, specialized chemical products, and intrusive interventions techniques. This paper presents a review of methods of integrating existing technologies. (author)

  3. Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines

    Directory of Open Access Journals (Sweden)

    Eliana Marcela Peña Tibaduiza

    2017-01-01

    Full Text Available Context: The flow shop hybrid problem with unrelated parallel machines has been less studied in the academia compared to the flow shop hybrid with identical processors. For this reason, there are few reports about the kind of application of this problem in industries. Method: A literature review of the state of the art on flow-shop scheduling problem was conducted by collecting and analyzing academic papers on several scientific databases. For this aim, a search query was constructed using keywords defining the problem and checking the inclusion of unrelated parallel machines in such definition; as a result, 50 papers were finally selected for this study. Results: A classification of the problem according to the characteristics of the production system was performed, also solution methods, constraints and objective functions commonly used are presented. Conclusions: An increasing trend is observed in studies of flow shop with multiple stages, but few are based on industry case-studies.

  4. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  5. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  6. Solving Minimum Cost Multi-Commodity Network Flow Problem ...

    African Journals Online (AJOL)

    ADOWIE PERE

    the linear function of the ith goal; bi - an aspiration level of the ith goal; X - the vector of decision variables; F - the feasible set of constraints. Lexicographic Goal Programming was used in this work being an approach that solves Goal. Programming problems with priorities on objectives in order achieve travel time ...

  7. Navier-Stokes Solvers and Generalizations for Reacting Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Elman, Howard C

    2013-01-27

    This is an overview of our accomplishments during the final term of this grant (1 September 2008 -- 30 June 2012). These fall mainly into three categories: fast algorithms for linear eigenvalue problems; solution algorithms and modeling methods for partial differential equations with uncertain coefficients; and preconditioning methods and solvers for models of computational fluid dynamics (CFD).

  8. Cyclic flow shop scheduling problem with two-machine cells

    Directory of Open Access Journals (Sweden)

    Bożejko Wojciech

    2017-06-01

    Full Text Available In the paper a variant of cyclic production with setups and two-machine cell is considered. One of the stages of the problem solving consists of assigning each operation to the machine on which it will be carried out. The total number of such assignments is exponential. We propose a polynomial time algorithm finding the optimal operations to machines assignment.

  9. Application of meshless EFG method in fluid flow problems

    Indian Academy of Sciences (India)

    The Lagrange multiplier technique has been used to enforce the essential boundary conditions. A new exponential weight function has been proposed. The results are obtained for a two-dimensional model problem using different EFG weight functions and compared with the results of finite element and exact methods.

  10. Multiphase flow problems on thermofluid safety for fusion reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    2003-01-01

    As the thermofluid safety study for the International Thermonuclear Experimental Reactor (ITER), thermal-hydraulic characteristics of Tokamak fusion reactors under transient events were investigated experimentally and analyzed numerically. As severe transient events an ingress-of-coolant event (ICE) and a loss-of-vacuum event (LOVA) were considered. An integrated ICE test facility was constructed to demonstrate that the ITER safety design approach and parameters are adequate. Water-vapor two-phase flow behavior and performance of the ITER pressure suppression system during the ICE were clarified by the integrated ICE experiments. The TRAC was modified to specify the two-phase flow behavior under the ICE. The ICE experimental results were verified using the modified TRAC code. On the other hand, activated dust mobilization and air ingress characteristics in the ITER vacuum vessel during the LOVA were analyzed using a newly developed analysis code. Some physical models on the motion of dust were considered. The rate of dust released from the vacuum vessel through breaches to the outside was characterized quantitatively. The predicted average pressures in the vacuum vessel during the LOVA were in good agreement with the experimental results. Moreover, direct-contact condensation characteristics between water and vapor inside the ITER suppression tank were observed visually and simulated by the direct two-phase flow analysis. Furthermore, chemical reaction characteristics between vapor and ITER plasma-facing component materials were predicted numerically in order to obtain qualitative estimation on generation of inflammable gases such as hydrogen and methane. The experimental and numerical results of the present studies were reflected in the ITER thermofluid safety design. (author)

  11. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  12. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  13. Design solutions to interface flow problems. Figures - Tables - Appendices

    International Nuclear Information System (INIS)

    1986-01-01

    All published proposals for the deep level burial of radioactive waste recognise that the access shafts, tunnels and boreholes must be sealed, and that the sealing of these openings plays an integral role in the overall isolation of the waste. Previous studies have identified the interface between the host ground formation and the various sealing materials as potential defects in the overall quality of the waste isolation. The significance of groundwater flow at and near the interface has been assessed for representative conditions in generic repository materials. A range of design options to minimise the significance of flow in the interface zone have been proposed, and the most practical of these options have been selected for quantitative analysis. It has been found that isolated high impermability collars are of limited value unless a highly effective method of minimising ground disturbance during excavation can be developed. It has also been found that control of radionuclide migration by sorptive processes provides an attractive option. The effect of various geometrical arrangements of sorptive materials has been investigated. Consideration has also been given to the particular conditions in the near field, to the behaviour of weak plastic clay host formations and to the mechanical interaction between the backfill material and the host formation

  14. HYDRAFLOW : a novel approach in addressing flow assurance problems

    Energy Technology Data Exchange (ETDEWEB)

    Azarinezhad, R.; Chapoy, A.; Anderson, R.; Tohidi, B. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. for Petroleum Engineering, Centre for Gas hydrate Research

    2008-07-01

    This paper presented a new method to prevent hydrate plugs which are particularly problematic for offshore production and flow lines. The current methods of avoiding hydrate blockages are based on preventing solid formation by injecting thermodynamic or kinetic inhibitors outside the hydrate stability zone. However, these techniques are neither economical nor practical. The newly patented HYDRAFLOW cold flow assurance technology is based on allowing hydrates to form, but preventing their agglomeration and pipeline blockage. It is based on the concept of converting most or all of the gas phase into hydrates in the presence of excess water, and then transferring them in the form of hydrate slurry in the pipeline. In HYDRAFLOW, anti-agglomerants prevent hydrate crystals from agglomerating, thus eliminating the need for expensive thermal or chemical inhibition strategies. The technology involves a loop concept whereby the liquid phase plays a role of carrier fluid, collecting produced fluids from various wells and delivering them to the production unit prior to being recycled. This study addressed the issue of recycling the anti-agglomerants in the context of the loop concept. The distribution of anti-agglomerant components between different phases were measured. The performance of the residual anti-agglomerants in the free water phase and of its components absorbed in the oil or hydrate phase were also evaluated. 9 refs., 4 tabs., 7 figs.

  15. Numerical analysis of Sakiadis flow problem considering Maxwell nanofluid

    Directory of Open Access Journals (Sweden)

    Mustafa Meraj

    2017-01-01

    Full Text Available This article investigates the flow of Maxwell nanofluid over a moving plate in a calm fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. Revised model for passive control of nanoparticle volume fraction at the plate is used in this study. The formulated differential system is solved numerically by employing shooting approach together with fourth-fifth-order-Runge-Kutta integration procedure and Newton’s method. The solutions are greatly influenced with the variation of embedded parameters which include the local Deborah number, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number, and the Schmidt number. We found that the variation in velocity distribution with an increase in local Deborah number is non-monotonic. Moreover, the reduced Nusselt number has a linear and direct relationship with the local Deborah number.

  16. Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem

    National Research Council Canada - National Science Library

    Royset, Johannes O; Wood, R. K

    2006-01-01

    ...." In this problem, an "interdictor" seeks to interdict (destroy) a set of arcs in a capacitated network that are Pareto-optimal with respect to two objectives, minimizing total interdiction cost and minimizing maximum flow...

  17. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)

    2007-10-15

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.

  18. A route-based decomposition for the Multi-Commodity k-splittable Maximum Flow Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    2012-01-01

    The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a capacitated graph such that each commodity uses at most k paths and such that the total amount of routedflow is maximized. This paper proposes a branch-and-price algorithm based on a route-based Dantzig-Wolfe decomposition...

  19. Computation of Lifting Wing-Flap Configurations

    Science.gov (United States)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  20. On the Eikonal equation in the pedestrian flow problem

    Science.gov (United States)

    Felcman, J.; Kubera, P.

    2017-07-01

    We consider the Pedestrian Flow Equations (PFEs) as the coupled system formed by the Eikonal equation and the first order hyperbolic system with the source term. The hyperbolic system consists of the continuity equation and momentum equation of fluid dynamics. Specifying the social and pressure forces in the momentum equation we come to the assumption that each pedestrian is trying to move in a desired direction (e.g. to the exit in the panic situation) with a desired velocity, where his velocity and the direction of movement depend on the density of pedestrians in his neighborhood. In [1] we used the model, where the desired direction of movement is given by the solution of the Eikonal equation (more precisely by the gradient of the solution). Here we avoid the solution of the Eikonal equation, which is the novelty of the paper. Based on the fact that the solution of the Eikonal equation has the meaning of the shortest time to reach the exit, we define explicitly such a function in the framework of the Dijkstra's algorithm for the shortest path in the graph. This is done at the discrete level of the solution. As the graph we use the underlying triangulation, where the norm of each edge is density depending and has the dimension of the time. The numerical examples of the solution of the PFEs with and without the solution of the Eikonal equation are presented.

  1. From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems

    Science.gov (United States)

    Gabbud, C.; Lane, S. N.

    2017-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced

  2. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  3. Wing kinematics and flexibility for optimal manoeuvring and escape

    Science.gov (United States)

    Wong, Jaime Gustav

    Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.

  4. Preconditioners for regularized saddle point problems with an application for heterogeneous Darcy flow problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Byczanski, Petr; Karátson, J.; Ahmad, B.

    2015-01-01

    Roč. 280, č. 280 (2015), s. 141-157 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : preconditioners * heterogeneous coefficients * regularized saddle point Inner–outer iterations * Darcy flow Subject RIV: BA - General Mathematics Impact factor: 1.328, year: 2015 http://www.sciencedirect.com/science/article/pii/S0377042714005238

  5. Ecological effects of Arges River hydroelectric systems. The minimum flow problem

    International Nuclear Information System (INIS)

    Diaconu, Sergiu

    1997-01-01

    The paper presents general observations of the ecological status of riverside areas, on Arges River between Capataneni and Bascov villages. These are affected by the presence of an important hydroelectric power system. The main problem generating negative impact on the environment is non-observance of Waters' Law no.107/1996 with reference to minimum flow. The minimum flow is defined as the flow through the cross section of a watercourse which ensures the living conditions for the existent aquatic ecosystems. It should be taken into account in order to protect the aquatic ecosystems. A methodology regarding the determination of minimum flow is proposed. (author)

  6. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  7. A polynomial time algorithm for solving the maximum flow problem in directed networks

    International Nuclear Information System (INIS)

    Tlas, M.

    2015-01-01

    An efficient polynomial time algorithm for solving maximum flow problems has been proposed in this paper. The algorithm is basically based on the binary representation of capacities; it solves the maximum flow problem as a sequence of O(m) shortest path problems on residual networks with nodes and m arcs. It runs in O(m 2 r) time, where is the smallest integer greater than or equal to log B , and B is the largest arc capacity of the network. A numerical example has been illustrated using this proposed algorithm.(author)

  8. Heuristics methods for the flow shop scheduling problem with separated setup times

    Directory of Open Access Journals (Sweden)

    Marcelo Seido Nagano

    2012-06-01

    Full Text Available This paper deals with the permutation flow shop scheduling problem with separated machine setup times. As a result of an investigation on the problem characteristics, four heuristics methods are proposed with procedures of the construction sequencing solution by an analogy with the asymmetric traveling salesman problem with the objective of minimizing makespan. Experimental results show that one of the new heuristics methods proposed provide high quality solutions in comparisons with the evaluated methods considered in the literature.

  9. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  10. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  11. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    Science.gov (United States)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  12. Solving implicit multi-mesh flow and conjugate heat transfer problems with RELAP-7

    International Nuclear Information System (INIS)

    Zou, L.; Peterson, J.; Zhao, H.; Zhang, H.; Andrs, D.; Martineau, R.

    2013-01-01

    The fully implicit simulation capability of RELAP-7 to solve multi-mesh flow and conjugate heat transfer problems for reactor system safety analysis is presented. Compared to general single-mesh simulations, the reactor system safety analysis-type of code has unique challenges due to its highly simplified, interconnected, one-dimensional, and zero-dimensional flow network describing multiple physics with significantly different time and length scales. To use the Jacobian-free Newton Krylov-type of solver, preconditioning is generally required for the Krylov method. The uniqueness of the reactor safety analysis-type of code in treating the interconnected flow network and conjugate heat transfer also introduces challenges in providing preconditioning matrix. Typical flow and conjugate heat transfer problems involved in reactor safety analysis using RELAP-7, as well as the special treatment on the preconditioning matrix are presented in detail. (authors)

  13. An Exact Solution Approach for the Maximum Multicommodity K-splittable Flow Problem

    DEFF Research Database (Denmark)

    Gamst, Mette; Petersen, Bjørn

    2009-01-01

    This talk concerns the NP-hard Maximum Multicommodity k-splittable Flow Problem (MMCkFP) in which each commodity may use at most k paths between its origin and its destination. A new branch-and-cut-and-price algorithm is presented. The master problem is a two-index formulation of the MMCk......FP and the pricing problem is the shortest path problem with forbidden paths. A new branching strategy forcing and forbidding the use of certain paths is developed. The new branch-and-cut-and-price algorithm is computationally evaluated and compared to results from the literature. The new algorithm shows very...

  14. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  15. A decomposition based on path sets for the Multi-Commodity k-splittable Maximum Flow Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a capacitated graph such that each commodity uses at most k paths and such that the total amount of routed flow is maximized. The problem appears in telecommunications, specifically when considering Multi-Protocol Label...

  16. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  17. Anti-Corruption Measures: Persistent Problems Exist in Monitoring Bulk Cash Flows at Kabul International Airport

    Science.gov (United States)

    2012-12-11

    SIGAR SP-13-1 Anti- Corruption / Currency Movement at KBL Special Inspector General for Afghanistan Reconstruction SIGAR ANTI... CORRUPTION MEASURES: PERSISTENT PROBLEMS EXIST IN MONITORING BULK CASH FLOWS AT KABUL INTERNATIONAL AIRPORT This product was completed under SIGAR’s...REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Anti- Corruption Measures: Persistent Problems Exist in Monitoring Bulk

  18. A Special Class of Univalent Functions in Hele-Shaw Flow Problems

    Directory of Open Access Journals (Sweden)

    Paula Curt

    2011-01-01

    Full Text Available We study the time evolution of the free boundary of a viscous fluid for planar flows in Hele-Shaw cells under injection. Applying methods from the theory of univalent functions, we prove the invariance in time of Φ-likeness property (a geometric property which includes starlikeness and spiral-likeness for two basic cases: the inner problem and the outer problem. We study both zero and nonzero surface tension models. Certain particular cases are also presented.

  19. Parallel patterns determination in solving cyclic flow shop problem with setups

    Directory of Open Access Journals (Sweden)

    Bożejko Wojciech

    2017-06-01

    Full Text Available The subject of this work is the new idea of blocks for the cyclic flow shop problem with setup times, using multiple patterns with different sizes determined for each machine constituting optimal schedule of cities for the traveling salesman problem (TSP. We propose to take advantage of the Intel Xeon Phi parallel computing environment during so-called ’blocks’ determination basing on patterns, in effect significantly improving the quality of obtained results.

  20. High order methods for incompressible fluid flow: Application to moving boundary problems

    Energy Technology Data Exchange (ETDEWEB)

    Bjoentegaard, Tormod

    2008-04-15

    Fluid flows with moving boundaries are encountered in a large number of real life situations, with two such types being fluid-structure interaction and free-surface flows. Fluid-structure phenomena are for instance apparent in many hydrodynamic applications; wave effects on offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dynamic response. Free-surface flows can be considered as a special case of a fluid-fluid interaction where one of the fluids are practically inviscid, such as air. This type of flows arise in many disciplines such as marine hydrodynamics, chemical engineering, material processing, and geophysics. The driving forces for free-surface flows may be of large scale such as gravity or inertial forces, or forces due to surface tension which operate on a much smaller scale. Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and droplets, and the evolution of capillary waves. In this work we consider incompressible fluid flow, which are governed by the incompressible Navier-Stokes equations. There are several challenges when simulating moving boundary problems numerically, and these include - Spatial discretization - Temporal discretization - Imposition of boundary conditions - Solution strategy for the linear equations. These are some of the issues which will be addressed in this introduction. We will first formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the weak formulation of the problem. Next, we discuss the spatial and temporal discretization before we move to the imposition of surface tension boundary conditions. In the final section we discuss the solution of the resulting linear system of equations. (Author). refs., figs., tabs

  1. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  2. Robust numerical methods for boundary-layer equations for a model problem of flow over a symmetric curved surface

    NARCIS (Netherlands)

    A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)

    2007-01-01

    textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer

  3. Experimental Investigation of Pitch Control Enhancement to the Flapping Wing Micro Air Vehicle

    National Research Council Canada - National Science Library

    Kian, Chin C

    2006-01-01

    .... The MAV without the main fixed-wing is placed in a laminar flow field within a low speed wind tunnel with the wake after the flapping wings characterized with a constant temperature anemometer...

  4. Some new remarks on MHD Jeffery-Hamel fluid flow problem

    Science.gov (United States)

    Ene, Remus-Daniel; Pop, Camelia

    2017-12-01

    A Hamilton-Poisson realization of the MHD Jeffery-Hamel fluid flow problem is proposed. Tthe nonlinear stability of the equilibrium states is discussed. A comparison between the analytic solutions obtained using the OHAM method and the exact solutions provided by the Hamilton-Poisson realization are presented.

  5. Some new remarks on MHD Jeffery-Hamel fluid flow problem

    Directory of Open Access Journals (Sweden)

    Ene Remus-Daniel

    2017-12-01

    Full Text Available A Hamilton-Poisson realization of the MHD Jeffery-Hamel fluid flow problem is proposed. Tthe nonlinear stability of the equilibrium states is discussed. A comparison between the analytic solutions obtained using the OHAM method and the exact solutions provided by the Hamilton-Poisson realization are presented.

  6. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    Science.gov (United States)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  7. A total linearization method for solving viscous free boundary flow problems by the finite element method

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Cuvelier, C.; Segal, A.; van der Zanden, J.

    1988-01-01

    In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of

  8. Stable Galerkin versus equal-order Galerkin least-squares elements for the stokes flow problem

    International Nuclear Information System (INIS)

    Franca, L.P.; Frey, S.L.; Sampaio, R.

    1989-11-01

    Numerical experiments are performed for the stokes flow problem employing a stable Galerkin method and a Galerkin/Least-squares method with equal-order elements. Error estimates for the methods tested herein are reviewed. The numerical results presented attest the good stability properties of all methods examined herein. (A.C.A.S.) [pt

  9. A Minimum-Cost Network-Flow Solution to the Case v Thurstone Scaling Problem.

    Science.gov (United States)

    Lattin, James M.

    1990-01-01

    An approach is presented for determining unidimensional scale estimates that are relatively insensitive to limited inconsistencies in paired comparisons data. The solution procedure--a minimum-cost network-flow problem--is presented in conjunction with a sensitivity diagnostic that assesses the influence of a single pairwise comparison on…

  10. The Cauchy problem for a model of immiscible gas flow with large data

    Energy Technology Data Exchange (ETDEWEB)

    Sande, Hilde

    2008-12-15

    The thesis consists of an introduction and two papers; 1. The solution of the Cauchy problem with large data for a model of a mixture of gases. 2. Front tracking for a model of immiscible gas flow with large data. (AG) refs, figs

  11. A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    2014-01-01

    , a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...

  12. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S.; Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...... of DTM in solving nonlinear problems when a so accurate solution is required.......In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator...

  13. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...... of DTM in solving nonlinear problems when a so accurate solution is required.......In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator...

  14. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  15. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  16. An Analytical Model for Multilayer Well Production Evaluation to Overcome Cross-Flow Problem

    KAUST Repository

    Hakiki, Farizal

    2017-10-17

    One of the major concerns in a multi-layer system is that interlayer cross-flow may occur if reservoir fluids are produced from commingled layers that have unequal initial pressures. Reservoir would commonly have bigger average reservoir pressure (pore fluid pressure) as it goes deeper. The phenomenon is, however, not followed by the reservoir productivity or injectivity. The existence of reservoir with quite low average-pressure and high injectivity would tend experiencing the cross-flow problem. It is a phenomenon of fluid from bottom layer flowing into upper layer. It would strict upper-layer fluid to flow into wellbore. It is as if there is an injection treatment from bottom layer. The study deploys productivity index an approach parameter taking into account of cross-flow problem instead of injectivity index since it is a production well. The analytical study is to model the reservoir multilayer by addressing to avoid cross-flow problem. The analytical model employed hypothetical and real field data to test it. The scope of this study are: (a) Develop mathematical-based solution to determine the production rate from each layer; (b) Assess different scenarios to optimize production rate, those are: pump setting depth and performance of in-situ choke (ISC) installation. The ISC is acting as an inflow control device (ICD) alike that help to reduce cross-flow occurrence. This study employed macro program to write the code and develop the interface. Fast iterative procedure happens on solving the analytical model. Comparison results recognized that the mathematical-based solution shows a good agreement with the commercial software derived results.

  17. A general aerodynamic approach to the problem of decaying or growing vibrations of thin, flexible wings with supersonic leading and trailing edges and no side edges

    Science.gov (United States)

    Warner, R. W.

    1975-01-01

    Indicial aerodynamic influence coefficients were evaluated from potential theory for a thin, flexible wing with supersonic leading and trailing edges only. The analysis is based on the use of small surface areas in which the downwash is assumed uniform. Within this limitation, the results are exact except for the restriction of linearized theory. The areas are not restricted either to square boxes or Mach boxes. A given area may be any rectangle or square which may or may not be cut by the Mach forecone, and any area can be used anywhere in the forecone without loss of accuracy.

  18. MULTICRITERIA HYBRID FLOW SHOP SCHEDULING PROBLEM: LITERATURE REVIEW, ANALYSIS, AND FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcia de Fatima Morais

    2014-12-01

    Full Text Available This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future research on this topic, including the following: (i use uniform and dedicated parallel machines, (ii use exact and metaheuristics approaches, (iv develop lower and uppers bounds, relations of dominance and different search strategies to improve the computational time of the exact methods,  (v develop  other types of metaheuristic, (vi work with anticipatory setups, and (vii add constraints faced by the production systems itself.

  19. A Riemann-Hilbert problem for the shape of a body dissolving in flow

    Science.gov (United States)

    Moore, Nick; Huang, Jinzi Mac; Ristroph, Leif; Applied Math Lab, Courant Institute Team

    2014-11-01

    As is familiar to anyone who has stirred sugar into coffee, fluid flow can enhance the dissolution of solid material. This effect plays an important role in contexts as varied as landscape formation and drug delivery within the body, but such processes are not well understood due to the interaction between evolving surfaces and flow. By performing experiments with hard-candy bodies dissolving in fast flowing water, we find that different initial geometries converge to the same final shape as they vanish. By modeling both the separated flow around the body and the molecular diffusion of material within the boundary layer, we obtain a Riemann-Hilbert problem for the terminal shape. The solution predicts a front surface of nearly constant curvature, in agreement with experimental measurements. Once formed, this geometry dissolves self-similarly in time and vanishes with a power-law predicted by the model.

  20. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper

    International Nuclear Information System (INIS)

    Sidorenkov, S.I.; Hua, T.Q.; Araseki, Hideo

    1994-07-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared

  1. Effects of wing/elevon gap sealing flapper doors on orbiter elevon effectiveness of model 16-0 in the NAAL 7.75 by 11 foot continuous flow wind tunnel (OA119A)

    Science.gov (United States)

    Mennell, R.

    1974-01-01

    Space shuttle orbiter elevon effectiveness was measured with the 6 inch elevon/elevon and elevon/fuselage gaps and various configurations of wing/elevon upper hingeline gap sealing flapper doors. The elevon configuration parametric variations consisted of sealing the lower hingeline to prevent flow-through and testing a long chord flapper door, a short chord flapper door, no flapper door (elevon/wing gap upper hingeline completely open), and a completely sealed elevon at elevon deflections from +20 deg to -40 deg. Preliminary data analysis indicates loss of elevon effectiveness at deflections more negative than -20 deg, and little or no effect of flapper door configuration on elevon effectiveness. Flow visualization photographs taken at alpha = 15 deg for two flapper door configurations substantiated the force data results. Aerodynamic force and moment data were measured in the body axis by a 2.5 inch task type internal strain gage balance. The model was sting supported through the base region with a nominal angle of attack range of -10 deg less than or equal to alpha less than or equal to 24 deg at a model angle of sideslip of Beta equal to 0 deg.

  2. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    International Nuclear Information System (INIS)

    BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.

    1999-01-01

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance

  3. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  4. The TensorFlow Partitioning and Scheduling Problem: It's the Critical Path!

    OpenAIRE

    Mayer, Ruben; Mayer, Christian; Laich, Larissa

    2017-01-01

    State-of-the-art data flow systems such as TensorFlow impose iterative calculations on large graphs that need to be partitioned on heterogeneous devices such as CPUs, GPUs, and TPUs. However, partitioning can not be viewed in isolation. Each device has to select the next graph vertex to be executed, i.e., perform local scheduling decisions. Both problems, partitioning and scheduling, are NP-complete by themselves but have to be solved in combination in order to minimize overall execution time...

  5. Hypersonic boundary layer in the vicinity of a point of inflection of leading edge on a flat wing in the regime of strong viscous interaction

    Science.gov (United States)

    Dudin, G. N.; Ledovskiy, A. V.

    2013-06-01

    The flow in a spatial hypersonic laminar boundary layer on a planar wing with a point of inflection in the leading edge is considered in the regime of strong viscous-inviscid interaction. The boundary problems are formulated for two cases: self-similar flow near the point of inflection of the leading edge and full three-dimensional (3D) boundary layer on a wing with variable sweep angle. The numerical solution is obtained using the finite-difference method. The results of parametric calculations of influence of a wing shape and the temperature factor on flow characteristics in the boundary layer are presented. The possibility of formation of local regions with high shear stress and heat flux is shown.

  6. A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems

    Directory of Open Access Journals (Sweden)

    Cengiz Kahraman

    2009-12-01

    Full Text Available In this paper a new artificial immune system (AIS algorithm is proposed to solve multi objective fuzzy flow shop scheduling problems. A new mutation operator is also described for this AIS. Fuzzy sets are used to model processing times and due dates. The objectives are to minimize the average tardiness and the number of tardy jobs. The developed new AIS algorithm is tested on real world data collected at an engine cylinder liner manufacturing process. The feasibility and effectiveness of the proposed AIS is demonstrated by comparing it with genetic algorithms. Computational results demonstrate that the proposed AIS algorithm is more effective meta-heuristic for multi objective flow shop scheduling problems with fuzzy processing time and due date.

  7. Scheduling stochastic two-machine flow shop problems to minimize expected makespan

    Directory of Open Access Journals (Sweden)

    Mehdi Heydari

    2013-07-01

    Full Text Available During the past few years, despite tremendous contribution on deterministic flow shop problem, there are only limited number of works dedicated on stochastic cases. This paper examines stochastic scheduling problems in two-machine flow shop environment for expected makespan minimization where processing times of jobs are normally distributed. Since jobs have stochastic processing times, to minimize the expected makespan, the expected sum of the second machine’s free times is minimized. In other words, by minimization waiting times for the second machine, it is possible to reach the minimum of the objective function. A mathematical method is proposed which utilizes the properties of the normal distributions. Furthermore, this method can be used as a heuristic method for other distributions, as long as the means and variances are available. The performance of the proposed method is explored using some numerical examples.

  8. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  9. A service flow model for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Plum, Christian Edinger Munk; Pisinger, David; Sigurd, Mikkel M.

    2014-01-01

    Global liner shipping is a competitive industry, requiring liner carriers to carefully deploy their vessels efficiently to construct a cost competitive network. This paper presents a novel compact formulation of the liner shipping network design problem (LSNDP) based on service flows....... The model ensures strictly weekly frequencies of services, ensures that port-vessel draft capabilities are not violated, respects vessel capacities and the number of vessels available. The profit of the generated network is maximized, i.e. the revenue of flowed cargo subtracted operational costs...... of the network and a penalty for not flowed cargo. The model can be used to design liner shipping networks to utilize a container carrier’s assets efficiently and to investigate possible scenarios of changed market conditions. The model is solved as a Mixed Integer Program. Results are presented for the two...

  10. Numerical approximations of a norm-preserving gradient flow and applications to an optimal partition problem

    Science.gov (United States)

    Du, Qiang; Lin, Fanghua

    2009-01-01

    We present and analyse numerical approximations of a norm-preserving gradient flow and consider applications to an optimal eigenvalue partition problem. We consider various discretizations and demonstrate that many of the properties shared by the continuous counterpart can be preserved at the discrete level. The numerical algorithms are then used to study the nonlinear and non-local interfacial dynamics associated with the optimal partition. This paper is published as part of a collection in honour of Todd Dupont's 65th birthday.

  11. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    OpenAIRE

    Nawalany Marek; Sinicyn Grzegorz

    2015-01-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approach- es. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system ana...

  12. Solving University Course Timetabling Problems by a Novel Genetic Algorithm Based on Flow

    Science.gov (United States)

    Yue, Zhenhua; Li, Shanqiang; Xiao, Long

    Since the University Course Timetabling Problem (UCTP) is a typical sort of combinatorial issues, many conventional methods turn out to be unavailable when confronted with this complex problem where lots of constraints need to be satisfied especially with the class-flow between floors added. Considering the supreme density of students between classes, this paper proposes a novel algorithm integrating Simulated Annealing (SA) into the Genetic Algorithm (GA) for solving the UCTP with respect to the class-flow where SA is incorporated into the competition and selection strategy of GA and concerning the class-flow caused by the assigned timetable, a modified fitness function is presented that determines the survival of generations. Moreover, via the exchange of lecturing classrooms the timetable with minimum class-flow is eventually derived with the values of defined fitness function. Finally, in terms of the definitions above, a simulation of virtual situation is implemented and the experimental results indicate that the proposed model of classroom arrangement in the paper maintains a high efficiency.

  13. Managing the Budget: Stock-Flow Reasoning and the CO2 Accumulation Problem.

    Science.gov (United States)

    Newell, Ben R; Kary, Arthur; Moore, Chris; Gonzalez, Cleotilde

    2016-01-01

    The majority of people show persistent poor performance in reasoning about "stock-flow problems" in the laboratory. An important example is the failure to understand the relationship between the "stock" of CO2 in the atmosphere, the "inflow" via anthropogenic CO2 emissions, and the "outflow" via natural CO2 absorption. This study addresses potential causes of reasoning failures in the CO2 accumulation problem and reports two experiments involving a simple re-framing of the task as managing an analogous financial (rather than CO2 ) budget. In Experiment 1 a financial version of the task that required participants to think in terms of controlling debt demonstrated significant improvements compared to a standard CO2 accumulation problem. Experiment 2, in which participants were invited to think about managing savings, suggested that this improvement was fortuitous and coincidental rather than due to a fundamental change in understanding the stock-flow relationships. The role of graphical information in aiding or abetting stock-flow reasoning was also explored in both experiments, with the results suggesting that graphs do not always assist understanding. The potential for leveraging the kind of reasoning exhibited in such tasks in an effort to change people's willingness to reduce CO2 emissions is briefly discussed. Copyright © 2015 Cognitive Science Society, Inc.

  14. A matching problem revisited for stability analysis of resistive wall modes in flowing plasmas

    International Nuclear Information System (INIS)

    Shiraishi, J.; Tokuda, S.; Aiba, N.

    2010-01-01

    The classical matching problem for magnetohydrodynamic stability analysis is revisited to study effects of the plasma flow on the resistive wall modes (RWMs). The Newcomb equation, which describes the marginal states and governs the regions except for the resonant surface, is generalized to analyze the stability of flowing plasmas. When there exists no flow, the singular point of the Newcomb equation and the resonant surface degenerate into the rational surface. The location of the rational surface is prescribed by the equilibrium, hence the inner layer, which must contain the resonant surface, can be set a priori. When the flow exists, the singular point of the Newcomb equation splits in two due to the Doppler shift. Additionally, the resonant surface deviates from the singular points and the rational surface if the resonant eigenmode has a real frequency. Since the location of the resonant surface depends on the unknown real frequency, it can be determined only a posteriori. Hence the classical asymptotic matching method cannot be applied. This paper shows that a new matching method that generalizes the asymptotic one to use the inner layer with finite width works well for the stability analysis of flowing plasmas. If the real frequency is limited in a certain range such as the RWM case, the resonance occurs somewhere in the finite region around the singular points, hence the inner layer with finite width can capture the resonant surface.

  15. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  16. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  17. Effects of Canard on the Flowfield over a Wing

    Science.gov (United States)

    Nayebzadeh, Arash

    2015-11-01

    Surface and flowfield pressure measurements have been done over delta wing/canard configuration in a variety of canard vertical and horizontal locations and angles of attack. The experimental model consisted of wing, canard and a body to accommodate pressure tubing and canard rotation mechanism. All the tests have been performed at subsonic velocities and the effect of canard were analyzed through comparison between surface and flowfield pressure distributions. It was found that vortex flow pattern over the wing is dominated mainly by canard vertical position and in some cases, by merging of canard and wing vortices. In addition, the pressure loss induced by canard vortex on the wing surface moves the wing vortex toward the leading edge. In the mid canard configuration, canard and wing vortices merge at x/c greater than 0.5 and as a result of this phenomenon, abrupt pressure loss induces more stable vortex flow over the wing. It is also shown that canard plays a vital role in vortex break down over the wing.

  18. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  19. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    Science.gov (United States)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  20. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    Science.gov (United States)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  1. A Data Flow Model to Solve the Data Distribution Changing Problem in Machine Learning

    Directory of Open Access Journals (Sweden)

    Shang Bo-Wen

    2016-01-01

    Full Text Available Continuous prediction is widely used in broad communities spreading from social to business and the machine learning method is an important method in this problem.When we use the machine learning method to predict a problem. We use the data in the training set to fit the model and estimate the distribution of data in the test set.But when we use machine learning to do the continuous prediction we get new data as time goes by and use the data to predict the future data, there may be a problem. As the size of the data set increasing over time, the distribution changes and there will be many garbage data in the training set.We should remove the garbage data as it reduces the accuracy of the prediction. The main contribution of this article is using the new data to detect the timeliness of historical data and remove the garbage data.We build a data flow model to describe how the data flow among the test set, training set, validation set and the garbage set and improve the accuracy of prediction. As the change of the data set, the best machine learning model will change.We design a hybrid voting algorithm to fit the data set better that uses seven machine learning models predicting the same problem and uses the validation set putting different weights on the learning models to give better model more weights. Experimental results show that, when the distribution of the data set changes over time, our time flow model can remove most of the garbage data and get a better result than the traditional method that adds all the data to the data set; our hybrid voting algorithm has a better prediction result than the average accuracy of other predict models

  2. Transonic conical flow

    Science.gov (United States)

    Agopian, K. G.

    1974-01-01

    The problem of inviscid, steady transonic conical flow, formulated in terms of the small disturbance theory, is studied. The small disturbance equation and similarity rules are presented, and a boundary value problem is formulated for the case of a supersonic freestream Mach number. The equation for the perturbation potential is solved numerically using an elliptic finite difference system. The difference equations are solved with a point relaxation algorithm that is also capable of capturing the shock wave during the iteration procedure by using the boundary conditions at the shock. Numerical calculations, for shock location, pressure distribution and drag coefficient, are presented for a family of nonlifting conical wings. The theory of slender wings is also presented and analytical results for pressure and drag coefficients are obtained.

  3. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  4. An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2016-09-01

    Full Text Available -surface flow problem with an advancing wave front and a solid-body contact problem. 2 Partitioned FSI Fluid-structure interactions can be defined as a two-field coupled problem, involving a fluid domain Ωf and a solid domain Ωs sharing a common interface ΓFSI...

  5. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  6. Flow shop scheduling problem and solution in cooperative robotics - case-study: One cobot in cooperation with one worker

    OpenAIRE

    Sadik, A.R.; Urban, B.

    2017-01-01

    This research combines between two different manufacturing concepts. On the one hand, flow shop scheduling is a well-known problem in production systems. The problem appears when a group of jobs shares the same processing sequence on two or more machines sequentially. Flow shop scheduling tries to find the appropriate solution to optimize the sequence order of this group of jobs over the existing machines. The goal of flow shop scheduling is to obtain the continuity of the flow of the jobs ov...

  7. A dual exterior point simplex type algorithm for the minimum cost network flow problem

    Directory of Open Access Journals (Sweden)

    Geranis George

    2009-01-01

    Full Text Available A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA, this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution outside the dual feasible area (exterior point - dual infeasible tree.

  8. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    Science.gov (United States)

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-01-26

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45o. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3x103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5~10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings. © 2018 IOP Publishing Ltd.

  9. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.

    2013-01-16

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.

  10. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows

    DEFF Research Database (Denmark)

    Hays, Graeme C.; Christensen, Asbjørn; Fossette, Sabrina

    2014-01-01

    to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine......The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the ‘Zermelo navigation problem’. However, the ability of migrating animals...... turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do...

  11. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  12. The time constrained multi-commodity network flow problem and its application to liner shipping network design

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Pisinger, David; Røpke, Stefan

    2015-01-01

    The multi-commodity network flow problem is an important sub-problem in several heuristics and exact methods for designing route networks for container ships. The sub-problem decides how cargoes should be transported through the network provided by shipping routes. This paper studies the multi......-commodity network flow problem with transit time constraints which puts limits on the duration of the transit of the commodities through the network. It is shown that for the particular application it does not increase the solution time to include the transit time constraints and that including the transit time...

  13. A Priority Rule-Based Heuristic for Resource Investment Project Scheduling Problem with Discounted Cash Flows and Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Amir Abbas Najafi

    2009-01-01

    Full Text Available Resource investment problem with discounted cash flows (RIPDCFs is a class of project scheduling problem. In RIPDCF, the availability levels of the resources are considered decision variables, and the goal is to find a schedule such that the net present value of the project cash flows optimizes. In this paper, we consider a new RIPDCF in which tardiness of project is permitted with defined penalty. We mathematically formulated the problem and developed a heuristic method to solve it. The results of the performance analysis of the proposed method show an effective solution approach to the problem.

  14. A State-of-the-Art Review of the Sensor Location, Flow Observability, Estimation, and Prediction Problems in Traffic Networks

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2015-01-01

    Full Text Available A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.

  15. MODIFIED STRIP ANALYSIS METHOD FOR PREDICTING WING FLUTTER AT SUBSONIC TO HYPERSONIC SPEEDS

    Science.gov (United States)

    Yates, E. C.

    1994-01-01

    A modified strip analysis has been developed for rapidly predicting flutter of finite-span, swept or unswept wings at subsonic to hypersonic speeds. The method employs distributions of aerodynamic parameters which may be evaluated from any suitable linear or nonlinear steady-flow theory or from measured steady-flow load distributions for the underformed wing. The method has been shown to give good flutter results for a broad range of wings at Mach number from 0 to as high as 15.3. The principles of the modified strip analysis may be summarized as follows: Variable section lift-curve slope and aerodynamic center are substituted respectively, for the two-dimensional incompressible-flow values of 2 pi and quarter chord which were employed by Barmby, Cunningham, and Garrick. Spanwise distributions of these steady-flow section aerodynamic parameters, which are pertinent to the desired planform and Mach number, are used. Appropriate values of Mach number-dependent circulation functions are obtained from two-dimensional unsteady compressible-flow theory. Use of the modified strip analysis avoids the necessity of reevaluating a number of loading parameters for each value of reduced frequency, since only the modified circulation functions, and of course the reduced frequency itself, vary with frequency. It is therefore practical to include in the digital computing program a very brief logical subroutine, which automatically selects reduced-frequency values that converge on a flutter solution. The problem of guessing suitable reduced-frequency values is thus eliminated, so that a large number of flutter points can be completely determined in a single brief run on the computing machine. If necessary, it is also practical to perform the calculations manually. Flutter characteristics have been calculated by the modified strip analysis and compared with results of other calculations and with experiments for Mach numbers up to 15.3 and for wings with sweep angles from 0 degrees

  16. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  17. Aerodynamic Optimization Based on Continuous Adjoint Method for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Zhaoke Xu

    2016-01-01

    Full Text Available Aerodynamic optimization based on continuous adjoint method for a flexible wing is developed using FORTRAN 90 in the present work. Aerostructural analysis is performed on the basis of high-fidelity models with Euler equations on the aerodynamic side and a linear quadrilateral shell element model on the structure side. This shell element can deal with both thin and thick shell problems with intersections, so this shell element is suitable for the wing structural model which consists of two spars, 20 ribs, and skin. The continuous adjoint formulations based on Euler equations and unstructured mesh are derived and used in the work. Sequential quadratic programming method is adopted to search for the optimal solution using the gradients from continuous adjoint method. The flow charts of rigid and flexible optimization are presented and compared. The objective is to minimize drag coefficient meanwhile maintaining lift coefficient for a rigid and flexible wing. A comparison between the results from aerostructural analysis of rigid optimization and flexible optimization is shown here to demonstrate that it is necessary to include the effect of aeroelasticity in the optimization design of a wing.

  18. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  19. A finite-element model for moving contact line problems in immiscible two-phase flow

    Science.gov (United States)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  20. On the 'area to point' flow problem based on constructal theory

    International Nuclear Information System (INIS)

    Wu Wenjun; Chen Lingen; Sun Fengrui

    2007-01-01

    The study of the 'area to point' flow problem, which generates heat uniformly, is conducted based on constructal theory in this paper. Bejan [Bejan A. Constructal-theory network of conducting path for cooling a heat generating volume. Int J Heat Mass Transfer 1997;40(4):799-816] analyzed the problem using an effective thermal conductivity, which simplified the optimization greatly, and deduced an approximate result. Ghodoossi and Egrican [Ghodoossi L, Egrican N. Exact solution for cooling of electronics using constructal theory. J Appl Phys 2003;93(8):4922-9] analyzed the problem without the simplification of an effective conductivity, obtained an exact result, found a great deviation from Bejan's approximate result and stated that the simplification is the cause of the deviation in the approximate solution. It is proved in this paper that the cause of the deviation in the approximate solution is not the reasonable simplification of an effective conductivity but the mistakenly derived effective thermal conductivity. The approximate solution is revised, and the corresponding result, which is consistent with the exact solution, is obtained

  1. Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3

    International Nuclear Information System (INIS)

    Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.

    2014-11-01

    The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems

  2. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  3. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    Science.gov (United States)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  4. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  5. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  6. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    Directory of Open Access Journals (Sweden)

    Meftah S.M.A

    2014-03-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  7. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  8. Criteria for the reliability of numerical approximations to the solution of fluid flow problems

    International Nuclear Information System (INIS)

    Foias, C.

    1986-01-01

    The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs

  9. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    Science.gov (United States)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  10. Variable-density saturated flow with modified Darcy's law: The salt lake problem and circulation

    Science.gov (United States)

    Wooding, Robin A.

    2007-02-01

    For unsteady variable-density seepage flow, alternative solutions are obtained by taking, respectively, the curl and the divergence of a linear form of Darcy's law, and solving each problem directly, using compatible boundary conditions. This gives a vector potential formulation depending upon the horizontal density gradient, and a pressure formulation depending upon the vertical density gradient, resulting in two complementary solutions. Two velocity fields are obtained by taking the curl of the vector potential solution, and by solving Darcy's law using the gradient of the pressure solution, and corresponding vector potentials are obtained, fairly symmetrically, from these velocities. The novelty is that a linear combination of the two solutions can be made by simple addition or subtraction, with independent scalar coefficients, having broader scope than each of the alternative solutions alone. A two-dimensional model, based on convective plumes in a Hele-Shaw experiment with a macroscopic Rayleigh number of 3975, is treated as a benchmark salt lake problem, having a uniform evaporation layer with 1% noise along one-third part of the upper boundary, with appropriate saline recharge. The coefficients are optimized for maximum circulation. This determines the ratio of the pressure-based solution to the vector potential-based solution, modifying the Rayleigh number downward to an effective value of 3455. Numerical streamlines reveal secondary flow typical of Henry circulation, measured by a peak stream function equal to the circulation flux. From finger geometry, there is better agreement between the numerically calculated plumes and the experimental plumes than has been achieved previously.

  11. Operational Impacts of Using Restricted Passenger Flow Assignment in High-Speed Train Stop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Huiling Fu

    2013-01-01

    Full Text Available One key decision basis to the train stop scheduling process is the passenger flow assignment, that is, the estimated passengers’ travel path choices from origins to destinations. Many existing assignment approaches are stochastic in nature, which causes unbalanced problems such as low efficiency in train capacity occupancy or an irrational distribution of transfer passengers among stations. The purpose of this paper is to propose a train stop scheduling approach. It combines a passenger flow assignment procedure that routes passenger travel paths freely within a train network and is particularly capable of incorporating additional restrictions on generating travel paths that better resemble the rail planner’s purpose of utilizing capacity resources by introducing four criteria to define the feasibility of travel path used by a traveler. Our approach also aims at ensuring connectivity and rapidity, the two essential characteristics of train service increasingly required by modern high-speed rails. The effectiveness of our approach is tested using the Chinese high-speed rail network as a real-world example. It works well in finding a train stop schedule of good quality whose operational indicators dominate those of an existing stochastic approach. The paper concludes with a comprehensive operational impact analysis, further demonstrating the value of our proposed approach.

  12. Cooperative Strategies for Maximum-Flow Problem in Uncertain Decentralized Systems Using Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Hadi Heidari Gharehbolagh

    2016-01-01

    Full Text Available This study investigates a multiowner maximum-flow network problem, which suffers from risky events. Uncertain conditions effect on proper estimation and ignoring them may mislead decision makers by overestimation. A key question is how self-governing owners in the network can cooperate with each other to maintain a reliable flow. Hence, the question is answered by providing a mathematical programming model based on applying the triangular reliability function in the decentralized networks. The proposed method concentrates on multiowner networks which suffer from risky time, cost, and capacity parameters for each network’s arcs. Some cooperative game methods such as τ-value, Shapley, and core center are presented to fairly distribute extra profit of cooperation. A numerical example including sensitivity analysis and the results of comparisons are presented. Indeed, the proposed method provides more reality in decision-making for risky systems, hence leading to significant profits in terms of real cost estimation when compared with unforeseen effects.

  13. A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Effective numerical treatment of multicomponent viscous flow problems involving the advection of sharp interfaces between materials of differing physical properties requires correction techniques to prevent spurious diffusion and dispersion. We develop a particular algorithm, based on modern shock-capture techniques, employing a two-step nonlinear method. The first step involves the global application of a high-order upwind scheme to a hyperbolic advection equation used to model the distribution of distinct material components in a flow field. The second step is corrective and involves the application of a global filter designed to remove dispersion errors that result from the advection of discontinuities (e.g., material interfaces) by high-order, minimally dissipative schemes. The filter introduces no additional diffusion error. Nonuniform viscosity across a material interface is allowed for by the implementation of a compositionally weighted-inverse interface viscosity scheme. The combined method approaches the optimal accuracy of modern shock-capture techniques with a minimal increase in computational time and memory. A key advantage of this method is its simplicity to incorporate into preexisting codes be they finite difference, element, or volume of two or three dimensions.

  14. Some free boundary problems in potential flow regime usinga based level set method

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, M.; Bobillo-Ares, N.; Sethian, J.A.

    2008-12-09

    Recent advances in the field of fluid mechanics with moving fronts are linked to the use of Level Set Methods, a versatile mathematical technique to follow free boundaries which undergo topological changes. A challenging class of problems in this context are those related to the solution of a partial differential equation posed on a moving domain, in which the boundary condition for the PDE solver has to be obtained from a partial differential equation defined on the front. This is the case of potential flow models with moving boundaries. Moreover the fluid front will possibly be carrying some material substance which will diffuse in the front and be advected by the front velocity, as for example the use of surfactants to lower surface tension. We present a Level Set based methodology to embed this partial differential equations defined on the front in a complete Eulerian framework, fully avoiding the tracking of fluid particles and its known limitations. To show the advantages of this approach in the field of Fluid Mechanics we present in this work one particular application: the numerical approximation of a potential flow model to simulate the evolution and breaking of a solitary wave propagating over a slopping bottom and compare the level set based algorithm with previous front tracking models.

  15. Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-01-01

    Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.

  16. The study of flow pattern and phase-change problem in die casting process

    Science.gov (United States)

    Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.

    1996-01-01

    The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.

  17. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)

    2006-04-15

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

  18. On the characteristics of the equations of motion for a bubbly flow and the related problem of critical flow

    NARCIS (Netherlands)

    Prosperetti, Andrea; van Wijngaarden, L.

    1976-01-01

    For the study of transients in gas-liquid flows, the equations of the so-called separated flow model are inadequate, because they possess, in the general case where gas and liquid move at different velocities, complex characteristics. This paper is concerned with the equations of motion for bubbly

  19. Comparison of AI techniques to solve combined economic emission dispatch problem with line flow constraints

    International Nuclear Information System (INIS)

    Jacob Raglend, I.; Veeravalli, Sowjanya; Sailaja, Kasanur; Sudheera, B.; Kothari, D.P.

    2010-01-01

    A comparative study has been made on the solutions obtained using combined economic emission dispatch (CEED) problem considering line flow constraints using different intelligent techniques for the regulated power system to ensure a practical, economical and secure generation schedule. The objective of the paper is to minimize the total production cost of the power generation. Economic load dispatch (ELD) and economic emission dispatch (EED) have been applied to obtain optimal fuel cost of generating units. Combined economic emission dispatch (CEED) is obtained by considering both the economic and emission objectives. This bi-objective CEED problem is converted into single objective function using price penalty factor approach. In this paper, intelligent techniques such as genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), differential evolution (DE) are applied to obtain CEED solutions for the IEEE 30-bus system and 15-unit system. This proposed algorithm introduces an efficient CEED approach that obtains the minimum operating cost satisfying unit, emission and network constraints. The proposed algorithm has been tested on two sample systems viz the IEEE 30-bus system and a 15-unit system. The results obtained by the various artificial intelligent techniques are compared with respect to the solution time, total production cost and convergence criteria. The solutions obtained are quite encouraging and useful in the economic emission environment. The algorithm and simulation are carried out using Matlab software. (author)

  20. A velocity tracking approach for the data assimilation problem in blood flow simulations.

    Science.gov (United States)

    Tiago, J; Guerra, T; Sequeira, A

    2017-10-01

    Several advances have been made in data assimilation techniques applied to blood flow modeling. Typically, idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present a general approach, on the basis of a Dirichlet boundary control problem, that may potentially be used in different parts of the arterial system. The relevance of this method appears when computational reconstructions of the 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, because of computational costs. On the basis of taking a fully unknown velocity profile as the control, the approach uses a discretize then optimize methodology to solve the control problem numerically. The methodology is applied to a realistic 3D geometry representing a brain aneurysm. The results show that this data assimilation approach may be preferable to a pressure control strategy and that it can significantly improve the accuracy associated to typical solutions obtained using idealized velocity profiles. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Analytical solution to the circularity problem in the discounted cash flow valuation framework

    Directory of Open Access Journals (Sweden)

    Felipe Mejía-Peláez

    2011-12-01

    Full Text Available In this paper we propose an analytical solution to the circularity problem between value and cost of capital. Our solution is derived starting from a central principle of finance that relates value today to value, cash flow, and the discount rate for next period. We present a general formulation without circularity for the equity value (E, cost of levered equity (Ke, levered firm value (V, and the weighted average cost of capital (WACC. We furthermore compare the results obtained from these formulas with the results of the application of the Adjusted Present Value approach (no circularity and the iterative solution of circularity based upon the iteration feature of a spreadsheet, concluding that all methods yield exactly the same answer. The advantage of this solution is that it avoids problems such as using manual methods (i.e., the popular “Rolling WACC” ignoring the circularity issue, setting a target leverage (usually constant with the inconsistencies that result from it, the wrong use of book values, or attributing the discrepancies in values to rounding errors.

  2. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  3. Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.

  4. The use of wavelet transforms in the solution of two-phase flow problems

    International Nuclear Information System (INIS)

    Moridis, G.J.; Nikolaou, M.; You, Yong

    1994-10-01

    In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts

  5. Hybrid water flow-like algorithm with Tabu search for traveling salesman problem

    Science.gov (United States)

    Bostamam, Jasmin M.; Othman, Zulaiha

    2016-08-01

    This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.

  6. Analysis of the turbulent flow field in a spherically convergent implosion problem

    Science.gov (United States)

    Boureima, Ismael; Ramaprabhu, Praveen; Attal, Nitesh

    2016-11-01

    We describe results from 3D, numerical simulations of a spherically convergent, implosion problem. The problem definition follows, and involves a time-dependent pressure drive that sustains the implosion of an interface in a slow-fast configuration. The simulations are performed within a spherical wedge, where the interface is initialized with multimode perturbations leading to turbulent flow. The initial stages of the implosion are dominated by the Richtymer-Meshkov (RM) instability, while the late stages involve a stagnation phase interspersed with reshocks during which both RM and Rayleigh-Taylor (RT) instabilities are observed. The simulations were performed with the FLASH code, with a mesh resolution corresponding to 512x512 zones in the (θ, ϕ) directions, and proportional gridding in the r-direction. We report on several quantities that could provide insights in to the evaluation of turbulence models including the turbulent kinetic energy, anisotropy tensor, density self-correlation, and atomic mixing among others. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  7. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  8. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  9. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  10. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  11. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  12. A Video-Based Experimental Investigation of Wing Rock

    Science.gov (United States)

    1989-08-01

    maintained a negative damping in roll (Fig. 6b). Ross concluded that wing tanks act like an aerodynamic fence, controlling flow separation over the wing...to Ross that wing rock was initiated by a nonlinear yawing moment due to sideslip, which caused a divergent Dutch roll oscillation to grow into the...20 30 40 50 e) (p (D EG) * Fig. 128 Continued S * 158 (Fig. 128a) and cycle B (Fig. 128b ) both occurred early in the 0 build-up and consisted of

  13. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ * (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  14. Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer

    International Nuclear Information System (INIS)

    Pryor, R.J.; Cline, D.D.

    1992-01-01

    A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented

  15. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    Science.gov (United States)

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  16. An algorithm for solving the time-constrained multicommodity flow problem with applications in liner shipping network design

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Pisinger, David; Røpke, Stefan

    The liner shipping network design problem has proven to be hard to solve. However, well-designed route nets are paramount to liner shipping companies both in terms of competitiveness and environmental impact. Fast evaluations of the multicommodity flow subproblem is one of the bottlenecks when...... determining the optimal routing and fleet deployment in the network design problem. Additionally, most existing models do not consider the level of service. To accommodate that, we present an algorithm for solving the multicommodity flow subproblem with limits on commodity travel time....

  17. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis

    Science.gov (United States)

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi

    2017-08-01

    A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.

  18. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  19. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  1. Traffic Management as a Service: The Traffic Flow Pattern Classification Problem

    Directory of Open Access Journals (Sweden)

    Carlos T. Calafate

    2015-01-01

    Full Text Available Intelligent Transportation System (ITS technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.

  2. ANISOTROPIC THERMAL CONDUCTION AND THE COOLING FLOW PROBLEM IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2009-01-01

    We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydrodynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼200 Myr or shorter-in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to ∼<10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.

  3. Assessment of different models to describe wax precipitation in flow assurance problems

    Energy Technology Data Exchange (ETDEWEB)

    Martos, C.; Coto, B.; Espada, J.J.; Robustillo, M.D. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Environmental Technology; Pena, J.L. [Repsol-YPF, Madrid (Spain). Alfonso Cortina Technology Centre

    2008-07-01

    Paraffinic waxes found in crude oils cause flow assurance problems because these compounds can precipitate when temperature decreases during oil production, transport through pipelines or storage. The key variables involved in the wax precipitation process are the wax appearance temperature (WAT) and the wax precipitation curve (WPC). A good understanding of the liquid-solid equilibrium is required in order to model the precipitation process. However, new experimental data is needed to address this issue, particularly the composition of the raw crude oil, the amount of precipitated waxes against temperature and the nature of such waxes. Most models available in the literature require the knowledge of the n-paraffin distribution of crude oil. This type of determination can be carried out using different chromatographic techniques. In this study, experimental WAT and WPC were determined by means of a recently developed multistage fractional precipitation procedure. The trapped crude oil of the precipitated mixtures at each temperature was determined by the 1H NMR technique to determine the true amount of wax precipitated at each temperature. The n-paraffin distribution for the chosen crude oils was determined by chromatographic techniques. The predictive capabilities of the available models was verified by comparing experimental and predicted results. 3 refs.

  4. A modified teaching–learning based optimization for multi-objective optimal power flow problem

    International Nuclear Information System (INIS)

    Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher

    2014-01-01

    Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques

  5. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  6. Handling the unknown soil hydraulic parameters in data assimilation for unsaturated flow problems

    Science.gov (United States)

    Lange, Natascha; Erdal, Daniel; Neuweiler, Insa

    2017-04-01

    Model predictions of flow in the unsaturated zone require the soil hydraulic parameters. However, these parameters cannot be determined easily in applications, in particular if observations are indirect and cover only a small range of possible states. Correlation of parameters or their correlation in the range of states that are observed is a problem, as different parameter combinations may reproduce approximately the same measured water content. In field campaigns this problem can be helped by adding more measurement devices. Often, observation networks are designed to feed models for long term prediction purposes (i.e. for weather forecasting). A popular way of making predictions with such kind of observations are data assimilation methods, like the ensemble Kalman filter (Evensen, 1994). These methods can be used for parameter estimation if the unknown parameters are included in the state vector and updated along with the model states. Given the difficulties related to estimation of the soil hydraulic parameters in general, it is questionable, though, whether these methods can really be used for parameter estimation under natural conditions. Therefore, we investigate the ability of the ensemble Kalman filter to estimate the soil hydraulic parameters. We use synthetic identical twin-experiments to guarantee full knowledge of the model and the true parameters. We use the van Genuchten model to describe the soil water retention and relative permeability functions. This model is unfortunately prone to the above mentioned pseudo-correlations of parameters. Therefore, we also test the simpler Russo Gardner model, which is less affected by that problem, in our experiments. The total number of unknown parameters is varied by considering different layers of soil. Besides, we study the influence of the parameter updates on the water content predictions. We test different iterative filter approaches and compare different observation strategies for parameter identification

  7. Numerical and Experimental Validation of the Optimization Methodologies for a Wing-Tip Structure Equipped with Conventional and Morphing Ailerons =

    Science.gov (United States)

    Koreanschi, Andreea

    In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during

  8. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  9. Application of linear and spherical flow analysis techniques to field problems--case studies

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhaas, C.A.; delGiuoice, C.; Abbott, W.A.

    1982-09-01

    Most engineers examine well-test data only with techniques developed for flow in a horizontal cylindrical-radial pattern toward the wellbore. Spherical and linear flow have application in many reservoir situations. Spherical flow has been examined extensively by many authors as an intermediate period between two radial-flow periods for wells which have a short completion interval in thick formations. Linear flow situations develop early in the life of wells which have been fracture-treated: their early linear-flow periods are followed by radial flow. Linear flow may develop late in a well test after a period of early radial flow due to certain configurations of reservoir geometry. Techniques for analyzing spherical and linear flow are summarized here. Data plots which should be prepared and diagnostic features for recognizing and interpreting spherical and linear flow are outlined. These techniques are applied to three example cases to illustrate the methods of analysis and the types of information which can be developed from such analyses and cannot be obtained from the standard Horner-plot analysis.

  10. Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow

    Czech Academy of Sciences Publication Activity Database

    Domesová, Simona; Beres, Michal

    2017-01-01

    Roč. 15, č. 2 (2017), s. 258-266 ISSN 1336-1376 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : Bayesian statistics * Cross-Entropy method * Darcy flow * Gaussian random field * inverse problem Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://advances.utc.sk/index.php/AEEE/article/view/2236

  11. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  12. A computational study on the influence of insect wing geometry on bee flight mechanics.

    Science.gov (United States)

    Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid

    2017-12-15

    Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.

  13. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  14. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    Science.gov (United States)

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  15. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    International Nuclear Information System (INIS)

    Chung, T.J.; Karr, G.R.

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows

  17. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  18. Investigation of problems of closing of geophysical cracks in thermoelastic media in the case of flow of fluids with impurities

    Science.gov (United States)

    Martirosyan, A. N.; Davtyan, A. V.; Dinunts, A. S.; Martirosyan, H. A.

    2018-04-01

    The purpose of this article is to investigate a problem of closing cracks by building up a layer of sediments on surfaces of a crack in an infinite thermoelastic medium in the presence of a flow of fluids with impurities. The statement of the problem of closing geophysical cracks in the presence of a fluid flow is presented with regard to the thermoelastic stress and the influence of the impurity deposition in the liquid on the crack surfaces due to thermal diffusion at the fracture closure. The Wiener–Hopf method yields an analytical solution in the special case without friction. Numerical calculations are performed in this case and the dependence of the crack closure time on the coordinate is plotted. A similar spatial problem is also solved. These results generalize the results of previous studies of geophysical cracks and debris in rocks, where the closure of a crack due to temperature effects is studied without taking the elastic stresses into account.

  19. New approach to the solution of large, full matrix equations. [Neumann problem for inviscid incompressble flow past airfoils

    Science.gov (United States)

    Clark, R. W.; James, R. M.

    1981-01-01

    A new approach to the solution of matrix equations resulting from integral equations is presented and applied to the solution of two-dimensional Neumann problems describing the inviscid, incompressible flow past an airfoil. The problem is reformulated in terms of a preselected set of mode functions giving an equivalent matrix equation to be solved for the mode-function expansion coefficients. Because of the inherent smoothness of the original problem, the coefficient problem can be solved approximately without significantly affecting the accuracy of the final solution. Very promising two-dimensional results are obtained and the extension of the method to three-dimensional problems is investigated. On the basis of these results it is shown that the computing time for the matrix solution for a large three-dimensional panel method calculation could be reduced by an order of magnitude compared with that required for a direct solution.

  20. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  1. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  2. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  3. Fundamental experiment on the problem of large, structured rooms with internal two-phase flow

    International Nuclear Information System (INIS)

    Geweke, M.

    1992-01-01

    A loss of coolant accident in a pressurized water reactor results in two phase flow in the upper plenum region. Steam will be generated from the fuel elements and will flow upwards into the upper plenum. Water drops will be entrained and transported by the steam and will be deentrained in the upper plenum. The deentrained water and the upflowing steam can lead to a condition defined as countercurrent flow limitation which tends to restrict the water downflow. The aim of this research project is to investigate the co- and countercurrent flow in the upper plenum region. The influence of the internals, which are installed in scale 1:1 and the outlet flow conditions into the hot leg is investigated. The establishing flow regime depends on the volumetric flow rates of gas and liquid and the area in the upper plenum, which is simulated by the arangement of the internals. An increasing gas flow rate causes flooding in the tie plate. A turbulent froth layer is established above the tie plate. A further increase in the gas flow rate causes flooding in the upper plenum. The experimental results are compared with well-known empirical correlations and with the experimental investigations from the UPTF. A suitable measurement technique is developed to measure the local and time-dependent liquid hold-up, the diameter and the velocity of the drops. (orig.) [de

  4. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  5. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  6. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    DEFF Research Database (Denmark)

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  7. A flow reactor for the flow supercritical water oxidation of wastes to mitigate the reactor corrosion problem

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1994-01-01

    We have designed a flow tube reactor for supercritical water oxidation of wastes that confines the oxidation reaction to the vicinity of the axis of the tube. This prevents high temperatures and reactants as well as reaction products from coming in intimate contact with reactor walls. This implies a lessening of corrosion of the walls of the reactor. We display numerical simulations for a vertical reactor with conservative design parameters that illustrate our concept. We performed our calculations for the destruction of sodium nitrate by ammonium hydroxide In the presence of supercritical water, where the production of sodium hydroxide causes corrosion. We have compared these results with that for a horizontal set-up where the sodium hydroxide created during the reaction ends up on the floor of the tube, implying a higher probability of corrosion

  8. Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.

    Science.gov (United States)

    Hage, W.; Meyer, R.; Bechert, D. W.

    1997-11-01

    In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.

  9. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    Science.gov (United States)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  10. Determination of pressure and load characteristics of flexible revolving wings by means of tomographic PIV

    NARCIS (Netherlands)

    van de Meerendonk, R.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio wings. The pressure field and load characteristics are successfully reconstructed from the phase-locked tomographic measurements in three independently measured volumes along the span of the wing. The

  11. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  12. The use of Trefftz functions for approximation of measurement data in an inverse problem of flow boiling in a minichannel

    Directory of Open Access Journals (Sweden)

    Hozejowski Leszek

    2012-04-01

    Full Text Available The paper is devoted to a computational problem of predicting a local heat transfer coefficient from experimental temperature data. The experimental part refers to boiling flow of a refrigerant in a minichannel. Heat is dissipated from heating alloy to the flowing liquid due to forced convection. The mathematical model of the problem consists of the governing Poisson equation and the proper boundary conditions. For accurate results it is required to smooth the measurements which was obtained by using Trefftz functions. The measurements were approximated with a linear combination of Trefftz functions. Due to the computational procedure in which the measurement errors are known, it was possible to smooth the data and also to reduce the residuals of approximation on the boundaries.

  13. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  14. On the solution of the differential equation occurring in the problem of heat convection in laminar flow through a tube with slip—flow

    Directory of Open Access Journals (Sweden)

    Xanming Wang

    1996-01-01

    Full Text Available A technique is developed for evaluation of eigenvalues in solution of the differential equation d2y/dr2+(1/rdy/dr+λ2(β−r2y=0 which occurs in the problem of heat convection in laminar flow through a circular tube with silp-flow (β>1. A series solution requires the expansions of coeffecients involving extremely large numbers. No work has been reported in the case of β>1, because of its computational complexity in the evaluation of the eigenvalues. In this paper, a matrix was constructed and a computational algorithm was obtained to calculate the first four eigenvalues. Also, an asymptotic formula was developed to generate the full spectrum of eigenvalues. The computational results for various values of β were obtained.

  15. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    OpenAIRE

    di Luca, Matteo; Mintchev, Stefano; Heitz, Grégoire Hilaire Marie; Noca, Flavio; Floreano, Dario

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly...

  16. Solving global problem by considering multitude of local problems: Application to fluid flow in anisotropic porous media using the multipoint flux approximation

    KAUST Repository

    Salama, Amgad

    2014-09-01

    In this work we apply the experimenting pressure field approach to the numerical solution of the single phase flow problem in anisotropic porous media using the multipoint flux approximation. We apply this method to the problem of flow in saturated anisotropic porous media. In anisotropic media the component flux representation requires, generally multiple pressure values in neighboring cells (e.g., six pressure values of the neighboring cells is required in two-dimensional rectangular meshes). This apparently results in the need for a nine points stencil for the discretized pressure equation (27 points stencil in three-dimensional rectangular mesh). The coefficients associated with the discretized pressure equation are complex and require longer expressions which make their implementation prone to errors. In the experimenting pressure field technique, the matrix of coefficients is generated automatically within the solver. A set of predefined pressure fields is operated on the domain through which the velocity field is obtained. Apparently such velocity fields do not satisfy the mass conservation equations entailed by the source/sink term and boundary conditions from which the residual is calculated. In this method the experimenting pressure fields are designed such that the residual reduces to the coefficients of the pressure equation matrix. © 2014 Elsevier B.V. All rights reserved.

  17. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  18. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  19. An overview of two nonlinear supersonic wing design studies

    Science.gov (United States)

    Miller, D. S.; Pittman, J. L.; Wood, R. M.

    1983-01-01

    The progress of two studies which apply nonlinear aerodynamics to supersonic wing design is reviewed. The first study employed a nonlinear potential flow code to design wings for high lift and low drag due to lift by employing a controlled leading-edge expansion in which the crossflow accelerates to supercritical conditions and decelerates through a weak shock. The second study utilized a modified linearized theory code to explore the concept of using 'attainable' leading-edge thrust as a guide for selecting a wing leading-edge shape (planform and radius) for maintaining attached flow and maximizing leading-edge thrust. Experimental and theoretical results obtained during the course of these two studies are discussed.

  20. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  1. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  2. Improvement of DC Optimal Power Flow Problem Based on Nodal Approximation of Transmission Losses

    Directory of Open Access Journals (Sweden)

    M. R. Baghayipour

    2012-03-01

    3-\tIts formulation is simple and easy to understand. Moreover, it can simply be realized in the form of Lagrange representation, makes it possible to be considered as some constraints in the body of any bi-level optimization problem, with its internal level including the OPF problem satisfaction.

  3. Flow Formulation-based Model for the Curriculum-based Course Timetabling Problem

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2015-01-01

    In this work we will present a new mixed integer programming formulation for the curriculum-based course timetabling problem. We show that the model contains an underlying network model by dividing the problem into two models and then connecting the two models back into one model using a maximum ow...

  4. Flow Control Over Sharp-Edged Wings

    Science.gov (United States)

    2007-07-01

    is an open- circuit , low-speed tunnel constructed in 1983. To reduce the turbulence level one honeycomb and four nylon-conditioning screens are...Station rv~o rdonrof Station I -1 - control Station rV -05 .0,5 0o 0 o Q 05 05 0 01 012 03 04 05 06 07 0 09 1 0 01 02 03 04 05 06 07 08 09 lc rlc ...Chauvenet’s criterion. Applying the method of Kline and McKlintock to the definition of the pressure coefficient in equation 2.3, we find 8(AP {2J +[(aPJ6q

  5. Synthetic Optimization Model and Algorithm for Railway Freight Center Station Location and Wagon Flow Organization Problem

    Directory of Open Access Journals (Sweden)

    Xing-cai Liu

    2014-01-01

    Full Text Available The railway freight center stations location and wagon flow organization in railway transport are interconnected, and each of them is complicated in a large-scale rail network. In this paper, a two-stage method is proposed to optimize railway freight center stations location and wagon flow organization together. The location model is present with the objective to minimize the operation cost and fixed construction cost. Then, the second model of wagon flow organization is proposed to decide the optimal train service between different freight center stations. The location of the stations is the output of the first model. A heuristic algorithm that combined tabu search (TS with adaptive clonal selection algorithm (ACSA is proposed to solve those two models. The numerical results show the proposed solution method is effective.

  6. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  7. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  8. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.

    2012-05-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.

  9. Numerical solution of several 2D and 3D internal flow problems

    Science.gov (United States)

    Fialová, M.; Fořt, J.; Fürst, J.; Huněk, M.; Kozel, K.

    The work deals with numerical solution of 3D Euler and 2D or 3D Navier-Stokes equations. Incompressible, subsonic and transonic flow through a cascade or in a channel of constant cross-section is numerically solved. Two versions of Lax-Wendroff type finite volume schemes and Runge-Kutta scheme were developed for 3D computations. The work presents some 2D and 3D results of laminar viscous flows through a cascade or in a channel as well as 2D results achieved by ENO scheme. The results of cascade computation are compared with experimental measurement.

  10. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  11. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  12. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  13. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  14. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  15. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  16. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.

    Science.gov (United States)

    Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W

    2016-10-01

    Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.

  17. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  18. The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random

    Czech Academy of Sciences Publication Activity Database

    Beres, Michal; Domesová, Simona

    2017-01-01

    Roč. 15, č. 2 (2017), s. 267-279 ISSN 1336-1376 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : Darcy flow * Gaussian random field * Karhunen-Loeve decomposition * polynomial chaos * Stochastic Galerkin method Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://advances.utc.sk/index.php/AEEE/article/view/2280

  19. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  20. The Aerodynamic Performance of the Houck Configuration Flow Guides

    National Research Council Canada - National Science Library

    Killian, Dermot N

    2007-01-01

    In an effort to explore efficient wing designs for UAV's, the Air Force is investigating the patented Houck Aircraft Configuration, which is a joined-wing aircraft with curved flow guides of varying...

  1. An Experimental Investigation of Leading Edge Vortices and Passage to Stall of Nonslender Delta Wings

    National Research Council Canada - National Science Library

    Ol, Michael

    2003-01-01

    .... These measurements were motivated by flow visualization through dye injection. Delta wings of 50 degree and 65 degree leading edge sweep at Reynolds numbers of 8,000 and 14,000, respectively, were studied...

  2. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds.

    Science.gov (United States)

    Bana, Péter; Örkényi, Róbert; Lövei, Klára; Lakó, Ágnes; Túrós, György István; Éles, János; Faigl, Ferenc; Greiner, István

    2017-12-01

    Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mixed-Hybrid Finite Element Approximation of the Potential Fluid Flow Problem

    Czech Academy of Sciences Publication Activity Database

    Maryška, Jiří; Rozložník, Miroslav; Tůma, Miroslav

    1995-01-01

    Roč. 63, 1/3 (1995), s. 383-392 ISSN 0377-0427. [Modelling'94. Prague, 29.08.1994-02.09.1994] R&D Projects: GA ČR GA201/93/0067 Keywords : linear systems * flow in porous media * finite element method * symmetric indefinite linear systems * general prismatic elements * mixed-hybrid formulation Impact factor: 0.373, year: 1995

  4. Applications of computational intelligence techniques for solving the revived optimal power flow problem

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R. [Electrical Engineering Department, College of Technological Studies, Shuwaikh (Kuwait); El-Hawary, M.E. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3J 2X4 (Canada)

    2009-04-15

    Computational intelligence tools are attracting added attention in different research areas and research in power systems is not different. This paper provides an overview of major computational issues with regard to the optimal power flow (OPF). Then, it offers a brief summary of major computational intelligence tools. A detailed coverage of most OPF related research work that make use of modern computational intelligence techniques is presented next. (author)

  5. Application of x-ray microtomography to environmental fluid flow problems

    International Nuclear Information System (INIS)

    Wildenschild, D.; Culligan, K.A.; Christensen, B.S.B.

    2005-01-01

    Many environmental processes are controlled by the micro-scale interaction of water and air with the solid phase (soils, sediments, rock) in pore spaces within the subsurface. The distribution in time and space of fluids in pores ultimately controls subsurface flow and contaminant transport relevant to groundwater resource management, contaminant remediation, and agriculture. Many of these physical processes operative at the pore-scale cannot be directly investigated using conventional hydrologic techniques, however recent developments in synchrotron-based micro-imaging have made it possible to observe and quantify pore-scale processes non-invasively. Micron-scale resolution makes it possible to track fluid flow within individual pores and therefore facilitates previously unattainable measurements. We report on experiments performed at the GSECARS** (Advanced Photon Source) microtomography facility and have measured properties such as porosity, fluid saturation and distribution within the pore space, as well as interfacial characteristics of the fluids involved (air, water, contaminant). Different image processing techniques were applied following mathematical reconstruction to produce accurate measurements of the physical flow properties. These new micron-scale measurements make it possible to test existing and new theory, as well as emerging numerical modeling schemes aimed at the pore scale.

  6. Hamiltonian and Lagrangian flows on center manifolds with applications to elliptic variational problems

    CERN Document Server

    Mielke, Alexander

    1991-01-01

    The theory of center manifold reduction is studied in this monograph in the context of (infinite-dimensional) Hamil- tonian and Lagrangian systems. The aim is to establish a "natural reduction method" for Lagrangian systems to their center manifolds. Nonautonomous problems are considered as well assystems invariant under the action of a Lie group ( including the case of relative equilibria). The theory is applied to elliptic variational problemson cylindrical domains. As a result, all bounded solutions bifurcating from a trivial state can be described by a reduced finite-dimensional variational problem of Lagrangian type. This provides a rigorous justification of rod theory from fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working in classical mechanics, dynamical systems, elliptic variational problems, and continuum mechanics. It begins with the elements of Hamiltonian theory and center manifold reduction in order to make the methods accessible to non-specialists,...

  7. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genetic Algorithm for Solving Location Problem in a Supply Chain Network with Inbound and Outbound Product Flows

    Directory of Open Access Journals (Sweden)

    Suprayogi Suprayogi

    2016-12-01

    Full Text Available This paper considers a location problem in a supply chain network. The problem addressed in this paper is motivated by an initiative to develop an efficient supply chain network for supporting the agricultural activities. The supply chain network consists of regions, warehouses, distribution centers, plants, and markets. The products include a set of inbound products and a set of outbound products. In this paper, definitions of the inbound and outbound products are seen from the region’s point of view.  The inbound product is the product demanded by regions and produced by plants which flows on a sequence of the following entities: plants, distribution centers, warehouses, and regions. The outbound product is the product demanded by markets and produced by regions and it flows on a sequence of the following entities: regions, warehouses, and markets. The problem deals with determining locations of the warehouses and the distribution centers to be opened and shipment quantities associated with all links on the network that minimizes the total cost. The problem can be considered as a strategic supply chain network problem. A solution approach based on genetic algorithm (GA is proposed. The proposed GA is examined using hypothetical instances and its results are compared to the solution obtained by solving the mixed integer linear programming (MILP model. The comparison shows that there is a small gap (0.23%, on average between the proposed GA and MILP model in terms of the total cost. The proposed GA consistently provides solutions with least total cost. In terms of total cost, based on the experiment, it is demonstrated that coefficients of variation are closed to 0.

  9. On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step

    Directory of Open Access Journals (Sweden)

    Alexander A. Fomin

    2017-06-01

    Full Text Available The stable stationary solutions of the test problem of hydrodynamics and heat transfer in a plane channel with the backward-facing step have been considered in the work for extremely high Reynolds numbers and expansion ratio of the stream $ER$. The problem has been solved by numerical integration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation and the heat equation in the range of Reynolds number $500 \\leqslant \\mathrm{ Re} \\leqslant 3000$ and expansion ratio $1.43 \\leqslant ER \\leqslant 10$ for Prandtl number $\\mathrm{ Pr} = 0.71$. Validity of the results has been confirmed by comparing them with literature data. Detailed flow patterns, fields of stream overheating, and profiles of horizontal component of velocity and relative overheating of flow in the cross section of the channel have been presented. Complex behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number along the channel depending on the problem parameters have been analyzed.

  10. Combined analytical/numerical approaches to solving fluid flow problems in the unsaturated zone at Yucca Mountain

    International Nuclear Information System (INIS)

    Zimerman, R.W.; Bodvarsson, G.S.

    1990-01-01

    Various analytical and numerical approaches are presented for the study of unsaturated flow processes in the vicinity of the Yucca Mountain, Nevada, the proposed site of an underground radioactive waste repository. Approximate analytical methods are used to study absorption of water from a saturated fracture into the adjacent rock. These solutions are incorporated into a numerical simulator as fracture/matrix interaction terms to treat problems such as flow along a fracture with transverse leakage into the matrix. An automatic fracture/matrix mesh generator is described; it allows for more efficient mesh generation for fractured/porous media, and consequently leads to large savings in computational time and cost. 21 refs., 6 figs

  11. Preliminary analysis of selected gas dynamic problems. [space shuttle main engine main combustion transients and IUS nozzle flow

    Science.gov (United States)

    Prozan, R. J.; Farmer, R. C.

    1985-01-01

    The VAST computer code was used to analyze SSME main combustion chamber start-up transients and the IUS flow field for a damaged nozzle was investigated to better understand the gas dynamic considerations involved in vehicle problems, the effect of start transients on the nozzle flow field for the SSME, and the possibility that a damaged nozzle could account for the acceleration anomaly noted on IUS burn. The results obtained were compared with a method of characteristics prediction. Pressure solutions from both codes were in very good agreement and the Mach number solution on the nozzle centerline deviates substantially for the high expansions for the SSME. Since this deviation was unexpected, the phenomenon is being further examined.

  12. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  13. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  14. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  15. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  16. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  17. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  18. A fully-coupled approach to simulate three-dimensional flexible flapping wings

    Science.gov (United States)

    Yang, Tao; Wei, Mingjun

    2010-11-01

    The algorithm in this study is based on a combined Eulerian description of both fluid flow and solid structure which then can be solved in a monolithic manner. Thus, the algorithm is especially suitable to solve fluid-structure interaction problems involving large and nonlinear deformation. In fact, we have successfully applied the same approach to our previous study of two-dimensional pitching-and-plunging problems and found many unique features from the passive pitching introduced by wing flexibility. With the current non-trivial extension of the algorithm to three-dimensional configuration, we can eventually reveal the complex vortex and structural dynamics behind the amazing performance of nature's fliers such as hummingbirds.

  19. Solving complementarity problems: Application to a diphasic flow in porous media

    International Nuclear Information System (INIS)

    Ben Gharbia, I.

    2012-01-01

    This manuscript deals with numerical methods for linear and nonlinear complementarity problems, and, more specifically, with solving gas phase appearance and disappearance modeled as a complementarity problem. In the first part of this manuscript, we focused on the plain Newton-min method to solve the linear complementarity problem (LCP for short) 0 ≤x perpendicular to (Mx+q) ≥ 0 that can be viewed as a non-smooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x,Mx+q) = 0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm was known to converge in at most n iterations. We show that this result no longer holds when M is a P-matrix of order ≥ 3. On the one hand, we offer counter-examples showing that the algorithm may cycle in those cases. P-matrices are interesting since they are those ensuring the existence and uniqueness of the solution to the LCP for an arbitrary q. Incidentally, convergence occurs for a P-matrix of order 1 or 2. On the other hand, we provide a new algorithmic characterization of P-matricity: we show that a nondegenerate square real matrix M is a P-matrix if and only if, whatever is the real vector q, the Newton-min algorithm does not cycle between two points. In order to force the convergence of the Newton-min algorithm with P-matrices, we have derived a new method, which is robust, easy to describe, and simple to implement. It is globally convergent and the numerical results reported in this manuscript show that it outperforms a method of Harker and Pang. In the second part of this manuscript, we consider the modeling of migration of hydrogen produced by the corrosion of the nuclear waste packages in an underground storage including the dissolution of hydrogen. It results in a set of nonlinear partial differential equations with nonlinear complementarity constraints. We show how to apply a robust and efficient solution strategy, the Newton-min method

  20. Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems

    KAUST Repository

    Chung, Eric T.

    2010-01-01

    In this paper, we study multiscale methods for high-contrast elliptic problems where the media properties change dramatically. The disparity in the media properties (also referred to as high contrast in the paper) introduces an additional scale that needs to be resolved in multiscale simulations. First, we present a construction that uses an integral equation to represent the highcontrast component of the solution. This representation involves solving an integral equation along the interface where the coefficients are discontinuous. The integral representation suggests some multiscale approaches that are discussed in the paper. One of these approaches entails the use of interface functions in addition to multiscale basis functions representing the heterogeneities without high contrast. In this paper, we propose an approximation for the solution of the integral equation using the interface problems in reduced-contrast media. Reduced-contrast media are obtained by lowering the variance of the coefficients. We also propose a similar approach for the solution of the elliptic equation without using an integral representation. This approach is simpler to use in the computations because it does not involve setting up integral equations. The main idea of this approach is to approximate the solution of the high-contrast problem by the solutions of the problems formulated in reduced-contrast media. In this approach, a rapidly converging sequence is proposed where only problems with lower contrast are solved. It was shown that this sequence possesses the convergence rate that is inversely proportional to the reduced contrast. This approximation allows choosing the reduced-contrast problem based on the coarse-mesh size as discussed in this paper. We present a simple application of this approach to homogenization of elliptic equations with high-contrast coefficients. The presented approaches are limited to the cases where there are sharp changes in the contrast (i.e., the high

  1. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  2. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  3. Design solutions to interface flow problems: Text - List of symbols - References

    International Nuclear Information System (INIS)

    1986-01-01

    All published proposals for the deep level burial of radioactive waste recognise that the access shafts, tunnels and boreholes must be sealed, and that the sealing of these openings plays an integral role in the overall isolation of the waste. Previous studies have identified the interface between the host ground formation and the various sealing materials as potential defects in the overall quality of the waste isolation. The significance of groundwater flow at and near the interface has been assessed for representative conditions in generic repository materials. A range of design options to minimise the significance of flow in the interface zone have been proposed, and the most practical of these options have been selected for quantitative analysis. It has been found that isolated high impermeability collars are of limited value unless a highly effective method of minimising ground disturbance during excavation can be developed. It has also been found that control of radionuclide migration by sorptive processes provides an attractive option. The effect of various geometrical arrangements of sorptive materials has been investigated. Consideration has also been given to the particular conditions in the near field, to the behaviour of weak plastic clay host formations and to the mechanical interaction between the backfill material and the host formation

  4. Mathematical modelling and numerical resolution of multi-phase compressible fluid flows problems

    International Nuclear Information System (INIS)

    Lagoutiere, Frederic

    2000-01-01

    This work deals with Eulerian compressible multi-species fluid dynamics, the species being either mixed or separated (with interfaces). The document is composed of three parts. The first parts devoted to the numerical resolution of model problems: advection equation, Burgers equation, and Euler equations, in dimensions one and two. The goal is to find a precise method, especially for discontinuous initial conditions, and we develop non dissipative algorithms. They are based on a downwind finite-volume discretization under some stability constraints. The second part treats of the mathematical modelling of fluids mixtures. We construct and analyse a set of multi-temperature and multi-pressure models that are entropy, symmetrizable, hyperbolic, not ever conservative. In the third part, we apply the ideas developed in the first part (downwind discretization) to the numerical resolution of the partial differential problems we have constructed for fluids mixtures in the second part. We present some numerical results in dimensions one and two. (author) [fr

  5. On the mixture flow problem in lubrication of hydrodynamic bearings - Small solid volume fraction

    Science.gov (United States)

    Khonsari, M. M.; Dai, Fuling

    1992-01-01

    The lubrication problem of infinitely long slider bearings with a mixture of fluid and particulate solid at small volume fraction level is studied. Closed-form analytical solutions for pressure and shear stress are obtained for a class of solid aggregates. The results reduce to those of pure fluid in the limiting case. A parametric study of the bearing performance with particulate solid is presented.

  6. A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems

    OpenAIRE

    Eugenio Aulisa; Sandro Manservisi; Padmanabhan Seshaiyer

    2009-01-01

    Solving complex coupled processes involving fluid-structure-thermal interactions is a challenging problem in computational sciences and engineering. Currently there exist numerous public-domain and commercial codes available in the area of Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD) and Computational Thermodynamics (CTD). Different groups specializing in modelling individual process such as CSD, CFD, CTD often come together to solve a complex coupled ap...

  7. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T

    2013-01-01

    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  8. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  9. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  10. Degenerate two-phase incompressible flow problems III: Perturbation analysis and numerical experiments

    Directory of Open Access Journals (Sweden)

    Zhangxin Chen

    1999-12-01

    Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.

  11. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

    KAUST Repository

    Yang, Haijian

    2016-07-26

    Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

  12. A Two-Dimensional Unsteady Method of Characteristics Analysis of Fluid Flow Problems - MCDU 43

    Science.gov (United States)

    1975-07-01

    N)>ZBN(KtLfHnt .(RBHIK.L+ltMJ-RBHfK.LtN))) ZPR«-(RMA-RBM(KvLtP))*SINtANGLEU .(ZMA-ZBH(KtLtMn*COS(ANGLE) BPp = (PMA-RPMIK,L,M))*CCS(ANr,LFI*(ZMA...as a standard the exact solution of Sedov’s cylindrical-blast-wave problem, see -4 Ref. F7 . An initial time-plane is chosen at a time of 1.591 x 10... F7 . Chou, P.C., and Karpp, R.R., "Solution of Blast Waves by the Method of Characteristics", DIT Report No. 125-7, Drexel Institute of Technology

  13. A finite-volume/Newton method for a two-phase heat flow problem using primitive variables and collocated grids

    International Nuclear Information System (INIS)

    Liang, M.C.; Lan, C.W.

    1996-01-01

    A finite-volume/Newton's method is presented for solving the incompressible heat flow problem in an inclined enclosure with an unknown melt/solid interface using primitive variables and collocated grids. The unknown melt/solid interface is solved simultaneously with all of the field variables by imposing the weighted melting-point isotherm. In the finite-volume formulation of the continuity equation, a modified momentum interpolation scheme is adopted to enhance velocity/pressure coupling. During Newton's iterations, the ILU (0) preconditioned GMRES matrix solver is applied to solve the linear system, where the sparse Jacobian matrix is estimated by finite differences. Nearly quadratic convergence of the method is observed. The robustness of the method is further enhanced with the implementation of the pseudo-arclength continuation. The effects of the Rayleigh number and gravity orientation on flow patterns and the interface are demonstrated. Bifurcation diagrams are also constructed to illustrate flow transition and multiple steady states. 42 refs., 13 figs., 5 tabs

  14. A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems

    Directory of Open Access Journals (Sweden)

    Eugenio Aulisa

    2009-04-01

    Full Text Available Solving complex coupled processes involving fluid-structure-thermal interactions is a challenging problem in computational sciences and engineering. Currently there exist numerous public-domain and commercial codes available in the area of Computational Fluid Dynamics (CFD, Computational Structural Dynamics (CSD and Computational Thermodynamics (CTD. Different groups specializing in modelling individual process such as CSD, CFD, CTD often come together to solve a complex coupled application. Direct numerical simulation of the non-linear equations for even the most simplified fluid-structure-thermal interaction (FSTI model depends on the convergence of iterative solvers which in turn rely heavily on the properties of the coupled system. The purpose of this paper is to introduce a flexible multilevel algorithm with finite elements that can be used to study a coupled FSTI. The method relies on decomposing the complex global domain, into several local sub-domains, solving smaller problems over these sub-domains and then gluing back the local solution in an efficient and accurate fashion to yield the global solution. Our numerical results suggest that the proposed solution methodology is robust and reliable.

  15. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  16. Mathematical modeling and numerical simulation of two-phase flow problems at pore scale

    Directory of Open Access Journals (Sweden)

    Paula Luna

    2015-11-01

    Full Text Available Mathematical modeling and numerical simulation of two-phase flow through porous media is a very active field of research, because of its relevancy in a wide range of physical and technological applications. Some outstanding applications concern reservoir simulation and oil and gas recovery, fields in which a great effort is being paid in the development of efficient numerical methods. The mathematical model used in this work is written as a system comprising an elliptic equation for pressure and a hyperbolic one for saturation. Our aim is to obtain the numerical solution of this model by combining finite element and finite volume techniques, with a second-order non-oscillatory reconstruction procedure to build the values of the velocities at the cell interfaces of the FV mesh from pointwise values of the pressure at the FE nodes. The numerical results are compared to those obtained using the commercial code ECLIPSE showing an appropriate behavior from a qualitative point of view. The use of this FE-FV procedure is not the usual numerical method in petroleum reservoir simulation, since the techniques most frequently used are based on finite differences, even in standard commercial tools.

  17. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  18. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    Science.gov (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  19. Flow Rounding

    OpenAIRE

    Kang, Donggu; Payor, James

    2015-01-01

    We consider flow rounding: finding an integral flow from a fractional flow. Costed flow rounding asks that we find an integral flow with no worse cost. Randomized flow rounding requires we randomly find an integral flow such that the expected flow along each edge matches the fractional flow. Both problems are reduced to cycle canceling, for which we develop an $O(m \\log(n^2/m))$ algorithm.

  20. An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time

    Directory of Open Access Journals (Sweden)

    Farahmand-Mehr Mohammad

    2014-01-01

    Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.

  1. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Science.gov (United States)

    Botti, L.; Colombo, A.; Bassi, F.

    2017-10-01

    In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

  2. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  3. A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times

    NARCIS (Netherlands)

    Gong, H.; Tang, L.; Duin, C.W.

    2010-01-01

    Motivated by applications in iron and steel industry, we consider a two-stage flow shop scheduling problem where the first machine is a batching machine subject to the blocking constraint and the second machine is a discrete machine with shared setup times. We show that the problem is strongly

  4. Shape matters: improved flight in tapered auto-rotating wings

    Science.gov (United States)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  5. Techniques and Software for Monolithic Preconditioning of Moderately-sized Geodynamic Stokes Flow Problems

    Science.gov (United States)

    Sanan, Patrick; May, Dave A.; Schenk, Olaf; Bollhöffer, Matthias

    2017-04-01

    Geodynamics simulations typically involve the repeated solution of saddle-point systems arising from the Stokes equations. These computations often dominate the time to solution. Direct solvers are known for their robustness and ``black box'' properties, yet exhibit superlinear memory requirements and time to solution. More complex multilevel-preconditioned iterative solvers have been very successful for large problems, yet their use can require more effort from the practitioner in terms of setting up a solver and choosing its parameters. We champion an intermediate approach, based on leveraging the power of modern incomplete factorization techniques for indefinite symmetric matrices. These provide an interesting alternative in situations in between the regimes where direct solvers are an obvious choice and those where complex, scalable, iterative solvers are an obvious choice. That is, much like their relatives for definite systems, ILU/ICC-preconditioned Krylov methods and ILU/ICC-smoothed multigrid methods, the approaches demonstrated here provide a useful addition to the solver toolkit. We present results with a simple, PETSc-based, open-source Q2-Q1 (Taylor-Hood) finite element discretization, in 2 and 3 dimensions, with the Stokes and Lamé (linear elasticity) saddle point systems. Attention is paid to cases in which full-operator incomplete factorization gives an improvement in time to solution over direct solution methods (which may not even be feasible due to memory limitations), without the complication of more complex (or at least, less-automatic) preconditioners or smoothers. As an important factor in the relevance of these tools is their availability in portable software, we also describe open-source PETSc interfaces to the factorization routines.

  6. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  7. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    Science.gov (United States)

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  8. Optimization on a Network-based Parallel Computer System for Supersonic Laminar Wing Design

    Science.gov (United States)

    Garcia, Joseph A.; Cheung, Samson; Holst, Terry L. (Technical Monitor)

    1995-01-01

    A set of Computational Fluid Dynamics (CFD) routines and flow transition prediction tools are integrated into a network based parallel numerical optimization routine. Through this optimization routine, the design of a 2-D airfoil and an infinitely swept wing will be studied in order to advance the design cycle capability of supersonic laminar flow wings. The goal of advancing supersonic laminar flow wing design is achieved by wisely choosing the design variables used in the optimization routine. The design variables are represented by the theory of Fourier series and potential theory. These theories, combined with the parallel CFD flow routines and flow transition prediction tools, provide a design space for a global optimal point to be searched. Finally, the parallel optimization routine enables gradient evaluations to be performed in a fast and parallel fashion.

  9. A Nonlinear Multiobjective Bilevel Model for Minimum Cost Network Flow Problem in a Large-Scale Construction Project

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2012-01-01

    Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.

  10. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  11. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  12. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  13. On the Numerical Solution of the Nonlinear Radiation Heat Transfer Problem in a Three-Dimensional Flow

    Science.gov (United States)

    Mushtaq, Ammar; Mustafa, Meraj; Hayat, Tasawar; Alsaedi, Ahmed

    2014-12-01

    The steady laminar three-dimensional magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a stretching sheet is investigated. The sheet is linearly stretched in two lateral directions. Heat transfer analysis is performed by utilizing a nonlinear radiative heat flux in Rosseland approximation for thermal radiation. Two different wall conditions, namely (i) constant wall temperature and (ii) prescribed surface temperature are considered. The developed nonlinear boundary value problems (BVPs) are solved numerically through fifth-order Runge-Kutta method using a shooting technique. To ascertain the accuracy of results the solutions are also computed by using built in function bvp4c of MATLAB. The behaviours of interesting parameters are carefully analyzed through graphs for velocity and temperature distributions. The dimensionless expressions of wall shear stress and heat transfer rate at the sheet are evaluated and discussed. It is seen that a point of inflection of the temperature function exists for sufficiently large values of wall to ambient temperature ratio. The solutions are in excellent agreement with the previous studies in a limiting sense. To our knowledge, the novel idea of nonlinear thermal radiation in three-dimensional flow is just introduced here.

  14. A Parallel Non-Overlapping Domain-Decomposition Algorithm for Compressible Fluid Flow Problems on Triangulated Domains

    Science.gov (United States)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai

    1998-01-01

    This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.

  15. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    Science.gov (United States)

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  16. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integration methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.

  17. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  18. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  19. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    Science.gov (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  20. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    Science.gov (United States)

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  1. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  2. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  3. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances.

  4. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  5. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  6. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  7. Flow Control of Flexible Structures

    Science.gov (United States)

    2017-09-06

    United States Government. Approved for public release, distribution is unlimited. PI: J. Farnsworth USAFA: Flow Control of Flexible Structures Table of...Contents Abstract iii List of Figures iv List of Tables vi Acknowledgments vii 1 Summary 1 2 Introduction 1 2.1 Proposed Research Effort...a small parabolic region of flow separation centered around 75% span location and at the wing trailing edge . The second wing section studied was a

  8. Wing-vortex interaction: unraveling the flowfield of a hovering rotor

    Science.gov (United States)

    Bhagwat, Mahendra J.; Caradonna, Francis X.; Ramasamy, Manikandan

    2015-01-01

    This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.

  9. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  10. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  11. Research on unsteady transonic flow theory

    Science.gov (United States)

    Revell, J. D.

    1973-01-01

    A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.

  12. Effects of Leading-Edge Radius on Aerodynamic Characteristics of 50º Delta Wings

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2010-01-01

    The study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model having a sharp leading edge and the other two having a semi-circular leading edge of different radius. The vortical flow on and off the surface of the models

  13. Instability analysis and drag coefficient prediction on a swept RAE2822 wing with constant lift coefficient

    Directory of Open Access Journals (Sweden)

    Zhenrong JING

    2017-06-01

    Full Text Available Swept wing is widely used in civil aircraft, whose airfoil is chosen, designed and optimized to increase the cruise speed and decrease the drag coefficient. The parameters of swept wing, such as sweep angle and angle of attack, are determined according to the cruise lift coefficient requirement, and the drag coefficient is expected to be predicted accurately, which involves the instability characteristics and transition position of the flow. The pressure coefficient of the RAE2822 wing with given constant lift coefficient is obtained by solving the three-dimensional Navier-Stokes equation numerically, and then the mean flow is calculated by solving the boundary layer (BL equation with spectral method. The cross-flow instability characteristic of boundary layer of swept wing in the windward and leeward is analyzed by linear stability theory (LST, and the transition position is predicted by eN method. The drag coefficient is numerically predicted by introducing a laminar/turbulent indicator. A simple approach to calculate the lift coefficient of swept wing is proposed. It is found that there is a quantitative relationship between the angle of attack and sweep angle when the lift coefficient keeps constant; when the angle of attack is small, the flow on the leeward of the wing is stable. when the angle of attack is larger than 3°, the flow becomes unstable quickly; with the increase of sweep angle or angle of attack the disturbance on the windward becomes more unstable, leading to the moving forward of the transition position to the leading edge of the wing; the drag coefficient has two significant jumping growth due to the successive occurrence of transition in the windward and the leeward; the optimal range of sweep angle for civil aircraft is suggested.

  14. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  15. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  16. A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system

    International Nuclear Information System (INIS)

    Azadeh, A.; Maleki Shoja, B.; Ghanei, S.; Sheikhalishahi, M.

    2015-01-01

    This research investigates a redundancy-scheduling optimization problem for a multi-state series parallel system. The system is a flow shop manufacturing system with multi-state machines. Each manufacturing machine may have different performance rates including perfect performance, decreased performance and complete failure. Moreover, warm standby redundancy is considered for the redundancy allocation problem. Three objectives are considered for the problem: (1) minimizing system purchasing cost, (2) minimizing makespan, and (3) maximizing system reliability. Universal generating function is employed to evaluate system performance and overall reliability of the system. Since the problem is in the NP-hard class of combinatorial problems, genetic algorithm (GA) is used to find optimal/near optimal solutions. Different test problems are generated to evaluate the effectiveness and efficiency of proposed approach and compared to simulated annealing optimization method. The results show the proposed approach is capable of finding optimal/near optimal solution within a very reasonable time. - Highlights: • A redundancy-scheduling optimization problem for a multi-state series parallel system. • A flow shop with multi-state machines and warm standby redundancy. • Objectives are to optimize system purchasing cost, makespan and reliability. • Different test problems are generated and evaluated by a unique genetic algorithm. • It locates optimal/near optimal solution within a very reasonable time

  17. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  18. Robust Backstepping Control of Wing Rock Using Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Dawei Wu

    2017-02-01

    Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.

  19. A Flow Chart of Behavior Management Strategies for Families of Children with Co-Occurring Attention-Deficit Hyperactivity Disorder and Conduct Problem Behavior.

    Science.gov (United States)

    Danforth, Jeffrey S

    2016-03-01

    Behavioral parent training is an evidence-based treatment for problem behavior described as attention-deficit hyperactivity disorder (ADHD), oppositional defiant disorder, and conduct disorder. However, adherence to treatment fidelity and parent performance of the management skills remains an obstacle to optimum outcome. One variable that may limit the effectiveness of the parent training is that demanding behavior management procedures can be deceptively complicated and difficult to perform. Based on outcome research for families of children with co-occurring ADHD and conduct problem behavior, an example of a visual behavior management flow chart is presented. The flow chart may be used to help teach specific behavior management skills to parents. The flow chart depicts a chain of behavior management strategies taught with explanation, modeling, and role-play with parents. The chained steps in the flow chart are elements common to well-known evidence-based behavior management strategies, and perhaps, this depiction well serve as a setting event for other behavior analysts to create flow charts for their own parent training, Details of the flow chart steps, as well as examples of specific applications and program modifications conclude.

  20. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  1. A program for scheduling a Patrol Air Wing training plan.

    OpenAIRE

    Hutson, David V.

    1988-01-01

    Approved for public release; distribution in unlimited. This research examined the feasibility of a computerized scheduling system to assist the development of an annual training plan for a Patrol Air Wing. A prototype is proposed incorporating a modified A* search control structure to handle the combinatorial part of the problem. The system uses a pre-existing file for its database and is implemented on an ISI workstation using the Prolog computer language. Comparisons with...

  2. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap

    Science.gov (United States)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong

    2017-10-01

    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  3. Integration effects of pylon geometry on a high-wing transport airplane

    Science.gov (United States)

    Carlson, John R.; Lamb, Milton

    1989-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the installation effects of a series of pylons that had differing cross-sectional shapes on the pressure distributions and aerodynamic characteristics of a 1/24-scale high wing transport. The tests were conducted at Mach numbers at 0.70 and 0.80 at angles of attack from -3 degrees to 4 degrees with the pylons tested at various toe angles between 5 degrees inboard and 5 degrees outboard. Results of this study indicate that the installed drag was lowest for the pylons with a compression pylon type design which kept the flow under the wing in the pylon/wing junction comparable to the clean wing velocities.

  4. Effect of canard deflection on close-coupled canard-wing-body aerodynamics

    Science.gov (United States)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  5. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  6. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  7. Aerodynamic Design of Wing based on Humpback Whale Flipper

    Science.gov (United States)

    Akram, Saif; Baig, Faisal

    2013-11-01

    The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Wind tunnel tests at low speeds of model humpback flippers with leading-edge tubercles have demonstrated improvements tubercles make, such as a staggering 32% reduction in drag, 8% improvement in lift, and a 40% increase in angle of attack over smooth flippers before stalling. The tubercles on the leading edge act as a passive-flow control device that improves the performance and maneuverability of the flipper. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. In the present work, numerical investigation of a 3D wing with scalloped leading edge inspired by the humpback whale flipper is carried out at high subsonic speeds with variation in angle of attack from 0 to 25 degrees. The effect of using different turbulence models is also investigated in order to attain a better understanding of mechanism(s) responsible for improved aerodynamic performance. This new understanding of humpback whale flipper aerodynamics has strong implications for wing design.

  8. On the Transformation Mechanism for Formulating a Multiproduct Two-Layer Supply Chain Network Design Problem as a Network Flow Model

    Directory of Open Access Journals (Sweden)

    Mi Gan

    2014-01-01

    Full Text Available The multiproduct two-layer supply chain is very common in various industries. In this paper, we introduce a possible modeling and algorithms to solve a multiproduct two-layer supply chain network design problem. The decisions involved are the DCs location and capacity design decision and the initial distribution planning decision. First we describe the problem and give a mixed integer programming (MIP model; such problem is NP-hard and it is not easy to reduce the complexity. Inspired by it, we develop a transformation mechanism of relaxing the fixed cost and adding some virtual nodes and arcs to the original network. Thus, a network flow problem (NFP corresponding to the original problem has been formulated. Given that we could solve the NFP as a minimal cost flow problem. The solution procedures and network simplex algorithm (INS are discussed. To verify the effectiveness and efficiency of the model and algorithms, the performance measure experimental has been conducted. The experiments and result showed that comparing with MIP model solved by genetic algorithm (GA and Benders, decomposition algorithm (BD the NFP model and INS are also effective and even more efficient for both small-scale and large-scale problems.

  9. Recent trends of nitrogen flow of typical agro-ecosystems in China--major problems and potential solutions.

    Science.gov (United States)

    Liu, Chen; Wang, Qinxue; Yang, Yonghui; Wang, Kelin; Ouyang, Zhu; Li, Yan; Lei, Alin; Yasunari, Tetsuzo

    2012-03-30

    To diagnose problems that threaten regional sustainability and to devise appropriate treatment measures in China's agro-ecosystems, a study was carried out to quantify the nitrogen (N) flow in China's typical agro-ecosystems and develop potential solutions to the increasing environmental N load. The analysis showed that owing to human activity in the agro-ecosystems of Changjiang River Basin the mean total input of anthropogenic reactive N (i.e. chemical fertiliser, atmospheric deposition and bio-N fixation) increased from 4.41 × 10(9) kg-N in 1980 to 7.61 × 10(9) kg-N in 1990 and then to 1.43 × 10(10) kg-N in 2000, with chemical fertiliser N being the largest contributor to N load. Field investigation further showed that changes in human behaviour and rural urbanisation have caused rural communities to become more dependent on chemical fertilisers. In rural regions, around 4.17 kg-N of per capita annual potential N load as excrement was returned to farmlands and 1.38 kg-N directly discharged into river systems, while in urbanised regions, around 1.00 kg-N of per capita annual potential N load as excrement was returned to farmlands and 5.62 kg-N discharged into river systems in urban areas. The findings of the study suggest that human activities have significantly altered the N cycle in agro-ecosystems of China. With high population density and scarce per capita water resources, non-point source pollution from agro-ecosystems continues to put pressure on aquatic ecosystems. Increasing the rate of organic matter recycling and fertiliser efficiency with limited reliance on chemical fertilisers might yield tremendous environmental benefits. Copyright © 2011 Society of Chemical Industry.

  10. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  11. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  12. Method and software to solution of inverse and inverse design fluid flow and heat transfer problems is compatible with CFD-software

    Energy Technology Data Exchange (ETDEWEB)

    Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)

    1997-12-31

    The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.

  13. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling, E-mail: ling.zou@inl.gov; Zhao, Haihua; Zhang, Hongbin

    2016-04-15

    Highlights: • High-order spatial and fully implicit temporal numerical schemes in solving two-phase six-equation model. • Jacobian-free Newton–Krylov method was used to solve discretized nonlinear equations. • Realistic flow regimes and closure correlations were used. • Extensive code validation using experimental data, and benchmark with RELAP5-3D. - Abstract: This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3D code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. This in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.

  14. Aerostructural optimization of a morphing wing for airborne wind energy applications

    Science.gov (United States)

    Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.

    2017-09-01

    Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the

  15. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  16. Mechanical coupling between two innovative theories on erosion, transportation and phase-separation: Solving some long-standing problems in mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas; Mergili, Martin

    2017-04-01

    Debris flows are gravity driven mixture flows of soil, sand, rock and water. The solid particles and viscous fluid governs the rheological properties, and their coupling significantly influences the dynamics. For example, debris flows can dramatically increase their volume and destructive potential, and become exceptionally mobile by entraining bed material. The mixture composition can evolve to strikingly change the spatial distribution of particles and fluid, and thus frictional and viscous resistance. So, erosion-deposition and phase-separation between solid and fluid, which strongly depend on material composition, play a critical role in debris flow dynamics. Proper understanding of these complex physical processes is very important in accurate description of impact forces, inundation areas, landscape evolution and developing reliable mitigation plans. Predicting the underlying processes of erosion, phase-separation and deposition in debris flow are long-standing challenges. However, due to lack of data and suitable models, there exists no runout prediction method that includes observed processes of erosion of dry and saturated beds, entrainment and diffusion of eroded material, grain sorting, phase-separation, levee/lobe formation and evolution of deposition patterns. Based on innovative mechanical models for erosion-deposition (Pudasaini and Fischer, 2016a) and phase-separation (Pudasaini and Fischer, 2016b) that explicitly consider changes in local flow compositions, and their basic/potential validations, we present a novel, unified, efficient and fully coupled solution method to these true multi-phase, three-dimensional mass flow problems. As debris flows are better described by a three-phase mixture that include viscous fluid, and fine and coarse grains as compared to often used single-phase models, we propose model extensions that consists of three-phases including yield strength. Thus, we present an advanced mass flow simulation model aiming to

  17. Stokes' second problem for magnetohydrodynamics flow in a Burgers' fluid: the cases γ = λ²/4 and γ>λ²/4.

    Directory of Open Access Journals (Sweden)

    Ilyas Khan

    Full Text Available The present work is concerned with exact solutions of Stokes second problem for magnetohydrodynamics (MHD flow of a Burgers' fluid. The fluid over a flat plate is assumed to be electrically conducting in the presence of a uniform magnetic field applied in outward transverse direction to the flow. The equations governing the flow are modeled and then solved using the Laplace transform technique. The expressions of velocity field and tangential stress are developed when the relaxation time satisfies the condition γ =  λ²/4 or γ> λ²/4. The obtained closed form solutions are presented in the form of simple or multiple integrals in terms of Bessel functions and terms with only Bessel functions. The numerical integration is performed and the graphical results are displayed for the involved flow parameters. It is found that the velocity decreases whereas the shear stress increases when the Hartmann number is increased. The solutions corresponding to the Stokes' first problem for hydrodynamic Burgers' fluids are obtained as limiting cases of the present solutions. Similar solutions for Stokes' second problem of hydrodynamic Burgers' fluids and those for Newtonian and Oldroyd-B fluids can also be obtained as limiting cases of these solutions.

  18. Adaptive Wing/Aerofoil Design Optimisation Using MOEA Coupled to Uncertainty Design Method

    OpenAIRE

    Lee, D.S.; Periaux, J.; Gonzalez, L.F.; Onate, E.; Qin, N.

    2011-01-01

    The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The...

  19. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    Science.gov (United States)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  20. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  1. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  2. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  3. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    , the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.

  4. A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem

    Directory of Open Access Journals (Sweden)

    Fanchao Meng

    2016-09-01

    Full Text Available Concerning the specific demand on solving the long-term conjugate heat transfer (CHT problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22.8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.

  5. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  6. Applications of high-resolution spatial discretization scheme and Jacobian-free Newton–Krylov method in two-phase flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.

  7. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  8. Novel power flow problem solutions method’s based on genetic algorithm optimization for banks capacitor compensation using an fuzzy logic rule bases for critical nodal detections

    OpenAIRE

    Abdelfatah, Nasri; Brahim, Gasbaoui

    2011-01-01

    The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for critical nodal de...

  9. Experimental and Numerical Study of Spacecraft Contamination Problems Associated With Gas and Gas-Droplet Thruster Plume Flows

    Science.gov (United States)

    2006-04-17

    Hornung, Smith, 1979]. In addition, Navier - Stocks (NS) computations were performed for these flows, and the results were compared to DSMC data on...shock wave on a wedge are numerically examined with the use of the kinetic (DSMC method) and continuum ( Navier -- Stocks equations) approaches. A...jump on the surface for the Navier -Stokes equations. These equations, however, fail when studying rarefied flows with finite Knudsen numbers where

  10. A New Application of the Reproducing Kernel Hilbert Space Method to Solve MHD Jeffery-Hamel Flows Problem in Nonparallel Walls

    Directory of Open Access Journals (Sweden)

    Mustafa Inc

    2013-01-01

    Full Text Available The present paper emphasizes Jeffery-Hamel flow: fluid flow between two rigid plane walls, where the angle between them is 2α. A new method called the reproducing kernel Hilbert space method (RKHSM is briefly introduced. The validity of the reproducing kernel method is set by comparing our results with HAM, DTM, and HPM and numerical results for different values of H, α, and Re. The results show up that the proposed reproducing kernel method can achieve good results in predicting the solutions of such problems. Comparison between obtained results showed that RKHSM is more acceptable and accurate than other methods. This method is very useful and applicable for solving nonlinear problems.

  11. Exact Solution for Non-Self-Similar Wave-Interaction Problem during Two-Phase Four-Component Flow in Porous Media

    Directory of Open Access Journals (Sweden)

    S. Borazjani

    2014-01-01

    Full Text Available Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management in aquifers. We derive the exact solution for 3×3 hyperbolic system of conservation laws that corresponds to two-phase four-component flow in porous media where sorption of the third component depends on its own concentration in water and also on the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the initial system to 2×2 system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full integration of non-self-similar problem with wave interactions.

  12. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  13. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  14. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  15. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  16. On the leading edge vortex of thin wings

    Science.gov (United States)

    Arredondo, Abel; Viola, Ignazio Maria

    2016-11-01

    On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.

  17. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  18. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  19. A Continuous Deviation-Flow Location Problem for an Alternative-Fuel Refueling Station on a Tree-Like Transportation Network

    Directory of Open Access Journals (Sweden)

    Sang Jin Kweon

    2017-01-01

    Full Text Available Due to the increasing popularity of alternative-fuel (AF vehicles in the last two decades, several models and solution techniques have been recently published in the literature to solve AF refueling station location problems. These problems can be classified depending on the set of candidate sites: when a (finite set of candidate sites is predetermined, the problem is called discrete; when stations can be located anywhere along the network, the problem is called continuous. Most researchers have focused on the discrete version of the problem, but solutions to the discrete version are suboptimal to its continuous counterpart. This study addresses the continuous version of the problem for an AF refueling station on a tree-type transportation network when a portion of drivers are willing to deviate from their preplanned simple paths to receive refueling service. A polynomial time solution approach is proposed to solve the problem. We first present a new algorithm that identifies all possible deviation options for each travel path. Then, an efficient algorithm is used to determine the set of optimal locations for the refueling station that maximizes the total traffic flow covered. A numerical example is solved to illustrate the proposed solution approach.

  20. Design solutions to interface flow problems. A review of groundwater flow and radionuclide migration along sealed radioactive waste repository tunnels. Final report

    International Nuclear Information System (INIS)

    1986-02-01

    All published proposals for the deep level burial of radioactive waste recognise that the access shafts, tunnels and boreholes must be sealed, and that the sealing of these openings plays an integral role in the overall isolation of the waste. Previous studies have identified the interface between the host ground formation and the various sealing materials as potential defects in the overall quality of the waste isolation. The significance of groundwater flow at and near the interface has been assessed for representative conditions in generic repository materials. A range of design options to minimise the significance of flow in the interface zone have been proposed, and the most practical of these options have been selected for quantitative analysis. It has been found that isolated high impermeability collars are of limited value unless a highly effective method of minimising ground disturbance during excavation can be developed. It has also been found that control of radionuclide migration by sorptive processes provides an attractive option. The effect of various geometrical arrangements of sorptive materials has been investigated. Consideration has also been given to the particular conditions in the near field, to the behaviour of weak plastic clay host formations and to the mechanical interaction between the backfill material and the host formation. (author)

  1. Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles

    Science.gov (United States)

    Viieru, Dragos

    Lately, micro air vehicles (MAVs), with a maximum dimension of 15 cm and nominal flight speed around 10m/s, have attracted interest from scientific and engineering communities due to their potential to perform desirable flight missions and exhibit unconventional aerodynamics, control, and structural characteristics, compared to larger flight vehicles. Since MAVs operate at a Reynolds number of 105 or lower, the lift-to-drag ratio is noticeably lower than the larger manned flight vehicles. The light weight and low flight speed cause MAVs to be sensitive to wind gusts. The MAV's small overall dimensions result in low aspect ratio wings with strong wing tip vortices that further complicate the aerodynamics of such vehicles. In this work, two vehicle concepts are considered, namely, fixed wings with flexible structure aimed at passive shape control, and flapping wings aimed at enhancing aerodynamic performance using unsteady flow fields. A finite volume, pressure-based Navier-Stokes solver along with moving grid algorithms is employed to simulate the flow field. The coupled fluid-structural dynamics of the flexible wing is treated using a hyperelastic finite element structural model, the above-mentioned fluid solver via the moving grid technique, and the geometric conservation law. Three dimensional aerodynamics around a low aspect ratio wing for both rigid and flexible structures and fluid-structure interactions for flexible structures have been investigated. In the Reynolds numbers range of 7x10 4 to 9x104, the flexible wing exhibits self-initiated vibrations even in steady free-stream, and is found to have a similar performance to the identical rigid wing for modest angles of attack. For flapping wings, efforts are made to improve our understanding of the unsteady fluid physics related to the lift generation mechanism at low Reynolds numbers (75 to 1,700). Alternative moving grid algorithms, capable of handling the large movements of the boundaries (characteristic

  2. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  3. Application of NEA/CSNI standard problem 3 (blowdown and flow reversal in the IETA-1 rig) to the validation of the RELAP-UK Mk IV code

    International Nuclear Information System (INIS)

    Bryce, W.M.

    1977-10-01

    NEA/CSNI Standard Problem 3 consists of the modelling of an experiment on the IETI-1 rig, in which there is initially flow upwards through a feeder, heated section and riser. The inlet and outlet are then closed and a breach opened at the bottom so that the flow reverses and the rig depressurises. Calculations of this problem by many countries using several computer codes have been reported and show a wide spread of results. The purpose of the study reported here was the following. First, to show the sensitivity of the calculation of Standard Problem 3. Second, to perform an ab initio best estimate calculation using the RELAP-UK Mark IV code with the standard recommended options, and third, to use the results of the sensitivity study to show where tuning of the RELAP-UK Mark IV recommended model options was required. This study has shown that the calculation of Standard Problem 3 is sensitive to model assumptions and that the use of the loss-of-coolant accident code RELAP-UK Mk IV with the standard recommended model options predicts the experimental results very well over most of the transient. (U.K.)

  4. Wake characterization methods of a circulation control wing

    Science.gov (United States)

    El Sayed Mohamed, Y.; Semaan, R.; Sattler, S.; Radespiel, R.

    2017-10-01

    We propose a three-pronged methodology to characterise the wake behind a circulation control wing. The study relies on time-resolved particle image velocimetry (TR-PIV) measurements in a water tunnel for a range of blowing intensities. The first method is the well-known proper orthogonal decomposition (POD). The second tool is a new implementation of the power spectrum. Finally, a modified Q-criterion vortex detection and quantification method is presented. The results show the complementary advantage of the three methods in analysing wake flows with varying conditions.

  5. Modelling Combined Heat Exchange in the Leading Edge of Perspective Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Kandinsky Roman O.

    2015-01-01

    Full Text Available In this paper gas dynamic numerical modelling of leading edge flow is presented and thermal loading parameters are determined. Numerical modelling of combined radiative and conductive heat transfer of the wing edge is carried out, thermal state of structure is given and the results are analyzed.

  6. Pressure measurements on a forward-swept wing-canard configuration

    CSIR Research Space (South Africa)

    Lombardi, G

    1994-03-01

    Full Text Available In a previous analysis of the effect of a fore sweep in the subsonic and transonic regimes it was found that the flow on a forward-swept wing separates first in the root region, suggesting that the inclusion of an aerodynamic device such as a...

  7. Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition

    Directory of Open Access Journals (Sweden)

    Lei Juanmian

    2016-08-01

    Full Text Available This paper investigates the influence of forward-swept wing (FSW positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5. The numerical method based on Reynolds-averaged Navier–Stokes (RANS equations, Spalart–Allmaras (S–A turbulence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pressure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.

  8. DYNAMIC TUNING OF INSECT AND BIRD WINGS AND COPEPOD AND DAPHNIA APPENDAGES

    Science.gov (United States)

    Compressible flow theory suggests, and dimensional analysis and growing empirical evidence confirm that, to aid flight, many insects and even some birds, notably hummingbirds, tune their wing-beat frequency to a corresponding characteristic harmonic frequency of air. The same pro...

  9. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    Science.gov (United States)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  10. On the Effect of Subsonic Trailing Edges on Damping in Roll and Pitch of Thin Sweptback Wings in a Supersonic Stream

    National Research Council Canada - National Science Library

    Ribner, Herbert

    1950-01-01

    The principal effect of subsonic trailing edges on the damping in roll and pitch of thin sweptback wings in a supersonic stream is evaluated with the aid of some conical and quasi-conical flows previously derived...

  11. Teaching the Indirect Method of the Statement of Cash Flows in Introductory Financial Accounting: A Comprehensive, Problem-Based Approach

    Science.gov (United States)

    Brickner, Daniel R.; McCombs, Gary B.

    2004-01-01

    In this article, the authors provide an instructional resource for presenting the indirect method of the statement of cash flows (SCF) in an introductory financial accounting course. The authors focus primarily on presenting a comprehensive example that illustrates the "why" of SCF preparation and show how journal entries and T-accounts can be…

  12. Riemann-problem and level-set approaches for two-fluid flow computations I. Linearized Godunov scheme

    NARCIS (Netherlands)

    B. Koren (Barry); M.R. Lewis; E.H. van Brummelen (Einar); B. van Leer

    2001-01-01

    textabstractA finite-volume method is presented for the computation of compressible flows of two immiscible fluids at very different densities. The novel ingredient in the method is a two-fluid linearized Godunov scheme, allowing for flux computations in case of different fluids (e.g., water and

  13. Wing geometry of Culex coronator (Diptera: Culicidae) from South and Southeast Brazil.

    Science.gov (United States)

    Demari-Silva, Bruna; Suesdek, Lincoln; Sallum, Maria Anice Mureb; Marrelli, Mauro Toledo

    2014-04-09

    The Coronator Group encompasses Culex coronator Dyar & Knab, Culex camposi Dyar, Culex covagarciai Forattini, Culex ousqua Dyar, Culex usquatissimus Dyar, Culex usquatus Dyar and Culex yojoae Strickman. Culex coronator has the largest geographic distribution, occurring in North, Central and South America. Moreover, it is a potential vector-borne mosquito species because females have been found naturally infected with several arboviruses, i.e., Saint Louis Encephalitis Virus, Venezuelan Equine Encephalitis Virus and West Nile Virus. Considering the epidemiological importance of Cx. coronator, we investigated the wing shape diversity of Cx. coronator from South and Southeast Brazil, a method to preliminarily estimate population diversity. Field-collected immature stages of seven populations from a large geographical area in Brazil were maintained in the laboratory to obtain both females and males linked with pupal and/or larval exuviae. For each individual female, 18 landmarks of left wings were marked and digitalized. After Procrustes superimposition, discriminant analysis of shape was employed to quantify wing shape variation among populations. The isometric estimator centroid size was calculated to assess the overall wing size and allometry. Wing shape was polymorphic among populations of Cx. coronator. However, dissimilarities among populations were higher than those observed within each population, suggesting populational differentiation in Cx. coronator. Morphological distances between populations were not correlated to geographical distances, indicating that other factors may act on wing shape and thus, determining microevolutionary patterns in Cx. coronator. Despite the population differentiation, intrapopulational wing shape variability was equivalent among all seven populations. The wing variability found in Cx. coronator populations brings to light a new biological problem to be investigated: the population genetics of Cx. coronator. Because of differences

  14. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  15. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  16. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.

    1995-10-01

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  17. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  18. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  19. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  20. Aerodynamic study on wing and tail small UAV without runways

    Science.gov (United States)

    Soetanto, Maria F.; R., Randy; Alfan M., R.; Dzaldi

    2016-06-01

    This paper consists of the design and analysis of the aerodynamics of the profiles of wing and tail of a Small Unmanned Aerial Vehicle (UAV). UAV is a remote-controlled aircraft that can carry cameras, sensors and even weapons on an area that needed aerial photography or aerial video [1]. The aim of this small UAV is for used in situations where manned flight is considered too risky or difficult, such as fire fighting or surveillance, while the term 'small means the design of this UAV has to be relatively small and portable so that peoples are able to carry it during their operations [CASR Part 101.240: it is a UAV which is has a launch mass greater than 100 grams but less than 100 kilograms] [2]. Computational Fluid Dynamic (CFD) method was used to analyze the fluid flow characteristics around the aerofoil's profiles, such as the lift generation for each angle of attack and longitudinal stability caused by vortex generation on trailing edge. Based on the analysis and calculation process, Clark-Y MOD with aspect ratio, AR = 4.28 and taper ratio, λ = 0.65 was chosen as the wing aerofoil and SD 8020 with AR = 4.8 and λ = 0.5 was chosen as the horizontal tail, while SD 8020 with AR = 1.58 and λ = 0.5 was chosen as the vertical tail. The lift and drag forces generated for wing and tail surfaces can be determined from the Fluent 6.3 simulation. Results showed that until angle of attack of 6 degrees, the formation of flow separation is still going on behind the trailing edge, and the stall condition occurs at 14 degrees angle of attack which is characterized by the occurrence of flow separation at leading edge, with a maximum lift coefficient (Cl) obtained = 1.56. The results of flight tests show that this small UAV has successfully maneuvered to fly, such as take off, some acrobatics when cruising and landing smoothly, which means that the calculation and analysis of aerodynamic aerofoil's profile used on the wing and tail of the Small UAV were able to be validated.