WorldWideScience

Sample records for wing feathers produce

  1. Fluttering wing feathers produce the flight sounds of male streamertail hummingbirds.

    Science.gov (United States)

    Clark, Christopher James

    2008-08-23

    Sounds produced continuously during flight potentially play important roles in avian communication, but the mechanisms underlying these sounds have received little attention. Adult male Red-billed Streamertail hummingbirds (Trochilus polytmus) bear elongated tail streamers and produce a distinctive 'whirring' flight sound, whereas subadult males and females do not. The production of this sound, which is a pulsed tone with a mean frequency of 858 Hz, has been attributed to these distinctive tail streamers. However, tail-less streamertails can still produce the flight sound. Three lines of evidence implicate the wings instead. First, it is pulsed in synchrony with the 29 Hz wingbeat frequency. Second, a high-speed video showed that primary feather eight (P8) bends during each downstroke, creating a gap between P8 and primary feather nine (P9). Manipulating either P8 or P9 reduced the production of the flight sound. Third, laboratory experiments indicated that both P8 and P9 can produce tones over a range of 700-900 Hz. The wings therefore produce the distinctive flight sound, enabled via subtle morphological changes to the structure of P8 and P9.

  2. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: barb ridge modification in relation to feather evolution.

    Science.gov (United States)

    Alibardi, Lorenzo

    2006-07-01

    The present study deals with the cell structure and three-dimensional organization of barb and barbule cells within barb ridges of down feathers and juvenile feathers in the chick embryo. Juvenile feathers represent the second generation of feathers in the wing, and replace down feathers some weeks after hatching. Within the follicle of juvenile feathers, at 16-18 days of embryonic development, barb ridges are more numerous than in down feathers. Barb ridges of juvenile feathers contain more cells in their barbule and axial plates with respect to barb ridges of down feathers. This condition determines the formation of longer barbules inserted in the rami of juvenile feathers than barbules of down feathers. Barb ridges of juvenile feathers merge with the rachidial ridge so that pennaceous feathers are formed. Barbule cells are surrounded by cytoplasmic elongation from barb vane ridge cells located in the axial plate, which constitute most of the axial plate. The degeneration of supportive cells among barbule cells branching from barbs determine the formation of spaces between barbules. The study emphasizes that, in addition to the size of the dermal papilla, it is the length of barb ridges and the infiltration of barb ridge vane cells among barbule cells that determine the size and length of feathers. The knowledge of the cell structure of barb ridges allows understanding not only of how feathers develop but also gives insights into their evolution. Based on changes of the process of barb ridge morphogenesis some hypotheses on the evolution of plumulaceous and pennaceous feathers are presented. Feathers derived from the process of carving-out supportive cells within barb ridges and from the specific pattern of fusion of barb/barbule cells. This process initially produced variably branched down feathers and later, after barb ridge fusion, a rachis. From the modulation in the pattern of barb ridge formation various pennaceous feathers later evolved.

  3. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  4. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880 were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts.

  5. Moult of wing and tail-feathers in the Ostrich, Struthio camelus

    NARCIS (Netherlands)

    Brom, Tim G.; Dekker, René W.R.J.

    1990-01-01

    Structure and moult of wing and tail of a full-grown Ostrich, Struthio camelus, are described. In the wing, at least three feather generations could be recognized. The pattern of moult is more or less symmetrical in both wings and the sequence of feather replacement is not random. The tail consisted

  6. A lifting line model to investigate the influence of tip feathers on wing performance.

    Science.gov (United States)

    Fluck, M; Crawford, C

    2014-11-24

    Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles.

  7. The evolution of avian wing shape and previously unrecognized trends in covert feathering.

    Science.gov (United States)

    Wang, Xia; Clarke, Julia A

    2015-10-07

    Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric-morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa. © 2015 The Author(s).

  8. Feathered non-avian dinosaurs from North America provide insight into wing origins.

    Science.gov (United States)

    Zelenitsky, Darla K; Therrien, François; Erickson, Gregory M; DeBuhr, Christopher L; Kobayashi, Yoshitsugu; Eberth, David A; Hadfield, Frank

    2012-10-26

    Previously described feathered dinosaurs reveal a fascinating record of feather evolution, although substantial phylogenetic gaps remain. Here we report the occurrence of feathers in ornithomimosaurs, a clade of non-maniraptoran theropods for which fossilized feathers were previously unknown. The Ornithomimus specimens, recovered from Upper Cretaceous deposits of Alberta, Canada, provide new insights into dinosaur plumage and the origin of the avian wing. Individuals from different growth stages reveal the presence of a filamentous feather covering throughout life and winglike structures on the forelimbs of adults. The appearance of winglike structures in older animals indicates that they may have evolved in association with reproductive behaviors. These specimens show that primordial wings originated earlier than previously thought, among non-maniraptoran theropods.

  9. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  10. Sexual dimorphism and population differences in structural properties of barn swallow (Hirundo rustica) wing and tail feathers

    OpenAIRE

    Pap, Péter L.; Gergely Osváth; José Miguel Aparicio; Lőrinc Bărbos; Piotr Matyjasiak; Diego Rubolini; Nicola Saino; Vágási, Csongor I.; Orsolya Vincze; Anders Pape Møller

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Fu...

  11. The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light.

    Directory of Open Access Journals (Sweden)

    David W E Hone

    Full Text Available BACKGROUND: The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservation. This taxon has important implications for the origin of flight in birds and the possibility of a four-winged gliding phase. METHODOLOGY/PRINCIPAL FINDINGS: Examination of the specimen under ultraviolet light reveals that these feathers actually reach the body of the animal and were not disassociated from the bones. Instead they may have been chemically altered by the body tissues of the animal meaning that they did not carbonise close into the animal or more likely were covered by other decaying tissue, though evidence of their presence remains. CONCLUSIONS/SIGNIFICANCE: These UV images show that the feathers preserved on the slab are genuinely associated with the skeleton and that their arrangement and orientation is likely correct. The methods used here to reveal hidden features of the specimen may be applicable to other specimens from the fossil beds of Liaoning that produced Microraptor.

  12. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  13. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica Wing and Tail Feathers.

    Directory of Open Access Journals (Sweden)

    Péter L Pap

    Full Text Available Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1 and the sexually dimorphic outermost (Ta6 and monomorphic second outermost (Ta5 tail feathers of barn swallows (Hirundo rustica from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the

  14. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers.

    Science.gov (United States)

    Pap, Péter L; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  15. Relative feather mass indices: are feather masses needed to ...

    African Journals Online (AJOL)

    During the moult of primary wing feathers in birds it is likely that new feather material is being produced at an approximately constant rate if the energetic requirements of the birds are met. In moult regression analyses it is, therefore, desirable to transform moult measurements into a variable based on the amount of new ...

  16. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia

    Directory of Open Access Journals (Sweden)

    Klaas Michael

    2007-11-01

    Full Text Available Abstract Background Owls are known for their silent flight. Even though there is some information available on the mechanisms that lead to a reduction of noise emission, neither the morphological basis, nor the biological mechanisms of the owl's silent flight are known. Therefore, we have initiated a systematic analysis of wing morphology in both a specialist, the barn owl, and a generalist, the pigeon. This report presents a comparison between the feathers of the barn owl and the pigeon and emphasise the specific characteristics of the owl's feathers on macroscopic and microscopic level. An understanding of the features and mechanisms underlying this silent flight might eventually be employed for aerodynamic purposes and lead to a new wing design in modern aircrafts. Results A variety of different feathers (six remiges and six coverts, taken from several specimen in either species, were investigated. Quantitative analysis of digital images and scanning electron microscopy were used for a morphometric characterisation. Although both species have comparable body weights, barn owl feathers were in general larger than pigeon feathers. For both species, the depth and the area of the outer vanes of the remiges were typically smaller than those of the inner vanes. This difference was more pronounced in the barn owl than in the pigeon. Owl feathers also had lesser radiates, longer pennula, and were more translucent than pigeon feathers. The two species achieved smooth edges and regular surfaces of the vanes by different construction principles: while the angles of attachment to the rachis and the length of the barbs was nearly constant for the barn owl, these parameters varied in the pigeon. We also present a quantitative description of several characteristic features of barn owl feathers, e.g., the serrations at the leading edge of the wing, the fringes at the edges of each feather, and the velvet-like dorsal surface. Conclusion The quantitative

  17. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia.

    Science.gov (United States)

    Bachmann, Thomas; Klän, Stephan; Baumgartner, Werner; Klaas, Michael; Schröder, Wolfgang; Wagner, Hermann

    2007-11-21

    Owls are known for their silent flight. Even though there is some information available on the mechanisms that lead to a reduction of noise emission, neither the morphological basis, nor the biological mechanisms of the owl's silent flight are known. Therefore, we have initiated a systematic analysis of wing morphology in both a specialist, the barn owl, and a generalist, the pigeon. This report presents a comparison between the feathers of the barn owl and the pigeon and emphasise the specific characteristics of the owl's feathers on macroscopic and microscopic level. An understanding of the features and mechanisms underlying this silent flight might eventually be employed for aerodynamic purposes and lead to a new wing design in modern aircrafts. A variety of different feathers (six remiges and six coverts), taken from several specimen in either species, were investigated. Quantitative analysis of digital images and scanning electron microscopy were used for a morphometric characterisation. Although both species have comparable body weights, barn owl feathers were in general larger than pigeon feathers. For both species, the depth and the area of the outer vanes of the remiges were typically smaller than those of the inner vanes. This difference was more pronounced in the barn owl than in the pigeon. Owl feathers also had lesser radiates, longer pennula, and were more translucent than pigeon feathers. The two species achieved smooth edges and regular surfaces of the vanes by different construction principles: while the angles of attachment to the rachis and the length of the barbs was nearly constant for the barn owl, these parameters varied in the pigeon. We also present a quantitative description of several characteristic features of barn owl feathers, e.g., the serrations at the leading edge of the wing, the fringes at the edges of each feather, and the velvet-like dorsal surface. The quantitative description of the feathers and the specific structures of owl

  18. Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration.

    Science.gov (United States)

    Clark, Christopher J; Elias, Damian O; Prum, Richard O

    2013-09-15

    Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results.

  19. Feathered Dinosaurs

    Science.gov (United States)

    Norell, Mark A.; Xu, Xing

    2005-01-01

    Recent fossil discoveries from Early Cretaceous rocks of Liaoning Province, China, have provided a wealth of spectacular specimens. Included in these are the remains of several different kinds of small theropod dinosaurs, many of which are extremely closely related to modern birds. Unique preservation conditions allowed soft tissues of some of these specimens to be preserved. Many dinosaur specimens that preserve feathers and other types of integumentary coverings have been recovered. These fossils show a progression of integumentary types from simple fibers to feathers of modern aspect. The distribution of these features on the bodies of these animals is surprising in that some show large tail plumes, whereas others show the presence of wing-like structures on both fore and hind limbs. The phylogenetic distribution of feather types is highly congruent with models of feather evolution developed from developmental biology.

  20. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    Science.gov (United States)

    D'Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D.

    2011-01-01

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel β-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of β-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly. PMID:21307042

  1. Colour-producing [beta]-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    Energy Technology Data Exchange (ETDEWEB)

    D; Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D. (Yale); (Akron); (Texas)

    2012-03-26

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel {beta}-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of {beta}-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly.

  2. The growing feather as a dermal test site: Comparison of leukocyte profiles during the response to Mycobacterium butyricum in growing feathers, wattles, and wing webs.

    Science.gov (United States)

    Erf, G F; Ramachandran, I R

    2016-09-01

    Using the response to Mycobacterium butyricum as the test-immune response, the main goal of this study was to demonstrate the suitability of the growing feather (GF) as a dermal test site and window into in vivo cellular/tissue responses (US-Patent 8,216,551). Using M. butyricum immunized chickens, the specific objectives were to: 1) compare the leukocyte infiltration response to intra-dermally injected M. butyricum in GF, wattles, and wing webs; 2) use GF as the test site to monitor leukocyte response profiles to recall antigen in the same individuals; and 3) gain new knowledge regarding the local response to M. butyricum in chickens. For objective 1, chickens were euthanized for tissue collection at 4 to 6, 24, 48, and 72 h after intra-dermal antigen injection. Leukocyte infiltration profiles were determined using immunochemical and conventional histology. Data from this study established the similarities between the cellular response in GF, wattles, and wing webs and uncovered many advantages of working with GF. For objective 2, antigen was injected into multiple GF per individual. GF were collected before and at 0.25, 1, 2, 3, and 7 d post injection and processed for cell population analysis by flow cytometry. Advantages of the approach used in objective 2 included a technically easier, more comprehensive, and more objective leukocyte profile analysis; same-day data acquisition; and, most importantly, easy, minimally invasive sample collection from the same individual throughout the study. Both studies contributed new knowledge regarding the local cutaneous response to M. butyricum in M. butyricum immunized chickens and confirmed the cell-mediated nature of the immune response to M. butyricum (e.g., elevated levels [P < 0.05] of T cells [CD4+ and CD8+], macrophages and MHC class II+-cells on days one to 3 post injection in M. butyricum- compared to PBS-injected tissues). The use of GF as an "in vivo test tube" to monitor local innate and adaptive immune

  3. Migratory behavior and differential resource allocation between wing and tail feathers in a passerine bird

    NARCIS (Netherlands)

    De la Hera, I.; Pérez-Tris, J.; Tellería, J.L.

    2010-01-01

    Temporal and energetic constraints associated with migration may compromise plumage quality and, ultimately, flight ability in migratory birds. As a consequence, migrants may invest more resources in parts of the plumage that are essential for long, sustained flight (such as the primary wing

  4. Circulation Produced by a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  5. Different scales of spatial segregation of two species of feather mites on the wings of a passerine bird.

    Science.gov (United States)

    Mestre, Alexandre; Mesquita-Joanes, Francesc; Proctor, Heather; Monrós, Juan S

    2011-04-01

    The "condition-specific competition hypothesis" proposes that coexistence of 2 species is possible when spatial or temporal variations in environmental conditions exist and each species responds differently to those conditions. The distribution of different species of feather mites on their hosts is known to be affected by intrinsic host factors such as structure of feathers and friction among feathers during flight, but there is also evidence that external factors such as humidity and temperature can affect mite distribution. Some feather mites have the capacity to move through the plumage rather rapidly, and within-host variation in intensity of sunlight could be one of the cues involved in these active displacements. We analyzed both the within- and between-feather spatial distribution of 2 mite species, Trouessartia bifurcata and Dolichodectes edwardsi , that coexist in flight feathers of the moustached warbler Acrocephalus melanopogon. A complex spatial segregation between the 2 species was observed at 3 spatial levels, i.e., "feather surfaces," "between feathers," and "within feathers." Despite certain overlapping distribution among feathers, T. bifurcata dominated proximal and medial regions on dorsal faces, while D. edwardsi preferred disto-ventral feather areas. An experiment to check the behavioral response of T. bifurcata to sunlight showed that mites responded to light exposure by approaching the feather bases and even leaving its dorsal face. Spatial heterogeneity across the 3 analyzed levels, together with response to light and other particular species adaptations, may have played a role in the coexistence and segregation of feather mites competing for space and food in passerine birds.

  6. A photonic heterostructure produces diverse iridescent colours in duck wing patches.

    Science.gov (United States)

    Eliason, Chad M; Shawkey, Matthew D

    2012-09-07

    The colours of birds are diverse but limited relative to the colours they can perceive. This mismatch may be partially caused by the properties of their colour-production mechanisms. Aside from pigments, several classes of highly ordered nanostructures (thin films, amorphous three-dimensional arrays) can produce a range of colours. However, the variability of any single nanostructural class has rarely been explored. Dabbling ducks are a speciose clade with substantial interspecific variation in the iridescent coloration of their wing patches (specula). Here, we use electron microscopy, spectrophotometry, polarization and refractive index-matching experiments, and optical modelling to examine these colours. We show that, in all species examined, speculum colour is produced by a photonic heterostructure consisting of both a single thin-film of keratin and a two-dimensional hexagonal lattice of melanosomes in feather barbules. Although the range of possible variations of this heterostructure is theoretically broad, only relatively close-packed, energetically stable variants producing more saturated colours were observed, suggesting that ducks are either physically constrained to these configurations or are under selection for the colours that they produce. These data thus reveal a previously undescribed biophotonic structure and suggest that both physical variability and constraints within single nanostructural classes may help explain the broader patterns of colour across Aves.

  7. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  8. Variation in carotenoid–protein interaction in bird feathers produces novel plumage coloration

    Science.gov (United States)

    Mendes-Pinto, Maria M.; LaFountain, Amy M.; Stoddard, Mary Caswell; Prum, Richard O.; Frank, Harry A.; Robert, Bruno

    2012-01-01

    Light absorption by carotenoids is known to vary substantially with the shape or conformation of the pigment molecule induced by the molecular environment, but the role of interactions between carotenoid pigments and the proteins to which they are bound, and the resulting impact on organismal coloration, remain unclear. Here, we present a spectroscopic investigation of feathers from the brilliant red scarlet ibis (Eudocimus ruber, Threskiornithidae), the orange-red summer tanager (Piranga rubra, Cardinalidae) and the violet-purple feathers of the white-browed purpletuft (Iodopleura isabellae, Tityridae). Despite their striking differences in colour, all three of these feathers contain canthaxanthin (β,β-carotene-4,4′-dione) as their primary pigment. Reflectance and resonance Raman (rR) spectroscopy were used to investigate the induced molecular structural changes and carotenoid–protein interactions responsible for the different coloration in these plumage samples. The results demonstrate a significant variation between species in the peak frequency of the strong ethylenic vibration (ν1) peak in the rR spectra, the most significant of which is found in I. isabellae feathers and is correlated with a red-shift in canthaxanthin absorption that results in violet reflectance. Neither polarizability of the protein environment nor planarization of the molecule upon binding can entirely account for the full extent of the colour shift. Therefore, we suggest that head-to-tail molecular alignment (i.e. J-aggregation) of the protein-bound carotenoid molecules is an additional factor. PMID:22832362

  9. Feather loss in laying hens

    OpenAIRE

    Hristov Slavča; Mitrović Sreten; Todorović Mirjana; Đermanović Vladan; Cvetković Ivica

    2006-01-01

    The paper examined the incidence of different forms of feather loss and cannibalism in laying hens aged 74 weeks following moulting and in laying hens following exploitation for a period of one year. The forms of feather loss were considered in detail through a repeated examination of video recordings and they were sorted according to localization - to feather loss on the ventral part of the neck, on the dorsal part of the neck, and on the back between the wings. Feather loss on the ventral p...

  10. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  11. Feather loss in laying hens

    Directory of Open Access Journals (Sweden)

    Hristov Slavča

    2006-01-01

    Full Text Available The paper examined the incidence of different forms of feather loss and cannibalism in laying hens aged 74 weeks following moulting and in laying hens following exploitation for a period of one year. The forms of feather loss were considered in detail through a repeated examination of video recordings and they were sorted according to localization - to feather loss on the ventral part of the neck, on the dorsal part of the neck, and on the back between the wings. Feather loss on the ventral part of the neck was established in 47.9% hens, and in the dorsal part in 16.77% hens of the 167 laying hens aged 74 weeks following moulting. The group of 129 laying hens that were observed following one-year exploitation exhibited considerably more frequent feather loss, in 96.90% hens it was localized on the ventral part of the neck, in 60.47% hens on the dorsal part of the neck, and in 20.16% hens it was localized on the back between the wings. A comparison of the results of the incidence of co localized forms of feather loss in the one and the other group of laying hens using the t-test showed statistically very significant differences. A detailed consideration of the video recordings using the method of sequence analysis did not reveal any cannibalism in either group of laying hens.

  12. Acetylation of chicken feathers for thermoplastic applications.

    Science.gov (United States)

    Hu, Chunyan; Reddy, Narendra; Yan, Kelu; Yang, Yiqi

    2011-10-12

    Poultry feathers are renewable resources, inexpensive and abundantly available, but have limited applications. Although keratin extracted from feathers has been chemically modified, there are no reports on the chemical modification or development of thermoplastics from poultry feathers. Acetylation is an inexpensive and environmentally friendly approach to make biopolymers thermoplastic. Several biopolymers have been acetylated and used to produce fibers, films, and extrudates. In this research, chicken feathers were acetylated, and the structure and properties of the acetylated feathers were studied. Acetylation conditions such as concentration of chemicals and catalyst and time and temperature of acetylation were optimized. Acetylation of feathers was confirmed using Fourier transform infrared (FTIR) and pyrolysis-gas chromatography-mass spectrometry (P-GC-MS). The acetylated feathers were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to understand their thermal behavior. Acetylated feathers were thermoplastic and could be compression molded to form transparent films despite the relatively low percentage of acetyl content.

  13. Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea.

    Science.gov (United States)

    Bernal, C; Diaz, I; Coello, N

    2006-05-01

    A 43-fold increase in keratinase production by Kocuria rosea was achieved in batch fermentation using response surface methodology. Factorial designs were used to select the components of a culture medium that showed a significant effect on keratinase production. An orthogonal-central composite experimental design was performed, with only two (feathers and magnesium) from nine initial compounds being further analyzed by response surface methodology. An optimum keratinase production of 14 886.9 U/mg was obtained with the following medium composition (per litre): NH4Cl, 0.3 g; NaCl, 0.3 g; K2HPO4, 3.2 g; KH2PO4, 4.0 g; MgSO4.6H2O, 0.5 g; yeast extract, 0.1 g; and finely milled feathers, 30 g. The medium was shaken at 400 r/min with an incubation period of 14 h at 40 degrees C.

  14. Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird.

    Directory of Open Access Journals (Sweden)

    Maria Angela Echeverry-Galvis

    Full Text Available A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus, in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual's life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7(th primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in

  15. Quantification of feather structure, wettability and resistance to liquid penetration

    National Research Council Canada - National Science Library

    Srinivasan, Siddarth; Chhatre, Shreerang S; Guardado, Jesus O; Park, Kyoo-Chul; Parker, Andrew R; Rubner, Michael F; McKinley, Gareth H; Cohen, Robert E

    2014-01-01

    .... To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for barbs and barbules...

  16. Transcriptomic analyses of regenerating adult feathers in chicken.

    Science.gov (United States)

    Ng, Chen Siang; Chen, Chih-Kuan; Fan, Wen-Lang; Wu, Ping; Wu, Siao-Man; Chen, Jiun-Jie; Lai, Yu-Ting; Mao, Chi-Tang; Lu, Mei-Yeh Jade; Chen, Di-Rong; Lin, Ze-Shiang; Yang, Kai-Jung; Sha, Yuan-An; Tu, Tsung-Che; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2015-10-06

    Feathers have diverse forms with hierarchical branching patterns and are an excellent model for studying the development and evolution of morphological traits. The complex structure of feathers allows for various types of morphological changes to occur. The genetic basis of the structural differences between different parts of a feather and between different types of feather is a fundamental question in the study of feather diversity, yet there is only limited relevant information for gene expression during feather development. We conducted transcriptomic analysis of five zones of feather morphologies from two feather types at different times during their regeneration after plucking. The expression profiles of genes associated with the development of feather structure were examined. We compared the gene expression patterns in different types of feathers and different portions of a feather and identified morphotype-specific gene expression patterns. Many candidate genes were identified for growth control, morphogenesis, or the differentiation of specific structures of different feather types. This study laid the ground work for studying the evolutionary origin and diversification of feathers as abundant data were produced for the study of feather morphogenesis. It significantly increased our understanding of the complex molecular and cellular events in feather development processes and provided a foundation for future studies on the development of other skin appendages.

  17. Quantification of feather structure, wettability and resistance to liquid penetration

    OpenAIRE

    Srinivasan, Siddarth; Chhatre, Shreerang S.; Guardado, Jesus O.; Park, Kyoo-Chul; ANDREW R. PARKER; Rubner, Michael F; McKinley, Gareth H.; Cohen, Robert E.

    2014-01-01

    Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for ba...

  18. Scaling of avian primary feather length.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather (f(prim contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus. The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: f(prim is proportional to ta(0.78-0.82. The scaling exponent was not significantly different from that predicted (0.86 by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M(1/3 because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.

  19. Fossil evidence for evolution of the shape and color of penguin feathers.

    Science.gov (United States)

    Clarke, Julia A; Ksepka, Daniel T; Salas-Gismondi, Rodolfo; Altamirano, Ali J; Shawkey, Matthew D; D'Alba, Liliana; Vinther, Jakob; DeVries, Thomas J; Baby, Patrice

    2010-11-12

    Penguin feathers are highly modified in form and function, but there have been no fossils to inform their evolution. A giant penguin with feathers was recovered from the late Eocene (~36 million years ago) of Peru. The fossil reveals that key feathering features, including undifferentiated primary wing feathers and broad body contour feather shafts, evolved early in the penguin lineage. Analyses of fossilized color-imparting melanosomes reveal that their dimensions were similar to those of non-penguin avian taxa and that the feathering may have been predominantly gray and reddish-brown. In contrast, the dark black-brown color of extant penguin feathers is generated by large, ellipsoidal melanosomes previously unknown for birds. The nanostructure of penguin feathers was thus modified after earlier macrostructural modifications of feather shape linked to aquatic flight.

  20. Improvement of antioxidant potential in rats consuming feathers ...

    African Journals Online (AJOL)

    user

    2012-01-12

    Jan 12, 2012 ... Key words: Feather protein hydrolysate, Bacillus pumilus, lipids peroxidation, oxidative stress, dietary ingredient. INTRODUCTION. Feathers are produced in large amounts as a waste by- product at poultry-processing industries, reaching millions of tons annually throughout the world. Feathers, consisted.

  1. Barn owl feathers as biomonitors of mercury: sources of variation in sampling procedures.

    Science.gov (United States)

    Roque, Inês; Lourenço, Rui; Marques, Ana; Coelho, João Pedro; Coelho, Cláudia; Pereira, Eduarda; Rabaça, João E; Roulin, Alexandre

    2016-04-01

    Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.

  2. Review: cornification, morphogenesis and evolution of feathers.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-05-01

    Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through

  3. Unzipping bird feathers.

    Science.gov (United States)

    Kovalev, Alexander; Filippov, Alexander E; Gorb, Stanislav N

    2014-03-06

    The bird feather vane can be separated into two parts by pulling the barbs apart. The original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. Because numerous microhooks keep the integrity of the feather, their properties are of great interest for understanding mechanics of the entire feather structure. This study was undertaken to estimate the separation force of single hooklets and their arrays using force measurement of an unzipping feather vane. The hooklets usually separate in some number synchronously (20 on average) with the highest observed separation force of 1.74 mN (average force 0.27 mN), whereas the single hooklet separation force was 14 μN. A simple numerical model was suggested for a better understanding of zipping and unzipping behaviour in feathers. The model demonstrates features similar to those observed in experiments.

  4. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  5. Colored reflections from the black-billed magpie feathers

    Science.gov (United States)

    Vigneron, Jean Pol; Lousse, Virginie

    2006-08-01

    The structural origin of the weak iridescence on some of the dark feathers of the black-billed magpie, Pica pica (Corvidae), is found in the structure of the ribbon-shaped barbules. The cortex of these barbules contains cylindrical holes distributed as the nodes of an hexagonal lattice in the hard layer cross-section. The cortex optical properties are described starting from a photonic-crystal film theory. The yellowish-green coloration of the bird's tail can be explained by the appearance of a reflection band related to the photonic-crystal lowest-lying gap. The bluish reflections from the wings are produced by a more complicated mechanism, involving the presence of a cortex "second gap".

  6. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    Science.gov (United States)

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  7. Isolation, identification, and characterization of a feather-degrading bacterium.

    Science.gov (United States)

    Williams, C M; Richter, C S; Mackenzie, J M; Shih, J C

    1990-06-01

    A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50 degrees C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 10 cells per ml) at 50 degrees C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (10 cells per ml) for 6 days at 50 degrees C. These data indicate a potential biotechnique for degradation and utilization of feather keratin.

  8. Pressure Loads Produced on a Flat-Plate Wing By Rocket Jets Exhausting in a Spanwise Direction Below the Wing and Perpendicular to a Free-Stream Flow of Mach Number 2.0

    Science.gov (United States)

    Falanga, Ralph A.; Janos, Joseph J.

    1961-01-01

    An investigation at a Reynolds number per foot of 14.4 x 10(exp 6) was made to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a free-stream flow of Mach number 2.0. The ranges of the variables involved were (1) nozzle types - one sonic (jet Mach number of 1.00), two supersonic (jet Mach numbers of 1.74 and 3.04),. and one two-dimensional supersonic (jet Mach number of 1.71); (2) vertical nozzle positions beneath the wing of 4, 8 and 12 nozzle-throat diameters; and (3) ratios of rocket-chamber total pressure to free- stream static pressure from 0 to 130. The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased. The chordwise coordinate of the incremental-normal-force center of pressure remained upstream of the nozzle center line for the nozzle positions and pressure ratios of the investigation. The chordwise coordinate approached zero as the jet vertical distance beneath the wing increased. In the spanwise direction there was little change due to varying rocket-jet position and pressure ratio. Some boundary-layer flow separation on the wing was observed for the rocket jets close to the wing and at the higher pressure ratios. The magnitude of the chordwise and spanwise pressure distributions due to jet interference was greatest for rocket jets close to the wing and decreased as the jet was displaced farther from the wing. The design procedure for the rockets used is given in the appendix.

  9. The evolutionary origin of feathers.

    Science.gov (United States)

    Regal, P J

    1975-03-01

    Previous theories relating the origin of feathers to flight or to heat conservation are considered to be inadequate. There is need for a model of feather evolution that gives attention to the function and adaptive advantage of intermediate structures. The present model attempts to reveal and to deal with, the spectrum of complex questions that must be considered. In several genera of modern lizards, scales are elongated in warm climates. It is argued that these scales act as small shields to solar radiation. Experiments are reported that tend to confirm this. Using lizards as a conceptual model, it is argued that feathers likewise arose as adaptations to intense solar radiation. Elongated scales are assumed to have subdivided into finely branched structures that produced a heat-shield, flexible as well as long and broad. Associated muscles had the function of allowing the organism fine control over rates of heat gain and loss: the specialized scales or early feathers could be moved to allow basking in cool weather or protection in hot weather. Subdivision of the scales also allowed a close fit between the elements of the insulative integument. There would have been mechanical and thermal advantages to having branches that interlocked into a pennaceous structure early in evolution, so the first feathers may have been pennaceous. A versatile insulation of movable, branched scales would have been a preadaptation for endothermy. As birds took to the air they faced cooling problems despite their insulative covering because of high convective heat loss. Short glides may have initially been advantageous in cooling an animal under heat stress, but at some point the problem may have shifted from one of heat exclusion to one of heat retention. Endothermy probably evolved in conjunction with flight. If so, it is an unnecessary assumption to postulate that the climate cooled and made endothermy advantageous. The development of feathers is complex and a model is proposed that

  10. Quantification of feather structure, wettability and resistance to liquid penetration.

    Science.gov (United States)

    Srinivasan, Siddarth; Chhatre, Shreerang S; Guardado, Jesus O; Park, Kyoo-Chul; Parker, Andrew R; Rubner, Michael F; McKinley, Gareth H; Cohen, Robert E

    2014-07-06

    Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for barbs and barbules. In this work, we describe a systematic methodology to characterize the quasi-hierarchical topography of bird feathers that is based on contact angle measurements using a set of polar and non-polar probing liquids. Contact angle measurements on dip-coated feathers of six aquatic bird species (including three from the Phalacrocoracidae family) are used to extract two distinguishing structural parameters, a dimensionless spacing ratio of the barbule (D*) and a characteristic length scale corresponding to the spacing of defect sites. The dimensionless spacing parameter can be used in conjunction with a model for the surface topography to enable us to predict a priori the apparent contact angles of water droplets on feathers as well as the water breakthrough pressure required for the disruption of the plastron on the feather barbules. The predicted values of breakthrough depths in water (1-4 m) are towards the lower end of typical diving depths for the aquatic bird species examined here, and therefore a representative feather is expected to be fully wetted in a typical deep dive. However, thermodynamic surface energy analysis based on a simple one-dimensional cylindrical model of the feathers using parameters extracted from the goniometric analysis reveals that for water droplets on feathers of all six species under consideration, the non-wetting 'Cassie-Baxter' composite state represents the global energy minimum of the system. By contrast, for other wetting

  11. Feather loss and feather destructive behavior in pet birds.

    Science.gov (United States)

    Rubinstein, Jonathan; Lightfoot, Teresa

    2014-01-01

    Feather loss in psittacine birds is a common and frustrating clinical presentation. Causes include medical and nonmedical causes of feather loss with and without overt feather destructive behavior. Underlying causes include inappropriate husbandry and housing; parasitic, viral and bacterial infections; metabolic and allergic diseases; and behavioral disorders. Prior to a diagnosis of a behavioral disorder, medical causes of feather loss must be excluded through a complete medical work-up including history, physical examination, and diagnostic testing. This article focuses on common medical and nonmedical causes of feather loss and feather destructive behavior and approaches to diagnosis and treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structural colour: Colour mixing in wing scales of a butterfly

    Science.gov (United States)

    Vukusic, P.; Sambles, J. R.; Lawrence, C. R.

    2000-03-01

    Green coloration in the animal kingdom, as seen in birds' feathers and reptile integument, is often an additive mixture of structurally effected blue and pigmentary yellow. Here we investigate the origin of the bright green coloration of the wing scales of the Indonesian male Papilio palinurus butterfly, the microstructure of which generates an extraordinary combination of both yellow and blue iridescence. The dual colour arises from a modulation imposed on the multilayer, producing the blue component as a result of a previously undiscovered retro-reflection process.

  13. Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects.

    Science.gov (United States)

    Bachmann, Thomas; Wagner, Hermann; Tropea, Cameron

    2012-07-01

    It is a challenge to understand how barn owls (Tyto alba) reduce noise during flight to be able to hunt small mammals by audition. Several specializations of the wing and the wing feathers have been implicated in noise reduction. What has been overlooked so far are the fringes at the inner vanes of remiges. We demonstrated, by using precise imaging techniques combined with morphometric measurements and air-flow studies, that these fringes merge into neighboring feather vanes by gliding into the grooves at the lower wing surface that are formed by parallel-oriented barb shafts. The connection of adjacent feathers results in a smooth lower wing surface and thus reduces sharp and noisy edges. This finding sheds new light on the mechanisms underlying noise reduction of flying owls. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  14. Massive, solidified bone in the wing of a volant courting bird.

    Science.gov (United States)

    Bostwick, Kimberly S; Riccio, Mark L; Humphries, Julian M

    2012-10-23

    One pervasive morphological feature of tetrapods is the pipe-like, often marrow-filled, structure of the limb or long bones. This 'hollow' form maximizes flexural strength and stiffness with the minimum amount of bony material, and is exemplified by truly hollow (air-filled), or pneumatic, humeri in many modern birds. High-resolution microCT scans of the wings of two male club-winged manakins (Machaeropterus deliciosus) uncovered a notable exception to the hollow-tube rule in terrestrial vertebrates; males exhibited solidified ulnae more than three times the volume of birds of comparable body size, with significantly higher tissue mineral densities. The humeri exhibited similar (but less extreme) modifications. Each of the observed osteological modifications increases the overall mass of the bone, running counter to pervasive weight-reducing optimizations for flight in birds. The club-winged manakin is named for a pair of unique wing feathers found in adult males; these enlarged feathers attach directly to the ulna and resonate to produce a distinctive sound used in courtship displays. Given that the observed modifications probably assist in sound production, the club-winged manakin represents a case in which sexual selection by female choice has generated an ecologically 'costly' forelimb morphology, unique in being specialized for sound production at a presumed cost in flight efficiency.

  15. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    Science.gov (United States)

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.

  16. Multiple feather follicle cysts in a Moroseta hen (Gallus gallus).

    Science.gov (United States)

    Mutinelli, Franco; Corro', Michela; Catania, Salvatore; Melchiotti, Erica

    2008-06-01

    An 8-month-old white feathered, black skinned Moroseta hen was presented for examination because of numerous 2 mm- to 30 mm-diameter irregularly shaped, hard nodules in the skin of the head, wings, back, and abdomen. The nodules were confined to the skin and did not involve subcutaneous tissues. Nodules consisted of dilated feather follicles packed with a caseous tan-to-pale-yellow material admixed with feather remnants. Histologically, affected feather follicles were markedly dilated and filled with laminated keratin debris. Necrosis of the epidermis and perifollicular lymphocyte infiltration was also present. Bacteriologic investigation of internal organs was negative, while secondary bacteria, Proteus spp. and Bacillus spp., were isolated from skin nodules. A concomitant lice infestation of Menopon spp., as well as leg mange caused by Cnemidocoptes spp., were also present. These bacterial isolates and parasites were not related to the disease condition. The condition observed was differentiated from benign feather follicle tumors, and a diagnosis of multiple feather follicle cysts was made. In addition, a breed predisposition was hypothesized.

  17. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  18. Value-added products from chicken feather fiber and protein

    Science.gov (United States)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between

  19. Carbon Fibers from Chicken Feather Keratin

    Science.gov (United States)

    Miller, Melissa E.; Wool, Richard

    2006-03-01

    As the availability of synthetic and fossil-fuel based resources is becoming limited, bio-based materials offer an environmentally friendly alternative. Chicken feathers remain a huge agricultural waste. The feathers are comprised of approximately 97% keratin, but are currently used only to enrich animal feed. However, this usage is becoming a problem with the spread of diseases such as Bovine Spongiform Encephalopathy, commonly called ``Mad Cow Disease.'' The hollow, microcrystalline, oriented keratin feather fibers offer a novel, low cost approach to producing carbon fibers through controlled pyrolysis. Carbonized feather fibers (CFF) were prepared by first heating to 225 ^oC (below the melting point)in N2 for 26 hours to crosslink and stabilize the fiber structure; then carbonization occurred by increasing the temperature to 450 ^oC for two more hours. The resulting CFF were hollow, stiff and strong and had an affine 80% weight loss, which is near the theoretical value for the C-content of keratin. Initial studies showed that a composite with the CFF and an epoxidized soybean oil (AESO) gave an improved fiber modulus ECFF of order 13.5--66.1 GPa. With continued research, the goals are to increase the stiffness of the feathers to 100 GPa, while increasing the strength in the range of 5-10 GPa.

  20. Microscopic identification of feathers and feather fragments of Palearctic birds

    NARCIS (Netherlands)

    Brom, Tim G.

    1986-01-01

    Using light microscopy, a method has been developed for the identification of feathers and feather fragments collected after collisions between birds and aircraft. Characters of the downy barbules of feathers are described for 22 orders of birds. The use of a key in combination with the macroscopic

  1. The colour of fossil feathers

    OpenAIRE

    Vinther, Jakob; Briggs, Derek E. G.; Prum, Richard O; Saranathan, Vinodkumar

    2008-01-01

    Feathers are complex integumentary appendages of birds and some other theropod dinosaurs. They are frequently coloured and function in camouflage and display. Previous investigations have concluded that fossil feathers are preserved as carbonized traces composed of feather-degrading bacteria. Here, an investigation of a colour-banded feather from the Lower Cretaceous Crato Formation of Brazil revealed that the dark bands are preserved as elongate, oblate carbonaceous bodies 1–2 μm long, where...

  2. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.

    Science.gov (United States)

    Nudds, Robert L; Dyke, Gareth J

    2010-05-14

    The fossil birds Archaeopteryx and Confuciusornis had feathered wings resembling those of living birds, but their flight capabilities remain uncertain. Analysis of the rachises of their primary feathers shows that the rachises were much thinner and weaker than those of modern birds, and thus the birds were not capable of flight. Only if the primary feather rachises were solid in cross-section (the strongest structural configuration), and not hollow as in living birds, would flight have been possible. Hence, if Archaeopteryx and Confuciusornis were flapping flyers, they must have had a feather structure that was fundamentally different from that of living birds. Alternatively, if they were only gliders, then the flapping wing stroke must have appeared after the divergence of Confuciusornis, likely within the enantiornithine or ornithurine radiations.

  3. Failure of flight feathers under uniaxial compression.

    Science.gov (United States)

    Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G

    2017-09-01

    Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  5. Gliding Swifts Attain Laminar Flow over Rough Wings

    NARCIS (Netherlands)

    Lentink, D.; De Kat, R.

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane

  6. Structural origin of the colored reflections from the black-billed magpie feathers.

    Science.gov (United States)

    Vigneron, Jean Pol; Colomer, Jean-François; Rassart, Marie; Ingram, Abigail L; Lousse, Virginie

    2006-02-01

    The structural origin of the weak iridescence on some of the dark feathers of the black-billed magpie, Pica pica (Corvidae), is found in the structure of the ribbon-shaped barbules. The cortex of these barbules contains cylindrical holes distributed as the nodes of an hexagonal lattice in the hard layer cross section. The cortex optical properties are described starting from a photonic-crystal film theory. The yellowish-green coloration of the bird's tail can be explained by the appearance of a reflection band related to the photonic-crystal lowest-lying gap. The bluish reflections from the wings are produced by a more complicated mechanism, involving the presence of a cortex second gap."

  7. Structural origin of the colored reflections from the black-billed magpie feathers

    Science.gov (United States)

    Pol Vigneron, Jean; Colomer, Jean-François; Rassart, Marie; Ingram, Abigail L.; Lousse, Virginie

    2006-02-01

    The structural origin of the weak iridescence on some of the dark feathers of the black-billed magpie, Pica pica (Corvidae), is found in the structure of the ribbon-shaped barbules. The cortex of these barbules contains cylindrical holes distributed as the nodes of an hexagonal lattice in the hard layer cross section. The cortex optical properties are described starting from a photonic-crystal film theory. The yellowish-green coloration of the bird’s tail can be explained by the appearance of a reflection band related to the photonic-crystal lowest-lying gap. The bluish reflections from the wings are produced by a more complicated mechanism, involving the presence of a cortex second gap.”

  8. Moulting tail feathers in a juvenile oviraptorisaur.

    Science.gov (United States)

    Prum, Richard O

    2010-11-04

    Xu et al. describe the extraordinarily preserved feathers from two subadults of the oviraptorisaur Similicaudipteryx from the Yixian Formation of Liaoning, China. The preserved tail feathers of the juvenile specimen (STM4.1) show a morphology not previously observed in any fossil feathers. The tail feathers of an older, immature specimen (STM22-6) show a typical closed pennaceous structure with a prominent, planar vane. I propose that the feathers of the tail of the juvenile specimen are not a specialized feather generation, but fossilized 'pin feathers' or developing feather germs.

  9. Reprint of: Trouble on takeoff: Crude oil on feathers reduces escape performance of shorebirds.

    Science.gov (United States)

    Maggini, Ivan; Kennedy, Lisa V; Elliott, Kyle H; Dean, Karen M; MacCurdy, Robert; Macmillan, Alexander; Pritsos, Chris A; Guglielmo, Christopher G

    2017-12-01

    The ability to takeoff quickly and accelerate away from predators is crucial to bird survival. Crude oil can disrupt the fine structure and function of feathers, and here we tested for the first time how small amounts of oil on the trailing edges of the wings and tail of Western sandpipers (Calidris mauri) affected takeoff flight performance. In oiled birds, the distance travelled during the first 0.4s after takeoff was reduced by 29%, and takeoff angle was decreased by 10° compared to unoiled birds. Three-axis accelerometry indicated that oiled sandpipers produced less mechanical power output per wingbeat during the initial phase of flight. Slower and lower takeoff would make oiled birds more likely to be targeted and captured by predators, reducing survival and facilitating the exposure of predators to oil. Whereas the direct mortality of heavily-oiled birds is often obvious and can be quantified, our results show that there are significant sub-lethal effects of small amounts crude oil on feathers, which must be considered in natural resource injury assessments for birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Trouble on takeoff: Crude oil on feathers reduces escape performance of shorebirds.

    Science.gov (United States)

    Maggini, Ivan; Kennedy, Lisa V; Elliott, Kyle H; Dean, Karen M; MacCurdy, Robert; Macmillan, Alexander; Pritsos, Chris A; Guglielmo, Christopher G

    2017-07-01

    The ability to takeoff quickly and accelerate away from predators is crucial to bird survival. Crude oil can disrupt the fine structure and function of feathers, and here we tested for the first time how small amounts of oil on the trailing edges of the wings and tail of Western sandpipers (Calidris mauri) affected takeoff flight performance. In oiled birds, the distance travelled during the first 0.4s after takeoff was reduced by 29%, and takeoff angle was decreased by 10° compared to unoiled birds. Three-axis accelerometry indicated that oiled sandpipers produced less mechanical power output per wingbeat during the initial phase of flight. Slower and lower takeoff would make oiled birds more likely to be targeted and captured by predators, reducing survival and facilitating the exposure of predators to oil. Whereas the direct mortality of heavily-oiled birds is often obvious and can be quantified, our results show that there are significant sub-lethal effects of small amounts crude oil on feathers, which must be considered in natural resource injury assessments for birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Isolation, Identification, and Characterization of a Feather-Degrading Bacterium †

    Science.gov (United States)

    Williams, C. M.; Richter, C. S.; MacKenzie, J. M.; Shih, Jason C. H.

    1990-01-01

    A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50°C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 109 cells per ml) at 50°C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (107 cells per ml) for 6 days at 50°C. These data indicate a potential biotechnique for degradation and utilization of feather keratin. Images PMID:16348199

  12. The colour of fossil feathers.

    Science.gov (United States)

    Vinther, Jakob; Briggs, Derek E G; Prum, Richard O; Saranathan, Vinodkumar

    2008-10-23

    Feathers are complex integumentary appendages of birds and some other theropod dinosaurs. They are frequently coloured and function in camouflage and display. Previous investigations have concluded that fossil feathers are preserved as carbonized traces composed of feather-degrading bacteria. Here, an investigation of a colour-banded feather from the Lower Cretaceous Crato Formation of Brazil revealed that the dark bands are preserved as elongate, oblate carbonaceous bodies 1-2 microm long, whereas the light bands retain only relief traces on the rock matrix. Energy dispersive X-ray analysis showed that the dark bands preserve a substantial amount of carbon, whereas the light bands show no carbon residue. Comparison of these oblate fossil bodies with the structure of black feathers from a living bird indicates that they are the eumelanin-containing melanosomes. We conclude that most fossil feathers are preserved as melanosomes, and that the distribution of these structures in fossil feathers can preserve the colour pattern in the original feather. The discovery of preserved melanosomes opens up the possibility of interpreting the colour of extinct birds and other dinosaurs.

  13. Tracking Seasonal Habitats Using Carbon and Nitrogen Stable Isotopes of Osprey Primary Flight Feathers

    Science.gov (United States)

    Velinsky, D.; Zelanko, P.; Rice, N.

    2011-12-01

    The majority of bird migration studies use the latitudinal precipitation effect of hydrogen and oxygen stable isotopes of feathers to determine wintering and breeding grounds. Few studies have considered carbon and nitrogen stable isotopes to accomplish the same goal; exploiting the variation in dietary constitutes throughout yearly migration cycles. Also, there is no standard procedure of feather sampling; some use body, while others use wing feathers. This sampling discrepancy is not an issue for most migratory species since the majority of birds molt completely in one location, i.e. wintering verse breeding ground. Large birds of prey however, have a continuous molt that may last years, growing feathers on their breeding and wintering grounds. Therefore, a stable isotopic study of Osprey could not randomly sample feathers because it is impossible to know where individual feathers were grown. Here we present an in depth study of carbon and nitrogen stable isotopes from Mid-Atlantic Osprey primary flight feathers. Not only did we observe three signatures indicating the breeding ground and two distinct wintering grounds, we recorded dietary seasonality shifts within 2 to 3 year olds that remain on the wintering grounds for multiple years.

  14. Development, regeneration, and evolution of feathers.

    Science.gov (United States)

    Chen, Chih-Feng; Foley, John; Tang, Pin-Chi; Li, Ang; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2015-01-01

    The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.

  15. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    It has long been noted that high temperature produces great variation in wing forms of the vestigial mutant of Drosophila. Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the presumptive wing blade or costal region of the wing disc.

  16. Coloration strategies in peacock feathers

    OpenAIRE

    Zi, Jian; Yu, Xindi; Li, Yizhou; Hu, Xinhua; Xu, Chun; Wang, Xingjun; Liu, Xiaohan; Fu, Rongtang

    2003-01-01

    We report the mechanism of color production in peacock feathers. We find that the cortex in differently colored barbules, which contains a 2D photonic-crystal structure, is responsible for coloration. Simulations reveal that the photonic-crystal structure possesses a partial photonic bandgap along the direction normal to the cortex surface, for frequencies within which light is strongly reflected. Coloration strategies in peacock feathers are very ingenious and simple: controlling the lattice...

  17. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  18. Energetics and optimum motion of oscillating lifting surfaces. [energy losses of rigid wings

    Science.gov (United States)

    Ahmadi, A. R.; Widnall, S. E.

    1983-01-01

    Low-frequency, unsteady, lifting-line theory is used to characterize the energetics and optimum motion of an unswept rigid wing oscillating harmonically in an inviscid, incompressible flow. The energetics calculations account for the leading edge suction force, the power absorbed in the wing oscillations, and the energy loss rate produced by vortex shedding. Optimization is achieved by minimizing the average energy loss rate in relation to a given thrust, and a unique solution is found in the three dimensional case for low, reduced frequencies. The two-dimensional solution is nonunique, a condition which is examined in terms of the normal modes of the energy loss rate matrix. An invisible mode with a hydrodynamic efficiency of 100 pct is obtained in the two-dimensional case, causing the nonuniqueness of the solution by yielding no fixed positive thrust through perfect unsteady feathering.

  19. Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird.

    Science.gov (United States)

    Hingee, Mae; Magrath, Robert D

    2009-12-07

    Animals often form groups to increase collective vigilance and allow early detection of predators, but this benefit of sociality relies on rapid transfer of information. Among birds, alarm calls are not present in all species, while other proposed mechanisms of information transfer are inefficient. We tested whether wing sounds can encode reliable information on danger. Individuals taking off in alarm fly more quickly or ascend more steeply, so may produce different sounds in alarmed than in routine flight, which then act as reliable cues of alarm, or honest 'index' signals in which a signal's meaning is associated with its method of production. We show that crested pigeons, Ocyphaps lophotes, which have modified flight feathers, produce distinct wing 'whistles' in alarmed flight, and that individuals take off in alarm only after playback of alarmed whistles. Furthermore, amplitude-manipulated playbacks showed that response depends on whistle structure, such as tempo, not simply amplitude. We believe this is the first demonstration that flight noise can send information about alarm, and suggest that take-off noise could provide a cue of alarm in many flocking species, with feather modification evolving specifically to signal alarm in some. Similar reliable cues or index signals could occur in other animals.

  20. Wing Whiteness as an Indicator of Age, Immunocompetence, and Testis Size in the Eurasian Black-Billed Magpie (Pica pica)

    National Research Council Canada - National Science Library

    Guillermo Blanco; Juan A. Fargallo

    2013-01-01

    ... them. We investigated covariation of the white wing patch of the Eurasian Black-billed Magpie (Pica pica) with age, sex, feather wear, spleen size, parasite infection, and testis size to evaluate whether this trait is indicative of individual quality...

  1. Bioplastics from feather quill.

    Science.gov (United States)

    Ullah, Aman; Vasanthan, Thavaratnam; Bressler, David; Elias, Anastasia L; Wu, Jianping

    2011-10-10

    Poultry feather quills have been extruded in a twin screw extruder with sodium sulfite treatment as a reducing agent. The effect of four different plasticizers (ethylene glycol, propylene glycol, glycerol, and diethyl tartrate) on the thermoplastic properties was then investigated. Conformational changes and plasticizer-protein interactions in the extruded resins were assessed by Fourier transform infrared spectroscopy (FTIR), while viscoelastic behavior of the quill keratin plasticized with different plasticizers was investigated by dynamic mechanical analysis (DMA). Differential scanning calorimetry (DSC) was used to determine the effect of different plasticizers on protein denaturation. Thermal degradation patterns of the extrudates were studied by thermogravimetric analysis (TGA). The effect of plasticizers on the mechanical properties of resins was also assessed by tensile strength measurements. Results indicated that ethylene glycol was able to interact more effectively with quill keratin at the molecular level, exhibiting only one sharp glass transition, better mechanical properties, and higher transparency compared to other plasticized resins. The two phases found in glycerol plasticized material were attributed to glycerol-rich and protein-rich zones. Propylene glycol and diethyl tartrate exhibited lower H-bonding interactions and showed wide transition regions in DMA profiles during heating, suggesting weak and heterogeneous interactions between quill keratin and these plasticizers.

  2. Quantifying variation in δ13C and δ15N isotopes within and between feathers and individuals: Is one sample enough?

    Science.gov (United States)

    Grecian, W James; McGill, Rona A R; Phillips, Richard A; Ryan, Peter G; Furness, Robert W

    Studies of avian migration increasingly use stable isotope analysis to provide vital trophic and spatial markers. However, when interpreting differences in stable isotope values of feathers, many studies are forced to make assumptions about the timing of moult. A fundamental question remains about the consistency of these values within and between feathers from the same individual. In this study, we examine variation in carbon and nitrogen isotopes by sub-sampling feathers collected from the wings of adults of two small congeneric petrel species, the broad-billed Pachyptila vittata and Antarctic prion P. desolata. Broad-billed prion feather vane material was enriched in 15N compared to feather rachis material, but there was no detectable difference in δ13C. Comparison of multiple samples taken from Antarctic prion feathers indicated subtle difference in isotopes; rachis material was enriched in 13C compared to vane material, and there were differences along the length of the feather, with samples from the middle and tip of the feather depleted in 15N compared to those from the base. While the greatest proportion of model variance was explained by differences between feathers and individuals, the magnitude of these within-feather differences was up to 0.5 ‰ in δ15N and 0.8 ‰ in δ13C. We discuss the potential drivers of these differences, linking isotopic variation to individual-level dietary differences, movement patterns and temporal dietary shifts. A novel result is that within-feather differences in δ13C may be attributed to differences in keratin structure within feathers, suggesting further work is required to understand the role of different amino acids. Our results highlight the importance of multiple sampling regimes that consider both within- and between-feather variation in studies using stable isotopes.

  3. Improvement of antioxidant potential in rats consuming feathers ...

    African Journals Online (AJOL)

    The in vitro and in vivo antioxidant activities of feathers protein hydrolysate (FPH), produced by fermentation with the keratinolytic bacterium, Bacillus pumilus strain A1, were evaluated. The antioxidant activities of FPH, evaluated using DNA nicking and ferrozine assays, demonstrate that FPH present an important ...

  4. The Prospect of Hydrolyzed Feather Meal as Ruminant Feeds Through Protein Quality Improvement by Microbes

    Directory of Open Access Journals (Sweden)

    CH Prayitno

    2003-01-01

    Full Text Available The waste of the broiler processing (feather is a potential source for animal feed. However the presence of keratins cause limited of feather use. Before using, therefore, feather must be treated to hydrolyze cysteine disulfide bound dominating keratins protein. Enzymatic (biological treatment using microbes will produce specific feather hydrolyzed and does not have negative impact on environment. The research objected to get the microbes which degradated selected keratins, improve protein quality of feather meal and find out the best ration formulation true in vitro the basic information to formulate in vivo ration. The research has been done in Laboratory of Animal Feedstuff Faculty of Animal Science UNSOED for eight months. Fermentation trial was done on liquid media with bath system. In vitro trial used of Tilley and Terry methods with parameter observe was dry matter digestibility, organic matter digestibility, protein degradation, total VFA and solubility in pepsin. Based on all parameter, on fermentation trial with Bacillus licheniformis decides broiler chicken feather had good prospect to be developed on feed protein source. In vitro trial recommended ration with formulation of fermented feather meal concentrate (15 percent, soybeans meal (5 percent, rice bran (20 percent, molasses (4 percent, mineral mix (1 percent, with forage: concentrate ratio 40 : 60 could be used as in vivo ration. (Animal Production 5(1: 19-24 (2003   Key words : Hydrolyze, Feather, Keratin, Digestibility, Ruminant

  5. Exogenous and endogenous corticosterone alter feather quality.

    Science.gov (United States)

    DesRochers, David W; Reed, J Michael; Awerman, Jessica; Kluge, Jonathan A; Wilkinson, Julia; van Griethuijsen, Linnea I; Aman, Joseph; Romero, L Michael

    2009-01-01

    We investigated how exogenous and endogenous glucocorticoids affect feather replacement in European starlings (Sturnus vulgaris) after approximately 56% of flight feathers were removed. We hypothesized that corticosterone would retard feather regrowth and decrease feather quality. After feather regrowth began, birds were treated with exogenous corticosterone or sham implants, or endogenous corticosterone by applying psychological or physical (food restriction) stressors. Exogenous corticosterone had no impact on feather length and vane area, but rectrices were lighter than controls. Exogenous corticosterone also decreased inter-barb distance for all feathers and increased barbule number for secondaries and rectrices. Although exogenous corticosterone had no affect on rachis tensile strength and stiffness, barbicel hooking strength was reduced. Finally, exogenous corticosterone did not alter the ability of Bacillus licheniformis to degrade feathers or affect the number of feathers that failed to regrow. In contrast, endogenous corticosterone via food restriction resulted in greater inter-barb distances in primaries and secondaries, and acute and chronic stress resulted in greater inter-barb distances in rectrices. Food-restricted birds had significantly fewer barbules in primaries than chronic stress birds and weaker feathers compared to controls. We conclude that, although exogenous and endogenous corticosterone had slightly different effects, some flight feathers grown in the presence of high circulating corticosterone are lighter, potentially weaker, and with altered feather micro-structure.

  6. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling

    Science.gov (United States)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2014-01-01

    Birds-of-paradise are nature’s prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes’ parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system. PMID:24591592

  7. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling.

    Science.gov (United States)

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-03-25

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system.

  8. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  9. Colourful parrot feathers resist bacterial degradation

    Science.gov (United States)

    Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.

    2011-01-01

    The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430

  10. Eagle Feathers, the Highest Honor.

    Science.gov (United States)

    Beaverhead, Pete

    Following his own advice that elders of the tribe share their knowledge so that "the way of the Indians would come back to the children of today," Pete Beaverhead (1899-1975) tells of the traditions of respect and honor surrounding the eagle feather in a booklet illustrated with black and white drawings. The eagle is an Indian symbol of…

  11. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling

    NARCIS (Netherlands)

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-01-01

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced

  12. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis.

    Science.gov (United States)

    Stefan, Laura M; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C; McCoy, Karen D; González-Solís, Jacob

    2015-01-01

    According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory's shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in

  13. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis.

    Directory of Open Access Journals (Sweden)

    Laura M Stefan

    Full Text Available According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory's shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands. We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil, we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a

  14. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird.

    Directory of Open Access Journals (Sweden)

    Csongor I Vágási

    Full Text Available BACKGROUND: The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The 'molt constraint' hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored. METHODOLOGY/PRINCIPAL FINDINGS: The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs. However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent. CONCLUSIONS/SIGNIFICANCE: This study shows that sedentary birds might face evolutionary costs because of the molt rate-feather quality conflict. This is the first study to experimentally demonstrate that (1 molt rate affects several aspects of body feathers as well as flight feathers and (2 the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.

  15. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  16. Keratin Production by Decomposing Feather Waste Using Some Local Bacillus spp. Isolated from Poultry Soil

    Directory of Open Access Journals (Sweden)

    Mojtaba Salouti

    2016-12-01

    Full Text Available Background: Feather waste is generated in large amounts as a by-product of commercial poultry processing. The main component of feather is keratin. The main purpose of this study was to identify Bacillus spp. (the keratinolytic bacteria that are able to degrade the feather for producing keratin. Methods: Bacillus spp. Were isolated from the waste of poultries located in Miyaneh city. The bacteria were grown on basal medium containing 1% hen feather as the sole source of carbon ,nitrogen, sulfur and energy at 27ºC for 7 days. Then,the isolates capable of feather degrading were identified. The Bradford method was used to assay the production of keratin in the feather samples. Different pH and temperatures were studied to determine the best conditions for production of keratinase enzyme. Results: Seven Bacillus spp. including: B. pumilis, B. subtilis, B. firmus, B. macerance, B. popilliae, B. lentimorbus and B. larvae were found to be able to degrade the feather with different abilities. Conclusion: B. subtilis was found to be most productive isolate for keratinase enzyme production.

  17. A Mesozoic bird from Gondwana preserving feathers.

    Science.gov (United States)

    Carvalho, Ismar de Souza; Novas, Fernando E; Agnolín, Federico L; Isasi, Marcelo P; Freitas, Francisco I; Andrade, José A

    2015-06-02

    The fossil record of birds in the Mesozoic of Gondwana is mostly based on isolated and often poorly preserved specimens, none of which has preserved details on feather anatomy. We provide the description of a fossil bird represented by a skeleton with feathers from the Early Cretaceous of Gondwana (NE Brazil). The specimen sheds light on the homology and 3D structure of the rachis-dominated feathers, previously known from two-dimensional slabs. The rectrices exhibit a row of rounded spots, probably corresponding to some original colour pattern. The specimen supports the identification of the feather scapus as the rachis, which is notably robust and elliptical in cross-section. In spite of its juvenile nature, the tail plumage resembles the feathering of adult individuals of modern birds. Documentation of rachis-dominated tail in South American enantiornithines broadens the paleobiogeographic distribution of basal birds with this tail feather morphotype, up to now only reported from China.

  18. Applying chemical stimuli on feathers to reduce feather pecking in laying hens

    NARCIS (Netherlands)

    Harlander Matauschek, A.; Rodenburg, T.B.

    2011-01-01

    Recent studies have shown that spraying a distasteful substance (quinine) on a bird's feather cover reduced short-term feather pecking. The present experiment evaluated if other substances offer similar or better protection against feather pecking. One hundred and twenty birds were divided into 12

  19. Allometry of the duration of flight feather molt in birds.

    Science.gov (United States)

    Rohwer, Sievert; Ricklefs, Robert E; Rohwer, Vanya G; Copple, Michelle M

    2009-06-01

    We used allometric scaling to explain why the regular replacement of the primary flight feathers requires disproportionately more time for large birds. Primary growth rate scales to mass (M) as M(0.171), whereas the summed length of the primaries scales almost twice as fast (M(0.316)). The ratio of length (mm) to rate (mm/day), which would be the time needed to replace all the primaries one by one, increases as the 0.14 power of mass (M(0.316)/M(0.171) = M(0.145)), illustrating why the time required to replace the primaries is so important to life history evolution in large birds. Smaller birds generally replace all their flight feathers annually, but larger birds that fly while renewing their primaries often extend the primary molt over two or more years. Most flying birds exhibit one of three fundamentally different modes of primary replacement, and the size distributions of birds associated with these replacement modes suggest that birds that replace their primaries in a single wave of molt cannot approach the size of the largest flying birds without first transitioning to a more complex mode of primary replacement. Finally, we propose two models that could account for the 1/6 power allometry between feather growth rate and body mass, both based on a length-to-surface relationship that transforms the linear, cylindrical growing region responsible for producing feather tissue into an essentially two-dimensional structure. These allometric relationships offer a general explanation for flight feather replacement requiring disproportionately more time for large birds.

  20. Allometry of the duration of flight feather molt in birds.

    Directory of Open Access Journals (Sweden)

    Sievert Rohwer

    2009-06-01

    Full Text Available We used allometric scaling to explain why the regular replacement of the primary flight feathers requires disproportionately more time for large birds. Primary growth rate scales to mass (M as M(0.171, whereas the summed length of the primaries scales almost twice as fast (M(0.316. The ratio of length (mm to rate (mm/day, which would be the time needed to replace all the primaries one by one, increases as the 0.14 power of mass (M(0.316/M(0.171 = M(0.145, illustrating why the time required to replace the primaries is so important to life history evolution in large birds. Smaller birds generally replace all their flight feathers annually, but larger birds that fly while renewing their primaries often extend the primary molt over two or more years. Most flying birds exhibit one of three fundamentally different modes of primary replacement, and the size distributions of birds associated with these replacement modes suggest that birds that replace their primaries in a single wave of molt cannot approach the size of the largest flying birds without first transitioning to a more complex mode of primary replacement. Finally, we propose two models that could account for the 1/6 power allometry between feather growth rate and body mass, both based on a length-to-surface relationship that transforms the linear, cylindrical growing region responsible for producing feather tissue into an essentially two-dimensional structure. These allometric relationships offer a general explanation for flight feather replacement requiring disproportionately more time for large birds.

  1. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  2. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  3. Birds of a Feather: Neanderthal Exploitation of Raptors and Corvids

    Science.gov (United States)

    Finlayson, Clive; Brown, Kimberly; Blasco, Ruth; Rosell, Jordi; Negro, Juan José; Finlayson, Geraldine; Sánchez Marco, Antonio; Giles Pacheco, Francisco; Rodríguez Vidal, Joaquín; Carrión, José S.; Fa, Darren A.; Rodríguez Llanes, José M.

    2012-01-01

    The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1) does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2) did Middle (associated with Neanderthals) and Upper Palaeolithic (associated with modern humans) sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3) is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4) was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to those of

  4. Birds of a feather: Neanderthal exploitation of raptors and corvids.

    Directory of Open Access Journals (Sweden)

    Clive Finlayson

    Full Text Available The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1 does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2 did Middle (associated with Neanderthals and Upper Palaeolithic (associated with modern humans sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3 is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4 was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to

  5. Birds of a feather: Neanderthal exploitation of raptors and corvids.

    Science.gov (United States)

    Finlayson, Clive; Brown, Kimberly; Blasco, Ruth; Rosell, Jordi; Negro, Juan José; Bortolotti, Gary R; Finlayson, Geraldine; Sánchez Marco, Antonio; Giles Pacheco, Francisco; Rodríguez Vidal, Joaquín; Carrión, José S; Fa, Darren A; Rodríguez Llanes, José M

    2012-01-01

    The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1) does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2) did Middle (associated with Neanderthals) and Upper Palaeolithic (associated with modern humans) sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3) is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4) was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to those of

  6. Premature feather loss among common tern chicks in Ontario: the return of an enigmatic developmental anomaly

    Directory of Open Access Journals (Sweden)

    Jennifer M. Arnold

    2016-05-01

    Full Text Available In July 2014, we observed premature feather loss (PFL among non-sibling, common tern Sterna hirundo chicks between two and four weeks of age at Gull Island in northern Lake Ontario, Canada. Rarely observed in wild birds, to our knowledge PFL has not been recorded in terns since 1974, despite the subsequent banding of hundreds of thousands of tern chicks across North America alone. The prevalence, 5% of chicks (9/167, and extent of feather loss we report is more extreme than in previous reports for common terns but was not accompanied by other aberrant developmental or physical deformities. Complete feather loss from all body areas (wing, tail, head and body occurred over a period of a few days but all affected chicks appeared vigorous and quickly began to grow replacement feathers. All but one chick (recovered dead and submitted for post-mortem most likely fledged 10–20 days after normal fledging age. We found no evidence of feather dystrophy or concurrent developmental abnormalities unusual among affected chicks. Thus, the PFL we observed among common terns in 2014 was largely of unknown origin. There was striking temporal association between the onset of PFL and persistent strong southwesterly winds that caused extensive mixing of near-shore surface water with cool, deep lake waters. One hypothesis is that PFL may have been caused by unidentified pathogens or toxins welling up from these deep waters along the shoreline but current data are insufficient to test this. PFL was not observed among common terns at Gull Island in 2015, although we did observe similar feather loss in a herring gull Larus argentatus chick in that year. Comparison with sporadic records of PFL in other seabirds suggests that PFL may be a rare, but non-specific, response to a range of potential stressors. PFL is now known for gulls, penguins and terns.

  7. Feather-like structures in positive streamers.

    NARCIS (Netherlands)

    G. Wormeester (Gideon); S. Nijdam (Sander); U. Ebert (Ute)

    2010-01-01

    htmlabstractIn experiments positive streamers can have a feather-like structure, with small hairs connected to the main streamer channel. These feathers were observed in pure nitrogen (with impurities of 1ppm oxygen or less) but not in air. Based on results of numerical simulations, we provide a

  8. Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Tinbergen, Jan; Leertouwer, Hein L.; Wilts, Bodo D.

    2011-01-01

    The colours of the common kingfisher, Alcedo atthis, reside in the barbs of the three main types of feather: the orange breast feathers, the cyan back feathers and the blue tail feathers. Scanning electron microscopy showed that the orange barbs contain small pigment granules. The cyan and blue

  9. Preliminary study on chicken feather protein-based wood adhesives

    Science.gov (United States)

    Zehui Jiang; Daochun Qin; Chung-Yun Hse; Monlin Kuo; Zhaohui Luo; Ge Wang; Yan Yu

    2008-01-01

    The objective of this preliminary study was to partially replace phenol in the synthesis of phenol-formaldehyde resin with feather protein. Feather protein–based resins, which contained one part feather protein and two parts phenol, were formulated under the conditions of two feather protein hydrolysis methods (with and without presence of phenol during...

  10. Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather.

    Science.gov (United States)

    Tran, Chieu D; Prosencyes, Franja; Franko, Mladen; Benzi, Gerald

    2016-10-20

    Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm(+)Cl(-)), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm(+)Cl(-)] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing. Copyright © 2016 Elsevier

  11. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  12. Optical feather and foil for shape and dynamic load sensing of critical flight surfaces

    Science.gov (United States)

    Black, Richard J.; Costa, Joannes M.; Faridian, Fereydoun; Moslehi, Behzad; Pakmehr, Mehrdad; Schlavin, Jon; Sotoudeh, Vahid; Zagrai, Andrei

    2014-04-01

    Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on the wings and tail of a bird, it is argued that increasing the number of interdependent flight surfaces from just a few, as is normal in an airplane, to many, as in the feathers of a bird, can significantly enlarge the flight envelope. To enable elements of an eco-inspired Dynamic Servo-Elastic (DSE) flight control system, IFOS is developing a multiple functionality-sensing element analogous to a feather, consisting of a very thin tube with optical fiber based strain sensors and algorithms for deducing the shape of the "feather" by measuring strain at multiple points. It is envisaged that the "feather" will act as a unit of sensing and/or actuation for establishing shape, position, static and dynamic loads on flight surfaces and in critical parts. Advanced sensing hardware and software control algorithms will enable the proposed DSE flight control concept. The hardware development involves an array of optical fiber based sensorized needle tubes for attachment to key parts for dynamic flight surface measurement. Once installed the optical fiber sensors, which can be interrogated over a wide frequency range, also allow damage detection and structural health monitoring.

  13. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers

    Science.gov (United States)

    Lefèvre, Ulysse; Cau, Andrea; Cincotta, Aude; Hu, Dongyu; Chinsamy, Anusuya; Escuillié, François; Godefroit, Pascal

    2017-10-01

    Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335-340, 2003; Hu et al. Nature 461:640-643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.

  14. Poultry feather wastes recycling possibility as soil nutrient

    Directory of Open Access Journals (Sweden)

    Lili Mézes

    2015-10-01

    Full Text Available Poultry feathers are produced in large amounts as a waste in poultry slaughterhouses. Only 60-70% of the poultry slaughterhouse products are edible for human being. This means more million tons annually worldwide (Papadopoulus et al., 1986; Williams et al., 1991; Hegedűs et al., 1998. The keratin-content of feather can be difficulty digested, so physical, chemical and/or biological pre-treatment are needed in practice, which have to be set according to the utilization method. Feather was enzymatic degraded, and then fermented in separated bioreactors. The anaerobic bioreactor system (4 digesters with 6 litre volume was controlled by ACE SCADA software running on Linux platforms. Pot scale seed germination tests were established to suggest the quantity of digested slurry to be utilized. The chosen test plants were lettuce (Lactuca sativa. In case of reproduction test Student’s t-test was applied to examine significant differences between the root lengths of the control and the treated plant species. In case of pot seed germination variance analysis with Tukey B’s and Duncan test was applied to examine significant differences between the root lengths of plants, grown on different treatments. The effect of treatments on germination ability of the plant species was expressed in the percentage of the controls. According to Student’s t-test significant difference was found between root lengths of different treatments. Based on variance analysis with Tukey B’s and Duncan tests could be detected a significant difference between the treatments. Utilization of the fermented material reduces the use of fertilizers and because of its large moisture content it reduces the watering costs. Recycle of the slaughterhouse feather and different agricultural wastes and by-products can solve three main problems: disposal of harmful materials, producing of renewable energy and soil nutrient, measuring reflectance at the certain spectral range, which can

  15. Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds.

    Science.gov (United States)

    Cherel, Y; Hobson, K A; Weimerskirch, H

    2000-02-01

    To determine whether stable isotope measurements of bird feathers can be used to identify moulting (interbreeding) foraging areas of adult seabirds, we examined the stable-carbon (δ13C) and nitrogen (δ15N) isotopic composition of feathers of chicks and adults of black-browed albatrosses (Diomedea melanophrys) from Kerguelen Islands, southern Indian Ocean. Albatross chicks are fed primarily fish (75% by mass), the diet being dominated by various species of the family Nototheniidae and Channichthyidae which commonly occur in the shelf waters in the vicinity of the colony. δ13C and δ15N values in chick feathers, which are grown in summer in the breeding area, were lower than values in adult feathers, which are grown in winter (δ13C: -19.6‰ versus -17.6‰ and δ15N: 12.4‰ versus 15.7‰, respectively). No differences in δ13C and δ15N values were found in adult wing feathers moulted in 1993 and 1994 and in adult feathers formed at the beginning, middle and end of the 1994 moulting period. These data are consistent with adults moulting in the same area and feeding at the same trophic level from one year to the next and with no major changes in foraging ecology within a given moulting season; they suggest that foraging grounds were different in summer and winter and that these differed in their stable-isotope signature. Changes in both feather δ13C and δ15N values indicated feeding south of the Subtropical Front (STF) during chick rearing, which is in agreement with the known foraging ecology at this time and feeding north of the STF during moult. This, together with band recoveries from adult birds, indicates that black-browed albatrosses from Kerguelen Islands wintered in subtropical waters off southern Australia. The stable-isotope markers in feathers, therefore, have the potential for locating moulting areas of migratory seabird species moving between isotopically distinct regions and for investigating seabirds' foraging ecology during the poorly known

  16. Fault bars and the risk of feather damage in cranes

    OpenAIRE

    Jovani, Roger; Blas, Julio; Stoffel, M.J.; Bortolotti, L.E.; Bortolotti, Gary R.

    2010-01-01

    Fault bars are translucent areas across feathers grown under stressful conditions. They are ubiquitous across avian species and feather tracts. Because fault bars weaken feather structure and can lead to feather breakage, they may reduce flight performance and lower fitness. Therefore, natural selection might prime mechan- isms aimed at reducing the cost of fault bars, penalizing their occurrence in those feathers more relevant for flight. Here, we tested one prediction of this ‘fault...

  17. Towards a comprehensive model of feather regeneration.

    Science.gov (United States)

    Maderson, Paul F A; Hillenius, Willem J; Hiller, Uwe; Dove, Carla C

    2009-10-01

    Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis-statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [1947] Biochem Biophys Acta 1:549-562) seminal X-ray diffraction study that revealed two distinct keratins, beta- and alpha-, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the beta-keratogenic sheath and the alpha-keratogenic, supra-umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto- and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is "full of holes. 2009 Wiley-Liss, Inc.

  18. The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur

    National Research Council Canada - National Science Library

    Lingham-Soliar, Theagarten

    2012-01-01

    Among the spectacular dinosaur fossils reported from the Jehol Group of northeastern China is the most celebrated, Sinosauropteryx, which continues to excite interest in questions concerning feather...

  19. Seagull feather shaft: Correlation between structure and mechanical response.

    Science.gov (United States)

    Wang, Bin; Meyers, Marc André

    2017-01-15

    Flight feathers are unique among a variety of keratinous appendages in that they are lightweight, stiff and strong. They are designed to withstand aerodynamic forces, but their morphology and structure have been oversimplified and thus understudied historically. Here we present an investigation of the shaft from seagull primary feathers, elucidate the hierarchical fibrous and porous structure along the shaft length, and correlate the tensile and nanomechanical properties to the fiber orientation. An analysis of the compressive behavior of the rachis based on a square-section model shows a good fit with experimental results, and demonstrates the synergy between the cortex and medulla. Flexural properties of the shaft along the shaft length, analyzed as a sandwich composite, reveal that although all flexural parameters decrease towards the distal shaft, the specific equivalent flexural modulus and strength increase by factors of 2 and 3, respectively. The failure mode in flexure for all specimens is buckling on the compressive surface, whereas the foamy medulla prevents destructive axial cracking and introduces important toughening mechanisms: crack deflection, fiber bridging, and microcracking. Using mechanics principles, we analyze the feather shaft as a composite beam and demonstrate that the flexural strength is extraordinary, considering its weight and tailored along the length. The cross section changes from circular in the proximal base to square/rectangular in the distal end. We also discovered that the composite design, a solid shell enclosing a foam core, produces synergistic strengthening and toughening to the feather at a minimum of weight. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings.

    Science.gov (United States)

    Xu, Xing; Zheng, Xiaoting; Sullivan, Corwin; Wang, Xiaoli; Xing, Lida; Wang, Yan; Zhang, Xiaomei; O'Connor, Jingmai K; Zhang, Fucheng; Pan, Yanhong

    2015-05-07

    The wings of birds and their closest theropod relatives share a uniform fundamental architecture, with pinnate flight feathers as the key component. Here we report a new scansoriopterygid theropod, Yi qi gen. et sp. nov., based on a new specimen from the Middle-Upper Jurassic period Tiaojishan Formation of Hebei Province, China. Yi is nested phylogenetically among winged theropods but has large stiff filamentous feathers of an unusual type on both the forelimb and hindlimb. However, the filamentous feathers of Yi resemble pinnate feathers in bearing morphologically diverse melanosomes. Most surprisingly, Yi has a long rod-like bone extending from each wrist, and patches of membranous tissue preserved between the rod-like bones and the manual digits. Analogous features are unknown in any dinosaur but occur in various flying and gliding tetrapods, suggesting the intriguing possibility that Yi had membranous aerodynamic surfaces totally different from the archetypal feathered wings of birds and their closest relatives. Documentation of the unique forelimbs of Yi greatly increases the morphological disparity known to exist among dinosaurs, and highlights the extraordinary breadth and richness of the evolutionary experimentation that took place close to the origin of birds.

  1. New and little known feather mites (Acari)

    Science.gov (United States)

    Feather mites (Acari: Astigmata) were analyzed with low temperature scanning electron microscopy (LT-SEM), including the description of three new species: Plicatalloptes atrichogynus sp. nov. (Analgoidea: Alloptidae) from the Neotropical cormorant Phalacrocorax brasilianus (Gmelin, 1789) (Pelecanifo...

  2. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.

    Science.gov (United States)

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M; Luis Sanz, José; Buscalioni, Ángela D

    2015-10-06

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing's patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers.

  3. Evolution of the structure of tail feathers: implications for the theory of sexual selection.

    Science.gov (United States)

    Aparicio, José Miguel; Bonal, Raúl; Cordero, Pedro J

    2003-02-01

    Bird tails are extraordinarily variable in length and functionality. In some species, males have evolved exaggeratedly long tails as a result of sexual selection. Changes in tail length should be associated with changes in feather structure. The study of the evolution of feather structure in bird tails could give insight to understand the causes and means of evolution in relation to processes of sexual selection. In theory, three possible means of tail length evolution in relation to structural components might be expected: (1) a positive relationship between the increase in length and size of structural components maintaining the mechanical properties of the feather; (2) no relationship; that is, enlarging feather length without changes in the structural components; and (3) a negative relationship; that is, enlarging feather length by reducing structural components. These hypotheses were tested using phylogenetic analyses to examine changes in both degree of exaggeration in tail length and structural characteristics of tail feathers (rachis width and density of barbs) in 36 species, including those dimorphic and nondimorphic in tail length. The degree of sexual dimorphism in tail length was negatively correlated with both rachis width and density of barbs in males but not in females. Reinforcing this result, we found that dimorphism in tail length was negatively associated with dimorphism in tail feather structure (rachis width and density of barbs). These results support the third hypothesis, in which the evolution of long feathers occurs at the expense of making them simpler and therefore less costly to produce. However, we do not know the effects of enfeeblement on the costs of bearing. If the total costs increased, the enfeeblement of feathers could be explained as a reinforcement of the honesty of the signal. Alternatively, if total costs were reduced, the strategy could be explained by cheating processes. The study of female preferences for fragile tail

  4. Ice Formation Delay on Penguin Feathers

    Science.gov (United States)

    Alizadehbirjandi, Elaheh; Tavakoli-Dastjerdi, Faryar; St. Leger, Judy; Davis, Stephen H.; Rothstein, Jonathan P.; Kavehpour, H. Pirouz

    2015-11-01

    Antarctic penguins reside in a harsh environment where air temperature may reach -40 °C with wind speed of 40 m/s and water temperature remains around -2.2 °C. Penguins are constantly in and out of the water and splashed by waves, yet even in sub-freezing conditions, the formation of macroscopic ice is not observed on their feathers. Bird feathers are naturally hydrophobic; however, penguins have an additional hydrophobic coating on their feathers to reinforce their non-wetting properties. This coating consists of preen oil which is applied to the feathers from the gland near the base of the tail. The combination of the feather's hydrophobicity and surface texture is known to increase the contact angle of water drops on penguin feathers to over 140 ° and classify them as superhydrophobic. We here develop an in-depth analysis of ice formation mechanism on superhydrophobic surfaces through careful experimentations and development of a theory to address how ice formation is delayed on these surfaces. Furthermore, we investigate the anti-icing properties of warm and cold weather penguins with and without preen oil to further design a surface minimizing the frost formation which is of practical interest especially in aircraft industry.

  5. Ornithopter type flapping wings for autonomous micro aerial vehicles

    OpenAIRE

    Srigrarom, Sutthiphong; Chan, Woei-Leong

    2017-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length o...

  6. Featherless and feathered broilers under control versus hot conditions. 1. Breast meat yield and quality.

    Science.gov (United States)

    Hadad, Yair; Halevy, Orna; Cahaner, Avigdor

    2014-05-01

    The improved genetic potential of contemporary commercial broilers cannot be fully expressed under hot conditions that depress growth rate, decrease breast meat yield, and reduce meat quality. The negative heat effects are attributed to the insulating feather coverage, which, under high ambient temperatures (AT), hinders dissipation of the excessive internally produced heat. Accordingly, featherless broilers (sc/sc), their feathered sibs (+/sc), and contemporary broilers (+/+) were subjected to control AT (26°C) and hot AT (32°C) to test the hypothesis that lack of feathers contributes to higher breast muscle yield and better meat quality, especially under hot conditions, and that differences related to lack of feathers are related to cardiovascular capacity. In 2 similar trials, the superior genetic background of the contemporary broilers was manifested under control conditions; their mean BW was about 15% higher than the means of the featherless broilers and their feathered sibs. The hot conditions depressed BW of the 2 feathered groups by approximately 25%, with hardly any effect on featherless broiler BW. Breast meat yield (% of BW) in the featherless broilers was higher than in those with feathers, especially under the hot AT. Furthermore, the featherless broilers were characterized by superior meat quality as indicated by lower drip loss, lower lightness, and higher redness. The superior meat quality of the featherless broilers could be explained by their larger hearts and higher hematocrit values, suggesting superior cardiovascular capacity to supply oxygen and nutrients to the breast muscles. On the practical side, the results clearly indicate that modern featherless broilers can reach normal BW, as well as yield and quality of breast meat, under hot conditions as well. It appears that broiler meat production in hot regions and climates can be substantially improved by introducing the featherless gene into contemporary commercial broiler stocks. This has

  7. The fearful feather pecker : applying the principles to practice to prevent feather pecking in laying hens

    NARCIS (Netherlands)

    Haas, de E.N.

    2014-01-01

    Billions of laying hens are kept worldwide. Severe feather pecking (SFP) is a behaviour which occurs with a high prevalence on commercial farms. SFP, the pecking and plucking of feathers of another bird, induces pain and stress and can ultimately lead to cannibalism. Moreover, SFP can occur if a

  8. Active Dihedral Control System for a Torsionally Flexible Wing

    Science.gov (United States)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2017-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  9. Wing rotation and lift in SUEX flapping wing mechanisms

    Science.gov (United States)

    Mateti, Kiron; Byrne-Dugan, Rory A.; Tadigadapa, Srinivas A.; Rahn, Christopher D.

    2013-01-01

    This research presents detailed modeling and experimental testing of wing rotation and lift in the LionFly, a low cost and mass producible flapping wing mechanism fabricated monolithically from SUEX dry film and powered by piezoelectric bimorph actuators. A flexure hinge along the span of the wing allows the wing to rotate in addition to flapping. A dynamic model including aerodynamics is developed and validated using experimental testing with a laser vibrometer in air and vacuum, stroboscopic photography and high definition image processing, and lift measurement. The 112 mg LionFly produces 46° flap and 44° rotation peak to peak with 12° phase lag, which generates a maximum average lift of 71 μN in response to an applied sinusoidal voltage of 75 V AC and 75 V DC at 37 Hz. Simulated wing trajectories accurately predict measured wing trajectories at small voltage amplitudes, but slightly underpredict amplitude and lift at high voltage amplitudes. By reducing the length of the actuator, reducing the mechanism amplification and tuning the rotational hinge stiffness, a redesigned device is simulated to produce a lift to weight ratio of 1.5.

  10. Mechanisms and evolution of iridescent feather colors in birds

    Science.gov (United States)

    Eliason, Chad M.

    A longstanding question in biology is why phenotypic diversity is unevenly distributed across the tree of life. Such differences can be caused by both extrinsic (e.g., natural selection) and intrinsic factors (e.g., how a trait functions). Despite numerous examples of diversification in form and function of complex biomechanical traits, we know relatively little about these processes in ornamental traits. Diverse ornamental feather colors in birds can be produced either by absorption (pigment-based colors) or scattering of light by feather nanostructures (structural colors). Because structural colors are deterministically related to the nanostructures that produce them, they are excellent systems to study form-function relationships and diversity of ornamental traits. In my dissertation I combine methods from physics and evolutionary biology to understand how proximate mechanisms explaining color (coherent light scattering) explain patterns of color diversity using iridescent feathers as a model system. Specifically, I ask two fundamental questions, one proximate and one ultimate, about iridescent colors: i) How are iridescent colors produced? and ii) What are the implications of how iridescent traits function for how they evolve? To tackle these questions, I sampled a nanostructurally diverse range of species, quantified their nanostructures with TEM and optical microscopy, experimentally tested the roles of different nanostructural traits in producing color by modifying them at the nanometer scale with FIB milling or humidity changes, and linked form and function with optical modeling. I then used simulation-based approaches and large-scale comparative analysis of color diversity to explore evolutionary consequences of functionally modular nanostructures in feathers. Together, my results suggest that morphological novelties in birds have, at least in part, allowed birds to achieve their vast morphological and colour diversity, and the way a color is produced has

  11. Periodic and Chaotic Flapping of Insectile Wings

    CERN Document Server

    Huang, Yangyang

    2015-01-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...

  12. Harmonic hopping, and both punctuated and gradual evolution of acoustic characters in Selasphorus hummingbird tail-feathers.

    Directory of Open Access Journals (Sweden)

    Christopher James Clark

    Full Text Available Models of character evolution often assume a single mode of evolutionary change, such as continuous, or discrete. Here I provide an example in which a character exhibits both types of change. Hummingbirds in the genus Selasphorus produce sound with fluttering tail-feathers during courtship. The ancestral character state within Selasphorus is production of sound with an inner tail-feather, R2, in which the sound usually evolves gradually. Calliope and Allen's Hummingbirds have evolved autapomorphic acoustic mechanisms that involve feather-feather interactions. I develop a source-filter model of these interactions. The 'source' comprises feather(s that are both necessary and sufficient for sound production, and are aerodynamically coupled to neighboring feathers, which act as filters. Filters are unnecessary or insufficient for sound production, but may evolve to become sources. Allen's Hummingbird has evolved to produce sound with two sources, one with feather R3, another frequency-modulated sound with R4, and their interaction frequencies. Allen's R2 retains the ancestral character state, a ∼1 kHz "ghost" fundamental frequency masked by R3, which is revealed when R3 is experimentally removed. In the ancestor to Allen's Hummingbird, the dominant frequency has 'hopped' to the second harmonic without passing through intermediate frequencies. This demonstrates that although the fundamental frequency of a communication sound may usually evolve gradually, occasional jumps from one character state to another can occur in a discrete fashion. Accordingly, mapping acoustic characters on a phylogeny may produce misleading results if the physical mechanism of production is not known.

  13. Interferometric study on birds' feathers.

    Science.gov (United States)

    De la Torre-Ibarra, Manuel H; Santoyo, Fernando Mendoza

    2013-05-01

    Optical techniques such as speckle pattern interferometry are well known in the nondestructive testing measurement community. They can be used, for instance, as a predictor of the mechanical behavior of a sample under study. However, in almost all circumstances, a mathematical model has to be applied in order to make sense of these measurements. This is a critical issue when an organic sample is studied, mainly due to its complex deformation response. A good example of this is observed in the birds' feathers. They have extraordinary mechanical and aerodynamic properties thanks to their stiffness and lightness. A couple of live birds are safely situated in front of an out-of-plane sensitive digital holographic interferometer (DHI), an optical system capable of recovering the optical phase in this type of nonrepeatable or unpredictable experiment. In order to recover the backscattering signal and its interferometric response, several images are recorded from different sections of the plumage. Displacement maps are obtained from what is, as far as is known, the first time that full field microdisplacement maps are presented over a hummingbird and a parakeet plumage.

  14. Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules.

    Science.gov (United States)

    Stavenga, Doekele G; Leertouwer, Hein L; Marshall, N Justin; Osorio, Daniel

    2011-07-22

    The breast-plate plumage of male Lawes' parotia (Parotia lawesii) produces dramatic colour changes when this bird of paradise displays on its forest-floor lek. We show that this effect is achieved not solely by the iridescence--that is an angular-dependent spectral shift of the reflected light--which is inherent in structural coloration, but is based on a unique anatomical modification of the breast-feather barbule. The barbules have a segmental structure, and in common with many other iridescent feathers, they contain stacked melanin rodlets surrounded by a keratin film. The unique property of the parotia barbules is their boomerang-like cross section. This allows each barbule to work as three coloured mirrors: a yellow-orange reflector in the plane of the feather, and two symmetrically positioned bluish reflectors at respective angles of about 30°. Movement during the parotia's courtship displays thereby achieves much larger and more abrupt colour changes than is possible with ordinary iridescent plumage. To our knowledge, this is the first example of multiple thin film or multi-layer reflectors incorporated in a single structure (engineered or biological). It nicely illustrates how subtle modification of the basic feather structure can achieve novel visual effects. The fact that the parotia's breast feathers seem to be specifically adapted to give much stronger colour changes than normal structural coloration implies that colour change is important in their courtship display.

  15. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.

    Science.gov (United States)

    Ahn, H K; Huda, M S; Smith, M C; Mulbry, W; Schmidt, W F; Reeves, J B

    2011-04-01

    The biodegradability of three types of bioplastic pots was evaluated by measuring carbon dioxide produced from lab-scale compost reactors containing mixtures of pot fragments and compost inoculum held at 58 °C for 60 days. Biodegradability of pot type A (composed of 100% polylactic acid (PLA)) was very low (13 ± 3%) compared to literature values for other PLA materials. Near infrared spectroscopy (NIRS) results suggest that the PLA undergoes chemical structural changes during polymer extrusion and injection molding. These changes may be the basis of the low biodegradability value. Biodegradability of pot types B (containing 5% poultry feather, 80% PLA, 15% starch), and C (containing 50% poultry feather, 25% urea, 25% glycerol), were 53 ± 2% and 39 ± 3%, respectively. More than 85% of the total biodegradation of these bioplastics occurred within 38 days. NIRS results revealed that poultry feather was not degraded during composting. Published by Elsevier Ltd.

  16. Development of duplex dual-gene and DIVA real-time RT-PCR assays and use of feathers as a non-invasive sampling method for diagnosis of Turkey Meningoencephalitis Virus.

    Science.gov (United States)

    Davidson, Irit; Raibstein, Israel; Altory-Natour, Amira; Simanov, Michael; Khinich, Yevgeny

    2017-06-01

    The avian flavivirus Turkey Meningoencephalitis Virus (TMEV) causes a neuroparalytic disease of commercial turkeys, expressed in paresis, incoordination, drooping wings and mortality that is controlled by vaccination. The molecular diagnosis using brain tissue RNA has now been upgraded by the development of a diagnostic dual-gene multiplex real-time PCR targeting the envelope and the non-structural NS5 gene, increasing the sensitivity by 10-100-fold compared to the previously existing assays. Based on the recent complete sequences of five TMEV isolates we have now developed a Differentiating Infected from Vaccinated Animals (DIVA) assay, to distinguish between wild-type TMEV strains and the vaccine virus. The DIVA assay was evaluated on commercial vaccines produced by two manufacturers, on RNA purified from brains of experimentally infected turkeys with TMEV strains, and on clinical samples collected between the years 2009 and 2015. We also investigated turkey feather pulps for their suitability to serve for TMEV detection, to avoid invasive sampling and bird killing. The parallel TMEV diagnosis in brain and feather-pulp RNA were similarly useful for diagnosis, at least in experimentally infected turkeys and in three cases of disease encountered in commercial flocks.

  17. High refractive index of melanin in shiny occipital feathers of a bird of paradise

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Heinrich; Osorio, Daniel C.; Wilts, Bodo D.

    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's

  18. Feather eating and its associations with plumage damage and feathers on the floor in commercial farms of laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Hinrichsen, Lena Karina

    2016-01-01

    Feather eating has been associated with feather pecking, which continues to pose economic and welfare problems in egg production. Knowledge on feather eating is limited and studies of feather eating in commercial flocks of laying hens have not been performed previously. Therefore, the main...... objective was to investigate feather eating and its association with plumage damage and floor feather characteristics in commercial flocks of layers in barn and organic production systems. The study was performed in 13 flocks of barn layers and 17 flocks of organic layers. Each flock was visited at around.......3% in organic; P=0.99). Our hypothesis about a positive correlation between feather eating and plumage damage was not supported as no correlation was found between the prevalence of poor plumage condition and the prevalence of droppings with feather content. However, the prevalence of pecking damaged floor...

  19. Evaluation of a novel feather scoring system for monitoring feather damaging behaviour in parrots.

    Science.gov (United States)

    van Zeeland, Yvonne R A; Bergers, Madeleine J; van der Valk, Lisette; Schoemaker, Nico J; Lumeij, Johannes T

    2013-05-01

    Feather damaging behaviour is common in captive psittacine birds and there is a need for reliable methods to evaluate the efficacy of therapeutic and preventive interventions. This study compared the inter- and intra-observer reliabilities of a novel feather scoring system with an existing system to assess the plumage of grey parrots (Psittacus erithacus). Regions of the body were photographed separately at 1 week intervals and shown at random to 35 examiners (avian veterinarians and veterinary students), who used the two scoring systems to assess plumage. Since the quality of the photographs was insufficient to allow accurate assessment of the individual flight and tail feathers, the novel scoring system was only evaluated for its reliability regarding covert and down feathers. Inter- and intra-observer reliabilities were determined using the intra-class correlation coefficient. Bland-Altman analysis was performed to determine absolute reliabilities for both systems. Correlation coefficients were 0.90 and 0.95 for intra-observer reliability and 0.83 and 0.89 for inter-observer reliability for the existing and novel feather scoring systems, respectively. When using the novel system, a change in plumage condition of ≥10% was needed to ensure that the change reflected a real difference in 95% of cases, while a change of ≥15% was needed for the existing system. Since it may take from 4 weeks (covert or down feathers) to over 1 year (flight or tail feathers) for feathers to regrow, sufficient time should be allowed to elapse between two scoring sessions to reliably evaluate the efficacy of preventive or therapeutic interventions for feather damaging behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  1. Stabilization of solutions of feather keratins by sodium dodecyl sulphate

    NARCIS (Netherlands)

    Schrooyen, P.M.M.; Dijkstra, Pieter J.; Oberthür, Radulf C.; Bantjes, A.; Bantjes, Adriaan; Feijen, Jan

    2001-01-01

    Feather keratins were extracted from chicken feathers with aqueous solutions of urea and 2-mercaptoethanol. After filtration of the insoluble residue, a feather keratin solution was obtained. Removal of 2-mercaptoethanol and urea by dialysis resulted in aggregation of the keratin polypeptide chains

  2. Improvement of antioxidant potential in rats consuming feathers ...

    African Journals Online (AJOL)

    user

    2012-01-12

    Jan 12, 2012 ... highlighting the in vivo antioxidant potential of a keratinous waste hydrolysate. The effect of dietary supplementation with feathers protein hydrolysate, ...... Chicken feathers. Bioresour. Technol. 97: 1337-1343. Dalev PG (1994). Utilization of waste feathers from poultry slaughter for production of protein ...

  3. Selection on feather pecking affects response to novelty and foraging behaviour in laying hens

    DEFF Research Database (Denmark)

    de Haas, Elske N; Nielsen, Birte L; Buitenhuis, A J (Bart)

    2010-01-01

    Feather pecking (FP) is a major welfare problem in laying hens, influenced by multiple factors. FP is thought to be redirected foraging behaviour, however fearful birds are also known to be more sensitive to develop FP. The relationship between fear-responses, foraging and FP is not well understood......, therefore we studied the behaviour of 16 birds from a high feather pecking (HFP) line and 16 birds from a low feather pecking (LFP) line at 35 weeks of age inside a plus-maze. Birds were from the 10th generation of selection for either high or low FP. First exposure to the maze was used to measure birds...... in the maze for 10 min during which they could choose to eat from all available food-items. When exposed for the first time in the maze HFP birds walked a longer distance, vocalized sooner and had more exploratory pecks compared to LFP birds who showed more wing-movements and defecations. When given a choice...

  4. Shape and Structural Optimization of Flapping Wings

    Science.gov (United States)

    Stewart, Eric Colby

    This dissertation presents shape and structural optimization studies on flapping wings for micro air vehicles. The design space of the optimization includes the wing planform and the structural properties that are relevant to the wing model being analyzed. The planform design is parameterized using a novel technique called modified Zimmerman, which extends the concept of Zimmerman planforms to include four ellipses rather than two. Three wing types are considered: rigid, plate-like deformable, and membrane. The rigid wing requires no structural design variables. The structural design variables for the plate-like wing are the thickness distribution polynomial coefficients. The structural variables for the membrane wing control the in-plane distributed forces which modulate the structural deformation of the wing. The rigid wing optimization is performed using the modified Zimmerman method to describe the wing. A quasi-steady aerodynamics model is used to calculate the thrust and input power required during the flapping cycle. An assumed inflow model is derived based on lifting-line theory and is used to better approximate the effects of the induced drag on the wing. A multi-objective optimization approach is used since more than one aspect is considered in flapping wing design. The the epsilon-constraint approach is used to calculate the Pareto optimal solutions that maximize the cycle-average thrust while minimizing the peak input power and the wing mass. An aeroelastic model is derived to calculate the aerodynamic performance and the structural response of the deformable wings. A linearized unsteady vortex lattice method is tightly coupled to a linear finite element model. The model is cost effective and the steady-state solution is solved by inverting a matrix. The aeroelastic model is used to maximize the thrust produced over one flapping cycle while minimizing the input power.

  5. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media.

    Science.gov (United States)

    Parrado, J; Rodriguez-Morgado, B; Tejada, M; Hernandez, T; Garcia, C

    2014-04-10

    This study evaluates the use of different types of feathers as fermentation media for enzyme production. Bacillus licheniformis was grown on the feathers, which lead to total biodegradation due to bacterial enzymatic hydrolytic excretion. B. licheniformis excretes protease and lipase activity, with feather concentration being the main parameter controlling their generation. Using a proteomic approach, the proteins excreted during fermentation were identified, and the influence of the chemical composition of the feathers on protein secretion was tested. The identified proteins are hydrolytic enzymes such as keratinase, gamma-glutamyltranspeptidase, chitosanases, and glicosidases. The diversity of proteins is related to the chemical complexity of the feathers. Understanding the composition of a hydrolytic system, when B. licheniformis is cultured on different feathers, may assist in utilizing such a system for producing different hydrolytic enzymes. The data indicate that proteomics can be a valuable tool for describing the physiological state of B. licheniformis cell populations growing on different wastes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Wing morphology, winter ecology, and fecundity selection: evidence for sex-dependence in barn swallows (Hirundo rustica).

    Science.gov (United States)

    Saino, Nicola; Ambrosini, Roberto; Caprioli, Manuela; Liechti, Felix; Romano, Andrea; Rubolini, Diego; Scandolara, Chiara

    2017-07-25

    Variation in wing morphology results from the combination of diverse selection pressures. Wing feather morphology within species varies with sex and ontogenetic effects, and also with ecological factors. Yet, the direction of causation for the wing morphology-ecology association remains to be elucidated. Under the 'ecology-dependence' hypothesis, wing morphology covaries with ecological conditions, because the latter affect feather molt. Alternatively, the 'habitat choice' hypothesis posits that individuals with different wing morphology choose different habitats because of the habitat-dependent advantages of a specific wing morphology. We tested these competing hypotheses in the migratory, aerially insectivorous barn swallow (Hirundo rustica). We quantified wing morphology (isometric size, pointedness, and convexity) on the same individuals during consecutive breeding seasons (i.e., before and after molt in sub-Saharan wintering areas) and located wintering areas using light-level geolocators. Wing pointedness of females but not males during 1 year negatively correlated with vegetation vigor (gauged by the Normalized Difference Vegetation Index; NDVI) in the African area where individuals spent the next winter. Partial least-squares path modelling showed that the association between wing morphology and NDVI was sex-dependent. Conversely, NDVI during wintering did not predict wing morphology in the next breeding season. Because wing morphology can have carry-over effects on subsequent performance, we investigated selection on wing traits and found strong positive fecundity selection on wing size of females. Our results suggest that female barn swallows choose their wintering habitat depending on their wing morphology. In addition, directional fecundity selection operates on females, suggesting sex-dependence of current selection on the flight apparatus.

  7. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    Science.gov (United States)

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  8. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    Science.gov (United States)

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of

  9. Branched integumental structures in Sinornithosaurus and the origin of feathers.

    Science.gov (United States)

    Xu, X; Zhou, Z; Prum, R O

    2001-03-08

    The evolutionary origin of feathers has long been obscured because no morphological antecedents were known to the earliest, structurally modern feathers of Archaeopteryx. It has been proposed that the filamentous integumental appendages on several theropod dinosaurs are primitive feathers; but the homology between these filamentous structures and feathers has been disputed, and two taxa with true feathers (Caudipteryx and Protarchaeopteryx) have been proposed to be flightless birds. Confirmation of the theropod origin of feathers requires documentation of unambiguously feather-like structures in a clearly non-avian theropod. Here we describe our observations of the filamentous integumental appendages of the basal dromaeosaurid dinosaur Sinornithosaurus millenii, which indicate that they are compound structures composed of multiple filaments. Furthermore, these appendages exhibit two types of branching structure that are unique to avian feathers: filaments joined in a basal tuft, and filaments joined at their bases in series along a central filament. Combined with the independent phylogenetic evidence supporting the theropod ancestry of birds, these observations strongly corroborate the hypothesis that the integumental appendages of Sinornithosaurus are homologous with avian feathers. The plesiomorphic feathers of Sinornithosaurus also conform to the predictions of an independent, developmental model of the evolutionary origin of feathers.

  10. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  11. The Weight of Iron and Feathers

    Science.gov (United States)

    Zendri, G.; Gratton, L. M.; Oss, S.

    2014-01-01

    We discuss the popular question concerning the difference in weight between 1 kg of iron and 1 kg of feathers, by taking into account the non-trivial aspect of the semantic interpretation of "weight" and the weighting procedure. The inclusion of air buoyancy makes the correct answer an interesting one. We describe and comment on the…

  12. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    First, using a main carbon spar with a thin sheet of balsa wood for wing membrane forms a wing weighing approximately 30mg. Additionally, the wing...structural rigidity. These wings weighed approximately 40 mg. The balsa wood wing, composite wing, and comparison to a locust wing, which was being...mimicked, are shown in Figure 11 [17]. Figure 11: Comparison of Balsa Wood , Composite, and Locust Wing [17] A similar wing structure design is

  13. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    Science.gov (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  14. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    Science.gov (United States)

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  15. Wing, tail, and vocal contributions to the complex acoustic signals of courting Calliope hummingbirds

    Directory of Open Access Journals (Sweden)

    Christopher James CLARK

    2011-04-01

    Full Text Available Multi-component signals contain multiple signal parts expressed in the same physical modality. One way to identify individual components is if they are produced by different physical mechanisms. Here, I studied the mechanisms generating acoustic signals in the courtship displays of the Calliope hummingbird Stellula calliope. Display dives consisted of three synchronized sound elements, a high-frequency tone (hft, a low frequency tone (lft, and atonal sound pulses (asp, which were then followed by a frequency-modulated fall. Manipulating any of the rectrices (tail-feathers of wild males impaired production of the lft and asp but not the hft or fall, which are apparently vocal. I tested the sound production capabilities of the rectrices in a wind tunnel. Single rectrices could generate the lft but not the asp, whereas multiple rectrices tested together produced sounds similar to the asp when they fluttered and collided with their neighbors percussively, representing a previously unknown mechanism of sound production. During the shuttle display, a trill is generated by the wings during pulses in which the wingbeat frequency is elevated to 95 Hz, 40% higher than the typical hovering wingbeat frequency. The Calliope hummingbird courtship displays include sounds produced by three independent mechanisms, and thus include a minimum of three acoustic signal components. These acoustic mechanisms have different constraints and thus potentially contain different messages. Producing multiple acoustic signals via multiple mechanisms may be a way to escape the constraints present in any single mechanism [Current Zoology 57 (2: 187–196, 2011].

  16. Special moult of breast and belly feathers during breeding in Golden Plovers Pluvialis apricaria

    NARCIS (Netherlands)

    Jukema, Joop; Piersma, Theunis

    1987-01-01

    Samples of breast feathers of Golden Plovers were collected from live birds captured in spring and autumn staging areas in The Netherlands. Three types of feathers were distinguished: winter and summer feathers, and a peculiar type, called the striped feather. Striped feathers were not found in

  17. Legacy Morphologies: Channel Avulsions and Historical Engineering Structures Drive Form and Process in the Lower Yuba and Feather Rivers, California

    Science.gov (United States)

    James, L. A.; Singer, M. B.; Aalto, R.

    2008-12-01

    Geomorphic changes in the lower Yuba and Feather Rivers due to hydraulic mining provide a chance to study centennial-scale processes. Channel changes over 150 years were determined using channel-bank stratigraphy, geochemical signatures (total Hg, grain-size distributions, bulk geochemistry, fallout radionuclides, and Sr/Nd isotopes), and spatial analyses of high-resolution topographic data, historical maps, and aerial photos. Repeated avulsions and broad erosion/deposition patterns are shown, including a downstream shift in activity through time. In the 20th century, both rivers experienced deep main-channel incision and floodplain alluviation of natural levees and abandoned channels. Buried trees rooted in pre- mining soils indicate the Feather has not returned to pre-mining base levels below the Yuba confluence. Early engineering works controlled channel responses and recovery. For example, the Feather River avulsed into a channel dredged through Shanghai Bend (c.1907) so it now crosses resistant Quaternary alluvium over a 3-m knickpoint bench that could soon be breached. Moreover, levees and channelization near the Yuba-Feather confluence at Marysville (c.1905) narrowed and deepened flows, encouraging the bed incision noted by Gilbert. Effects of legacy sediment on channel processes are well known. Here, channel recovery was also constrained by channel morphologies engineered with boulder wing dams and revetment in the Yuba and channelization and levees in the Feather. The resulting bed incision reduces lateral connectivity between channels and floodplains and increases sediment conveyance. Historical and anthropogenic perspectives are essential to explaining channel dynamics at these scales. Unless models of channel and floodplain evolution recognize historical changes and engineering works, they may miss crucial components of geomorphic change and potential impacts downstream. In such systems, the historical dimension is essential to river management, water

  18. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S.; Marschner, Steve

    2013-01-01

    Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure. PMID:23825113

  19. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.

    Science.gov (United States)

    Kowata, Kinue; Nakaoka, Minori; Nishio, Kaori; Fukao, Ayaka; Satoh, Akira; Ogoshi, Maho; Takahashi, Sumio; Tsudzuki, Masaoki; Takeuchi, Sakae

    2014-05-25

    Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of β-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Feather pecking in growers: a study with individually marked birds

    DEFF Research Database (Denmark)

    Wechsler, B; Huber-Eicher, B; Nash, David Richard

    1998-01-01

    1. The aim of the present study was to investigate whether individual birds specialise in feather pecking. Growers were individually marked and reared in groups of 30 or 31 in pens with a slatted floor. At an age of 4 to 6 weeks feather pecking was frequent in all pens. 2. On average 83% of all...... group members (10 groups, experiment 1) were recorded at least once as initiator of a feather pecking interaction. In each group 2 to 6 individuals feather pecked more than twice as often as the average for the group, and were defined as 'high rate peckers'. They initiated 39% of all recorded feather...... pecking interactions. 3. Every interaction was classified (with increasing intensity) as pecking, pinching, pulling or plucking. Compared to the others, 'high rate peckers' had more of their feather pecking classified as plucking and less classified as pecking. 4. There was no evidence that particular...

  1. Multiple cues for winged morph production in an aphid metacommunity.

    Science.gov (United States)

    Mehrparvar, Mohsen; Zytynska, Sharon E; Weisser, Wolfgang W

    2013-01-01

    Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity). The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare). We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects) inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  2. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  3. Spatially modulated structural colour in bird feathers

    Science.gov (United States)

    Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.

    2015-12-01

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  4. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking

    DEFF Research Database (Denmark)

    Rodenburg, T Bas; de Haas, Elske N; Nielsen, Birte Lindstrøm

    2010-01-01

    Feather pecking (FP) remains a major welfare and economic problem in laying hens. FP has been found to be related to other behavioural characteristics, such as fearfulness. There are indications that fearful birds are more likely to develop FP. Furthermore, FP can lead to increased fearfulness...... in the victims. To investigate further the relationship between FP and fearfulness, feather damage and behavioural fear responses were recorded in three White Leghorn lines of laying hens: a line selected for high FP (HFP line), a line selected for low FP (LFP line) and an unselected control line (10th...... in fear responses between the HFP and LFP lines were not found, neither in the TI-test, nor in the HA or NO test. As expected, birds from the HFP line had considerably more feather damage than birds from the LFP line and birds from the unselected control line were intermediate. Cages that withdrew from...

  5. Improving digestibility of feather meal by steam flash explosion.

    Science.gov (United States)

    Zhang, Yiqi; Yang, Ruijin; Zhao, Wei

    2014-04-02

    Poultry feathers are available in large quantities. However, natural feathers have poor digestibility and are often considered as solid wastes. To improve the digestibility of poultry feathers, steam flash explosion (SFE) was applied to duck feathers at different pressures ranging from 0.5 to 2.5 MPa for 1 min. The pepsin digestibility, disulfide bond content, and major secondary structure component (β-sheets) of duck feathers before and after the process were examined. The results showed that SFE could effectively increase pepsin digestibility of feather meal. Under the optimal conditions (1.8 MPa for 1 min), the pepsin digestibility of exploded feather meal achieved approximately 91%, which was about 9 times higher than that of the original feathers. The pepsin digestibility was highly correlated with the degree of reduction of disulfide bonds (R(2) = 0.98) and slightly negatively correlated with β-sheet structure. SFE is an effective method to improve the bio-utilization of feather meal.

  6. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    . To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight...... of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil....

  7. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    Energy Technology Data Exchange (ETDEWEB)

    Tsipoura, Nellie [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States); Burger, Joanna, E-mail: burger@biology.rutgers.edu [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Newhouse, Michael [NJ Meadowlands Commission, One DeKorte Park Plaza, Lyndhurst, NJ 07071 (United States); Jeitner, Christian [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Gochfeld, Michael [Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Mizrahi, David [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States)

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a

  8. Biogas Production from Citrus Wastes and Chicken Feather: Pretreatment and Codigestion

    Energy Technology Data Exchange (ETDEWEB)

    Forgacs, Gergely

    2012-07-01

    Anaerobic digestion is a sustainable and economically feasible waste management technology, which lowers the emission of greenhouse gases (GHGs), decreases the soil and water pollution, and reduces the dependence on fossil fuels. The present thesis investigates the anaerobic digestion of waste from food-processing industries, including citrus wastes (CWs) from juice processing and chicken feather from poultry slaughterhouses. Juice processing industries generate 15-25 million tons of citrus wastes every year. Utilization of CWs is not yet resolved, since drying or incineration processes are costly, due to the high moisture content; and biological processes are hindered by its peel oil content, primarily the D-limonene. Anaerobic digestion of untreated CWs consequently results in process failure because of the inhibiting effect of the produced and accumulated VFAs. The current thesis involves the development of a steam explosion pretreatment step. The methane yield increased by 426 % to 0.537 Nm{sup 3}/kg VS by employing the steam explosion treatment at 150 deg C for 20 min, which opened up the compact structure of the CWs and removed 94 % of the D-limonene. The developed process enables a production of 104 m{sup 3} methane and 8.4 L limonene from one ton of fresh CWs. Poultry slaughterhouses generate a significant amount of feather every year. Feathers are basically composed of keratin, an extremely strong and resistible structural protein. Methane yield from feather is low, around 0.18 Nm{sup 3}/kg VS, which corresponds to only one third of the theoretical yield. In the present study, chemical, enzymatic and biological pretreatment methods were investigated to improve the biogas yield of feather waste. Chemical pretreatment with Ca(OH){sub 2} under relatively mild conditions (0.1 g Ca(OH){sub 2}/g TS{sub feather}, 100 deg C, 30 min) improved the methane yield to 0.40 Nm{sup 3}/kg VS, corresponding to 80 % of the theoretical yield. However, prior to digestion, the

  9. Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers.

    Science.gov (United States)

    Alibardi, L

    2005-11-01

    The present ultrastructural study describes the formation of feather ramification in developing juvenile feathers of the zebrafinch, a small passeraceous bird. The study stresses the importance of the detailed knowledge on the cell structure of barb ridges for the understanding of feather development and evolution. Feather formation depends on the morphogenesis of long barb ridges, in which cells are displaced into lateral barbule plates and a medial barb cells region. These cells merge into long chains and form a syncitium organized in a ramified structure that preserves the original cell disposition within the barb ridge. Barb vane ridge cells surround barb and barbule cells. Barbules separate after the degeneration of barb vane ridge cells. In barbule cells the formation of hooklets resembles the process of formation of climbing setae of digital pads of some lizards. The cytoplasm of barb vane ridge cells is localized among tile-like overlapped barbule cells that form barbule chains, and maintains a serrated outline. When barb vane ridge cells degenerate among keratinized barbules, keratinized hooklets remain. Hooklets allow the ordered grasping of barbules to form a close and planar vane of feathers. The rachis of juvenile feathers seems to be formed from the fusion of two or more barb ridges localized in the dorsal part of the follicle, but the process of fusion is unclear. Juvenile and adult feathers contain the same type of feather keratin present in downfeathers: this indicates that stem cells for the regeneration of a new feather remain in the follicle after shedding of downfeathers. The presence of embryonic organelles (periderm granules) in barb vane ridge cells of juvenile feathers further indicates that also stem cells for the regeneration of the latter cells remain in the follicle. Molting feathers are therefore derived from stem cells. The permanence of stem cells in the follicle and the modulation of barb ridges dimension and fusion into different

  10. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers

    Science.gov (United States)

    Lees, John; Garner, Terence; Cooper, Glen; Nudds, Robert

    2017-02-01

    It was previously suggested that the flight ability of feathered fossils could be hypothesized from the diameter of their feather rachises. Central to the idea is the unvalidated assumption that the strength of a primary flight feather (i.e. its material and structural properties) may be consistently calculated from the external diameter of the feather rachis, which is the only dimension that is likely to relate to structural properties available from fossils. Here, using three-point bending tests, the relationship between feather structural properties (maximum bending moment, Mmax and Young's modulus, Ebend) and external morphological parameters (primary feather rachis length, diameter and second moment of area at the calamus) in 180 primary feathers from four species of bird of differing flight style was investigated. Intraspecifically, both Ebend and Mmax were strongly correlated with morphology, decreasing and increasing, respectively, with all three morphological measures. Without accounting for species, however, external morphology was a poor predictor of rachis structural properties, meaning that precise determination of aerial performance in extinct, feathered species from external rachis dimensions alone is not possible. Even if it were possible to calculate the second moment of area of the rachis, our data suggest that feather strength could still not be reliably estimated.

  11. Characterization of a new feather-degrading bacterium from Calotes ...

    African Journals Online (AJOL)

    A total of 842 spore-forming strains were isolated from 221 animal feces samples, in which a new feather-degrading bacterium identified as Bacillus sp. 50-3 based on morphological, biochemical and 16S rDNA tests was isolated from Calotes versicolor (an agamid lizard) feces. The bacterium can degrade native feather ...

  12. Valorisation of chicken feathers: Characterisation of chemical properties.

    Science.gov (United States)

    Tesfaye, Tamrat; Sithole, Bruce; Ramjugernath, Deresh; Chunilall, Viren

    2017-10-01

    The characterisation of the chemical properties of the whole chicken feather and its fractions (barb and rachis), was undertaken to identify opportunities for valorizing this waste product. The authors have described the physical, morphological, mechanical, electrical and thermal properties of the chicken feathers and related them to potential valorisation routes of the waste. However, identification of their chemical properties is necessary to complete a comprehensive description of chicken feather fractions. Hence, the chicken feathers were thoroughly characterised by proximate and ultimate analyses, elemental composition, spectroscopic analyses, durability in different solvents, burning test, and hydrophobicity. The proximate analysis of chicken feathers revealed the following compositions: crude lipid (0.83%), crude fibre (2.15%), crude protein (82.36%), ash (1.49%), NFE (1.02%) and moisture content (12.33%) whereas the ultimate analyses showed: carbon (64.47%), nitrogen (10.41%), oxygen (22.34%), and sulphur (2.64%). FTIR analysis revealed that the chicken feather fractions contain amide and carboxylic groups indicative of proteinious functional groups; XRD showed a crystallinity index of 22. Durability and burning tests confirmed that feathers behaved similarly to animal fibre. This reveals that chicken feather can be a valuable raw material in textile, plastic, cosmetics, pharmaceuticals, biomedical and bioenergy industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pretreatment of chicken feather waste for improved biogas production.

    Science.gov (United States)

    Forgács, Gergely; Lundin, Magnus; Taherzadeh, Mohammad J; Sárvári Horváth, Ilona

    2013-04-01

    This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53-2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm(3)/kg VS(added), which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11-50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH(4) yield of 0.485 Nm(3)/kg VS(-1) d(-1) was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.

  14. Feather pecking and monoamines - a behavioral and neurobiological approach

    NARCIS (Netherlands)

    Kops, M.S.

    2014-01-01

    Severe feather pecking (SFP) remains one of the major welfare issues in laying hens. SFP is the pecking at and pulling out of feathers, inflicting damage to the plumage and skin of the recipient. The neurobiological profile determining the vulnerability of individual hens to develop into a severe

  15. 50 CFR 20.91 - Commercial use of feathers.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial use of feathers. 20.91 Section 20.91 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR..., or barter for millinery or ornamental use the feathers of migratory game birds taken under authority...

  16. Fourier Plane Image Combination by Feathering

    Science.gov (United States)

    Cotton, W. D.

    2017-09-01

    Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.

  17. [Dynamics of infection of Fringilla coelebs chaffinch nestlings with feather mites (Acari: Analgoidea)].

    Science.gov (United States)

    Mironov, S V; Malyshev, L L

    2002-01-01

    surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches

  18. Survival of the fastest: Evolving wings for flapping flight

    Science.gov (United States)

    Ramananarivo, Sophie; Mitchel, Thomas; Ristroph, Leif

    2014-11-01

    To optimize flapping flight with regard to wing shape, we use an evolutionary or genetic algorithm to improve the forward speed of 3d-printed wings or hydrofoils that heave up-and-down and self-propel within water. In this scheme, ``genes'' are mathematical parameters specifying wing shape, and ``breeding'' involves the merging and mutation of genes from two parent wings to form a child. A wing's swimming speed is its ``fitness'', which dictates the likelihood of breeding and thus passing on its genes to the next generation. We find that this iterative process leads to marked improvements in relatively few generations, and several distinct shape features are shared among the fastest wings. We also investigate the favorable flow structures produced by these elite swimmers and compare their shape and performance to biologically evolved wings, fins, tails, and flippers.

  19. "Feathered" fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    Science.gov (United States)

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-01

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.

  20. Determining Timing and Magnitude of Dietary Shifts in Black Guillemots (Cepphus grylle) Using Stable Isotope Analysis of Flight Feathers

    Science.gov (United States)

    Kleese, M. C.; Boswell, K. M.; Divoky, G.; Barton, M. B.

    2016-02-01

    Recent decreases in Artic summer sea and increases in SST have caused changes in the marine ecosystems associated with ice-covered waters. A four-decade study of Black Guillemots (Cepphus grylle) on Cooper Island near Point Barrow, AK has shown that nestling quality and survival is linked to proximity to sea ice and SST. In recent years when sea ice retreats from the foraging area and SST increases to >4°C during the nestling period, parent guillemots have switched from their preferred prey, Arctic cod (Boreogadus saida), to less desirable fourhorn sculpin (Myoxocephalus quadricornis). The guillemots' shift from a cryopelagic fish to a nearshore demersal is hard to monitor through direct observation and we suggest a new method to assess the timing and magnitude of this dietary shift using stable isotope analysis of nestling flight feathers. Flight feathers (primaries, secondaries and tail feathers) provide a linear record of material incorporated into the body of the chick from the start of feather growth to fledging, a period of approximately 30 days. Arctic cod and fourhorn sculpin have distinctive diets and are reliant on different basal resources and should produce distinct isotopic signatures in guillemot tissues. We extracted vane tissues from sections of 30 black guillemot feathers grown in a breeding season that experienced an observed prey shift, and conducted stable carbon and nitrogen isotope analyses to determine whether such analyses could be used to assess the dietary shift linked with loss of sea ice and increasing SST. Most seabird populations are not as easily accessible as the guillemots of Cooper Island and thus observations of dietary composition are difficult to obtain. Development of a technique using nestling feathers to examine timing and magnitude of seasonal shifts in prey would preclude the need for daily observations and have great utility for monitoring the ecological effects of the continuing annual decrease in Arctic summer ice.

  1. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    Science.gov (United States)

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l-1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  2. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    Directory of Open Access Journals (Sweden)

    Dennis Evangelista

    Full Text Available We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements. Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver.

  3. Inflatable Wing Deployment Sequence

    Science.gov (United States)

    2001-01-01

    The deployable, inflatable wing technology demonstrator aircraft's wings begin deploying following separation from its carrier aircraft during a flight experiment conducted by the NASA Dryden Flight Research Center, Edwards, California. Wing deployment time is typically on the order of a third of a second, almost faster than the human eye can see. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  4. Papovavirus Induced Feather Abnormalities and Skin Lesions in the Budgerigar: Clinical and Pathological Findings

    OpenAIRE

    Bernier, G; Morin, M.; Marsolais, G

    1984-01-01

    Feather abnormalities and skin lesions caused by a papovavirus infection in budgerigars are described. Diseased one to 15 day old birds displayed a lack of nestling down feathers and filoplumes on the head and neck. Survivors older than 15 days exhibited retarded growth and temporary absence of feathers variable from bird to bird. Several birds between 15 and 25 days of age had flight feathers with total absence or marked sparseness of the vanes. After 25 days, feathers began to grow, althoug...

  5. A lightweight, biological structure with tailored stiffness: The feather vane.

    Science.gov (United States)

    Sullivan, Tarah N; Pissarenko, Andreï; Herrera, Steven A; Kisailus, David; Lubarda, Vlado A; Meyers, Marc A

    2016-09-01

    The flying feathers of birds are keratinous appendages designed for maximum performance with a minimum weight penalty. Thus, their design contains ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. This design involves two main parts: a central shaft that prescribes stiffness and lateral vanes which allows for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface which ensures lift. Microhooks at the end of barbules hold barbs tightly together, providing the close-knit, unified structure of the feather vane and enabling a repair of the structure through the reattachment of un-hooked junctions. Both the shaft and barbs are lightweight biological structures constructed of keratin using the common motif of a solid shell and cellular interior. The cellular core increases the resistance to buckling with little added weight. Here we analyze the detailed structure of the feather barb and, for the first time, explain its flexural stiffness in terms of the mechanics of asymmetric foam-filled beams subjected to bending. The results are correlated and validated with finite element modeling. We compare the flexure of single barbs as well as arrays of barbs and find that the interlocking adherence of barbs to one another enables a more robust structure due to minimized barb rotation during deflection. Thus, the flexure behavior of the feather vane can be tailored by the adhesive hooking between barbs, creating a system that mitigates damage. A simplified three-dimensional physical model for this interlocking mechanism is constructed by additive manufacturing. The exceptional architecture of the feather vane will motivate the design of bioinspired structures with tailored and unique properties ranging from adhesives to aerospace materials. Despite its importance to bird flight, literature characterizing the feather vane is extremely limited. The feather

  6. An HST Archival Survey of Feathers in Spiral Galaxies

    OpenAIRE

    La Vigne, Misty A.; Vogel, Stuart N.; Ostriker, Eve C.

    2006-01-01

    We present a survey of spiral arm extinction substructure referred to as feathers in 223 spiral galaxies using HST WFPC2 images. The sample includes all galaxies in the RC3 catalog with cz < 5000 km/s, B_T < 15, i < 60 degrees, and types Sa--Sd with well-exposed broadband WFPC2 images. The detection frequency of delineated, periodic feathers in this sample is 20% (45 of 223). This work is consistent with Lynds (1970), who concluded that feathers are common in prototypical Sc galaxies; we find...

  7. Mechanochromic response of the barbules in peacock tail feather

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Zhang, Deyuan

    2018-01-01

    Peacock tail feathers exhibit diverse striking brilliancy, as the cortex in different colored barbules of the feathers contains a 2-D photonic-crystal structure. The mechanochromic response of the 2-D photonic structure in peacock feather barbules is measured for the first time, by combining an in-situ stretching device and a reflectivity measurement system. The reflectance spectra of the barbule specimen blueshifts own to stretching along its longitudinal direction. A high strain sensitivity of 5.3 nm/% is obtained for green barbules. It could be of great help in bionic design of strain sensors using 2D photonic crystal structures.

  8. Parametric structural modeling of insect wings.

    Science.gov (United States)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-09-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  9. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  10. Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria

    Science.gov (United States)

    Czirják, Gábor Árpád; Pap, Péter László; Vágási, Csongor István; Giraudeau, Mathieu; Mureşan, Cosmin; Mirleau, Pascal; Heeb, Philipp

    2013-02-01

    The preen gland is a holocrine sebaceous gland of the avian integument which produces an oily secretion that is spread on the plumage during preening. It has been suggested that birds may defend themselves against feather-degrading bacteria (FDB) and other potential pathogens using preen gland secretions. However, besides some in vitro studies, the in vivo bacterial inhibitory effects of the preen oil on the abundance of feather-associated bacterial species has not yet been studied in passerines. Here we tested the effect of gland removal on the abundance of FDB and other-cultivable bacterial loads (OCB) of male house sparrows ( Passer domesticus). Our results did not support earlier results on in vitro antibacterial activity of preen oil against FDB since the absence of the preen gland did not significantly affect their loads related to the control birds. In contrast, we found that preen gland removal led to higher loads of OCB. This result suggests that the antimicrobial spectrum of the preen oil is broader than previously thought and that, by reducing the overall feather bacterial loads, the preen gland could help birds to protect themselves against a variety of potentially harmful bacteria.

  11. Inclusion of exogenous enzymes to feathers during processing on the digestible energy content of feather meal for adult dogs

    Directory of Open Access Journals (Sweden)

    Gabriel Faria Estivallet Pacheco

    2016-06-01

    Full Text Available ABSTRACT This study was conducted to determine the coefficient of total tract apparent digestibility (CTTAD of nutrients and gross energy (GE, metabolizable energy (ME, coefficient of metabolizability of gross energy (CM of GE, and fecal characteristics of dogs fed diets with two levels of feather meal, with or without addition of an enzyme blend containing lipase and protease activity. Ten adult Beagle dogs (aged between 1 and 2 years and weighing 10.2±1.4 kg were arranged in a 5 × 3 incomplete Latin square design with five treatments and three periods. The extruded basal diet was provided in equal amounts to all dogs (220 g/d, and 7.5 and 15% of hydrolyzed feather meal without enzymes (HFM or HFM processed with addition of the enzyme blend (HFM EB was added on top of the basal diet just before feeding. The contrast analysis showed that inclusion of 7.5 or 15% feather meal negatively affected CTTAD of crude protein (CP, GE, and ME of the diets with no apparent effect of the enzyme treatment. However, when both feather meal samples were evaluated, the HFM EB resulted in better CTTAD of GE and CM of GE (0.774 vs. 0.666 than HFM without enzymes (0.670 vs. 0.567, respectively. There was no effect of either feather meal on fecal score. Regression analysis showed that the enzymes added to the feathers during the digestion process increased digestible energy by 600 kcal/kg of dry matter in the diet containing HFM EB. High-performance liquid chromatography (HPLC analysis demonstrated that feather meal had a low molecular weight, with about 95% of the molecules below 10,000 Da. Addition of enzymes during the feather hydrolysis process may improve the energy content of the feather meal when included in diets for adult dogs.

  12. Theory of the development of curved barbs and their effects on feather morphology.

    Science.gov (United States)

    Feo, Teresa J; Simon, Emma; Prum, Richard O

    2016-08-01

    Feathers exhibit an extraordinary diversity of shapes, which are used by birds to accomplish a diverse set of functions. Pennaceous feathers have a double branched morphology that develops from a tube of epidermis, and variation in branch geometry determines feather shape. Feather development is both complex (i.e., a simple developmental modification can have multiple effects on mature feather shape), and redundant (i.e., different developmental modifications can create the same shape). Due to this, it is not readily apparent how different feather shapes develop. In many feathers, barbs are not straight, but instead curve in toward, or away, from the feather tip. Barb curvature can affect the shape of mature feathers but the development of curved barbs is unknown. Previous research has hypothesized that barb curvature could develop either during the helical growth of barb ridges in the tubular feather germ, or during barb angle expansion as the feather unfurls from the sheath. To better understand the development of curved barbs and their effects on mature feathers we present a theoretical model of curved barb development and test the model with empirical investigations of feathers. We find that curved barbs affect many aspects of feather morphology including vane width, barb length, and barb spacing. In real feathers, curved barbs can develop both during helical barb ridge growth and during barb angle expansion, with most of the observed curvature due to barb angle expansion. Our results demonstrate that barb angle expansion as a feather unfurls from the sheath is a complex and dynamic process that plays an important role in determining the shape and structure of mature feathers. Curved barbs create heterogeneity in barb geometry within the feather vane, which could have important implications for aerodynamic function and the development of within feather pigmentation patterns. J. Morphol. 277:995-1013, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  13. The barn owl wing: an inspiration for silent flight in the aviation industry?

    Science.gov (United States)

    Bachmann, Thomas; Mühlenbruch, Georg; Wagner, Hermann

    2011-04-01

    Barn owls are specialists in prey detection using acoustic information. The flight apparatus of this bird of prey is most efficiently adapted to the hunting behavior by reducing flight noise. An understanding of the underlying mechanisms owls make use of could help minimize the noise disturbances in airport or wind power plant neighborhood. Here, we characterize wings of barn owls in terms of an airfoil as a role model for studying silent flight. This characterization includes surface and edge specialization (serrations, fringes) evolved by the owl. Furthermore, we point towards possible adaptations of either noise suppression or air flow control that might be an inspiration for the construction of modern aircraft. Three-dimensional imaging techniques such as surface digitizing, computed tomography and confocal laser scanning microscopy were used to investigate the wings and feathers in high spatial resolution. We show that wings of barn owls are huge in relation to their body mass resulting in a very low wing loading which in turn enables a slow flight and an increased maneuverability. Profiles of the wing are highly cambered and anteriorly thickened, especially at the proximal wing, leading to high lift production during flight. However, wind tunnel experiments showed that the air flow tends to separate at such wing configurations, especially at low-speed flight. Barn owls compensated this problem by evolving surface and edge modifications that stabilize the air flow. A quantitative three-dimensionally characterization of some of these structures is presented.

  14. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.

    Science.gov (United States)

    Alibardi, L

    2005-04-01

    The present ultrastructural study shows how cells organize to form the complex structure of downfeathers in chick embryos. The embryonic epidermis of the apical part of feather filaments folds inward forming barb ridges which extend toward the base of the feather. The stratification of epidermal cells in barb ridges is maintained but the basal layer loses most of the germinal activity. New cells for the growth of feather filaments are mainly produced in its basal part. In barb ridges only the original four epidermal layers of the embryonic epidermis remain to form feathers: 1) the external periderm, 2) three-five layers of the feather sheath and barb vane ridge cells, 3) subperiderm cells, and 4) basal or cylindrical cells. Periderm, sheath, barb vane ridge and cylindrical cells synthesize only alpha-keratin. Instead, cells of the subperiderm layer synthesize a small type of beta-keratin: feather beta-keratin. At hatching, the subperiderm layer is lost in most areas of the skin of the chick (apteric and scaled), and is replaced by cells containing alpha-keratin (interfollicular-apteric epidermis), scale beta-keratin (scales), beak beta-keratin (beak), and claw beta-keratin (claws). Only in feathers, cells of the original subperiderm layer remain and give origin to barb and barbule cells. The formation of separated chains of barb and barbule cells is allowed by the presence of barb vane ridge cells that function as spacers between merging cells of barb and barbule cells. Subperiderm cells elongate and merge into a syncitium to form barbules and barbs. While barbule and barb cells accumulate feather-keratin, barb vane and cylindrical cells accumulate lipids, vesicles and little alpha-keratin. These cells eventually degenerate by necrosis leaving empty spaces and lipids between barbules and barbs. No apoptosis is necessary to explain the process of carving out of barb and barbules in feathers after dissolution of the external sheath. In fact, the retraction of blood

  15. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages

    National Research Council Canada - National Science Library

    Enrique Peñalver; Antonio Arillo; Xavier Delclòs; David Peris; David A Grimaldi; Scott R Anderson; Paul C Nascimbene; Ricardo Pérez-de la Fuente

    2017-01-01

    .... Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs...

  16. Vertical transmission in feather mites: insights into its adaptive value

    NARCIS (Netherlands)

    Dona, Jorge; Potti, Jaime; De La Hera, Ivan; Blanco, Guillermo; Frias, Oscar; Jovani, Roger

    2017-01-01

    1. The consequences of symbiont transmission strategies are better understood than their adaptive causes. 2. Feather mites are permanent ectosymbionts of birds assumed to be transmitted mainly vertically from parents to offspring. The transmission of Proctophyllodes doleophyes Gaud (Astigmata,

  17. Bionic Research on Bird Feather for Drag Reduction

    OpenAIRE

    Beibei Feng; Darong Chen; Jiadao Wang; Xingtuan Yang

    2015-01-01

    To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously d...

  18. The Topobiology of Chemical Elements in Seabird Feathers

    OpenAIRE

    Nicholas R. Howell; Lavers, Jennifer L.; Sayaka Uematsu; David Paterson; Howard, Daryl L.; Kathryn Spiers; de Jonge, Martin D.; Tracey Hanley; Richard Garrett; Banati, Richard B.

    2017-01-01

    The highly organized morphogenesis of bird feathers holds important phylo- and ontogenetic information on the evolution of birds, organogenesis, tissue regeneration, and the health status of individual animals. Altered topobiological patterns are regularly used as retrospective evidence for disturbed developmental trajectories due to the past exposure to environmental stressors. Using the most advanced high-resolution (5?70??m) X-ray fluorescence microscopy (XFM), we describe in the feathers ...

  19. FeatherSail - Design, Development and Future Impact

    Science.gov (United States)

    Alhorn, Dean C.; Scheierl, J. M.

    2010-01-01

    To the present day, the idea of using solar sails for space propulsion is still just a concept, but one that provides a great potential for future space exploration missions. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, design concept, dubbed FeatherSail, has been developed. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density. The FeatherSail design will utilize the NanoSail-D based extendable boom technology with only one sail on each set of booms. This design also allows each of the four sails to feather as much as ninety degrees. The FeatherSail concept uses deployable solar arrays to generate the power necessary for deep space missions. In addition, recent developments in low power, low temperature Silicon-Germanium electronics provide the capability for long duration deep space missions. It is envisioned that the FeatherSail conceptual design will provide the impetus for future sail vehicles, which may someday visit distant places that mankind has only observed.

  20. Feathering instability of spiral arms. II. Parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093-0424, USAAND (United States); Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan (China)

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by its average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.

  1. Feathering Instability of Spiral Arms. II. Parameter Study

    Science.gov (United States)

    Lee, Wing-Kit

    2014-09-01

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee & Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by its average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.

  2. Do feather-degrading bacteria affect sexually selected plumage color?

    Science.gov (United States)

    Shawkey, Matthew D.; Pillai, Shreekumar R.; Hill, Geoffrey E.

    2009-01-01

    Models of parasite-mediated sexual selection propose that males with more elaborate sexual traits will have fewer parasites. These models have generally been tested using metazoan or protozoan parasites of the blood, gut, or integument. Fewer studies have examined sexual ornaments in relation to bacterial infections. While most surface bacteria are harmless or beneficial, feather-degrading bacteria may have detrimental effects. In this study, we examined the relationships between overall bacterial load, feather-degrading bacterial load, and sexually selected carotenoid-based plumage color in a wild population of house finches ( Carpodacus mexicanus). We found that males with the redder plumage preferred by females had similar overall bacterial loads, but lower feather-degrading bacterial loads, than males with less red plumage. These data suggest that plumage color can signal abundance of feather-degrading bacteria to potential mates. It remains unclear whether feather-degrading bacteria directly or indirectly affect plumage color, but the observed correlations suggest that feather-degrading bacteria may play some role in sexual selection.

  3. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  4. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  5. Video measurements of instantaneous forces of flapping wing vehicles

    Science.gov (United States)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  6. Nonlinear slender wing aerodynamics. [delta wing

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1976-01-01

    On present day high performance aircraft, a large portion of the lift is generated by leading edge vortices generated by flow separation off the highly swept leading edges of the lifting surfaces employed. It has been shown in an earlier paper how the vortex effects can be superimposed on a modified slender wing theory to give the unsteady longitudinal characteristics of sharp-edged delta wings up to very high angles of attack. The present paper extends the previous analysis to include the effects of leading edge roundness and trailing edge sweep on the aerodynamic characteristics. The paper also derives analytic means for prediction of the yaw stability of slender wings and the first order effects of Mach number. Universal scaling laws are defined for rapid preliminary design estimates of the slender wing lift and rolling moment. The results indicate that simple analytic tools can be developed to predict the aeroelastic characteristics of the space shuttle ascent configuration with its complicated flow field and aeroelastic cross-couplings.

  7. Birds' tails do act like delta wings but delta-wing theory does not always predict the forces they generate.

    OpenAIRE

    Evans, Matthew R

    2003-01-01

    Delta-wing theory, which predicts the aerodynamics of aircraft like the Concorde, is the conventional explanation for the way in which a bird's tail operates in flight. Recently, doubt has been cast on the validity of applying a theory devised for supersonic aircraft to the small tails of slow-flying birds. By testing delta-wing models and birds' tails behind bodies with wings, I empirically show that the tails of birds produce lift in a very similar way to conventional delta-wing models. Bot...

  8. Birds' tails do act like delta wings but delta-wing theory does not always predict the forces they generate.

    Science.gov (United States)

    Evans, Matthew R

    2003-07-07

    Delta-wing theory, which predicts the aerodynamics of aircraft like the Concorde, is the conventional explanation for the way in which a bird's tail operates in flight. Recently, doubt has been cast on the validity of applying a theory devised for supersonic aircraft to the small tails of slow-flying birds. By testing delta-wing models and birds' tails behind bodies with wings, I empirically show that the tails of birds produce lift in a very similar way to conventional delta-wing models. Both Perspex and birds' tail models produce lift similar to that predicted by delta-wing theory when narrowly spread and at low angles of attack. However, when widely spread and at high angles of attack, both tails and Perspex models produce much less lift than predicted, owing to vortex breakdown after which the assumptions of delta-wing theory are violated. These results indicate that birds' tails can be regarded as delta wings but that the theory predicting the forces produced by delta wings can only be applied within acceptable limits (i.e. tails spread less than 60 degrees and at angles of attack of less than 20 degrees).

  9. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  10. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... use of the Virtual Observatory (VO) tools to share the WINGS database (that will be updated regularly) with the community. In the database each object has one unique identification (WINGSID). Each subset of estimated properties is accessible using a cone search (including wide-field images). Results...

  11. Lightplane Wing Design

    Science.gov (United States)

    1992-01-01

    Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.

  12. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.

    Science.gov (United States)

    Chin, Diana D; Matloff, Laura Y; Stowers, Amanda Kay; Tucci, Emily R; Lentink, David

    2017-06-01

    Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo. © 2017 The Author(s).

  13. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    Science.gov (United States)

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  14. Seeking carotenoid pigments in amber-preserved fossil feathers.

    Science.gov (United States)

    Thomas, Daniel B; Nascimbene, Paul C; Dove, Carla J; Grimaldi, David A; James, Helen F

    2014-06-09

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  15. A feather precipitation hydrogen isoscape for New Zealand

    Science.gov (United States)

    Rogers, K. M.; Wassenaar, L. I.; Soto, D. X.; Bartle, J. A.

    2012-04-01

    Forensic isotopic assays of feathers from historical Maori cloaks are a potential tool to link historical artefacts back to their native locales (Iwi) in New Zealand. In order to test this approach, we sampled feathers from extant museum archived birds of known origin for their feather hydrogen isotopes (δyHf) to assign their regional origin and location over time. We obtained feathers from two non-migratory bird species widely distributed around New Zealand, tui (Prosthemadera novaeseelandiae) and quail (Callipepla californica). Feathers were sampled from archived birds collected between 1880-2002 held in 3 New Zealand museum collections. We determined regression coefficients of δ2H on location, latitude, δ2Hprecipitation, and age. The data showed that ground dwelling quail had higher regression coefficients with respect to latitude (r2=0.46) than the nectar feeding tui (r2=0.39). On the whole, both resident birds showed promise as regional geographical indicators of their habitat (r2=0.58). Year of collection had no meaningful effect on isotopic composition. We conclude that isotopic assays may therefore be used to aid in regional assignments relevant to the interpretation of historical artefacts.

  16. Seeking carotenoid pigments in amber-preserved fossil feathers

    Science.gov (United States)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  17. Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks

    Science.gov (United States)

    Patterson, Allison G. L.; Kitaysky, Alexander S.; Lyons, Donald E.; Roby, Daniel D.

    2015-01-01

    Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long-term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.

  18. Feather damaging behaviour in parrots : A review with consideration of comparative aspects

    NARCIS (Netherlands)

    van Zeeland, Yvonne R. A.; Spruit, Berry M.; Rodenburg, T. Bas; Riedstra, Bernd; van Hierden, Yvonne M.; Buitenhuis, Bart; Korte, S. Mechiel; Lumeij, Johannes T.

    2009-01-01

    Feather damaging behaviour (also referred to as feather picking or feather plucking) is a behavioural disorder that is frequently encountered in captive parrots. This disorder has many characteristics that are similar to trichotillomania, an impulse control disorder in humans. Unfortunately, to date

  19. Feather damaging behaviour in parrots: A review with consideration of comparative aspects

    NARCIS (Netherlands)

    Zeeland, van Y.R.A.; Spruit, B.M.; Rodenburg, T.B.; Riedstra, B.; Hierden, van Y.M.; Buitenhuis, A.J.; Korte, S.M.; Lumeij, J.T.

    2009-01-01

    Feather damaging behaviour (also referred to as feather picking or feather plucking) is a behavioural disorder that is frequently encountered in captive parrots. This disorder has many characteristics that are similar to trichotillomania, an impulse control disorder in humans. Unfortunately, to date

  20. Chemical composition and amino acid profile of differently processed feather meal

    OpenAIRE

    Adejumo Oluseun Isaac; Adetunji Oluwaseun Charles; Ogundipe Kunle; Osademe Ndudi Sonia

    2016-01-01

    Feather wastes represent potential alternative ingredients for animal feedstuffs which can ameliorate the protein shortage for food and feed. Previous attempts to provide information about the nutrient composition of feather meal are either too complicated for rural livestock farmers in developing countries or they provided incomplete information on chemical composition. Washed feathers were subjected to different processing techniques such as pre-soaking i...

  1. the structure of the water-holding feathers of the namaqua sandgrouse

    African Journals Online (AJOL)

    Cade & Maclean (1967) have given a detailed account of the method of water transport by the male Namaqua sandgrouse to its young. This transport is made possible by the water-holding properties of the abdominal feathers, the lower breast feathers and, to a reduced extent, the upper breast feathers. The structure of ...

  2. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures

    NARCIS (Netherlands)

    Tinbergen, Jan; Wilts, Bodo D.; Stavenga, Doekele G.

    2013-01-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or

  3. Molecular composition and ultrastructure of Jurassic paravian feathers

    Science.gov (United States)

    Lindgren, Johan; Sjövall, Peter; Carney, Ryan M.; Cincotta, Aude; Uvdal, Per; Hutcheson, Steven W.; Gustafsson, Ola; Lefèvre, Ulysse; Escuillié, François; Heimdal, Jimmy; Engdahl, Anders; Gren, Johan A.; Kear, Benjamin P.; Wakamatsu, Kazumasa; Yans, Johan; Godefroit, Pascal

    2015-01-01

    Feathers are amongst the most complex epidermal structures known, and they have a well-documented evolutionary trajectory across non-avian dinosaurs and basal birds. Moreover, melanosome-like microbodies preserved in association with fossil plumage have been used to reconstruct original colour, behaviour and physiology. However, these putative ancient melanosomes might alternatively represent microorganismal residues, a conflicting interpretation compounded by a lack of unambiguous chemical data. We therefore used sensitive molecular imaging, supported by multiple independent analytical tests, to demonstrate that the filamentous epidermal appendages in a new specimen of the Jurassic paravian Anchiornis comprise remnant eumelanosomes and fibril-like microstructures, preserved as endogenous eumelanin and authigenic calcium phosphate. These results provide novel insights into the early evolution of feathers at the sub-cellular level, and unequivocally determine that melanosomes can be preserved in fossil feathers. PMID:26311035

  4. Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution.

    Science.gov (United States)

    Bell, Phil R; Campione, Nicolás E; Persons, W Scott; Currie, Philip J; Larson, Peter L; Tanke, Darren H; Bakker, Robert T

    2017-06-01

    Recent evidence for feathers in theropods has led to speculations that the largest tyrannosaurids, including Tyrannosaurus rex, were extensively feathered. We describe fossil integument from Tyrannosaurus and other tyrannosaurids (Albertosaurus, Daspletosaurus, Gorgosaurus and Tarbosaurus), confirming that these large-bodied forms possessed scaly, reptilian-like skin. Body size evolution in tyrannosauroids reveals two independent occurrences of gigantism; specifically, the large sizes in Yutyrannus and tyrannosaurids were independently derived. These new findings demonstrate that extensive feather coverings observed in some early tyrannosauroids were lost by the Albian, basal to Tyrannosauridae. This loss is unrelated to palaeoclimate but possibly tied to the evolution of gigantism, although other mechanisms exist. © 2017 The Author(s).

  5. Melanin concentration gradients in modern and fossil feathers.

    Directory of Open Access Journals (Sweden)

    Daniel J Field

    Full Text Available In birds and feathered non-avian dinosaurs, within-feather pigmentation patterns range from discrete spots and stripes to more subtle patterns, but the latter remain largely unstudied. A ∼55 million year old fossil contour feather with a dark distal tip grading into a lighter base was recovered from the Fur Formation in Denmark. SEM and synchrotron-based trace metal mapping confirmed that this gradient was caused by differential concentration of melanin. To assess the potential ecological and phylogenetic prevalence of this pattern, we evaluated 321 modern samples from 18 orders within Aves. We observed that the pattern was found most frequently in distantly related groups that share aquatic ecologies (e.g. waterfowl Anseriformes, penguins Sphenisciformes, suggesting a potential adaptive function with ancient origins.

  6. Morphology of primary feathers in two falcon species

    Science.gov (United States)

    Honisch, B.; Bleckmann, H.; Schmitz, H.; Schmitz, A.

    2012-04-01

    Primary feathers allow birds to fly; however, morphology and material properties of theses feathers vary in different bird species. We therefore analysed both morphology and material properties of primary feathers in two raptor species, the peregrine falcon (Falco peregrinus) which is the fastest vertical flyer known, and the kestrel (Falco tinnunculus), using scanning electron microscopy (SEM) and nanoindentation. The program AutoCAD was used for the computation of the moments of inertia. The reduced E-modulus of the cortex of the rachis of the first, fifth, and tenth primary were measured at proximal (10% of total rachis length), central (50%) and distal (75%) cross-sections. In all cross sections the kestrel showed higher E-moduli than the peregrine falcon (values varied between 6.7 and 9.1 GPa). In the primaries, values increased from proximal to central but decreased distally. Looking at the hardness, the kestrel had higher values than the peregrine falcon yet again. The main differences occurred in the first primary. Values ranged between 0.17 and 0.4 GPa. SEM studies revealed that the tenth primary was more stable in the peregrine falcon, featuring more hamuli than the kestrel at all analysed positions and longer hamuli at the distal positions. The higher moments of inertia found in the peregrine falcon caused a much higher bending stiffness in this species. Values were 4.4 to 9.1 times larger in the peregrine falcon than in the kestrel. Because the given structures are responsible for the stability of the feather face it seems that the feathers of F. peregrinus are more robust than those of F. tinnunculus. Even when considering the higher body mass of the peregrine falcon compared to the kestrel (3.4 times), the determined stability of the feather compensates for this problem.

  7. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    Science.gov (United States)

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  8. Analysis of severe feather pecking behavior in a high feather pecking selection line

    DEFF Research Database (Denmark)

    Labouriau, R; Kjaer, J B; Abreu, G C G

    2009-01-01

    Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations......, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence...... of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other...

  9. An investigation into the detection of latent marks on the feathers and eggs of birds of prey.

    Science.gov (United States)

    McMorris, Helen; Farrugia, Kevin; Gentles, Dennis

    2015-03-01

    There are numerous enhancement techniques (physical and chemical) which have been developed for the successful visualisation of latent fingermarks. Nonetheless, problems arise when latent fingermarks require enhancement on difficult surfaces such as human skin, food stuffs, fabric and animals. The ability to develop latent fingermarks on the surface of bird of prey feathers and that of their eggs was investigated. Red and green magnetic fluorescent powders proved to be most suitable on the surface of bird of prey feathers whereas black magnetic powder was the most suitable technique on the eggs. These powders produced the highest quality of visible ridge-detailed developments over a controlled period of time. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Feather content of porphyrins in Eurasian eagle owl (Bubo bubo) fledglings depends on body condition and breeding site quality.

    Science.gov (United States)

    Galván, Ismael; Del Mar Delgado, María; Camarero, Pablo R; Mateo, Rafael; Lourenço, Rui; Penteriani, Vincenzo

    2018-02-13

    Porphyrins are pigments produced in most animal cells during the synthesis of heme, but their importance for external coloration is unclear. Owls (Order Strigiformes) are among the few animals that accumulate porphyrins in the integument, where it could serve as a means of signaling. Here we hypothesized that the porphyrin content of feathers may depend on body condition and breeding site quality in Eurasian eagle owl (Bubo bubo) fledglings and thus constitute amplifiers of the quality of the area where they are born. Using high-performance liquid chromatography (HPLC), we found two porphyrins (protoporphyrin IX and coproporphyrin III) in the body feathers of 19 eagle owl fledglings from seven breeding territories. Coproporphyrin III, but not protoporphyrin IX feather concentration, was positively associated with the body mass of fledglings and with the quality of the breeding sites where they were reared with respect to food quality and availability. As coproporphyrin III is produced under oxidative stress, we suggest that good breeding sites may lead to fledglings in good condition. This in turn may make fledglings induce certain level of free radical and coproporphyrin III production to signal to conspecifics their site-mediated capacity to cope with oxidative stress. This is the first time that porphyrin content in the integument has been found to be related to individual quality, opening a new scenario for studying evolution of animal coloration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2016-10-15

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and m

  12. Influence of structural flexibility on flapping wing propulsion

    Science.gov (United States)

    McClung, Aaron M.

    Natural fliers such as birds and moths exhibit large wing deformations during flight. Understanding the influence of the wing deformations on the unsteady aerodynamics is necessary for optimizing the design of future micro-aerial vehicles. With support from the Air Force Office of Scientific Research and the Air Vehicles directorate of the Air Force Research Laboratory, Aaron McClung examined the influence of wing deformations on the aerodynamic performance of the Hawkmoth using numerical simulation. This work indicates that both twisting of the wing and bending of the wing influence the strength and timing of the unsteady aerodynamic phenomena that dominate the aerodynamic forces produced during flight. The results of this work, and the set of computational tools that were developed, will be incorporated into a design and optimization framework for micro-aerial vehicles currently being developed by the Air Force Research Laboratory.

  13. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes).

    Science.gov (United States)

    Ksepka, Daniel T; Clarke, Julia A; Nesbitt, Sterling J; Kulp, Felicia B; Grande, Lance

    2013-06-22

    A feathered specimen of a new species of Eocypselus from the Early Eocene Green River Formation of Wyoming provides insight into the wing morphology and ecology in an early part of the lineage leading to extant swifts and hummingbirds. Combined phylogenetic analysis of morphological and molecular data supports placement of Eocypselus outside the crown radiation of Apodiformes. The new specimen is the first described fossil of Pan-Apodiformes from the pre-Pleistocene of North America and the only reported stem taxon with informative feather preservation. Wing morphology of Eocypselus rowei sp. nov. is intermediate between the short wings of hummingbirds and the hyper-elongated wings of extant swifts, and shows neither modifications for the continuous gliding used by swifts nor modifications for the hovering flight style used by hummingbirds. Elongate hindlimb elements, particularly the pedal phalanges, also support stronger perching capabilities than are present in Apodiformes. The new species is the smallest bird yet described from the Green River Formation, and supports the hypothesis that a decrease in body size preceded flight specializations in Pan-Apodiformes. The specimen also provides the first instance of melanosome morphology preserved in association with skeletal remains from the Green River Formation.

  14. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. II. Wing reduction and the sensory field.

    Science.gov (United States)

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro; Polilov, Alexey; Cherney, Lyubov; Browdy, Vassily; Kovalev, Maxim

    2015-01-01

    Loss of the flight ability and wing reduction has been reported for many taxa of Coleoptera. If elytra are closed, their roots are clenched between the tergum and the pleuron, forces applied to the elytra can not be transmitted to the field of campaniform sensilla situated on the root. That is why it is plausible to assume that the field becomes redundant in non-flying beetles. We examined the relationships between the hind wing reduction and characters of this mechanosensory field in beetles of six families. We measured the size of the elytron, that of the hind wing and counted the number of sensilla in the sensory field. Mesopterous non-flying beetles retain one half to one third of sensilla present in macropterous species of the same body size. Further reduction of the sensory field in brachypterous species is obvious, but sensilla are still present in insects with strongly reduced wings, as long as their elytra are separable and mesothoracic axillaries are present. Complete loss of sensilla coincides with the existence of a permanent sutural lock. However, some beetles with permanently locked elytra and absence of axillaries still retain few campaniform sensilla. A very special case of an extreme wing modification in feather-wing beetles is considered. No sensilla were revealed either on the root of the elytron or on the basal segment of such fringed wings in flying ptiliid species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.

    Science.gov (United States)

    D'Alba, Liliana; Kieffer, Leah; Shawkey, Matthew D

    2012-04-15

    Understanding the mechanistic bases of natural color diversity can provide insight into its evolution and inspiration for biomimetic optical structures. Metazoans can be colored by absorption of light from pigments or by scattering of light from biophotonic nanostructures, and these mechanisms have largely been treated as distinct. However, the interactions between them have rarely been examined. Captive breeding of budgerigars (Aves, Psittacidae, Melopsittacus undulatus) has produced a wide variety of color morphs spanning the majority of the spectrum visible to birds, including the ultraviolet, and thus they have been used as examples of hypothesized structure-pigment interactions. However, empirical data testing these interactions in this excellent model system are lacking. Here we used ultraviolet-visible spectrometry, light and electron microscopy, pigment extraction experiments and optical modeling to examine the physical bases of color production in seven budgerigar morphs, including grey and chromatic (purple to yellow) colors. Feathers from all morphs contained quasi-ordered air-keratin 'spongy layer' matrices, but these were highly reduced and irregular in grey and yellow feathers. Similarly, all feathers but yellow and grey had a layer of melanin-containing melanosomes basal to the spongy layer. The presence of melanosomes likely increases color saturation produced by spongy layers whereas their absence may allow increased expression of yellow colors. Finally, extraction of yellow pigments caused some degree of color change in all feathers except purple and grey, suggesting that their presence and contribution to color production is more widespread than previously thought. These data illustrate how interactions between structures and pigments can increase the range of colors attainable in birds and potentially in synthetic systems.

  16. Evaluation of strain, dietary energy level and stocking density on broiler feathering

    Directory of Open Access Journals (Sweden)

    J Moreira

    2006-03-01

    Full Text Available This study evaluated the effects of strain, stocking density and dietary energy level on the feathering of broiler chickens. Four trials were carried out between September 2000 and April 2002. There were 10,685 broiler chicks from the strains Ross 308, Cobb 500, Hybro PG, Hubbard, MPK, and Isa Vedette. The bids were reared at stocking densities varying between 10 and 16 birds/m² and were given diets containing different metabolizable energy levels. Broiler feathering was evaluated either by atrributing scores from 1 to 10 to feather covering along the thigh and back (visual inspection, or by determining the percentage weight of the feathers at 28 and 42 days of age. Increasing rearing densities resulted in poorer feathering, mainly if 12 or 13 birds/m² were compared with 16 birds/m². The strains showed different feathering; it was better in Cobb 500 and MPK birds, whereas Hubbard birds showed poorer feathering, mostly along the back. The energy level in the diet has also affected feathering scores. Medium energy level resulted in better feathering along the back at 28 days, and the low level, in better feathering along the thigh at 35 days of age. Finally, feather scores were better in females than in males.

  17. Drosophila wing modularity revisited through a quantitative genetic approach.

    Science.gov (United States)

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. © 2016 The Author(s).

  18. Towards a quantitative indicator of feather disruption following the cleansing of oiled birds.

    Science.gov (United States)

    Bigger, Stephen W; Ngeh, Lawrence N; Dann, Peter; Orbell, John D

    2017-07-15

    A computer-based imaging method for determining feather microstructure coherency following a cleansing treatment, was developed, calibrated and trialled on Mallard Duck (Anas platyrhyhchos) feathers. The feathers were initially contaminated with a light crude oil and then cleansed by either detergent (Deacon 90) treatment or, alternatively, by magnetic particle technology (MPT) using iron powder. The imaging method provides a single quantitative parameter for the coherence of feather microstructure and the results confirm that MPT treatment imparts less disruption to the feather microstructure than detergent treatment. It is proposed that this imaging method can be developed and implemented for the assessment of feather disruption and possibly damage, either for the trialling of different treatment protocols, or as a tool during the rehabilitation process, along with other such indicators, to give a more comprehensive assessment of feather condition than is currently available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers

    Science.gov (United States)

    Moyer, Alison E.; Zheng, Wenxia; Johnson, Elizabeth A.; Lamanna, Matthew C.; Li, Da-Qing; Lacovara, Kenneth J.; Schweitzer, Mary H.

    2014-03-01

    Microbodies associated with fossil feathers, originally attributed to microbial biofilm, have been reinterpreted as melanosomes: pigment-containing, eukaryotic organelles. This interpretation generated hypotheses regarding coloration in non-avian and avian dinosaurs. Because melanosomes and microbes overlap in size, distribution and morphology, we re-evaluate both hypotheses. We compare melanosomes within feathers of extant chickens with patterns induced by microbial overgrowth on the same feathers, using scanning (SEM), field emission (FESEM) and transmission (TEM) electron microscopy. Melanosomes are always internal, embedded in a morphologically distinct keratinous matrix. Conversely, microbes grow across the surface of feathers in continuous layers, more consistent with published images from fossil feathers. We compare our results to both published literature and new data from a fossil feather ascribed to Gansus yumenensis (ANSP 23403). `Mouldic impressions' were observed in association with both the feather and sediment grains, supporting a microbial origin. We propose criteria for distinguishing between these two microbodies.

  20. The disposition of oxytetracycline to feathers after poultry treatment

    NARCIS (Netherlands)

    Berendsen, B.J.A.; Bor, G.; Gerritsen, H.W.; Jansen, L.J.M.; Zuidema, T.

    2013-01-01

    In the combat against bacterial resistance, there is a clear need to check the use of antibiotics in animal husbandry, including poultry breeding. The use of chicken feathers as a tool for the detection of use of antibiotics was investigated. An extraction method for the analysis of oxytetracycline

  1. Plumage disorders in psittacine birds - part 2: feather damaging behaviour

    NARCIS (Netherlands)

    van Zeeland, Y.R.A.; Schoemaker, N.J.

    2014-01-01

    Plumage disorders in parrots represent one of the more common, but also one of the more challenging and frustrating problems that veterinarians dealing with parrots in their daily practice face on a day-to-day basis. This second part of the review will deal with diseases causing lack of feather

  2. Feathering Instability of Spiral Arms. I. Formulation of the Problem

    Science.gov (United States)

    Lee, Wing-Kit; Shu, Frank H.

    2012-09-01

    In this paper, we study the feathering substructures along spiral arms by considering the perturbational gas response to a spiral shock. Feathers are density fluctuations that jut out from the spiral arm to the interarm region at pitch angles given by the quantum numbers of the doubly periodic structure. In a localized asymptotic approximation, related to the shearing sheet except that the inhomogeneities occur in space rather than in time, we derive the linearized perturbation equations for a razor-thin disk with turbulent interstellar gas, frozen-in magnetic field, and gaseous self-gravity. Apart from the modal quantum numbers, the individual normal modes of the system depend on seven dimensionless quantities that characterize the underlying time-independent axisymmetric state plus its steady, nonlinear, two-armed spiral-shock response to a hypothesized background density wave supported by the disk stars of the galaxy. We show that some of these normal modes have positive growth rates. Their overdensity contours in the post-shock region are very reminiscent of observed feathering substructures in full magnetohydrodynamic simulations. The feathering substructures are parasitic instabilities intrinsic to the system; thus, their study not only provides potential diagnostics for important parameters that characterize the interstellar medium of external galaxies, but also yields a deeper understanding of the basic mechanism that drives the formation of the giant molecular clouds and the OB stars that outline observed grand-design spirals.

  3. Purification and characterization of a keratinase from the feather ...

    African Journals Online (AJOL)

    Keratinase was purified and characterized from the solid cultures of Aspergillus flavipes using chicken feather as substrate under solid state fermentation. The enzyme was purified by about 2.67 fold compared to the crude enzyme preparation. 40-60% ammonium sulphate saturation was used followed by anion exchange ...

  4. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    Science.gov (United States)

    Rebecca Hylton Keller; Lingtian Xie; David B. Buchwalter; Kathleen E. Franzreb; Theodore R Simons

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope ä 15N. Mercury concentrations (mean ± SE) averaged 0.46...

  5. Repeatability of feather mite prevalence and intensity in passerine birds.

    Directory of Open Access Journals (Sweden)

    Javier Diaz-Real

    Full Text Available Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (R(adj after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity. The prevalence of feather mites was moderately repeatable (R = 0.26-0.53; R(adj = 0.32-0.57; smaller values were found for intensity (R = 0.19-0.30; R(adj = 0.18-0.30. These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.

  6. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing

    2017-01-01

    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  7. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird:Implications for the evolution of avian flight

    OpenAIRE

    Guillermo Navalón; Jesús Marugán-Lobón; Chiappe, Luis M.; José Luis Sanz; Buscalioni, Ángela D.

    2015-01-01

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological ...

  8. Piscivory in the feathered dinosaur Microraptor.

    Science.gov (United States)

    Xing, Lida; Persons, W Scott; Bell, Phil R; Xu, Xing; Zhang, Jianping; Miyashita, Tetsuto; Wang, Fengping; Currie, Philip J

    2013-08-01

    The largest specimen of the four-winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Many variations on a few themes: a broader look at development of iridescent scales (and feathers).

    Science.gov (United States)

    Ghiradella, Helen T; Butler, Michael W

    2009-04-06

    Iridescent structures are some of the most visually stunning phenomena in biological organisms. Insects and birds have in common the display of such colours in their non-living investiture, the scales and bristles in insects and the feathers in birds. The biological mechanisms underlying the formation of these structures, at least in insects, appear quite conservative in that the same architect, the eukaryotic cell, can produce not only the iridescent structure but, with some tweaking of the genome, other structures as well, a fact that may be of particular interest to materials scientists and industrial parties seeking to biomimic these forms. Here, we review two examples, one on the cellular and the other on the subcellular level of this developmental flexibility in insects. We then go on to review what is known about iridescent feather development in birds. We suggest that, in view of the increasing evidence that genes and pathways are conserved among taxa, the work on insects may perhaps suggest perspectives or directions of potential use in the study of birds.

  10. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    Directory of Open Access Journals (Sweden)

    Ashley M Heers

    Full Text Available Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds and flight origins (extinct theropods, skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to

  11. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    Science.gov (United States)

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  12. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    Science.gov (United States)

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  13. Bristles before down: a new perspective on the functional origin of feathers.

    Science.gov (United States)

    Persons, Walter S; Currie, Philip J

    2015-04-01

    Over the course of the last two decades, the understanding of the early evolution of feathers in nonavian dinosaurs has been revolutionized. It is now recognized that early feathers had a simple form comparable in general structure to the hairs of mammals. Insight into the prevalence of simple feathers throughout the dinosaur family tree has gradually arisen in tandem with the growing evidence for endothermic dinosaur metabolisms. This has led to the generally accepted opinion that the early feather coats of dinosaurs functioned as thermo insulation. However, thermo insulation is often erroneously stated to be a likely functional explanation for the origin of feathers. The problem with this explanation is that, like mammalian hair, simple feathers could serve as insulation only when present in sufficiently high concentrations. The theory therefore necessitates the origination of feathers en masse. We advocate for a novel origin theory of feathers as bristles. Bristles are facial feathers common among modern birds that function like mammalian tactile whiskers, and are frequently simple and hair-like in form. Bristles serve their role in low concentrations, and therefore offer a feasible first stage in feather evolution. © 2015 The Author(s).

  14. The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications.

    Science.gov (United States)

    Foth, Christian

    2011-04-01

    Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior-posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown-group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of "model organisms" to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. Copyright © 2011 Wiley-Liss, Inc.

  15. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...... re-compress the upstream flow and the gas Mach number decreases correspondingly. However, the Mach number does not vary significantly from the small, medium and large delta wing configurations. The small delta wing generates a swirl near its surface, but has minor influences on the flow above it....... On the contrary, the use of the large delta wing produces a strong swirling flow in the whole downstream region. For the large delta wing, the collection efficiency reaches 70% with 2 μm particles, indicating a good separation performance of the proposed supersonic separator....

  16. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  17. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  18. Equivalent plate modeling for conceptual design of aircraft wing structures

    Science.gov (United States)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  19. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    Science.gov (United States)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  20. Both feather peckers and victims are more asymmetrical than control hens

    DEFF Research Database (Denmark)

    Machado Tahamtani, Fernanda; Forkman, Björn; Hinrichsen, Lena Karina

    2017-01-01

    Feather pecking is the major welfare issue facing the egg farming industry worldwide. Previous research has found a relationship between cannibalistic behaviour, fluctuating asymmetry of bilateral traits (FA) and body weight in laying hens. As cannibalism is linked to severe feather pecking......, it could be suggested that a relationship between feather pecking, FA and body weight also exists. The purpose of this study was to analyse the association between feather pecking behaviour and a) FA, b) body weight and c) comb size in laying hens. Sixty-four laying hens were categorised as feather peckers......, victims or control hens based on weekly performance of feather pecking behaviour from age 0–23 weeks and plumage condition at age 23 weeks. After culling at 23 weeks of age, the lengths of ulna, tarsus and middle toe as well as the widths of tarsus and hock were measured twice in each side. Each trait...

  1. Both feather preckers and victims are more asymmetrical than control hens

    DEFF Research Database (Denmark)

    Tahamtani, Fernanda M; Forkman, Björn; Hinrichsen, Lena Karina

    2017-01-01

    Feather pecking is the major welfare issue facing the egg farming industry worldwide. Previous research has found a relationship between cannibalistic behaviour, fluctuating asymmetry of bilateral traits (FA) and body weight in laying hens. As cannibalism is linked to severe feather pecking......, it could be suggested that a relationship between feather pecking, FA and body weight also exists. The purpose of this study was to analyse the association between feather pecking behaviour and a) FA, b) body weight and c) comb size in laying hens. Sixty-four laying hens were categorised as feather peckers......, victims or control hens based on weekly performance of feather pecking behaviour from age 0–23 weeks and plumage condition at age 23 weeks. After culling at 23 weeks of age, the lengths of ulna, tarsus and middle toe as well as the widths of tarsus and hock were measured twice in each side. Each trait...

  2. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient.

    Science.gov (United States)

    Bertsch, A; Coello, N

    2005-10-01

    A strain of Kocuria rosea with keratinolytic capacity was cultured aerobically on submerged feathers to obtain a fermented feather meal (FFM). This FFM enriched with cells of K. rosea mainly contains crude protein (71%). The pepsin digestibility of the fermented product (88%) was similar to the value of the commercial feather meal and more than 70% greater that untreated feathers. The bacterial biomass improved the content of amino acids lysine (3.46%), histidine (0.94%) and methionine (0.69%). Additionally, the amino acid availability tested by in vivo assay was greater than commercial feather meal. The microbial cells also supplied carotenoid pigments to FFM (68 ppm). These results suggest that feather meal enriched with K. rosea may be useful in animal feeding as protein and pigment source.

  3. Fabrication of hierarchical feather-mimetic polymer nanofibres

    Science.gov (United States)

    Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Peng, Meiling; Yao, Juming; Wang, Sheng

    2018-01-01

    In this study, hierarchically feather-mimetic structures formed of poly(m-phenylene isophthalamide) (PMIA) nanofibres were prepared by electrospinning and subsequent crystallisation for superwettability applications. X-ray diffraction measurementsand scanning electron microscopy show that a feather-mimetic structure of crystallised nanoflakes was formed following a hydrothermal treatment process. The nanoflakes formed a nanosized fine texture on top of a coarser-textured membrane, which greatly improved the membrane roughness and yielded a hierarchical topography. After fluorination, the membrane exhibited superamphiphobicity, with surface contact angles of 151° and 136° for water and hexadecane, respectively. The method provides new insight for the design and development of functional bionic membranes based on PMIA.

  4. Nanomechanical properties of wing membrane layers in the house cricket (Acheta domesticus Linnaeus).

    Science.gov (United States)

    Sample, Caitlin S; Xu, Alan K; Swartz, Sharon M; Gibson, Lorna J

    2015-03-01

    Many insect wings change shape dynamically during the wingbeat cycle, and these deformations have the potential to confer energetic and aerodynamic benefits during flight. Due to the lack of musculature within the wing itself, the changing form of the wing is determined primarily by its passive response to inertial and aerodynamic forces. This response is in part controlled by the wing's mechanical properties, which vary across the membrane to produce regions of differing stiffness. Previous studies of wing mechanical properties have largely focused on surface or bulk measurements, but this ignores the layered nature of the wing. In our work, we investigated the mechanical properties of the wings of the house cricket (Acheta domesticus) with the aim of determining differences between layers within the wing. Nanoindentation was performed on both the surface and the interior layers of cross-sectioned samples of the wing to measure the Young's modulus and hardness of the outer- and innermost layers. The results demonstrate that the interior of the wing is stiffer than the surface, and both properties vary across the wing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology

    Science.gov (United States)

    Bao, X. Q.; Bontemps, A.; Grondel, S.; Cattan, E.

    2011-12-01

    Insect wings consist of supporting veins and flexible membranes using fibrous composite material. This paper describes a method of wing design and fabrication based on composite, mimicking insect wings through advanced microelectromechanical system (MEMS) technology. SU-8 'fiber' reinforced polydimethylsiloxane (PDMS) membrane forms a fine structure, approaching real wings not only in material conception but also in mechanical performance. Based on a design in its initial stage, a new process was developed integrating all steps into a single procedure. We use a tailored AZ 4562 resist layer as the mold for PDMS wing membrane structuring. A 20 nm hydrophilic oxide layer was grown on the substrate to solve the final lift-off problems which become more severe when the wing membrane gets thinner. The vein thickness can be controlled with high precision by the spin-coating technique. The thickness of artificial membrane can be thinned down to a few microns, thus emulating those of some insects. Our process is compatible with common MEMS technology, and eligible to produce artificial wings of complex geometry and morphology mimicking natural insect wings. Our conclusion is that natural wings can be well mimicked in material conception, weight, venation, size, mass distribution and wing rigidity using hybrid materials. We also show that even using exceedingly compliant material as one composition, composite airfoils can be as light and stiff as insect wings, thereby highlighting the merit of smart material hybridization.

  6. Replacement Value of Feather Meal for Fishmeal on the ...

    African Journals Online (AJOL)

    Two hundred and fifty (250) Light Sussex cockerels were used in a 56 days feeding trial on a deep litter house to assess the effect of replacement of feather meal (FEM) for fishmeal (FM) on their performance. Five replacement levels 0, 2.5, 5 7.5 and 10% of FEM were used for the treatments, (1, 2, 3, 4 and 5 respectively) ...

  7. FeatherSail--Design, Development and Future Impact

    Science.gov (United States)

    Alhorn, Dean C.; Scheierl, John M.

    2010-01-01

    This CD contains the slide presentation and a brief video of the solar sail concept. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density.

  8. Coevolution of caudal skeleton and tail feathers in birds.

    Science.gov (United States)

    Felice, Ryan N

    2014-12-01

    Birds are capable of a wide range of aerial locomotor behaviors in part because of the derived structure and function of the avian tail. The tail apparatus consists of a several mobile (free) caudal vertebrae, a terminal skeletal element (the pygostyle), and an articulated fan of tail feathers that may be spread or folded, as well as muscular and fibroadipose structures that facilitate tail movements. Morphological variation in both the tail fan and the caudal skeleton that supports it are well documented. The structure of the tail feathers and the pygostyle each evolve in response to functional demands of differing locomotor behaviors. Here, I test whether the integument and skeleton coevolve in this important locomotor module. I quantified feather and skeletal morphology in a diverse sample of waterbirds and shorebirds using a combination of linear and geometric morphometrics. Covariation between tail fan shape and skeletal morphology was then tested using phylogenetic comparative methods. Pygostyle shape is found to be a good predictor of tail fan shape (e.g., forked, graduated), supporting the hypothesis that the tail fan and the tail skeleton have coevolved. This statistical relationship is used to reconstruct feather morphology in an exemplar fossil waterbird, Limnofregata azygosternon. Based on pygostyle morphology, this taxon is likely to have exhibited a forked tail fan similar to that of its extant sister clade Fregata, despite differing in inferred ecology and other aspects of skeletal anatomy. These methods may be useful in reconstructing rectricial morphology in other extinct birds and thus assist in characterizing the evolution of flight control surfaces in birds. © 2014 Wiley Periodicals, Inc.

  9. Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds

    Science.gov (United States)

    Diaz-Real, Javier; Serrano, David; Pérez-Tris, Javier; Fernández-González, Sofía; Bermejo, Ana; Calleja, Juan A.; De la Puente, Javier; De Palacio, Diana; Martínez, José L.; Moreno-Opo, Rubén; Ponce, Carlos; Frías, Óscar; Tella, José L.; Møller, Anders P.; Figuerola, Jordi; Pap, Péter L.; Kovács, István; Vágási, Csongor I.; Meléndez, Leandro; Blanco, Guillermo; Aguilera, Eduardo; Senar, Juan Carlos; Galván, Ismael; Atiénzar, Francisco; Barba, Emilio; Cantó, José L.; Cortés, Verónica; Monrós, Juan S.; Piculo, Rubén; Vögeli, Matthias; Borràs, Antoni; Navarro, Carlos; Mestre, Alexandre; Jovani, Roger

    2014-01-01

    Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (Radj) after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity). The prevalence of feather mites was moderately repeatable (R = 0.26–0.53; Radj = 0.32–0.57); smaller values were found for intensity (R = 0.19–0.30; Radj = 0.18–0.30). These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity. PMID:25216248

  10. Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin

    Directory of Open Access Journals (Sweden)

    Yoxkin Estévez-Martínez

    2013-01-01

    Full Text Available Keratin, obtained from chicken feathers, was grafted on the surface of commercially available carbon nanotubes. The original procedure developed allows a covalent interaction between some specific chemical groups characteristic of the keratin, with some functional groups introduced on purpose on the surface of the nanotubes, as revealed by infrared and Raman spectroscopies, which also allowed to determine structural changes introduced during the process, such as crystallinity, which lead to changes in other properties, as well.

  11. Improved keratinase production for feather degradation by Bacillus ...

    African Journals Online (AJOL)

    ... to optimize concentrations of glucose, corn steep flour and K2HPO4 for further improvement of keratinase productivity showed that the optimal medium was composed of glucose (20 g/l), corn steep flour (7.5 g/l), K2HPO4 (1 g/l) and feather (20 g/l). The result of submerged batch cultivation of B. licheniformis ZJUEL31410 ...

  12. Sulfitolytic and keratinolytic potential of Chryseobacterium sp. RBT revealed hydrolysis of melanin containing feathers

    OpenAIRE

    Gurav, Ranjit G.; Tang, Jingchun; Jadhav, Jyoti P.

    2016-01-01

    In black feathers, melanin is embedded in keratin matrix that makes feather more resistance to the microbial degradation. Chryseobacterium sp. RBT previously isolated from the poultry waste disposable site revealed strong sulfitolytic and keratinolytic activities. Maximum keratinase activity was observed at 48?h (89.12?U?ml?1) showed 83?% of native black feather degradation. The concentration of free sulfhydryl groups released during degradation was 0.648???10?4?M?(12?h), 2.144???10?4?M?(96?h...

  13. Supersonic aerodynamics of delta wings

    Science.gov (United States)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  14. The Topobiology of Chemical Elements in Seabird Feathers.

    Science.gov (United States)

    R Howell, Nicholas; Lavers, Jennifer L; Uematsu, Sayaka; Paterson, David; Howard, Daryl L; Spiers, Kathryn; Jonge, Martin D de; Hanley, Tracey; Garrett, Richard; Banati, Richard B

    2017-05-17

    The highly organized morphogenesis of bird feathers holds important phylo- and ontogenetic information on the evolution of birds, organogenesis, tissue regeneration, and the health status of individual animals. Altered topobiological patterns are regularly used as retrospective evidence for disturbed developmental trajectories due to the past exposure to environmental stressors. Using the most advanced high-resolution (5-70 µm) X-ray fluorescence microscopy (XFM), we describe in the feathers from three species of Procellariiformes hitherto unknown, depositions of elements (Zn, Ca, Br, Cu, Fe) that are independent of pigmentation or any underlying variation in density or polymer structure. In the case of Zn, the pattern across several species of Procellariiformes, but not other species, consisted of highly regular bands of Zn numbering 30-32, which may reflect the estimated number of days of active feather growth or the duration of the moult period. Thus, speculatively, the highly consistent Zn pattern might be the result of a so far unknown diurnal systemic regulation rather than local heterogeneity amongst the follicular stem cells.

  15. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  16. Fully Biodegradable Biocomposites with High Chicken Feather Content

    Directory of Open Access Journals (Sweden)

    Ibon Aranberri

    2017-11-01

    Full Text Available The aim of this work was to develop new biodegradable polymeric materials with high loadings of chicken feather (CF. In this study, the effect of CF concentration and the type of biodegradable matrix on the physical, mechanical and thermal properties of the biocomposites was investigated. The selected biopolymers were polylactic acid (PLA, polybutyrate adipate terephthalate (PBAT and a PLA/thermoplastic copolyester blend. The studied biocomposites were manufactured with a torque rheometer having a CF content of 50 and 60 wt %. Due to the low tensile strength of CFs, the resulting materials were penalized in terms of mechanical properties. However, high-loading CF biocomposites resulted in lightweight and thermal-insulating materials when compared with neat bioplastics. Additionally, the adhesion between CFs and the PLA matrix was also investigated and a significant improvement of the wettability of the feathers was obtained with the alkali treatment of the CFs and the addition of a plasticizer like polyethylene glycol (PEG. Considering all the properties, these 100% fully biodegradable biocomposites could be adequate for panel components, flooring or building materials as an alternative to wood–plastic composites, contributing to the valorisation of chicken feather waste as a renewable material.

  17. Bionic Research on Bird Feather for Drag Reduction

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2015-02-01

    Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.

  18. Melanosome evolution indicates a key physiological shift within feathered dinosaurs.

    Science.gov (United States)

    Li, Quanguo; Clarke, Julia A; Gao, Ke-Qin; Zhou, Chang-Fu; Meng, Qingjin; Li, Daliang; D'Alba, Liliana; Shawkey, Matthew D

    2014-03-20

    Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.

  19. Kinetic study of sulphuric acid hydrolysis of protein feathers.

    Science.gov (United States)

    Ben Hamad Bouhamed, Sana; Kechaou, Nabil

    2017-05-01

    Poultry feather keratin is the most important by-product from the poultry industry due to its abundance. Different methods have been still applied to process this by-product such as enzymatic hydrolysis which is expensive and inapplicable at the industrial level. This paper presents a study of acid hydrolysis of poultry feathers using different types of acids, sulphuric acid concentration, different temperatures and solid to liquid ratio to obtain a liquid product rich in peptides. The feathers analysis revealed a crude protein content of 88.83%. A maximum peptides production of 676 mg/g was reached using sulphuric acid, 1 molar acid concentration and 50 g/l solid to liquid ratio at a temperature of 90 °C after 300 min. A reaction scheme for protein aggregation and decomposition to polypeptides and amino acids was proposed and a kinetic model for peptides production was developed. The proposed kinetic model proved to be well adapted to the experimental data with R (2) = 0.99.

  20. A diverse assemblage of Late Cretaceous dinosaur and bird feathers from Canadian amber.

    Science.gov (United States)

    McKellar, Ryan C; Chatterton, Brian D E; Wolfe, Alexander P; Currie, Philip J

    2011-09-16

    The fossil record of early feathers has relied on carbonized compressions that lack fine structural detail. Specimens in amber are preserved in greater detail, but they are rare. Late Cretaceous coal-rich strata from western Canada provide the richest and most diverse Mesozoic feather assemblage yet reported from amber. The fossils include primitive structures closely matching the protofeathers of nonavian dinosaurs, offering new insights into their structure and function. Additional derived morphologies confirm that plumage specialized for flight and underwater diving had evolved in Late Cretaceous birds. Because amber preserves feather structure and pigmentation in unmatched detail, these fossils provide novel insights regarding feather evolution.

  1. Melanin-based color of plumage: role of condition and of feathers' microstructure

    Science.gov (United States)

    D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.

    2014-01-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  2. Development of feather keratin nanoparticles and investigation of their hemostatic efficacy.

    Science.gov (United States)

    Wang, Ju; Hao, Shilei; Luo, Tiantian; Yang, Qian; Wang, Bochu

    2016-11-01

    Chicken feathers are considered as the major waste in poultry industry, which are mostly constituted of keratin proteins. Development of feather keratin for biomedical application is very attractive for chicken feather recycling. Human hair keratins have been demonstrated the significant hemostatic efficacy in the previous studies, but there are few reports of feather keratin for the hemostatic application. Here, the chicken feather keratin nanoparticle was developed for use as a hemostatic agent. Keratin was extracted from chicken feather in the present study, and a modified ultrasonic dispersion method was used to prepare keratin nanoparticles. The characterizations of feather keratin extracts and nanoparticles were investigated, including electrophoretic separation, amino acid composition, particle size, zeta potential, morphology, chemical structure and crystal form. Additionally, the hemostatic efficacy in vitro and in vivo of keratin nanoparticles were also studied. The results of hemostatic tests showed that the bleeding time and blood loss in tail amputation and liver scratch rat models can be significantly decreased after application of feather keratin nanoparticles, which demonstrated the potential application of feather keratin nanoparticles for hemostasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structural origin of the brown color of barbules in male peacock tail feathers.

    Science.gov (United States)

    Li, Yizhou; Lu, Zhihua; Yin, Haiwei; Yu, Xindi; Liu, Xiaohan; Zi, Jian

    2005-07-01

    We report detailed optical measurements and numerical simulations of brown barbules in male peacock tail feathers. Our results indicate that brown coloration is predominantly produced structurally by the two-dimensional (2D) photonic-crystal structure in the cortex layer of a barbule. The constructing strategies of brown coloration revealed by numerical simulations are indeed subtle, which are of great significance in the artificial constructions of mixed structural coloration. It is found that the structural configurations of the 2D photonic-crystal structure such as the lattice constant, the number of periods, and even the interdistance and missing holes between the two melanin layers nearest to the cortex surface, are important in the production of structural brown colors.

  4. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes

    Science.gov (United States)

    Khudiyev, Tural; Dogan, Tamer; Bayindir, Mehmet

    2014-04-01

    Biological systems serve as fundamental sources of inspiration for the development of artificially colored devices, and their investigation provides a great number of photonic design opportunities. While several successful biomimetic designs have been detailed in the literature, conventional fabrication techniques nonetheless remain inferior to their natural counterparts in complexity, ease of production and material economy. Here, we investigate the iridescent neck feathers of Anas platyrhynchos drakes, show that they feature an unusual arrangement of two-dimensional (2D) photonic crystals and further exhibit a superhydrophobic surface, and mimic this multifunctional structure using a nanostructure composite fabricated by a recently developed top-down iterative size reduction method, which avoids the above-mentioned fabrication challenges, provides macroscale control and enhances hydrophobicity through the surface structure. Our 2D solid core photonic crystal fibres strongly resemble drake neck plumage in structure and fully polymeric material composition, and can be produced in wide array of colors by minor alterations during the size reduction process.

  5. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

    Science.gov (United States)

    O’Connor, Jingmai K.; Chiappe, Luis M.; Chuong, Cheng-ming; Bottjer, David J.; You, Hailu

    2013-01-01

    At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. PMID:24003379

  6. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

    Directory of Open Access Journals (Sweden)

    David J. Bottjer

    2012-09-01

    Full Text Available At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds.

  7. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method

  8. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  9. Nonlinear aerodynamic wing design

    Science.gov (United States)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  10. Drag Performance of Twist Morphing MAV Wing

    OpenAIRE

    Ismail N.I.; Zulkifli A.H.; Talib R.J.; Zaini H.; Yusoff H.

    2016-01-01

    Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analy...

  11. The natural flow wing-design concept

    Science.gov (United States)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  12. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  13. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  14. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    lation viscosity is required. A wing is seen as a body that locally disturbs the otherwise uniform flow. The disturbances in veloc- ity and pressure caused are such that they aid to generate lift but damp down to zero far away from the wing. The momentum the- orem connects these ideas and explains how the reaction force to.

  15. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  16. Logistics Implications of Composite Wings

    Science.gov (United States)

    1993-12-01

    Stock Funding 59 Summary 60 Notes 60 5 DEPOT SUPPORT FOR COMPOSITE WINGS 63 Definition of Logistics 63 What Is a Depot? 63 Air Force...impacts of composite wings on the depot structure. Definition of Logistics Logistics is the foundation for sustaining all Air Force operations. The

  17. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  18. Active plate and wing research using EDAP elements

    Science.gov (United States)

    Barrett, Ron

    1992-09-01

    The deflection characteristics of structures using directionally attached piezoelectric (DAP) and enhanced DAP (EDAP) elements are explored. Tests demonstrate that piezoceramic elements, which are isotropic, exhibit orthotropic behavior when directionally attached using any of three methods: (i) partial attachment, (ii) transverse shear lag, and (iii) differential stiffness bonding. Test results demonstrate that directional enhancement through transverse stiffening can increase DAP element strain from 5 to 25%. Closed form expressions of DAP/EDAP strains based on classical laminated plate theory are presented. The models demonstrate that DAP/EDAP elements generate any in-plane strain (extensions and shear) or out-of-plane curvature (bending in either direction and twist) independent of other strains or curvatures. Test results show that fiberglass and aluminium DAP/EDAP beams produce torsional and bending deflections in excess of 30° m-1 with theory and experiment in close agreement. The deflections of DAP/EDAP and conventional piezoelectric active structures are compared. Tests show that DAP/EDAP elements can produce up to 16 times more twist than conventionally attached piezoceramic elements. Two wings were constructed with DAP and EDAP elements. EDAP elements were laminated into the skin of a graphite/epoxy supersonic wing that had a 9% thick diamond airfoil section and an aspect ratio of 3. DAP elements were also laminated to a torsion beam of a subsonic wing that had an NACA 0012 profile and an aspect ratio of 1.4. The supersonic wing demonstrated static twist deflections in excess of 2°. The subsonic wing demonstrated static pitch deflections of 9°. The lifting capability of the DAP/EDAP wings are compared to piezo-ailerons. The DAP/EDAP wings are shown to produce much larger changes in lift coefficient and greater deflection stability with increasing airspeed than the piezo-aileron configuration.

  19. WINGDES2 - WING DESIGN AND ANALYSIS CODE

    Science.gov (United States)

    Carlson, H. W.

    1994-01-01

    This program provides a wing design algorithm based on modified linear theory which takes into account the effects of attainable leading-edge thrust. A primary objective of the WINGDES2 approach is the generation of a camber surface as mild as possible to produce drag levels comparable to those attainable with full theoretical leading-edge thrust. WINGDES2 provides both an analysis and a design capability and is applicable to both subsonic and supersonic flow. The optimization can be carried out for designated wing portions such as leading and trailing edge areas for the design of mission-adaptive surfaces, or for an entire planform such as a supersonic transport wing. This program replaces an earlier wing design code, LAR-13315, designated WINGDES. WINGDES2 incorporates modifications to improve numerical accuracy and provides additional capabilities. A means of accounting for the presence of interference pressure fields from airplane components other than the wing and a direct process for selection of flap surfaces to approach the performance levels of the optimized wing surfaces are included. An increased storage capacity allows better numerical representation of those configurations that have small chord leading-edge or trailing-edge design areas. WINGDES2 determines an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. The objective of the design is the recovery of unrealized theoretical leading-edge thrust of the input flat surface by shaping of the design surface to create a distributed thrust and thus minimize drag. The input consists of airfoil section thickness data, leading and trailing edge planform geometry, and operational parameters such as Mach number, Reynolds number, and design lift coefficient. Output includes optimized camber surface ordinates, pressure coefficient distributions, and theoretical aerodynamic characteristics. WINGDES2 is written in FORTRAN V for batch execution and has been

  20. Structural and mechanical differences between original and replaced feathers in Blackcaps Sylvia atricapilla

    NARCIS (Netherlands)

    De la Hera, I.; Hedenström, A.; Pérez-Tris, J.; Tellería, J.L.

    2010-01-01

    Many bird species are able to replace accidentally lost feathers out of the normal moulting periods, but whether such replaced feathers are able to restore the original mechanical properties of the plumage has not been evaluated before. In this study we analysed the structure and mechanical

  1. 76 FR 76115 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Science.gov (United States)

    2011-12-06

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Feather River Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing a limited approval and limited disapproval of revisions to the Feather River Air Quality...

  2. The prevention and control of feather pecking: application to commercial systems

    NARCIS (Netherlands)

    Nicol, C.J.; Bestman, M.; Gilani, A.M.; Haas, de E.N.; Jong, de I.C.; Lampton, S.; Wagenaar, J.P.; Weeks, C.A.; Rodenburg, T.B.

    2013-01-01

    Studies on the prevalence of feather pecking in different commercial laying hen 23 systems and its welfare and economic impacts are reviewed in the following paper. 24 Current methods for controlling feather pecking include beak-trimming and alterations to light regimes, but these methods have

  3. Feather bedding and childhood asthma associated with house dust mite sensitisation : a randomised controlled trial

    NARCIS (Netherlands)

    Glasgow, Nicholas J.; Ponsonby, Anne-Louise; Kemp, Andrew; Tovey, Euan; van Asperen, Peter; McKay, Karen; Forbes, Samantha

    Introduction Observational studies report inverse associations between the use of feather upper bedding (pillow and/or quilt) and asthma symptoms but there is no randomised controlled trial (RCT) evidence assessing the role of feather upper bedding as a secondary prevention measure. Objective To

  4. Aerodynamic design considerations for efficient high-lift supersonic wings

    Science.gov (United States)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    A previously developed technique for selecting a design space for efficient supersonic wings is reviewed; this design-space concept is expanded to include thickness and camber effects and is evaluated for cambered wings at high-lift conditions. The original design-space formulation was based on experimental upper-surface and lower-surface normal-force characteristics for flat, uncambered delta wings; it is shown that these general characteristics hold for various thickness distributions and for various amounts of leading-edge camber. The original design-space formulation was also based on the assumption that the combination of Mach number and leading-edge sweep which would produce an equal division of flat-wing lift between the upper and lower surface would also be the proper combination to give the best cambered-wing performance. Using drag-due-to-lift factor as a measure of performance, for high-lift conditions cambered-wing performance is shown to significantly increase as conditions approach the design space; this correlation is demonstrated for both subcritical and supercritical flows.

  5. Insect wing membrane topography is determined by the dorsal wing epithelium.

    Science.gov (United States)

    Belalcazar, Andrea D; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character.

  6. Variation in the mechanical properties of flight feathers of the blackcap Sylvia atricapilla in relation to migration

    NARCIS (Netherlands)

    De la Hera, I.; Hedenström, A.; Pérez-Tris, J.; Tellería, J.L.

    2010-01-01

    Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical

  7. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jane Harms, N., E-mail: naomi.harms@usask.c [University of Saskatchewan, Western College of Veterinary Medicine, Department of Veterinary Pathology, 52 Campus Drive, Saskatoon, SK, S7N 5B4 (Canada); Fairhurst, Graham D., E-mail: graham.fairhurst@usask.c [University of Saskatchewan, Department of Biology, 112 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Bortolotti, Gary R., E-mail: gary.bortolotti@usask.c [University of Saskatchewan, Department of Biology, 112 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Smits, Judit E.G., E-mail: judit.smits@usask.c [University of Saskatchewan, Western College of Veterinary Medicine, Department of Veterinary Pathology, 52 Campus Drive, Saskatoon, SK, S7N 5B4 (Canada)

    2010-03-15

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. - Under ideal weather conditions, tree swallow nestlings on reclaimed OSPM-affected wetlands are in good body condition and mount strong cell-mediated immune responses.

  8. Dietary vitamin D3 requirement of Chinese yellow-feathered broilers.

    Science.gov (United States)

    Jiang, Shouqun; Jiang, Zongyong; Yang, Kuanmin; Chen, Fang; Zheng, Chuntian; Wang, Li

    2015-09-01

    Three experiments have been conducted to investigate the effects of graded dietary levels of vitamin D3 ( VD3: ) on growth performance, metabolic regulation of calcium (CA), phosphorus (P), and bone development of Chinese yellow-feathered broilers during 3 growth phases: 1 to 21 d, 22 to 42 d, and 43 to 63 d. Dietary Ca and P in the corn-soybean-based diet were adequate. A total of 2,000 1-day-old, 1,600 22-day-old, and 1,600 43-day- old Lingnan yellow male broilers were randomly assigned to 1 of 8 dietary treatments with 5 replicates per treatment (50 birds per replicate for 1 to 21 d, 40 birds for both 22 to 42 d and 43 to 63 d). Dietary levels of VD3 were 100, 200, 300, 400, 500, 600, and 700 IU/kg for treatments 2 to 8 through the addition of VD3 to the basal mash diet which otherwise lacked detectable VD3. Graded doses of VD3 from 0 to 700 IU/kg in the diet produced linear (Pgrowth factor 23, Klotho protein, and parathyroid hormone all decreased with the increasing level of dietary VD3 (Prequirements of Chinese yellow-feathered broilers from 1 to 21 d for optimal tibial ash content were estimated from regression analysis to be 464 IU/kg from 1 to 21 d, 539 IU/kg from 22 to 42 d, and 500 IU/kg from 43 to 63 d. © 2015 Poultry Science Association Inc.

  9. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    Science.gov (United States)

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The

  10. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.

    Science.gov (United States)

    Liu, Yuyang; Chen, Xianqiong; Xin, J H

    2008-12-01

    Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.

  11. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    Science.gov (United States)

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  12. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  13. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  14. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Science.gov (United States)

    Bolzon, Michael; Kelso, Richard; Arjomandi, Maziar

    2016-03-01

    The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  15. Does feather corticosterone reflect individual quality or external stress in arctic-nesting migratory birds?

    Directory of Open Access Journals (Sweden)

    Pierre Legagneux

    Full Text Available The effects of environmental perturbations or stressors on individual states can be carried over to subsequent life stages and ultimately affect survival and reproduction. The concentration of corticosterone (CORT in feathers is an integrated measure of hypothalamic-pituitary-adrenal activity during the molting period, providing information on the total baseline and stress-induced CORT secreted during the period of feather growth. Common eiders and greater snow geese replace all flight feathers once a year during the pre-basic molt, which occurs following breeding. Thus, CORT contained in feathers of pre-breeding individuals sampled in spring reflects the total CORT secreted during the previous molting event, which may provide insight into the magnitude or extent of stress experienced during this time period. We used data from multiple recaptures to disentangle the contribution of individual quality vs. external factors (i.e., breeding investment or environmental conditions on feather CORT in arctic-nesting waterfowl. Our results revealed no repeatability of feather CORT within individuals of either species. In common eiders, feather CORT was not affected by prior reproductive investment, nor by pre-breeding (spring body condition prior to the molting period. Individual feather CORT greatly varied according to the year, and August-September temperatures explained most of the annual variation in feather CORT. Understanding mechanisms that affect energetic costs and stress responses during molting will require further studies either using long-term data or experiments. Although our study period encompassed only five years, it nonetheless provides evidence that CORT measured in feathers likely reflects responses to environmental conditions experienced by birds during molt, and could be used as a metric to study carry-over effects.

  16. Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380

  17. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  18. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Directory of Open Access Journals (Sweden)

    Roslyn Dakin

    Full Text Available Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  19. Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.

    Science.gov (United States)

    Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola

    2010-01-01

    Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.

  20. Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits

    Science.gov (United States)

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    Background The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. Methodology/Principal Findings We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Conclusions/Significance Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations. PMID:21949798

  1. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    Full Text Available Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt.

  2. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    Full Text Available BACKGROUND: The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland and one southern population in Lund (Sweden. Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. CONCLUSIONS/SIGNIFICANCE: Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  3. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  4. Structural color and its interaction with other color-producing elements: perspectives from spiders

    Science.gov (United States)

    Hsiung, Bor-Kai; Blackledge, Todd A.; Shawkey, Matthew D.

    2014-09-01

    Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future

  5. PEMANFAATAN LIMBAH BULU AYAM MENJADI BAHAN PAKAN IKAN DENGAN FERMENTASI Bacillus subtilis (Utilization of Waste Chicken Feather to Fish Feed Ingredients Material with Fermentation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2016-02-01

    , moisture, ash, crude fat content, fiber content, and organoleptic parameters that support, in the form of physical properties of chicken feather meal, including color, texture, and smell. Proximate test data were analyzed using Analysis of Variance (ANOVA and Duncan Multiple Range Test (DMRT with 5% level, while the organoleptic data were analyzed qualitatively descriptively. The results showed that the utilization of waste chicken feathers into fish feed ingredients can be done by fermentation of B. subtilis. Fermentation chicken feather meal using inoculum B. subtillis can improve the quality of fish feed ingredients. Treatment P2 (inoculum 10 mL/2 g chicken feather meal is the most effective treatment because it produces the highest protein is 80.59%, with changes in physical properties to be white to yellowish white (colour, soft (texture, and less typical sting (smell.

  6. Transonic transport wings - Oblique or swept

    Science.gov (United States)

    Jones, R. T.; Nisbet, J. W.

    1974-01-01

    A comparative evaluation of fixed-geometry and variable-sweep wing designs, a fixed delta wing, and oblique wings with a single body or two bodies suggests that an oblique wing is preferable in a transonic transport aircraft in terms of gross weight, fuel consumption, and aircraft noise, and also shows an acceptable aeroelastic stability. Further studies are, however, needed to develop the full potential of the oblique-wing concept, including its economic implications.

  7. Feathering Instability of Spiral Arms and OB Star Formation

    Science.gov (United States)

    Lee, Wing-Kit; Shu, F. H.

    2012-01-01

    Quasi-regular substructures of the spiral arm are commonly found in spiral galaxies. These substructures are known as feathers or spurs, and they jut out perpendicularly into the inter-arm region. They also associate with the Giant Molecular Clouds where massive star formation occurs. The formation of these density fluctuation can be studied from the perspective of perturbation of galactic spiral shock. We investigate the gas response under the influcence of the shock perturbation, and formulate the MHD equations in a local two-dimensional quasi-rectangular region between tightly-winding spiral arms. Our theoretical model includes the effect of magnetic field and self-gravity of the gas, we are able to reproduce feather-like structures in the post-shock region. In this semi-analytical framework, the periodic density fluctuations depends on the various background parameters such as pattern speed, strength of spiral arm, surface density of the gas and strength of magnetic field. Potentially this study can help understand the inter-arm environment that will be observed in the nearby galaxies using submillimeter telescope such ALMA in the coming years.

  8. Pure keratin membrane and fibers from chicken feather.

    Science.gov (United States)

    Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi

    2016-08-01

    In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.

    Science.gov (United States)

    Usherwood, James R; Hedrick, Tyson L; McGowan, Craig P; Biewener, Andrew A

    2005-01-01

    Differential pressure measurements offer a new approach for studying the aerodynamics of bird flight. Measurements from differential pressure sensors are combined to form a dynamic pressure map for eight sites along and across the wings, and for two sites across the tail, of pigeons flying between two perches. The confounding influence of acceleration on the pressure signals is shown to be small for both wings and tail. The mean differential pressure for the tail during steady, level flight was 25.6 Pa, which, given an angle of attack for the tail of 47.6 degrees , suggests the tail contributes 7.91% of the force required for weight support, and requires a muscle-mass specific power of 19.3 W kg(-1) for flight to overcome its drag at 4.46 m s(-1). Differential pressures during downstroke increase along the wing length, to 300-400 Pa during take-off and landing for distal sites. Taking the signals obtained from five sensors sited along the wing at feather bases as representative of the mean pressure for five spanwise elements at each point in time, and assuming aerodynamic forces act within the x-z plane (i.e. no forces in the direction of travel) and perpendicular to the wing during downstroke, we calculate that 74.5% of the force required to support weight was provided by the wings, and that the aerodynamic muscle-mass specific power required to flap the wings was 272.7 W kg(-1).

  10. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  11. Viscoelastic Characterization of Long-Eared Owl Flight Feather Shaft and the Damping Ability Analysis

    Directory of Open Access Journals (Sweden)

    Jia-li Gao

    2014-01-01

    Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.

  12. The presence of extreme feather peckers in groups of laying hens.

    Science.gov (United States)

    Piepho, H-P; Lutz, V; Kjaer, J B; Grashorn, M; Bennewitz, J; Bessei, W

    2017-03-01

    Feather pecking is a serious economic and welfare problem in laying hens. Feather damage occurs mainly through severe feather pecking (SFP). Selection experiments have proved that this behavior is heritable and lines have been divergently selected for high (HFP) and low feather pecking (LFP). The number of bouts of SFP per hen follows a Poisson distribution with a maximum nearby 0. A few studies indicate that the distribution within flocks is not homogenous but contains sub-groups of birds showing extremely high levels of feather pecking (EFP). It was the aim of the current study to re-analyze data on SFP of lines selected for HFP/LFP and their F2 cross so as to uncover hidden sub-populations of EFP birds. Data of seven selection generations of HFP and LFP selection lines as well as their F2 cross have been used. We fitted a two-component mixture of Poisson distributions in order to separate the sub-group of EFP from the remaining birds. HFP and LFP lines differed mainly in mean bouts per bird. The proportion of EFP was only marginal in the LFP as compared with the HFP and the F2 population. Selection for LFP did not result in total elimination of EFP. The presence of even small proportions of EFP may play an important role in initiating outbreaks of feather pecking in large flocks. Further studies on feather pecking should pay special attention to the occurrence of EFP sub-groups.

  13. Internal Traits of Eggs and Their Relationship to Shank Feathering in Chicken Using Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shaker AS

    2017-06-01

    Full Text Available Chicken eggs represent an important source of protein to the growing human population and also supply repositories of unique genes that could be used worldwide. The inheritance of shank feathering trait is dominant upon non-feathering shank trait in chicken which is based on two factors: pti-1L and pti-1B that are located on Chromosomes 13, 15, and 24. Using 185 fertile eggs collected from two genetic lines (shank feathering and non-feathering shank of White Kurdish chicken, we found that egg weight highly (P < 0.01 correlated with yolk weight (r2=0.520, 0.704, respectively, albumen weight (r2=0.918, 0.835, and shell weight (r2=0.626, 0.225. The first two principal components explained the greatest variance in both the White with shank feathering (85.6% of total variance and non-feathering shank (76.5%. Therefore, differences in the component traits of the eggs between the two genetic lines may be influenced by the same gene actions as shank feathering trait. According to these results, the two genetic lines of Kurdish chicken yield significant differences in the internal traits of eggs.

  14. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    Science.gov (United States)

    Pedro, Sara; Xavier, José C; Tavares, Sílvia; Trathan, Phil N; Ratcliffe, Norman; Paiva, Vitor H; Medeiros, Renata; Pereira, Eduarda; Pardal, Miguel A

    2015-01-01

    Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  15. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    Directory of Open Access Journals (Sweden)

    Sara Pedro

    Full Text Available Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua breeding at Bird Island, South Georgia (54°S 38°W. Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%. This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  16. Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy.

    Science.gov (United States)

    Bianchi, Nicola; Ancora, Stefania; di Fazio, Noemi; Leonzio, Claudio

    2008-10-01

    Bird feathers have been widely used as a nondestructive biological material for monitoring heavy metals. Sources of metals taken up by feathers include diet (metals are incorporated during feather formation), preening, and direct contact with metals in water, air, dust, and plants. In the literature, data regarding the origin of trace elements in feathers are not univocal. Only in the vast literature concerning mercury (as methyl mercury) has endogenous origin been determined. In the present study, we investigate cadmium, lead, and mercury levels in feathers of prey of Falco eleonorae in relation to the ecological characteristics (molt, habitat, and contamination by soil) of the different species. Cluster analysis identified two main groups of species. Differences and correlations within and between groups identified by cluster analysis were then checked by nonparametric statistical analysis. The results showed that mercury levels had a pattern significantly different from those of cadmium and lead, which in turn showed a significant positive correlation, suggesting different origins. Nests of F. eleonorae proved to be a good source for feathers of small trans-Saharan passerines collected by a noninvasive method. They provided abundant feathers of the various species in a relatively small area--in this case, the falcon colony on the Isle of San Pietro, Sardinia, Italy.

  17. The allometric pattern of sexually size dimorphic feather ornaments and factors affecting allometry.

    Science.gov (United States)

    Cuervo, José J; Møller, A P

    2009-07-01

    The static allometry of secondary sexual characters is currently subject to debate. While some studies suggest an almost universal positive allometry for such traits, but isometry or negative allometry for nonornamental traits, other studies maintain that any kind of allometric pattern is possible. Therefore, we investigated the allometry of sexually size dimorphic feather ornaments in 67 species of birds. We also studied the allometry of female feathers homologous to male ornaments (female ornaments in the following) and ordinary nonsexual traits. Allometries were estimated as reduced major axis slopes of trait length on tarsus length. Ornamental feathers showed positive allometric slopes in both sexes, although that was not a peculiarity for ornamental feathers, because nonsexual tail feathers also showed positive allometry. Migration distance (in males) and relative size of the tail ornament (in females) tended to be negatively related to the allometric slope of tail feather ornaments, although these results were not conclusive. Finally, we found an association between mating system and allometry of tail feather ornaments, with species with more intense sexual selection showing a smaller degree of allometry of tail ornaments. This study is consistent with theoretical models that predict no specific kind of allometric pattern for sexual and nonsexual characters.

  18. Cabin-fuselage-wing structural design concept with engine installation

    Science.gov (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  19. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses.

    Science.gov (United States)

    Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico

    2016-02-15

    Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct

  20. High within-individual variation in total mercury concentration in seabird feathers.

    Science.gov (United States)

    Bond, Alexander L; Diamond, Antony W

    2008-11-01

    To our knowledge, no rigorous assessment of the variation in mercury concentrations within individual seabirds has been made using multiple body feathers. We analyzed five feathers from individual Arctic terns (Sterna paradisaea Pontoppidan), common terns (Sterna hirundo L.), and Leach's storm-petrels (Oceanodroma leucorhoa Veillot) and found levels of within-individual variability higher than population or time-series variation. Using a randomization procedure, we found a large range of possible mercury concentrations if only one feather per individual had been sampled. Researchers should report within-individual variability in future studies.

  1. Some Aspects of the Art of Feather Works in Prehispanic Mexico

    OpenAIRE

    Navarijo Ornelas, Lourdes

    2006-01-01

    In a universal way feathers have been includes in different utilitarian and symbolic aspects. For that reason, the importance of the use of feathers in prehispanic Mexico is exposed based in the dress and head wear that some personages that are painted in the mural painting of the tomb 5 at Suchilquitongo in Oaxaca and in the rooms of Bonampak, Chiapas. The study is centered in tree points: the quantity of feathers used in the confection of the headdress; the results indicate the biological i...

  2. Aerodynamic characteristics of scissor-wing geometries

    Science.gov (United States)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1991-01-01

    A scissor-wing configuration, consisting of two independently sweeping-wing surfaces, is compared with an equivalent fixed-wing geometry baseline over a wide Mach number range. The scissor-wing configuration is shown to have a higher total lift-to-drag ratio than the baseline in the subsonic region primarily due to the slightly higher aspect ratio of the unswept scissor wing. In the transonic region, the scissor wing is shown to have a higher lift-to-drag ratio than the baseline for values of lift coefficient greater than 0.35. It is also shown that, through the use of wing decalage, the lift of the two independent scissor wings can be equalized. In the supersonic regime, the zero lift wave drag of the scissor-wing at maximum sweep is shown to be 50 and 28 percent less than the zero lift wave drag of the baseline at Mach numbers 1.5 and 3.0, respectively. In addition, a pivot-wing configuration is introduced and compared with the scissor wing. The pivot-wing configuration is shown to have a slightly higher total lift-to-drag ratio than the scissor wing in the supersonic region due to the decreased zero lift wave drag of the pivot-wing configuration.

  3. Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels

    Science.gov (United States)

    Madan, Ram C.; Sutton, Jason O.

    1988-01-01

    Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.

  4. Microscopic modulation of mechanical properties in transparent insect wings

    Science.gov (United States)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin; Singh, Kamal P.; Sheet, Goutam

    2014-02-01

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodic organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.

  5. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  6. Darwin's finches treat their feathers with a natural repellent.

    Science.gov (United States)

    Cimadom, Arno; Causton, Charlotte; Cha, Dong H; Damiens, David; Fessl, Birgit; Hood-Nowotny, Rebecca; Lincango, Piedad; Mieles, Alejandro E; Nemeth, Erwin; Semler, Elizabeth M; Teale, Stephen A; Tebbich, Sabine

    2016-10-10

    Darwin's finches are highly innovative. Recently we recorded for the first time a behavioural innovation in Darwin's finches outside the foraging context: individuals of four species rubbed leaves of the endemic tree Psidium galapageium on their feathers. We hypothesised that this behaviour serves to repel ectoparasites and tested the repellency of P. galapageium leaf extracts against parasites that negatively affect the fitness of Darwin's finches, namely mosquitoes and the invasive hematophagous fly Philornis downsi. Mosquitoes transmit pathogens which have recently been introduced by humans and the larvae of the fly suck blood from nestlings and incubating females. Our experimental evidence demonstrates that P. galapageium leaf extracts repel both mosquitoes and adult P. downsi and also inhibit the growth of P. downsi larvae. It is therefore possible that finches use this plant to repel ectopoarasites.

  7. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous, NE, Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo M.E.M. Prado

    2016-07-01

    Full Text Available Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake and Romualdo (lagoon; both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin.

  8. The chicken frizzle feather is due to an α-keratin (KRT75 mutation that causes a defective rachis.

    Directory of Open Access Journals (Sweden)

    Chen Siang Ng

    Full Text Available Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms.

  9. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  10. Feather damaging behaviour in parrots: A review with consideration of comparative aspects

    DEFF Research Database (Denmark)

    Van Zeeland, Yvonne R A; Spruit, Berry M; Rodenburg, T Bas

    2009-01-01

    regarded as a grooming disorder. Grooming or preening is behaviour that serves both physical and social purposes. In the presence of stressors, such as novelty, so-called displacement grooming may develop that can result in excessive grooming when chronic stress is experienced (maladaptive behaviour......Feather damaging behaviour (also referred to as feather picking or feather plucking) is a behavioural disorder that is frequently encountered in captive parrots. This disorder has many characteristics that are similar to trichotillomania, an impulse control disorder in humans. Unfortunately...... similarities with behavioural disorders present in other bird species. Feather pecking (FP) in poultry is of particular interest in this case. Because of the major impacts on welfare and economy, the disorder has been thoroughly investigated. It has been shown that genetic, socio...

  11. The use of feathers of birds of prey as indicators of metal pollution.

    Science.gov (United States)

    Lodenius, Martin; Solonen, Tapio

    2013-11-01

    Published results concerning metal levels in feathers of birds of prey were listed and evaluated. Mercury concentrations have been studied most and the background values normally vary between 0.1 and 5 mg/kg dry weight the highest concentrations being in birds from aquatic food chains. Pollution causes elevated levels of mercury in feathers. The concentrations of cadmium, copper, lead and zinc show reasonable variation between species, areas and time periods. Feathers of birds of prey have proved to be good indicators of the status of environmental heavy metal pollution. Special attention should be paid to clean sampling and preparation of samples. Interpretation of the results requires knowledge on food habit, molting and migration patterns of the species. Several species representing different food chains should be included in comprehensive monitoring surveys. Chick feathers reflect most reliably local conditions.

  12. Assessment of the effect of housing on feather damage in laying hens using IR thermography.

    Science.gov (United States)

    Pichová, K; Bilčík, B; Košt'ál, L'

    2017-04-01

    Plumage damage represents one of the animal-based measures of laying hens welfare. Damage occurs predominantly due to age, environment and damaging pecking. IR thermography, due to its non-invasiveness, objectivity and repeatability is a promising alternative to feather damage scoring systems such as the system included in the Welfare Quality ® assessment protocol for poultry. The aim of this study was to apply IR thermography for the assessment of feather damage in laying hens kept in two housing systems and to compare the results with feather scoring. At the start of the experiment, 16-week-old laying hens (n=30) were divided into two treatments such as deep litter pen and enriched cage. During 4 months, feather damage was assessed regularly in 2-week intervals. One more single assessment was done nine and a half months after the start of the experiment. The feather damage on four body regions was assessed by scoring and IR thermography: head and neck, back and rump, belly, and underneck and breast. Two variables obtained by IR thermography were used: the difference between the body surface temperature and ambient temperature (ΔTB) and the proportion of featherless areas, which were defined as areas with a temperature >33.5°C. Data were analyzed using a GLM model. The effects of housing, time, region and their interactions on feather damage, measured by the feather scoring and by both IR thermography measures, were all significant (Pdeep litter pens starting from week 6 of the experiment on the belly and back and rump regions, whereas ΔTB from week 6 in the belly and from week 8 on the back and rump region. The proportion of featherless areas in the belly region differed significantly between the housings from week 8 of the experiment and on the back and rump region from week 12. The IR thermography assessment of the feather damage revealed differences between hens kept in different housing systems in agreement with the feather scoring. In conclusion, it was

  13. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  14. Time trends of mercury in feathers of West Greenland birds of prey during 1851-2003

    DEFF Research Database (Denmark)

    Dietz, Rune; Riget, Frank Farsø; Boertmann, David

    2006-01-01

    Temporal trends of mercury (Hg) in West Greenland gyrfalcons, peregrine falcons, and white-tailed eagles were determined over 150 years from 1851 to 2003. Hg was measured in the fifth primary feather. Results showed that Hg increased in the order gyrfalcon (lowest)...) analysis. Of eight time trend analyses (three species and three age groups of which one was missing), seven showed an increase in primary feather concentrations. Of these...

  15. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica).

    Science.gov (United States)

    Saino, Nicola; Romano, Maria; Rubolini, Diego; Teplitsky, Celine; Ambrosini, Roberto; Caprioli, Manuela; Canova, Luca; Wakamatsu, Kazumasa

    2013-01-01

    Melanin is the main pigment in animal coloration and considerable variation in the concentrations of the two melanin forms (pheo- and eumlanin) in pigmented tissues exists among populations and individuals. Melanin-based coloration is receiving increasing attention particularly in socio-sexual communication contexts because the melanocortin system has been hypothesized to provide a mechanistic basis for covariation between coloration and fitness traits. However, with few notable exceptions, little detailed information is available on inter-individual and inter-population variation in melanin pigmentation and on its environmental, genetic and ontogenetic components. Here, we investigate melanin-based coloration in an Italian population of a passerine bird, the barn swallow (Hirundo rustica rustica), its sex- and age-related variation, and heritability. The concentrations of eu- and pheomelanin in the throat (brown) and belly (white-to-brownish) feathers differed between sexes but not according to age. The relative concentration of either melanin (Pheo:Eu) differed between sexes in throat but not in belly feathers, and the concentrations in males compared to females were larger in belly than in throat feathers. There were weak correlations between the concentrations of melanins within as well as among plumage regions. Coloration of belly feathers was predicted by the concentration of both melanins whereas coloration of throat feathers was only predicted by pheomelanin in females. In addition, Pheo:Eu predicted coloration of throat feathers in females and that of belly feathers in males. Finally, we found high heritability of color of throat feathers. Melanization was found to differ from that recorded in Hirundo rustica rustica from Scotland or from H. r. erythrogaster from North America. Hence, present results show that pigmentation strategies vary in a complex manner according to sex and plumage region, and also among geographical populations, potentially

  16. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    Full Text Available Melanin is the main pigment in animal coloration and considerable variation in the concentrations of the two melanin forms (pheo- and eumlanin in pigmented tissues exists among populations and individuals. Melanin-based coloration is receiving increasing attention particularly in socio-sexual communication contexts because the melanocortin system has been hypothesized to provide a mechanistic basis for covariation between coloration and fitness traits. However, with few notable exceptions, little detailed information is available on inter-individual and inter-population variation in melanin pigmentation and on its environmental, genetic and ontogenetic components. Here, we investigate melanin-based coloration in an Italian population of a passerine bird, the barn swallow (Hirundo rustica rustica, its sex- and age-related variation, and heritability. The concentrations of eu- and pheomelanin in the throat (brown and belly (white-to-brownish feathers differed between sexes but not according to age. The relative concentration of either melanin (Pheo:Eu differed between sexes in throat but not in belly feathers, and the concentrations in males compared to females were larger in belly than in throat feathers. There were weak correlations between the concentrations of melanins within as well as among plumage regions. Coloration of belly feathers was predicted by the concentration of both melanins whereas coloration of throat feathers was only predicted by pheomelanin in females. In addition, Pheo:Eu predicted coloration of throat feathers in females and that of belly feathers in males. Finally, we found high heritability of color of throat feathers. Melanization was found to differ from that recorded in Hirundo rustica rustica from Scotland or from H. r. erythrogaster from North America. Hence, present results show that pigmentation strategies vary in a complex manner according to sex and plumage region, and also among geographical populations

  17. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  18. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  19. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  20. Two new plumage mutations in the Japanese quail: "curly" feather and "rusty" plumage

    Directory of Open Access Journals (Sweden)

    Moussu Chantal

    2005-03-01

    Full Text Available Abstract Background The genetics of plumage of Japanese quail is of interest both from a biological standpoint, for comparative studies between avian species, and from a zootechnical standpoint, for identifying commercial selection lines or crosses. There are only few plumage mutations reported in quail, and the present work describes a new color variant "rusty" and a new feather structure "curly", and their heredity from an F1 and F2 segregation experiment. Results Curly feathers result from abnormal early growth caused by transient joining of follicle walls of adjacent feathers around 10 days of age, but the expression of the trait is variable. Rusty plumage color results from the replacement of the wild-type plumage pattern on the tip of the feather by a reddish coloration, but the pigmentation of the bottom part of the feather is not affected. Two lines breeding true for the curly or the rusty phenotype were developed. Both characters are determined by autosomal recessive mutations which are independent. The curly mutation has also a positive effect on body weight at 5 weeks of age. Conclusion The curly line is a new model which may be used for further work on the growth of the feather, and the rusty mutation is a new addition to the panel of plumage mutations available for comparative studies in poultry, and more generally among avian species.

  1. DNA barcoding and minibarcoding as a powerful tool for feather mite studies.

    Science.gov (United States)

    Doña, Jorge; Diaz-Real, Javier; Mironov, Sergey; Bazaga, Pilar; Serrano, David; Jovani, Roger

    2015-09-01

    Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large-scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty-one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200-bp minibarcode region that showed the same accuracy as the full-length barcode (602 bp) and was surrounded by conserved regions potentially useful for group-specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species. © 2015 John Wiley & Sons Ltd.

  2. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    Science.gov (United States)

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  3. Feather mites (Acari, Astigmata from Azorean passerines (Aves, Passeriformes: lower species richness compared to European mainland

    Directory of Open Access Journals (Sweden)

    Rodrigues Pedro

    2015-01-01

    Full Text Available Ten passerine species were examined on three islands of the Azores (North Atlantic during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae. A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai.

  4. Structural Analysis of a Dragonfly Wing

    OpenAIRE

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans c...

  5. Shape and Structural Optimization of Flapping Wings

    OpenAIRE

    Stewart, Eric C

    2014-01-01

    This dissertation presents shape and structural optimization studies on flapping wings for micro air vehicles. The design space of the optimization includes the wing planform and the structural properties that are relevant to the wing model being analyzed. The planform design is parameterized using a novel technique called modified Zimmerman, which extends the concept of Zimmerman planforms to include four ellipses rather than two. Three wing types are considered: rigid, plate-like deformable...

  6. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  7. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  8. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    Science.gov (United States)

    Wissa, A. A.; Tummala, Y.; Hubbard, J. E., Jr.; Frecker, M. I.

    2012-09-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance.

  9. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    Science.gov (United States)

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  10. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.

    Science.gov (United States)

    Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-02-06

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s -1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.

  11. Evaluating Color and Fading of Red-Shafted Flicker (Colaptes auratus cafer) Feathers: Technical and Cultural Considerations

    OpenAIRE

    Pearlstein, Ellen; Keene, Lionel

    2010-01-01

    Fading behavior of undyed feathers has not received much attention in conservation literature and as a result feathers are categorized with other natural materials as being fugitive to display lighting, based on anecdotal evidence. The authors investigated Red-shafted Flicker feathers, which have carotenoid-based colorant systems and significance in North American native regalia, to demonstrate how lighting guidelines could be informed by a multivariate approach that considers material sensit...

  12. Influence of the applied pressure of processing upon bioactive components of diets made of feathers

    Directory of Open Access Journals (Sweden)

    Kormanjoš Šandor M.

    2013-01-01

    Full Text Available The feathers gained by slaughtering fattening chickens can be processed into protein meal for feeding certain animals, as indicated by its chemical characteristics. However, raw feather proteins (keratin are faintly digestible (cca. 19%, even inert in digestive tract. Digestion of feather proteins could be improved by hydrolysis (alkaline, enzymatic, microbiological or hydrothermal. Practically, hydrothermal processing of raw feathers is mostly applied. The influence of hydrothermal processing under the pressures of 3.0, 3.5 or 4.0 bar on the nutritive value of the resulting meal is presented in this paper. For the hydrolysis of raw feathers, semi continuous procedure was applied. Semi continuous procedure of feathers processing comprise hydrolysis of raw wet feathers followed by partial drying of hydrolyzed mass that has to be done in a hydrolyser with indirect heating. Continuous tubular dryer with recycled air was used during the final process of drying. Protein nitrogen decreased by 3.46% and 4.80% in comparison with total protein nitrogen content in raw feathers under the pressure of 3.0 and 3.5 bar, respectively. The highest applied hydrolysis pressure caused the greatest loss of protein nitrogen up to 9.52%. Hydrothermal hydrolysis under pressure has increased in vitro protein digestibility significantly. Under pressure of 3.0, 3.5 and 4.0 bar digestibility of proteins increasing from 19.01 to 76.39, 81.71 and 87.03%, respectively. Under pressure of 3.0, 3.5 and 4.0 bar cysteine content decreased from 6.44 to 4.17% (loss 35.25%, 3.94 (loss 38.825% and to 3.75% (loss 41.77%, respectively. These decreases are statistically significant. It can be concluded that the hydrolysis carried out under the pressure of 3.5 bar, during the period of 25 minutes, and with the content of water in raw feathers of cca. 61% is the optimal technological process for converting raw feathers into diets for certain animal diets.

  13. Fatigue Testing of Vampire Wings,

    Science.gov (United States)

    1979-06-01

    practical proof of the unique benefits that accrue from representative full-scale fatigue testing, in that modi- fications, be they major or minor, can be...The two ARL life prediction methods, Hi and H1, when applied to modified and un- modified wings tested tinder programme and random load sequences

  14. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. How Do Wings ... M Sivapragasam1. Department of Automotive and Aeronautical Engineering, Faculty of Engineering and Technology, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bengaluru 560 058, India.

  15. Werner Helicase Wings DNA Binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  16. Werner helicase wings DNA binding.

    Science.gov (United States)

    Hoadley, Kelly A; Keck, James L

    2010-02-10

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA-unwinding mechanisms of RecQ family helicases. Copyright 2010 Elsevier Inc. All rights reserved.

  17. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  18. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  19. DNA content and distribution in ancient feathers and potential to reconstruct the plumage of extinct avian taxa.

    Science.gov (United States)

    Rawlence, Nicolas J; Wood, Jamie R; Armstrong, Kyle N; Cooper, Alan

    2009-10-07

    Feathers are known to contain amplifiable DNA at their base (calamus) and have provided an important genetic source from museum specimens. However, feathers in subfossil deposits generally only preserve the upper shaft and feather 'vane' which are thought to be unsuitable for DNA analysis. We analyse subfossil moa feathers from Holocene New Zealand rockshelter sites and demonstrate that both ancient DNA and plumage information can be recovered from their upper portion, allowing species identification and a means to reconstruct the appearance of extinct taxa. These ancient DNA sequences indicate that the distal portions of feathers are an untapped resource for studies of museum, palaeontological and modern specimens. We investigate the potential to reconstruct the plumage of pre-historically extinct avian taxa using subfossil remains, rather than assuming morphological uniformity with closely related extant taxa. To test the notion of colour persistence in subfossil feathers, we perform digital comparisons of feathers of the red-crowned parakeet (Cyanoramphus novaezelandiae novaezelandiae) excavated from the same horizons as the moa feathers, with modern samples. The results suggest that the coloration of the moa feathers is authentic, and computer software is used to perform plumage reconstructions of moa based on subfossil remains.

  20. An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors

    Energy Technology Data Exchange (ETDEWEB)

    Mieloszyk, Magdalena; Skarbek, Lukasz; Ostachowicz, Wieslaw [IFFM PASci, Fiszera14, 80-952 Gdansk (Poland); Krawczuk, Marek, E-mail: mmieloszyk@imp.gda.pl [IFFM PASci, Fiszera 14, 80-952 Gdansk and Technical University of Gdansk, Wlasna Strzecha 18a Street, 80-233, Gdansk (Poland)

    2011-07-19

    This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS (registered) and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.

  1. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model.

    Science.gov (United States)

    Nahmad, Marcos; Glass, Leon; Abouheif, Ehab

    2008-01-01

    Understanding the complex interaction between genotype and phenotype is a major challenge of Evolutionary Developmental Biology. One important facet of this complex interaction has been called "Developmental System Drift" (DSD). DSD occurs when a similar phenotype, which is homologous across a group of related species, is produced by different genes or gene expression patterns in each of these related species. We constructed a mathematical model to explore the developmental and evolutionary dynamics of DSD in the gene network underlying wing polyphenism in ants. Wing polyphenism in ants is the ability of an embryo to develop into a winged queen or a wingless worker in response to an environmental cue. Although wing polyphenism is homologous across all ants, the gene network that underlies wing polyphenism has evolved. In winged ant castes, our simulations reproduced the conserved gene expression patterns observed in the network that controls wing development in holometabolous insects. In wingless ant castes, we simulated the suppression of wings by interrupting (up- or downregulating) the expression of genes in the network. Our simulations uncovered the existence of four groups of genes that have similar effects on target gene expression and growth. Although each group is comprised of genes occupying different positions in the network, their interruption produces vestigial discs that are similar in size and shape. The implications of our results for understanding the origin, evolution, and dissociation of the gene network underlying wing polyphenism in ants are discussed.

  2. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  3. Optimization of Conical Wings in Hypersonic Flow

    Science.gov (United States)

    Triantafillou, S. A.; Schwendeman, D. W.; Cole, J. D.

    A method of calculation is presented to determine conical wing shapes that minimize the coefficient of (wave) drag, CD, for a fixed coefficient of lift, CL, in steady, hypersonic flow. An optimization problem is considered for the compressive flow underneath wings at a small angle of attack δ and at a high free-stream Mach number M∞ so that hypersonic small-disturbance (HSD) theory applies. A figure of merit, F=CD/CL3/2, is computed for each wing using a finite volume discretization of the HSD equations. A set of design variables that determine the shape of the wing is defined and adjusted iteratively to find a shape that minimizes F for a given value of the hypersonic similarity parameter, H= (M∞δ)-2, and planform area. Wings with both attached and detached bow shocks are considered. Optimal wings are found for flat delta wings and for a family of caret wings. In the flat-wing case, the optima have detached bow shocks while in the caret-wing case, the optimum has an attached bow shock. An improved drag-to-lift performance is found using the optimization procedure for curved wing shapes. Several optimal designs are found, all with attached bow shocks. Numerical experiments are performed and suggest that these optima are unique.

  4. Response of sheep fed on concentrate containing feather meal and supplemented with mineral Chromium

    Directory of Open Access Journals (Sweden)

    Yulistiani D

    2013-03-01

    Full Text Available A study was conducted to evaluate the effect of substitution of protein concentrate with feather meal supplemented with organic chromium mineral on performance of lambs. Twenty five male lambs were fed basal feed of fresh chopped king grass ad libitum and were allotted to either one of five different supplements (five dietary treatments: Control (C; 10% of protein in concentrate was substituted by feather meal (FM; 10% of protein in concentrate was substituted by feather meal supplemented with Cr yeast at 1.5 mg (FMCrOrg; 10% of protein in concentrate was substituted by feather meal supplemented with Cr inorganic which equal to the amount of Cr bound in yeast (FMCr; Concentrate control supplemented with 1.5 mg Cr yeast (CCrOrg. Cr-organic was synthesized by incorporating CrCl3 in fermented rice flour by Rhizopus sp. The mineral is mixed with feather meal as a mineral carrier. Sheep in all treatments received iso protein concentrate. Parameters observed were body weight change, feed consumption and nutrient digestibility. Results shows that there was no significant effect of diet treatments on average daily gain (ADG, dry matter consumption and feed conversion, with the average value of 75.4 gr/day; 74.9 g/BW0.75 and 9.9 respectively, However diet treatment of organic chromium and protein substitution with feather meal (FMCrOrg showed tendency of having higher ADG (83.57 g/h/d. Average nutrient digestibility of dry matter, organic matter and NDF were 68.7; 69.6 and 60.9%, respectively. However NDF digestibility of FMCrOrg tended to be higher than other treatment (67.0%. It is concluded that partial substitution of protein concentrate by feather meal and 1.5 mg Cr-organic supplementation did not affect sheep performance.

  5. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  6. Wings and Flying in Immersive VR - Controller Type, Sound Effects and Experienced Ownership and Agency

    DEFF Research Database (Denmark)

    Sikström, Erik; Götzen, Amalia De; Serafin, Stefania

    An experiment investigated the subjective experiences of ownership and agency of a pair of virtual wings attached to a motion controlled avatar in an immersive virtual reality setup. A between groups comparison of two ways of controlling the movement of the wings and flight ability. One where...... the subjects achieved the wing motion and flight ability by using a hand-held video game controller and the other by moving the shoulder. Through four repetitions of a flight task with varying amounts of self-produced audio feedback (from the movement of the virtual limbs), the subjects evaluated...... their experienced embodiment of the wings on a body ownership and agency questionnaire. The results shows significant differences between the controllers in some of the questionnaire items and that adding self-produced sounds to the avatar, slightly changed the subjects evaluations....

  7. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    Science.gov (United States)

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  8. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dinara Sultanovna Dallaeva; Pavel Tomanek

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  9. Similitude relations for buffet and wing rock on delta wings

    Science.gov (United States)

    Mabey, D. G.

    1997-08-01

    Vortex flow phenomena at high angles of incidence are of great interest to the designers of advanced combat aircraft. The steady phenomena (such as steady lift and pitching moments) are understood fairly well, whereas the unsteady phenomena are still uncertain. This paper addresses two important unsteady phenomena on delta wings. With regard to the frequency parameter of the quasi-periodic excitation caused by vortex bursting, a new correlation is established covering a range of sweep back from 60 to 75°. With regard to the much lower frequency parameter of limit-cycle rigid-body wing-rock, a new experiment shows conclusively that although the motion is non-linear, the frequency parameter can be predicted by quasi-steady theory. As a consequence, for a given sweep angle, the frequency parameter is inversely proportional to the square root of the inertia in roll. This is an important observation when attempting to extrapolate from model tests in wind tunnels to predict the wing-rock characteristics of aircraft.

  10. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  11. Arc Discharge Synthesis and Photoluminescence of 3D Feather-like AlN Nanostructures

    Science.gov (United States)

    Yang, Sl; Gao, Rs; Niu, Pl; Zou, Zy; Yu, Rh

    2011-12-01

    A complex three-dimensional (3D) feather-like AlN nanostructure was synthesized by a direct reaction of high-purity Al granules with nitrogen using an arc discharge method. By adjusting the discharge time, a coral-like nanostructure, which evolved from the feather-like nanostructure, has also been observed. The novel 3D feather-like AlN nanostructure has a hierarchical dendritic structure, which means that the angle between the trunk stem and its branch is always about 30° in any part of the structure. The fine branches on the surface of the feather-like nanostructure have shown a uniform fish scale shape, which are about 100 nm long, 10 nm thick and several tens of nanometers in width. An alternate growth model has been proposed to explain the novel nanostructure. The spectrum of the feather-like products shows a strong blue emission band centered at 438 nm (2.84 eV), which indicates their potential application as blue light-emitting diodes.

  12. Razorbill (Alca torda) feathers as an alternative tool for evaluating exposure to organochlorine pesticides.

    Science.gov (United States)

    Espín, Silvia; Martínez-López, Emma; María-Mojica, Pedro; García-Fernández, Antonio J

    2012-01-01

    The aim of this study was to explore the usefulness of feathers as a biomonitoring tool for organochlorine pesticides (OC) in a razorbill population (Alca torda). Fifteen OC were analyzed in feathers, including α-, β- and δ-hexachlorocyclohexane, lindane, aldrin, dieldrin, endrin, endosulfan I and II, endosulfan sulfate, p,p'-DDT, DDD, DDE, heptachlor and its epoxide. The geometric mean concentrations observed in this study were ∑DDT 67.40 ng/g, ∑HCH 62.88 ng/g, ∑Heptachlor 61.75 ng/g, ∑Endosulfan 19.70 ng/g, and ∑Drins 10.17 ng/g. The higher OC levels found in this study compared with other studies are probably affected by the razorbill diet and migration status. However, levels found in the feathers of the present study are related to concentrations in internal tissues below those which cause adverse reproductive and behavioral effects or other signs of organochlorine-pesticide poisoning in birds. Age does affect the concentration of OC pesticides in feathers. Thus, feathers would appear to be a promising tool for OC biomonitoring in seabirds, since it is possible to quantify OC compounds.

  13. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers.

    Science.gov (United States)

    Williams, Cassondra L; Hagelin, Julie C; Kooyman, Gerald L

    2015-10-22

    Antarctic penguins survive some of the harshest conditions on the planet. Emperor penguins breed on the sea ice where temperatures drop below -40°C and forage in -1.8°C waters. Their ability to maintain 38°C body temperature in these conditions is due in large part to their feathered coat. Penguins have been reported to have the highest contour feather density of any bird, and both filoplumes and plumules (downy feathers) are reported absent in penguins. In studies modelling the heat transfer properties and the potential biomimetic applications of penguin plumage design, the insulative properties of penguin plumage have been attributed to the single afterfeather attached to contour feathers. This attribution of the afterfeather as the sole insulation component has been repeated in subsequent studies. Our results demonstrate the presence of both plumules and filoplumes in the penguin body plumage. The downy plumules are four times denser than afterfeathers and play a key, previously overlooked role in penguin survival. Our study also does not support the report that emperor penguins have the highest contour feather density. © 2015 The Author(s).

  14. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    Science.gov (United States)

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  15. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Science.gov (United States)

    Werner, Scott J; Hobson, Keith A; Van Wilgenburg, Steven L; Fischer, Justin W

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  16. Multi-Isotopic (δ2H, δ13C, δ15N Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Directory of Open Access Journals (Sweden)

    Scott J Werner

    Full Text Available We analyzed stable-hydrogen (δ2H, carbon (δ13C and nitrogen (δ 15N isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection, and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection. The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77% of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower and C4 (corn, millet, sorghum agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry, agricultural depredation, feeding ecology, physiology of migration and

  17. Ovarian hemangiosarcoma in an orange-winged Amazon parrot (Amazona amazonica).

    Science.gov (United States)

    Mickley, Kimberly; Buote, Melanie; Kiupel, Matti; Graham, Jennifer; Orcutt, Connie

    2009-03-01

    A 25-year-old intact female orange-winged Amazon parrot (Amazona amazonica) presented for a 2-week history of straining to defecate, lethargy, open-beak breathing, decreased vocalization, and ruffled feathers. On physical examination, the parrot had a heart murmur, increased air sac and lung sounds, open-beak breathing, increased respiratory rate and effort, and coelomic distension. An ultrasound revealed intracoelomic fluid, and hemorrhagic fluid was aspirated from the coelom. Cytologic analysis indicated hemocoelom. Pericardial effusion was observed during the sonogram, and pericardiocentesis was performed. The bird was euthanatized upon the owner's request because of a poor prognosis. At necropsy, several masses that involved the ovary and oviduct were observed, as well as a thickened pericardium and a thickened, fibrinous epicardium. Results of a histopathologic examination of the masses that involved the reproductive tract revealed ovarian hemangiosarcoma, which was confirmed by immunohistochemical staining. To our knowledge, ovarian hemangiosarcoma has not been reported in a psittacine species, nor has immunohistochemistry confirmed ovarian hemangiosarcoma in avian species, specifically in an orange-winged Amazon parrot.

  18. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  19. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  20. Central American Tactical Airlift Wing

    Science.gov (United States)

    2017-03-17

    governance and high corruption makes the young population in the region prone to collaborate with gangs. On June 2016, U.S. Southern Command commander...country from the Americas should participate in the wing. Mexico is a logical partner for the TAW due to its geographic position and shared...orders of magnitude higher than that of the HAW. Next, the team did the same analysis but added Mexico to the list of countries. Mexico was chosen

  1. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  2. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    Science.gov (United States)

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  3. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    Science.gov (United States)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  4. Keratin subsidies promote feather decomposition via an increase in keratin-consuming arthropods and microorganisms in bird breeding colonies.

    Science.gov (United States)

    Sugiura, Shinji; Masuya, Hayato

    2015-06-01

    Resource subsidies are well known to increase population densities of consumers. The decomposition process of these subsidised resources can be influenced by increasing consumer abundance. However, few studies have assessed whether resource subsidies can promote resource decomposition via a population increase in consumers. Here, we examined the effects of keratin subsidies on feather decomposition in egret and heron breeding colonies. Egrets and herons (Ardeidae) frequently breed in inland forests and provide large amounts of keratin materials to the forest floor in the form of feathers of chicks (that die). We compared the decrease in the weights of egret and heron feathers (experimentally placed on the forest floor) over a 12-month period among egret/heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. Of the feathers placed experimentally on forest floors, 92-97 % and 99-100 % in colonies and 47-50 % and 71-90 % in non-colony areas were decomposed after 4 and 12 months, respectively. Then, decomposition rates of feathers were faster in colonies than in areas outside of colonies, suggesting that keratin subsidies can promote feather decomposition in colonies. Field observations and laboratory experiments indicated that keratin-feeding arthropods and keratinophilic fungi played important roles in feather decomposition. Therefore, scavenging arthropods and keratinophilic fungi, which dramatically increased in egret and heron breeding colonies, could accelerate the decomposition of feathers supplied to the forest floor of colonies.

  5. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    Science.gov (United States)

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  6. The Feather Structure of Oriental Honey Buzzards (Pernis ptilorhynchus) and Other Hawk Species in Relation to Their Foraging Behavior.

    Science.gov (United States)

    Sievwright, Holly; Higuchi, Hiroyoshi

    2016-06-01

    The basic structure of a bird feather may be adapted to suit a variety of functions on different parts of the body and in different species. In Oriental honey buzzards (Pernis ptilorhynchus), a species which often preys on the larvae of bees and wasps, it is thought that the bird's integument may provide protection against the stings of these insects. We investigated the structure of Oriental honey buzzard feathers from the face, head, and neck using light and scanning electron microscopy. The structure and appearance of the feathers were compared with those of two other hawk species which live in similar habitats but have different diets: the grey-faced buzzard (Butastur indicus) and the black kite (Milvus migrans). All feathers of Oriental honey buzzards that were examined were smaller than feathers from the same regions of the body of other species and had a reduced number of plumulaceous barbs; barbs were also closer together at the feather tip and had a high barbule density. The small 'scale feathers' on the face had deep barbules with a curved, armor-like appearance, which may help prevent stings from reaching the skin. A unique filamentous substance was observed on all the honey buzzard feathers, particularly those from around the eye of a male bird. It is possible that this may be related to a chemical defense mechanism to deter bees and wasps.

  7. Comparison of individual and social feather pecking tests in two lines of laying hens at ten different ages

    NARCIS (Netherlands)

    Rodenburg, T.B.; Koene, P.

    2003-01-01

    The aim of this experiment was to select a suitable test to measure feather pecking in laying hens. Pecking behaviour in individual and social feather pecking tests was compared with pecking behaviour in the homepen. Two lines of laying hens were used that differ in their propensity to display

  8. The impact of uropygial gland secretions on mechanically induced wearing of barn owl and pigeon body feathers

    Science.gov (United States)

    Ott, Benjamin; Müsse, Annika; Wagner, Hermann

    2016-04-01

    Bird feathers are remarkable structures light but yet durable providing insulation and the ability of flight. Owls are highly specialized birds of prey, widely known for their ability to y silently which is enabled by (micro-) structural specializations of the feathers. The barn owl replaces feathers less frequently in comparison to other same sized birds like pigeons, indicating a much better resistance against material fatigue of these delicate microstructures. We used axisymmetric drop shape analysis (ADSA) of water drop contact angles as a non-destructive method of characterizing wearing processes in feathers. We hypothesized that feathers become more wettable when worn. We also investigated the impact of ethanol treatment in order to remove fatty residues of the uropygial gland secretions, barn owls and pigeons use for preening, on ageing processes. Ethanol treatment resulted in a slight, but significant increase of water repellency in barn owl but not in pigeon flight feathers. Our preliminary data also suggest that the uropygial gland secretions decelerate the wearing process of the feather keratin. We observed this effect in both species, however, it was more distinct for barn owl uropygial gland secretions. The results of this study, obtained by contact angle measurements used as a non-destructive evaluation method of material fatigue, yield insights into the material fatigue of feathers and the decelerating effect of uropygial gland secretions on wear on the other hand.

  9. Variation in carbon and nitrogen stable isotope ratios in flight feathers of a moulting White-bellied Sunbird Cinnyris talatala

    CSIR Research Space (South Africa)

    Symes, CT

    2011-11-01

    Full Text Available The authors measured d13C and d15N isotope signatures in flight feathers of a White-bellied Sunbird to assess the value of using stable isotopes of feathers in avian dietary studies. Significant variation in d13C and d15N isotope values of flight...

  10. Metabolism of Chicken Feathers and Concomitant Electricity Generation by Pseudomonas aeruginosa by Employing Microbial Fuel Cell (MFC

    Directory of Open Access Journals (Sweden)

    Venkatesh Chaturvedi

    2014-01-01

    Full Text Available Keratinolytic potential of Pseudomonas aeruginosa strain SDS3 has been evaluated for the metabolism of chicken feathers. Results indicated that strain SDS3 showed complete metabolism of 0.1 and 0.5% (w/v chicken feathers in minimal medium. Feathers were metabolized up to 80% at 1% (w/v concentration. Maximum soluble protein (480.8±17.1 μg/mL and keratinase (15.4±0.25 U/mL were observed in the presence of 1% chicken feathers after five days of incubation. The effect of carbon and nitrogen sources showed that feather degradation was stimulated by complex carbon/nitrogen sources such as starch, malt extract, tryptone, and beef extract and was inhibited by simple carbon and nitrogen sources. Electricity production by employing chicken feathers as a substrate in microbial fuel cell (MFC was evaluated. It was observed that maximum voltage corresponding to 141 mV was observed after 14 days of incubation. Maximum power density of 1206.78 mW/m2 and maximum current density of 8.6 mA/m2 were observed. The results clearly indicate that chicken feathers can be successfully employed as a cheap substrate for electricity production in MFC. This is the first report showing employment of chicken feathers as substrate in MFC.

  11. Feather meal: a previously unrecognized route for reentry into the food supply of multiple pharmaceuticals and personal care products (PPCPs).

    Science.gov (United States)

    Love, D C; Halden, R U; Davis, M F; Nachman, K E

    2012-04-03

    Antimicrobials used in poultry production have the potential to bioaccumulate in poultry feathers but available data are scarce. Following poultry slaughter, feathers are converted by rendering into feather meal and sold as fertilizer and animal feed, thereby providing a potential pathway for reentry of drugs into the human food supply. We analyzed feather meal (n = 12 samples) for 59 pharmaceuticals and personal care products (PPCPs) using EPA method 1694 employing liquid chromatography tandem mass spectrometry (LC/MS/MS). All samples tested positive and six classes of antimicrobials were detected, with a range of two to ten antimicrobials per sample. Caffeine and acetaminophen were detected in 10 of 12 samples. A number of PPCPs were determined to be heat labile during laboratory simulation of the rendering process. Growth of wild-type E. coli in MacConkey agar was inhibited by sterilized feather meal (p = 0.01) and by the antimicrobial enrofloxacin (p sterilized feather meal or enrofloxacin. This is the first study to detect antimicrobial residues in feather meal. Initial results suggest that more studies are needed to better understand potential risks posed to consumers by drug residues in feather meal.

  12. No effects of a feather mite on body condition, survivorship, or grooming behavior in the Seychelles warbler, Acrocephalus sechellensis

    NARCIS (Netherlands)

    Dowling, DK; Richardson, DS; Komdeur, J; Dowling, Damian K.; Richardson, David S.; Czeschlik, T.

    A common assumption of studies examining host-symbiont interactions is that all symbiotic organisms are parasitic. Feather mites are widespread symbionts of birds that do not appear to deplete the host of any vital resources. Instead they feed on the oily secretions that cover the feathers and the

  13. Juvenile hormone titres and winged offspring production do not correlate in the pea aphid, Acyrthosiphon pisum.

    Science.gov (United States)

    Schwartzberg, Ezra G; Kunert, Grit; Westerlund, Stephanie A; Hoffmann, Klaus H; Weisser, Wolfgang W

    2008-09-01

    Pea aphids, Acyrthosiphon pisum, reproduce parthenogenetically and are wing-dimorphic such that offspring can develop into winged (alate) or unwinged (apterous) adults. Alate induction is maternal and offspring phenotype is entirely determined by changes in the physiology and environment of the mother. Juvenile hormones (JHs) have been implicated in playing a role in wing differentiation in aphids, however until recently, methods were not available to accurately quantify these insect hormones in small insects such as aphids. Using a novel LC-MS approach we were able to quantify JH III in pea aphids that were either producing a high proportion of winged morphs among their offspring or mainly unwinged offspring. We measured JH III titres by pooling the hemolymph of 12 or fewer individuals (1 microL hemolymph) treated identically. Levels of JH ranged from 30 to 163 pg/microL. While aphids in the two treatments strongly differed in the proportion of winged morphs among their offspring, their JH III titres did not differ significantly. There was also no correlation between JH III titre and the proportion of winged offspring in induced aphids. This supports earlier findings that wing dimorphism in aphids may be regulated by other physiological mechanisms.

  14. Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster.

    Science.gov (United States)

    Paumard-Rigal, S; Zider, A; Vaudin, P; Silber, J

    1998-10-01

    The two genes vestigial (vg) and scalloped (sd) are required for wing development in Drosophila melanogaster. They present similar patterns of expression in second and third instar wing discs and similar wing mutant phenotypes. vg encodes a nuclear protein without any recognized nucleic acid-binding motif. Sd is a transcription factor homologous to the human TEF-1 factor whose promoter activity depends on cell-specific cofactors. We postulate that Vg could be a cofactor of Sd in the wing morphogenetic process and that, together, they could constitute a functional transcription complex. We investigated genetic interactions between the two genes. We show here that vg and sd co-operate in vivo in a manner dependent on the structure of the Vg protein. We ectopically expressed vg in the patch (ptc) domains. We show evidence that wing-like outgrowths induced by ectopic expression of vg are severely reduced in vg or sd mutant backgrounds. Accordingly, we demonstrate that ptc-GAL4-driven expression of vg induces both expressions of the endogenous vg and sd genes and that the two Vg and Sd proteins have to be produced together to promote wing proliferation. Furthermore, we show an interaction between the two proteins by double hybrid experiments in yeast. Our results therefore support the hypothesis that Sd and Vg directly interact in vivo to form a complex regulating the proliferation of wing tissue.

  15. Europa's Alfvén wing: shrinkage and displacement influenced by an induced magnetic field

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2007-05-01

    Full Text Available The Galileo magnetometer data are used to investigate the structure of the Alfvén wing during three flybys of Europa. The presence of an induced magnetic field is shown to shrink the cross section of the Alfvén wing and offset it along the direction radial to Jupiter. Both the shrinkage and the offset depend on the strength of the induced field. The entry and exit points of the spacecraft into and out of the Alfvén wings are modeled to determine the angle between the wings and the background magnetic field. Tracing of the Alfvén characteristics in a model magnetic field consisting of Jupiter's background field and an induced field in Europa produces an offset and shrinking of the Alfvén wing consistent with the geometric modeling. Thus we believe that the Alfvén wing properties have been determined correctly. The Alfvén wing angle is directly proportional to the local Alfvén velocity, and is thus a probe for the local plasma density. We show that the inferred plasma density can be understood in terms of the electron density measured by the plasma wave experiment. When Europa is located in the Jovian plasma sheet the derived mass-per-charge exceeds the previous estimates, which is a result of increased pickup of sputtered ions near the moon. The estimated rate of O2+ pickup agrees well with the results from numerical models.

  16. Reaction to frustration in high and low feather pecking lines of laying hens from commercial or semi-natural rearing conditions

    NARCIS (Netherlands)

    Rodenburg, T.B.; Koene, P.; Spruijt, B.M.

    2004-01-01

    The effect of rearing conditions on feather pecking and reaction to frustration was studied in two lines of laying hens. From commercial rearing conditions (large group, no mother hen), seven birds from a high feather pecking line (HC birds) and eight birds from a low feather pecking line (LC birds)

  17. Comparison of four feed proteases for improvement of nutritive value of poultry feather meal

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Yu, S; Plumstead, P

    2012-01-01

    such as dithiothreitol (DTT) and Na2SO3. In general, the protease from B. subtilis was more efficient in degrading feather keratin compared to the other 3 feed proteases at both pH 5.5 and 7.0. For commercial production, the application of protease from B. subtilis is even more advantageous considering the lower cost-in-use.......Feed industries are seeking new ways to cope with increased raw material costs, and one approach is to apply enzymatic treatment in the production of feed ingredients from animal by-products. Keratinases, a group of proteases, are capable of hydrolyzing keratin-rich material and have been applied...... in the production of cost-effective feather by-products for use as feed and fertilizers. The current study examined 4 commercial feed proteases from Bacillus subtilis, Bacillus licheniformis PWD-1, Aspergillus niger, and Serratia proteamaculans HY-3 used to hydrolyze chicken feather under different conditions...

  18. Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba.

    Science.gov (United States)

    Pabisch, S; Puchegger, S; Kirchner, H O K; Weiss, I M; Peterlik, H

    2010-12-01

    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5 cm close to the calamus and remains constant for about 1m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Using Pb-Al ratios to discriminate between internal and external deposition of Pb in feathers.

    Science.gov (United States)

    Cardiel, Iris E; Taggart, Mark A; Mateo, Rafael

    2011-05-01

    Feathers provide a potentially useful biomonitoring option in studies regarding pollution exposure in avian species. However, they must be used with care because the complex, fine structure is highly prone to accumulating surface contamination. This may therefore give a misleading indication of pollutant intake in the animal. Here, data are presented for 4 large scavenging raptor species collected in Spain, and analyses are undertaken on feather barbs and rachis for both Pb and Al concentrations. Aluminium levels are used as a marker of surface contamination by inorganic particulate material. Despite using a thorough washing technique, feather barbs showed significantly higher levels of Pb than did the rachis for all 4 species studied. We also observed a significant correlation (r=0.782, pfeather growth. As such, data would be more toxicologically relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Dinosaur evolution. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales.

    Science.gov (United States)

    Godefroit, Pascal; Sinitsa, Sofia M; Dhouailly, Danielle; Bolotsky, Yuri L; Sizov, Alexander V; McNamara, Maria E; Benton, Michael J; Spagna, Paul

    2014-07-25

    Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the tibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  1. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw.

    Science.gov (United States)

    Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli

    2012-07-03

    Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap.

  2. A continued role for signaling functions in the early evolution of feathers.

    Science.gov (United States)

    Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J

    2017-03-01

    Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. Constraints on the wing morphology of pterosaurs.

    Science.gov (United States)

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  4. Experimental Investigation on Limit Cycle Wing Rock Effect on Wing Body Configuration Induced by Forebody Vortices

    National Research Council Canada - National Science Library

    Rong, Zhen; Deng, Xueying; Ma, Baofeng; Wang, Bing

    2016-01-01

    ...° swept wing configuration undergoing a limit cycle oscillation using a synchronous measurement and control technique of wing rock/particle image velocimetry/dynamic pressure associated with the time...

  5. Direct Growth of Feather-Like ZnO Structures by a Facile Solution Technique for Photo-Detecting Application

    Science.gov (United States)

    Jiang, Yurong; Liu, Xingbing; Cai, Fangmin; Liu, Hairui

    2017-08-01

    The feather-like hierarchical zinc oxide (ZnO) was synthesized via successive ionic layer adsorption and reaction without any seed layer or metal catalyst. A possible growth mechanism is proposed to explain the forming process of ZnO feather-like structures. Meanwhile, the photo-electronic performances of the feather-like ZnO have been investigated with the UV-vis-NIR spectroscopy, I-V and I-tmeasurements. The results indicate that feather-like ZnO hierarchical structures have good anti-reflection and excellent photo-sensitivity. All results suggest that the direct growth processing of novel feather-like ZnO is envisaged to have promising application in the field of photo-detector devices.

  6. Transition from wing to leg forces during landing in birds.

    Science.gov (United States)

    Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick

    2014-08-01

    Transitions to and from the air are critical for aerial locomotion and likely shaped the evolution of flying animals. Research on take-off demonstrates that legs generate greater body accelerations compared with wings, and thereby contribute more to initial flight velocity. Here, we explored coordination between wings and legs in two species with different wingbeat styles, and quantified force production of these modules during the final phase of landing. We used the same birds that we had previously studied during take-off: zebra finch (Taeniopygia guttata, N=4) and diamond dove (Geopelia cuneata, N=3). We measured kinematics using high-speed video, aerodynamics using particle image velocimetry, and ground-reaction forces using a perch mounted on a force plate. In contrast with the first three wingbeats of take-off, the final four wingbeats during landing featured ~2 times greater force production. Thus, wings contribute proportionally more to changes in velocity during the last phase of landing compared with the initial phase of take-off. The two species touched down at the same velocity (~1 m s(-1)), but they exhibited significant differences in the timing of their final wingbeat relative to touchdown. The ratio of average wing force to peak leg force was greater in diamond doves than in zebra finches. Peak ground reaction forces during landing were ~50% of those during take-off, consistent with the birds being motivated to control landing. Likewise, estimations of mechanical energy flux for both species indicate that wings produce 3-10 times more mechanical work within the final wingbeats of flight compared with the kinetic energy of the body absorbed by legs during ground contact. © 2014. Published by The Company of Biologists Ltd.

  7. [Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design].

    Science.gov (United States)

    Mirković, Nemanja; Gostović, Aleksandra Spadijer; Lazić, Zoran; Trifković, Branka

    2012-07-01

    Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. The research was performed as an experimental study. Sixty (60) ceramic crowns were made on non-carious extracted human premolars. Thirty (30) crowns were made on the basis of feather-edge preparation (experimental group I). The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system "Zirkonzahn" (Zirkonzahn GMBH, Gais, Germany). The spherical compression test was used to determine fracture toughness, using 6 mmn diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine--Zwick, type 1464, with the speed of 0.05 mm/min. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2090 N, and in shoulder group it was 2214 N. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and gingival inflammatory response.

  8. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  9. Unsteady Aerodynamics of Nonslender Delta Wings

    OpenAIRE

    Gursul, I; Gordnier, R; Visbal, M

    2005-01-01

    Unsteady aerodynamics of nonslender delta wings, covering topics of shear layer instabilities, structure of nonslender vortices, breakdown, maneuvering wings, and fluid/structure interactions, are reviewed in this paper. Vortical flows develop at very low angles of attack, and form close to the wing surface. This results in strong interactions with the upper-surface boundary layer and in a pronounced dependence of the flow structure on Reynolds number. Vortex breakdown is observed to be much ...

  10. Cancellation zone in supersonic lifting wing theory

    OpenAIRE

    Sanz Andres, Angel Pedro

    1986-01-01

    BASING their work on a linear theory, Evvard1 and Krasilshchikova2'3 independently developed an expression that yields the perturbation generated by a thiri lifting wing of arbitrary planform flying at supersonic speed on a point placed on the wing plane inside its planform,1 or both on and above the wing plane.2 This point must be influenced by two leading edges, one supersonic and the other partially subsonic. Although these authors followed different approaches, their methods concur in sho...

  11. Wing wear affects wing use and choice of floral density in foraging bumble bees

    OpenAIRE

    Danusha J. Foster; Ralph V. Cartar

    2011-01-01

    Damage to structures that enable mobility can potentially influence foraging behavior. Bumble bees vary in extent of individual wing wear, a trait predicted to affect mechanical performance during foraging. This study asks 1) do bumble bees distribute themselves across different floral densities in accordance with their concurrent wing wear? and 2) does wing use in foraging bumble bees depend on concurrent wing wear? We observed individually identifiable bumble bees foraging in 1-m-super-2 pa...

  12. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    Science.gov (United States)

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  13. Feather Vibration as a Stimulus for Sensing Incipient Separation in Falcon Diving Flight

    OpenAIRE

    Brücker, C; Schlegel, D.; Triep, M.

    2016-01-01

    Based on our preceding studies on the aerodynamics of a falcoperegrinus in diving flight along a vertical dam it is known that even when the body shape of the bird is rather streamlined in V-shape some feathers tips may elevate in certain regions of the body. These regions were identified in wind tunnel tests for typical diving flight conditions as regions of locally separated flow. A life-size model in V-shape of a falcoperegrinus with artificial feathers fixed along the body was studied in ...

  14. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  15. The function of resilin in honeybee wings.

    Science.gov (United States)

    Ma, Yun; Ning, Jian Guo; Ren, Hui Lan; Zhang, Peng Fei; Zhao, Hong Yan

    2015-07-01

    The present work aimed to reveal morphological characteristics of worker honeybee (Apis mellifera) wings and demonstrate the function of resilin on camber changes during flapping flight. Detailed morphological investigation of the wings showed that different surface characteristics appear on the dorsal and ventral side of the honeybee wings and the linking structure connecting the forewing and hindwing plays an indispensable role in honeybee flapping flight. Resilin stripes were found on both the dorsal and ventral side of the wings, and resilin patches mostly existed on the ventral side. On the basis of resilin distribution, five flexion lines and three cambered types around the lines of passive deformation of the coupled-wing profile were obtained, which defined the deformation mechanism of the wing along the chord, i.e. concave, flat plate and convex. From a movie obtained using high-speed photography from three orthogonal views of free flight in honeybees, periodic changes of the coupled-wing profile were acquired and further demonstrated that the deformation mechanism is a fundamental property for variable deformed shapes of the wing profile during flapping flight, and, in particular, the flat wing profile achieves a nice transition between downstrokes and upstrokes. © 2015. Published by The Company of Biologists Ltd.

  16. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  18. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics

    NARCIS (Netherlands)

    Muijres, Florian T.; Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.

    2017-01-01

    Using high-speed videography,we investigated howfruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results showthat flies control for unilateral damage by rolling their body towards the damaged wing

  19. Electron beam welding of aircraft structures. [joining of titanium alloy wing structures on F-14 aircraft

    Science.gov (United States)

    Witt, R. H.

    1972-01-01

    Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.

  20. Existence of prophenoloxidase in wing discs: a source of plasma prophenoloxidase in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Yupu Diao

    Full Text Available In insects, hemocytes are considered as the only source of plasma prophenoloxidase (PPO. PPO also exists in the hemocytes of the hematopoietic organ that is connected to the wing disc of Bombyx mori. It is unknown whether there are other cells or tissues that can produce PPO and release it into the hemolymph besides circulating hemocytes. In this study, we use the silkworm as a model to explore this possibility. Through tissue staining and biochemical assays, we found that wing discs contain PPO that can be released into the culture medium in vitro. An in situ assay showed that some cells in the cavity of wing discs have PPO1 and PPO2 mRNA. We conclude that the hematopoietic organ may wrongly release hemocytes into wing discs since they are connected through many tubes as repost in previous paper. In wing discs, the infiltrating hemocytes produce and release PPO probably through cell lysis and the PPO is later transported into hemolymph. Therefore, this might be another source of plasma PPO in the silkworm: some infiltrated hemocytes sourced from the hematopoietic organ release PPO via wing discs.

  1. Stress grows wings: environmental induction of winged dispersal males in Cardiocondyla ants.

    Science.gov (United States)

    Cremer, Sylvia; Heinze, Jürgen

    2003-02-04

    Dispersal is advantageous, but, at the same time, it implies high costs and risks. Due to these counteracting selection pressures, many species evolved dispersal polymorphisms, which, in ants, are typically restricted to the female sex (queens). Male polymorphism is presently only known from a few genera, such as Cardiocondyla, in which winged dispersing males coexist with wingless fighter males that mate exclusively inside their maternal nests. We studied the developmental mechanisms underlying these alternative male morphs and found that, first, male dimorphism is not genetically determined, but is induced by environmental conditions (decreasing temperature and density). Second, male morph is not yet fixed at the egg stage, but it differentiates during larval development. This flexible developmental pattern of male morphs allows Cardiocondyla ant colonies to react quickly to changes in their environment. Under good conditions, they invest exclusively in philopatric wingless males. But, when environmental conditions turn bad, colonies start to produce winged dispersal males, even though these males require a many times higher investment by the colony than their much smaller wingless counterparts. Cardiocondyla ants share this potential of optimal resource allocation with other colonial animals and some seed dimorphic plants.

  2. Phenology and duration of remigial moult in Surf Scoters (Melanitta perspicillata) and White-winged Scoters (Melanitta fusca) on the Pacific coast of North America

    Science.gov (United States)

    Dickson, Rian D.; Esler, Daniel; Hupp, Jerry W.; Anderson, E.M.; Evenson, J.R.; Barrett, J.

    2012-01-01

    By quantifying phenology and duration of remigial moult in Surf Scoters (Melanitta perspicillata (L., 1758)) and White-winged Scoters (Melanitta fusca (L., 1758)), we tested whether timing of moult is dictated by temporal optima or constraints. Scoters (n = 3481) were captured during moult in Alaska, British Columbia, and Washington, and remigial emergence dates were determined. We provide evidence for a pre-emergence interval of 7.3 days that occurs after old primaries are shed and before new ones become visible. All age and sex classes of both scoter species exhibited a wide range of emergence dates (Surf Scoters: 26 June to 22 September; White-winged Scoters: 6 July to 21 September) suggestive of a lack of strong temporal optima for remigial moult. For both species, timing of moult was influenced by site, year, age, and sex. Relative to other waterfowl species, scoters have typical remigial growth rates (Surf Scoters: 3.9 mm·day–1; White-winged Scoters: 4.3 mm·day–1) but a long flightless period (34–49 days), in part because their relatively high wing-loading requires a greater proportion of feather regrowth to regain flight. Our data suggest that moulting scoters are not under strong selective pressure to complete moult quickly.

  3. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  4. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    Science.gov (United States)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  5. Wing attachment position of fruit fly minimizes flight cost

    Science.gov (United States)

    Noest, Robert; Wang, Jane

    Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.

  6. Níveis de inclusão de farinha de penas na dieta sobre o desempenho e características de carcaça de codornas para corte = Inclusion levels of feather meal in the diet on performance and carcasses characteristics of quail for meat

    Directory of Open Access Journals (Sweden)

    Alda Letícia da Silva Santos

    2006-01-01

    Full Text Available Avaliou-se o desempenho de 240 codornas européias para corte mediante diferentes níveis de inclusão de farinha de penas na dieta. O delineamento experimental utilizado foi o inteiramente casualizado, com 4 tratamentos (0, 3, 6 e 9% de farinha de penas, 5 repetições e 12 animais por unidade experimental. De acordo com os resultados, a farinha de penas pode ser utilizada na dieta de codornas para corte, exceto no período de 1 a 7 dias, em até 9%, sem alterações negativassobre o desempenho dos animais. Entretanto, foi observado que na medida em que houve aumento da inclusão de farinha de penas na dieta, houve redução do consumo de ração e no rendimento de coxa mais sobrecoxa, assim como aumento do rendimento de dorso mais asas.The performance of 240 European quail for meat was evaluated using different levels of feather meal in the diet. The experiment was conducted with a totally randomized design, consisting of four treatments (0, 3, 6, and 9% of feather meal, five repetitions andtwelve animals per experimental unit. Results show that, feather meal can be utilized in the quail for meat diet, except in a period of 1 to 7 days, up to 9%, without significant negative effects on theperformance of the animals. However, as the inclusion of feather flour in the diet increased, a reduction in the consumption of feed and in the thigh yield were observed, as well as an increase in back + wing yield.

  7. Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    Science.gov (United States)

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  8. Wing motion measurement and aerodynamics of hovering true hoverflies.

    Science.gov (United States)

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  9. Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment airc

    Science.gov (United States)

    2001-01-01

    Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment aircraft's wings begin deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  10. Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment airc

    Science.gov (United States)

    2001-01-01

    Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment aircraft's wings fully deployed during flight following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, Californiaornia. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  11. Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment airc

    Science.gov (United States)

    2001-01-01

    Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment aircraft's wings continue deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  12. Biaxial mechanical characterization of bat wing skin.

    Science.gov (United States)

    Skulborstad, A J; Swartz, S M; Goulbourne, N C

    2015-04-21

    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance.

  13. Advanced wing design survivability testing and results

    Science.gov (United States)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  14. Wing-Design And -Analysis Code

    Science.gov (United States)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  15. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  16. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  17. Computer Code Aids Design Of Wings

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  18. Southwest, Frontier planes clip wings in Phoenix

    National Research Council Canada - National Science Library

    Ben Mutzabaugh

    2017-01-01

    ... reports did not specify which one. Video from ABC 15 of Phoenix showed damage to the wing tip of the Southwest plane. A separate image tweeted by CBS 5 of Phoenix indicated that the wing of the Frontier aircraft also was damaged. The Frontier flight was bound for Denver, and the carrier put passengers on a replacement aircraft. Passengers on Southwest's ...

  19. Morphological and Geochemical Evidence of Eumelanin Preservation in the Feathers of the Early Cretaceous Bird, Gansus yumenensis

    Science.gov (United States)

    Barden, Holly E.; Wogelius, Roy A.; Li, Daqing; Manning, Phillip L.; Edwards, Nicholas P.; van Dongen, Bart E.

    2011-01-01

    Recent studies have shown evidence for the preservation of colour in fossilized soft tissues by imaging melanosomes, melanin pigment containing organelles. This study combines geochemical analyses with morphological observations to investigate the preservation of melanosomes and melanin within feathers of the Early Cretaceous bird, Gansus yumenensis. Scanning electron microscopy reveals structures concordant with those previously identified as eumelanosomes within visually dark areas of the feathers but not in lighter areas or sedimentary matrices. Fourier transform infrared analyses show different spectra for the feathers and their matrices; melanic functional groups appear in the feather including carboxylic acid and ketone groups that are not seen in the matrix. When mapped, the carboxylic acid group absorption faithfully replicates the visually dark areas of the feathers. Electron Paramagnetic Resonance spectroscopy of one specimen demonstrates the presence of organic signals but proved too insensitive to resolve melanin. Pyrolysis gas chromatography mass spectrometry shows a similar distribution of aliphatic material within both feathers that are different from those of their respective matrices. In combination, these techniques strongly suggest that not only do the feathers contain endogenous organic material, but that both geochemical and morphological evidence supports the preservation of original eumelanic pigment residue. PMID:22022404

  20. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    Science.gov (United States)

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather.

  1. Chronologically sampled flight feathers permits recognition of individual molt-migrants due to varying protein sources

    Directory of Open Access Journals (Sweden)

    Sievert Rohwer

    2015-01-01

    Full Text Available This is a proof of concept paper based on chronological samples of growing feathers from geese thought to be molt-migrants. When molt-migrant birds initiate molt shortly after migrating to a new isoscape, isotope values measured along the length of their feathers should change continuously. To assess long-term changes and daily cycling in δ15N and δ13C values, we serially sampled a growing primary from three presumed molt-migrant geese. Two showed changing δ15N signatures along the length of their growing primary, indicating they were molt-migrants, while the third, presumably a resident, showed no change. We then resampled these feathers at closer intervals for evidence of the predicted diel cycle in the use of exogenous and endogenous protein for feather growth, generated by the diel feeding cycle of these geese. As predicted, a periodicity of ca. 24 h in δ15N values was found along the primary of the two equilibrating geese, but not in the other goose that was probably a resident. Our results demonstrate that chronological sampling along the length of individual primaries holds great potential for identifying individuals that are molt-migrants.

  2. Physical and chemical properties of biobased plastic resins containing chicken feather fibers

    Science.gov (United States)

    This study was conducted to (a) characterize bioplastic pellets containing feather fibers (pellets) by low temperature-scanning electron microscopy and X-Ray diffraction analysis, (b) evaluate growth and flowering of Begonia boliviensis A. DC. ‘Bonfire’ when grown in medium amended with pellets, and...

  3. Feather damaging behaviour in parrots: a review with consideration of comparative aspects

    NARCIS (Netherlands)

    van Zeeland, Y.R.A.|info:eu-repo/dai/nl/314101160; Spruijt, B.M.|info:eu-repo/dai/nl/07079202X; Rodenburg, T.B.; Riedstra, B.; Buitenhuis, B.; van Hierden, Y.M.; Korte, S.M.|info:eu-repo/dai/nl/088952827; Lumeij, J.T.|info:eu-repo/dai/nl/073286826

    2009-01-01

    Feather damaging behaviour in parrots: A review with consideration of comparative aspects Yvonne R.A. van Zeelanda, , , Berry M. Spruitb, T. Bas Rodenburgc, Bernd Riedstrad, Yvonne M. van Hierdene, Bart Buitenhuisf, S. Mechiel Korteg, h and Johannes T. Lumeija aDivision of Zoological Medicine,

  4. The feather damaging Grey parrot: an analysis of its behaviour and needs

    NARCIS (Netherlands)

    van Zeeland, Y.R.A.|info:eu-repo/dai/nl/314101160

    2013-01-01

    With an estimated prevalence of 10-15%, feather damaging behaviour (FDB) is a common behavioural disorder in captive parrots (in particular Grey parrots, the species studied in this thesis) that may have aesthetic, medical and welfare consequences and often results in relinquishment or euthanasia.

  5. Feather conditions and clinical scores as indicators of broilers welfare at the slaughterhouse.

    Science.gov (United States)

    Saraiva, S; Saraiva, C; Stilwell, G

    2016-08-01

    The objective of this study was to evaluate the welfare of 64 different broiler farms on the basis of feather conditions and clinical scores measures collected at the slaughterhouse. A 3-point scale (0, 1 or 2) was used to classify dirty feathers, footpad dermatitis and hock burns measures, and a 2-point scale (present or absent) was used to classify breast burns, breast blisters and breast ulcer measures. Flocks were allocated into three body weight (BW) classes (A, B, C): class A (light) ≥1.43 and ≤1.68kg, class B (medium) ≥1.69 and ≤1.93kg; class C (heavy) ≥1.94 and ≤2.41kg. The absence of hock burns was more common in class A, while mild hock burns was more common in class B flocks. Breast ulcer was observed in class C flocks. The association observed for mild hock burns, breast burns and severe footpad dermatitis can indicate a simultaneous occurrence of these painful lesions. Very dirty feathers and severe footpad dermatitis relationship suggest litter humidity to be the common underlying cause. In conclusion, it was shown that clinical indicators can be used at the slaughterhouse to identify welfare problems. In the studied flocks, footpad dermatitis, feather conditions and hock burns were the main restrictions for good welfare and should be considered significant welfare indicators of the on-farm rearing conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Relationships among timing of moult, moult duration and feather mass in long-distance migratory passerines

    NARCIS (Netherlands)

    De la Hera, I.; Pérez-Tris, J.; Tellería, J.L.

    2010-01-01

    Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence

  7. The Structure of the Water-Holding Feathers of the Namaqua ...

    African Journals Online (AJOL)

    The morphology and fine structure of the feather barbules of the Namaqua Sandgrouse Pterocles namaqua are investigated histologically and experimentally by means of light microscopy, scanning electron micrography and X-ray diffraction. Proximally the barbule is helically coiled for three and a half turns and has a ...

  8. DIVERSITY OF FEATHER MITES (ACARI: ASTIGMATA) ON DARWIN’S FINCHES

    Science.gov (United States)

    Villa, Scott M.; Le Bohec, Céline; Koop, Jennifer A. H.; Proctor, Heather C.; Clayton, Dale H.

    2014-01-01

    Feather mites are a diverse group of ectosymbionts that occur on most species of birds. Although Darwin’s finches are a well-studied group of birds, relatively little is known about their feather mites. Nearly 200 birds across 9 finch species, and from 2 locations on Santa Cruz Island, Galápagos, were dust-ruffled during the 2009 breeding season. We found 8 genera of feather mites; the most prevalent genus was Mesalgoides (53–55%), followed by Trouessartia (40–45%), Amerodectes and Proctophyllodes (26–33%), Xolalgoides (21–27%), Analges and Strelkoviacarus (0–6%), and Dermoglyphus (2–4%). There was no evidence for microclimatic effects (ambient temperature and relative humidity) on mite diversity. Host body mass was significantly correlated with mean feather mite abundance across 7 of 8 well-sampled species of finches. Certhidea olivacea, the smallest species, did not fit this pattern and had a disproportionately high number of mites for its body mass. PMID:23691947

  9. 50 CFR 20.92 - Personal use of feathers or skins.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Personal use of feathers or skins. 20.92 Section 20.92 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... or skins. Any person for his own use may possess, transport, ship, import, and export without a...

  10. Trade in Andean Condor Vulture gryphus feathers and body parts in ...

    African Journals Online (AJOL)

    made from Palo Santo Bursera graveolens wood with one or several Andean Condor feathers, a clear crystal inserted in the base of the handle and leather strapping. They are purported to help clean bad energies and are sold in stores that focus on quasi- shamanic healing therapies and products. Prices ranged from 120 ...

  11. Selection on feather pecking affects response to novelty and foraging behaviour in laying hens

    NARCIS (Netherlands)

    Haas, de E.N.; Nielsen, B.; Rodenburg, T.B.; Buitenhuis, A.J.

    2010-01-01

    Feather pecking (FP) is a major welfare problem in laying hens, influenced by multiple factors. FP is thought to be redirected foraging behaviour, however fearful birds are also known to be more sensitive to develop FP. The relationship between fear-responses, foraging and FP is not well understood,

  12. Feather growth rate and mass in nearctic passerines with variablemigratory behavior and molt pattern

    NARCIS (Netherlands)

    De la Hera, I.; DeSante, D.F.; Mila, B.

    2012-01-01

    Bird species vary greatly in the duration of their annual complete feather molt. However, such variation is not well documented in birds from many biogeographic areas, which restricts our understanding of the diversification of molt strategies. Recent research has revealed that molt duration can be

  13. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences

    Energy Technology Data Exchange (ETDEWEB)

    Jerez, Silvia [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Motas, Miguel, E-mail: motas@um.es [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Palacios, Maria Jose; Valera, Francisco [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Cuervo, Jose Javier; Barbosa, Andres [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Departamento de Ecologia Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2011-10-15

    Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adelie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 {mu}g g{sup -1} dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 {mu}g g{sup -1} dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine. - Highlights: > We study levels of trace elements in feathers of Antarctic penguins. > Eight different rookeries throughout the Antarctic Peninsula were sampled. > Interspecific (gentoo, chinstrap, Adelie) and geographical differences were tested. > Relatively high metal levels were found in areas with major human presence. > Penguin feather can be useful for metals monitoring in the Antarctic environment. - Trace element levels in feathers of three penguin species from the Antarctic Peninsula indicate the presence of pollution in certain locations.

  14. Hair and feathers as indicator of internal contamination of 210Po and 210Pb

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. (ed.); Gwynn, J.; Zaborska, A.; Gaefvert, T. (Norwegian Radiation Protection Authority (Norway)); Roos, P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Henricsson, F. (Lund Univ., Lund (Sweden))

    2010-03-15

    The activities of the NKS-B HAIRPOL project is summarised in this report. The objective was to investigate if hair and feathers were suitable matrices for the estimation of the intake of 210Po. Human hair from people of different sex and age was analysed for 210Po showing concentrations between 0.4 to 11 Bq/kg dry weight. Samples from horses, mane, fur and tail showed concentration from 6 to 17 Bq/kg with no significant difference between the different sample types. Musk ox from Greenland showed much higher concentrations since the animal has to graze a large surface. In fur the concentration was 260 Bq/kg. A considerable fraction of the total 210Po in this animal is contained in the hair. Also different organs were analysed and the highest concentration was found in kidney, 2 700 Bq/kg. The 210Pb concentration in hair was estimated to about 20 Bq/kg. Three different seabirds from Svalbard were analysed. Feathers from all three seabird species show increasing activity concentrations of 210Po and 210Pb from the base to the tip of the feather, but it was difficult to relate feather concentrations to muscle concentrations due to a number of complicating factors. (author)

  15. Birds of a Feather Don't Always Flock Together: User Problems in ...

    African Journals Online (AJOL)

    Birds of a Feather Don't Always. Flock Together: User Problems in. Identifying Headwords in Online. English Learner's Dictionaries*. Julia Miller, School of Education, University of Adelaide,. Australia (julia.miller@adelaide.edu.au). Abstract: Idioms, sayings and proverbs (referred to here as 'phrasemes'), are a central part of.

  16. 76 FR 9495 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Science.gov (United States)

    2011-02-18

    ... Administration 14 CFR Part 1 RIN 2120-AJ81 Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders... ``autofeathering'' as it applies to powered gliders. This amendment will allow both manual and autofeathering propeller operation for powered gliders that qualify as light-sport aircraft. DATES: The effective date for...

  17. Effect of dietary substitution of feather meal for fish meal on the ...

    African Journals Online (AJOL)

    A total of 250 Anak broiler chicks were used in a 28 days feeding trial in a completely randomized design, in a deep litter house to assess the effect of replacing feather meal (FEM) for fish meal (FM) on the performance of broiler chicks. Five replacement levels of the formulated feed: 0%, 2.5%, 5%, 7.5% and 10% of FEM ...

  18. 77 FR 12493 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Science.gov (United States)

    2012-03-01

    ... River Air Quality Management District. (1) Rule 3.22, ``Internal Combustion Engines,'' adopted on June... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Feather River Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is...

  19. The performance of broiler finisher birds fed varying levels of feather ...

    African Journals Online (AJOL)

    This study focused on the performance of broiler finisher birds fed varying levels of feather meal as replacement for soya bean meal. The cost of livestock feeds had been on an upward trend more especially in developing countries due to competition between man and livestock for feed ingredients such as grains root crops, ...

  20. Feather meal : evaluation of the effect of processing conditions by chemical and chick assays

    NARCIS (Netherlands)

    Papadopoulos, M.C.

    1984-01-01

    Feather waste at poultry processing plants, has been of interest in nutritional studies because of its high protein content. This material must be hydrolyzed in order to be digested by the animal, because in its natural state it is of no nutritive value. However, this product will be of variable

  1. Strain monitoring of a composite wing

    Science.gov (United States)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  2. Adaptation to the sky: Defining the feather with integument fossils from Mesozoic China and experimental evidence from molecular laboratories

    Science.gov (United States)

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B.; Jiang, Ting-Xin; Hou, Lianhai

    2015-01-01

    In this special issue of Evo-Devo of the amniote integument, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss results from the molecular and developmental biological experiments using chicken integument as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From these evidences, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for a proximo – distal growth mode; 2) forming hierarchical branches of rachis, barbs and barbules, with barbs shaped by differential cell death into either bilaterally or radially symmetric structures; 3) having a follicle structure, with a mesenchyme core during development; 4) maturing into a structure consisting of epithelia without a mesenchyme core with two sides of the vane facing the previous basal and supra-basal layer, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud → barbs → barbules → rachis is presented, which is opposite to the old view of scale plate → rachis → barbs → barbules. PMID:12949768

  3. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    Science.gov (United States)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  4. Feather corticosterone reveals stress associated with dietary changes in a breeding seabird.

    Science.gov (United States)

    Will, Alexis; Watanuki, Yutaka; Kikuchi, Dale M; Sato, Nobuhiko; Ito, Motohiro; Callahan, Matt; Wynne-Edwards, Katherine; Hatch, Scott; Elliott, Kyle; Slater, Leslie; Takahashi, Akinori; Kitaysky, Alexander

    2015-10-01

    Changes in climate and anthropogenic pressures might affect the composition and abundance of forage fish in the world's oceans. The junk-food hypothesis posits that dietary shifts that affect the quality (e.g., energy content) of food available to marine predators may impact their physiological state and consequently affect their fitness. Previously, we experimentally validated that deposition of the adrenocortical hormone, corticosterone, in feathers is a sensitive measure of nutritional stress in seabirds. Here, we use this method to examine how changes in diet composition and prey quality affect the nutritional status of free-living rhinoceros auklets (Cerorhinca monocerata). Our study sites included the following: Teuri Is. Japan, Middleton Is. central Gulf of Alaska, and St. Lazaria Is. Southeast Alaska. In 2012 and 2013, we collected "bill loads" delivered by parents to feed their chicks (n = 758) to document dietary changes. We deployed time-depth-temperature recorders on breeding adults (n = 47) to evaluate whether changes in prey coincided with changes in foraging behavior. We measured concentrations of corticosterone in fledgling (n = 71) and adult breeders' (n = 82) feathers to determine how birds were affected by foraging conditions. We found that seasonal changes in diet composition occurred on each colony, adults dove deeper and engaged in longer foraging bouts when capturing larger prey and that chicks had higher concentrations of corticosterone in their feathers when adults brought back smaller and/or lower energy prey. Corticosterone levels in feathers of fledglings (grown during the breeding season) and those in feathers of adult breeders (grown during the postbreeding season) were positively correlated, indicating possible carryover effects. These results suggest that seabirds might experience increased levels of nutritional stress associated with moderate dietary changes and that physiological responses to changes in prey composition

  5. Metals in Feathers of African Penguins (Spheniscus demersus): Considerations for the Welfare and Management of Seabirds Under Human Care.

    Science.gov (United States)

    Squadrone, S; Abete, M C; Brizio, P; Pessani, D; Favaro, L

    2018-02-15

    Bird feathers have been proven to be reliable indicators of metal exposure originating from contaminated food and polluted environments. The concentrations of 15 essential and non-essential metals were investigated in African penguins (Spheniscus demersus) feathers from a Northwestern Italian zoological facility. These birds are exclusively fed with herring from the northeast Atlantic Ocean. Certain elements, such as Hg and Cd, reflected the bioaccumulation phenomena that occur through the marine food chain. The levels of Cr, Mn, and Ni were comparable to those registered in feathers of birds living in polluted areas. These results are important for comparative studies regarding the health, nutrition and welfare of endangered seabirds kept under human care.

  6. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  7. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  8. [Winging effect in interatrial defect after transseptal mitral valvuloplasty: an anatomical study].

    Science.gov (United States)

    Martuscelli, E; Avella, A; Berni, A; Melis, M; Soda, G; Ferraironi, A; Nigri, A; Reale, A

    1990-04-01

    In the balloon catheters the redundancy of the deflated balloon produces 2 or 3 sort of thin wings. The presence of wings can reduce the catheter "pushability" or, in certain conditions, can determine tissue lesion (winging effect). Simulating a transeptal valvuloplasty of the mitral valve by technique of the 2 balloon in human fresh heart, we studied the winging effect over the interatrial septum in 12 hearts; in the first 6 the atrial septum was dilated with a 6 mm balloon (Group A), in the second 6 the atrial septum was dilated with a 10 mm balloon (Group B). The procedure was completed introducing consecutively 2 bigger balloons (15 + 20 mm). We suppose that the winging effect of the 2 bigger balloons (15 + 20 mm) could counter balance the theoretical advantage of a small balloon (6 mm). The atrial septal defect (ASD) after septal dilatation was 5.0 +/- 0.59 mm x 1.56 +/- 0.25 mm (long axis x short axis) in Group A and 6.53 +/- 0.35 x 2.16 +/- 0.39 mm in Group B (p less than 0.01). The final ASD (after introducing the 2 bigger balloons) was 7.04 +/- 1.06 x 2.36 +/- 0.57 mm in Group A and 7.03 +/- 0.18 x 2.16 +/- 0.32 mm in Group B (NS). Our data show that the winging effect can determine biological negative effects.

  9. Further developmental roles of the Vestigial/Scalloped transcription complex during wing development in Drosophila melanogaster.

    Science.gov (United States)

    Srivastava, Ajay; Bell, John B

    2003-05-01

    The Drosophila homologue of the human TEF-1 gene, scalloped (sd), is required for wing development. The SD protein forms part of a transcriptional activation complex with the protein encoded by vestigial (vg) that, in turn, activates target genes important for wing formation. One sd function involves a regulatory feedback loop with vg and wingless (wg) that is essential in this process. The dorsal-ventral (D/V) margin-specific expression of wg is lost in sd mutant wing discs while the hinge-specific expression appears normal. In the context of wing development, a VG::sdTEA domain fusion produces a protein that mimics the wild-type SD/VG complex and restores the D/V boundary-specific expression of wg in a sd mutant background. Further, targeted expression of wg at the D/V boundary in the wing disc was able to partially rescue the sd mutant phenotype. This infers that sd could function in either the maintenance or induction of wg at the D/V border. Another functional role for sd is the establishment of sensory organ precursors (SOP) of the peripheral nervous system at the wing margin. Thus, the relationship between sd and senseless (sens) in the development of these cells is also examined, and it appears that sd must be functional for proper sens expression, and ultimately, for sensory organ precursor development.

  10. Wing Geometry and Kinematic Parameters Optimization of Flapping Wing Hovering Flight

    Directory of Open Access Journals (Sweden)

    Xijun Ke

    2016-11-01

    Full Text Available How to efficiently mimic the wing shape and kinematics pattern of an able hovering living flier is always a concern of researchers from the flapping wing micro aerial vehicles community. In this work, the separate or combined optimizations of wing geometry or/and wing kinematic parameters are systematically performed to minimize the energy of hovering flight, firstly on the basis of analytically extended quasi-steady aerodynamic model by using hybrid genetic algorithm. Before the elaboration of the optimization problem, the parametrization description of dynamically scaled wing with non-dimensional conformal feature of insect-scale rigid wing is firstly proposed. The optimization results show that the combined optimization of wing geometry and kinematic parameters can obtain lower flapping frequency, larger wing geometry parameters and lower power density in comparison with those from other cases of optimization. Moreover, the flapping angle for the optimization involving wing kinematic parameters manifests harmonic shape profile and the pitch angle possesses round trapezoidal profile with certain faster time scale of pitch reversal. The combined optimization framework provides a novel method for the conceptual design of fundamental parameters of biomimetic flapping wing micro aerial vehicle.

  11. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    Science.gov (United States)

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  12. The effect of wing flexibility on sound generation of flapping wings.

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo

    2017-08-04

    In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of Tibicen linnei cicada at forward flight condition are numerically investigated. A single cicada wing is modelled as a membrane with prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on immersed boundary method and the acoustic field is solved with linearized perturbed compressible equations (LPCEs). The 3D simulation allows examination of both directivity and frequency composition of the flapping wing sound in the full space. Along with the flexible wing model, a rigid wing model that is extracted from the real motion is also simulated to investigate the effect of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all the directions. . © 2017 IOP Publishing Ltd.

  13. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    Science.gov (United States)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  14. Flutter of wings involving a locally distributed flexible control surface

    Science.gov (United States)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  15. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones

  16. Aerodynamic performances of complex shape wings

    Directory of Open Access Journals (Sweden)

    О.О. Кім

    2005-04-01

    Full Text Available  The task of calculation of optimum circulation distribution along wingspan of complex shape wings is considered. For solving this problem Glauert-Trefts’s equation and its modifications are used. Calculations are carried out for both sweptback and forward-swept wings. It is shown that optimum circulation distribution depends on the sweep angle χ and  on the chord b(z distribution along wingspan. Some aerodynamic coefficients such as induced drag coefficient CDi and pitching moment coefficient CmZ are calculated for wings of different shape. The comparison of wings performances is done. In order to obtain the minimum wing induced drag with the given lift force it is very important to determine how the circulation should change along the wingspan. Results obtained by E. K. Karafoli G.F. Burago and others are used. A set of theoretical generalizations and modifications of formulas for aerodynamic coefficients are obtained. These results permit to compare aerodynamic performances of sweptback and forward-swept wings. Modified Glauert-Trefts’s integral-differential equation is formulated for wings of complex shape.

  17. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  18. Rotary-wing aeroservoelastic problems

    Science.gov (United States)

    Friedmann, Peretz P.

    1992-01-01

    The state-of-the-art in the field of alleviating rotary-wing aeroservoelastic problems (by using active controls that modify the pitch of a helicopter rotor blade so as to alleviate dynamic effects) is assessed, and the more promising developments are identified. Special attention is given to the active control of aeromechanical and aeroelastic problems, such as the active control of ground resonance, active control of air resonance, and active control of blade aeroelastic instabilities; individual blade control; active control of vibration reduction using a conventional swashplate; and coupled rotor/fuselage vibration reduction using open-loop active control. Some results are presented for each of these topics, illustrating the efficiency of the techniques which have been developed.

  19. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  20. Evolutionary genetics of dorsal wing colour in Colias butterflies.

    NARCIS (Netherlands)

    Ellers, J.; Boggs, C.L.

    2004-01-01

    The evolution of butterfly wing colouration is strongly affected by its multiple functions and by the correlated evolution of wing colour elements. Both factors may prevent local adaptation to ecological conditions. We investigated one aspect of