WorldWideScience

Sample records for wing disc development

  1. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Lepidopteran insects present a complex organization of appendages which develop by various mechanisms. In the mulberry silkworm, Bombyx mori a pair of meso- and meta-thoracic discs located on either side in the larvae gives rise to the corresponding fore- and hind-wings of the adult. These discs do not experience ...

  2. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Unknown

    field and French 1999). We present here the expression pattern of Nubbin (Nub), Wingless (Wg) and Distal-less. (Dll) in B. mori wing discs using antibodies generated against the corresponding proteins from Drosophila or the butterfly P. coenia. The expression of Wg and Dll as overlapping domains in the distal region in B.

  3. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Unknown

    and meta-thoracic discs continue to grow in size with larval age and do not display any massive cell rearrangement during metamor- phosis (compare c with d, and h with i) during the larval to pupal .... to surgery. The conspicuous absence of wing blades and presence of wound healing marks on one side are evident.

  4. The bHLH factors Dpn and members of the E(spl complex mediate the function of Notch signalling regulating cell proliferation during wing disc development

    Directory of Open Access Journals (Sweden)

    Beatriz P. San Juan

    2012-05-01

    The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn, and the Enhancer-of-split complex (E(splC genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.

  5. Essential roles of the Tap42-regulated protein phosphatase 2A (PP2A family in wing imaginal disc development of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available Protein ser/thr phosphatase 2A family members (PP2A, PP4, and PP6 are implicated in the control of numerous biological processes, but our understanding of the in vivo function and regulation of these enzymes is limited. In this study, we investigated the role of Tap42, a common regulatory subunit for all three PP2A family members, in the development of Drosophila melanogaster wing imaginal discs. RNAi-mediated silencing of Tap42 using the binary Gal4/UAS system and two disc drivers, pnr- and ap-Gal4, not only decreased survival rates but also hampered the development of wing discs, resulting in a remarkable thorax cleft and defective wings in adults. Silencing of Tap42 also altered multiple signaling pathways (HH, JNK and DPP and triggered apoptosis in wing imaginal discs. The Tap42(RNAi-induced defects were the direct result of loss of regulation of Drosophila PP2A family members (MTS, PP4, and PPV, as enforced expression of wild type Tap42, but not a phosphatase binding defective Tap42 mutant, rescued fly survivorship and defects. The experimental platform described herein identifies crucial roles for Tap42•phosphatase complexes in governing imaginal disc and fly development.

  6. Notch inhibits Yorkie activity in Drosophila wing discs.

    Directory of Open Access Journals (Sweden)

    Alexandre Djiane

    Full Text Available During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki, the Salvador/Warts/Hippo (SWH pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg. We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs.

  7. Towards long term cultivation of Drosophila wing imaginal discs in vitro.

    Science.gov (United States)

    Handke, Björn; Szabad, János; Lidsky, Peter V; Hafen, Ernst; Lehner, Christian F

    2014-01-01

    The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that prolongs cell

  8. Towards long term cultivation of Drosophila wing imaginal discs in vitro.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that

  9. Photo-elastic properties of the wing imaginal disc of Drosophila

    OpenAIRE

    Schluck, T; Aegerter, C M

    2010-01-01

    In the study of developmental biology, the physical properties and constraints of the developing tissues are of great importance. In spite of this, not much is known about the elastic properties of biologically relevant tissues that are studied in biology labs. Here, we characterize properties of the wing imaginal disc of Drosophila, which is a precursor organ intensely studied in the framework of growth control and cell polarity. In order to determine the possibility of measuring mechanical ...

  10. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    Care was taken during dissection as the fat body and muscles tend to obscure the imaginal discs. Imaginal discs were distinctly seen under stereo bino- cular microscope, from one-day old final-instar larvae of. H. armigera. 2.3 Incubation. A pair of mesothoracic wing discs was excised in lepidopteran saline (Bindokas and ...

  11. Photo-elastic properties of the wing imaginal disc of Drosophila.

    Science.gov (United States)

    Schluck, T; Aegerter, C M

    2010-10-01

    In the study of developmental biology, the physical properties and constraints of the developing tissues are of great importance. In spite of this, not much is known about the elastic properties of biologically relevant tissues that are studied in biology labs. Here, we characterize properties of the wing imaginal disc of Drosophila, which is a precursor organ intensely studied in the framework of growth control and cell polarity. In order to determine the possibility of measuring mechanical stresses inside the tissue during development, we quantify the photo-elastic properties of the tissue by direct mechanical manipulation. We obtain a photo-elastic constant of 2 x 10(-10) Pa(-1).

  12. Dpp spreading is required for medial but not for lateral wing disc growth.

    Science.gov (United States)

    Harmansa, Stefan; Hamaratoglu, Fisun; Affolter, Markus; Caussinus, Emmanuel

    2015-11-19

    Drosophila Decapentaplegic (Dpp) has served as a paradigm to study morphogen-dependent growth control. However, the role of a Dpp gradient in tissue growth remains highly controversial. Two fundamentally different models have been proposed: the 'temporal rule' model suggests that all cells of the wing imaginal disc divide upon a 50% increase in Dpp signalling, whereas the 'growth equalization model' suggests that Dpp is only essential for proliferation control of the central cells. Here, to discriminate between these two models, we generated and used morphotrap, a membrane-tethered anti-green fluorescent protein (GFP) nanobody, which enables immobilization of enhanced (e)GFP::Dpp on the cell surface, thereby abolishing Dpp gradient formation. We find that in the absence of Dpp spreading, wing disc patterning is lost; however, lateral cells still divide at normal rates. These data are consistent with the growth equalization model, but do not fit a global temporal rule model in the wing imaginal disc.

  13. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of ...

  14. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids ... 2.1 Insect culture. A continuous colony of H. armigera was maintained on a chick pea based semi-synthetic diet (Singh and Rembold. 1992) in an insectary at 25 ... tissue culture medium containing the wing discs.

  15. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var3-9

    Directory of Open Access Journals (Sweden)

    Keita Masuko

    2018-01-01

    Full Text Available Summary: Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD. We previously identified winged eye (wge as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9, a feature of heterochromatin. A histone methyltransferase, Su(var3-9, is required for wge-mediated H3K9 methylation and eye-to-wing TD. Su(var3-9 is also required for classical wound-induced TD but not for normal development, suggesting its involvement in several types of imaginal disc TDs. Transcriptome analysis revealed that wge represses eye identity genes independently of Su(var3-9 and activates TD-related genes by acting together with Su(var3-9. These findings provide new insights into diverse types of chromatin regulation at progressive steps of cell-fate conversions. : Drosophila imaginal discs switch disc identity by a process known as transdetermination. Masuko et al. demonstrate that expression of the winged eye gene induces transdetermination through histone modifications such as H3K9-methylation. winged eye regulates expression of transdetermination-related genes via a histone methyltransferase, Su(var3-9. Keywords: Drosophila, imaginal disc, transdetermination, heterochromatin, cell fate, winged eye, reprogramming, Su(var3-9

  16. Wing (Ib) cells in frog taste discs detect dietary unsaturated fatty acids.

    Science.gov (United States)

    Okada, Yukio; Miyazaki, Toshihiro; Fujiyama, Rie; Toda, Kazuo

    2013-11-01

    The effects of unsaturated fatty acids on membrane properties were studied using conventional whole-cell patch-clamp recording of isolated wing (Ib) cells in bullfrog (Lithobates catesbeianus) taste discs. Applying arachidonic acid to the bath induced monophasic inward currents in 60% of wing cells and biphasic inward and outward currents in the other cells. The intracellular dialysis of arachidonic acid did not induce an inward current; however, it enhanced a slowly developing Ba(2+)-sensitive outward current. The effects of various unsaturated fatty acids were explored under the condition of Cs(+) internal solution. Linoleic and α-linolenic acids induced large inward currents. Oleic, eicosapentaenoic and docosahexaenoic acids elicited the same inward currents as those of arachidonic acid. Wing cells, under the basal condition with Cs(+) internal solution, displayed a small inward current of -1.1±0.1pA/pF at -50mV (n=40), in which the peak existed at a membrane potential of -49mV. Removing external Ca(2+) further increased the inward current by -2.9±0.3pA/pF at -50mV (n=4) from the basal current and the peak was located at -55mV. External linoleic acid (50μM) also induced a similar inward current of -5.6±0.6pA/pF at -50mV (n=19) from the basal current and the peak was located at -61mV. External Ca(2+)-free saline and linoleic acid induced similar current/voltage (I/V) relationships elicited by a ramp voltage as well as voltage steps. Linoleic acid-induced currents were not influenced by replacing internal EGTA with BAPTA, whereas inward currents disappeared under the elimination of external Na(+) and addition of flufenamic acid. These results suggest that dietary unsaturated fatty acids may depolarize wing (Ib) cells, which affects the excitability of these cells. © 2013.

  17. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var)3-9.

    Science.gov (United States)

    Masuko, Keita; Fuse, Naoyuki; Komaba, Kanae; Katsuyama, Tomonori; Nakajima, Rumi; Furuhashi, Hirofumi; Kurata, Shoichiro

    2018-01-02

    Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a feature of heterochromatin. A histone methyltransferase, Su(var)3-9, is required for wge-mediated H3K9 methylation and eye-to-wing TD. Su(var)3-9 is also required for classical wound-induced TD but not for normal development, suggesting its involvement in several types of imaginal disc TDs. Transcriptome analysis revealed that wge represses eye identity genes independently of Su(var)3-9 and activates TD-related genes by acting together with Su(var)3-9. These findings provide new insights into diverse types of chromatin regulation at progressive steps of cell-fate conversions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. High-resolution two-dimensional gel analysis of proteins in wing imaginal discs: A data base of Drosophila

    International Nuclear Information System (INIS)

    Santaren, J.F.; Garcia-Bellido, A.

    1990-01-01

    An improved method of high-resolution two-dimensional gel electrophoresis has been used to study the patterns of protein synthesis in wing imaginal discs of late instar larvae of Drosophila melanogaster. A small number of discs were radiolabeled with a mixture of 14 C-labeled amino acids or with [ 35 S]methionine and the pattern of labeled proteins was analyzed. One thousand and twenty-five polypeptides (787 acidic (IEF) and 238 basic (NEPHGE)) from wing discs of several wild-type strains have so far been separated and cataloged. All these polypeptides have been numbered and presented in a reference map for further studies. When comparing patterns of label we have found small quantitative differences in rate of synthesis between individuals of the same strain, not due to sexual differences, and very few quantitative and qualitative differences between groups of individuals of different strains

  19. Development of Vibrating Disc Piezoelectric Gyroscope

    OpenAIRE

    A.K. Singh; U.K. Gorain

    2004-01-01

    The paper presents an indigenously developed vibrating disc piezoelectric gyroscope, in which both excitation and detection have been done through piezoelectric, using PZT-5H material. The gyroscope has been driven to resonant state by direct piezoelectric effect, using 20 V ac signal at 93 kHz, and the output has been detected by the reverse piezoelectric effect.The performance of this gyroscope has been tested with 3 microprocessor-controlled turntable, and the output of the gyroscope has b...

  20. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  1. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development.

    Science.gov (United States)

    Nguyen, Duy; Fayol, Olivier; Buisine, Nicolas; Lecorre, Pierrette; Uguen, Patricia

    2016-01-01

    Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.

  2. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development.

    Directory of Open Access Journals (Sweden)

    Duy Nguyen

    Full Text Available Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh and its transcriptional effector Cubitus interuptus (Ci. In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.

  3. Notochord Cells in Intervertebral Disc Development and Degeneration

    Directory of Open Access Journals (Sweden)

    Matthew R. McCann

    2016-01-01

    Full Text Available The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.

  4. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  5. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  6. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  7. Sound amplification by means of a horn-like roosting structure in Spix's disc-winged bat.

    Science.gov (United States)

    Chaverri, Gloriana; Gillam, Erin H

    2013-12-07

    While sound is a signal modality widely used by many animals, it is very susceptible to attenuation, hampering effective long-distance communication. A strategy to minimize sound attenuation that has been historically used by humans is to use acoustic horns; to date, no other animal is known to use a similar structure to increase sound intensity. Here, we describe how the use of a roosting structure that resembles an acoustic horn (the tapered tubes that form when new leaves of plants such as Heliconia or Calathea species start to unfurl) increases sound amplification of the incoming and outgoing social calls used by Spix's disc-winged bat (Thyroptera tricolor) to locate roosts and group members. Our results indicate that incoming calls are significantly amplified as a result of sound waves being increasingly compressed as they move into the narrow end of the leaf. Outgoing calls were faintly amplified, probably as a result of increased sound directionality. Both types of call, however, experienced significant sound distortion, which might explain the patterns of signal recognition previously observed in behavioural experiments. Our study provides the first evidence of the potential role that a roost can play in facilitating acoustic communication in bats.

  8. Development of a whole disc organ culture system to study human intervertebral disc

    Science.gov (United States)

    Parolin, M.; Gawri, R.; Mwale, F.; Steffen, T.; Roughley, P.; Antoniou, J.; Jarzem, P.; Haglund, L.; Ouellet, J.

    2010-01-01

    Study type: Basic science Objective: Low back pain is one of the most common health problems1 and is strongly associated with intervertebral disc degeneration, (IVD). Current treatments remove the symptoms without reversing or even retarding the underlying problem. Development of new therapy for the regeneration of the degenerative IVD is complicated by the lack of a validated long-term organ culture model in which therapeutic candidates can be studied. The object of this study was to develop, optimize, and validate an organ culture model for human IVD, allowing for the study of degeneration and the potential for regeneration of the human IVD. Methods: From eleven donors, an average of 5–6 IVDs were obtained. Inclusion criteria were; age between 50 and 70 years old, no history of cancer, chemotherapy, diabetes, or liver cirrhosis. An x-ray of the harvested spine was done to assess the grade of degeneration. Three different methods for isolating the discs were studied: with bony endplate (BEP), without endplate (NEP), and with cartilage endplate (CEP). Discs were cultured for 4 weeks without external load, in Dulbecco's modified eagle media with glucose and fetal bovine serum (FBS). Four different combinations of concentrations of glucose and FBS were compared: low glucose-low FBS, low glucose-high FBS, high glucose-low FBS, and high glucose-high FBS.2 Short-term cultures (1 week) were performed to compare the cell viability of the three methods of isolating the discs. Swelling potential on NEP and CEP discs from the same donor were evaluated. After four weeks of culture, a 4 mm punch was taken from CEP discs and cell viability was evaluated using a live/dead assay with confocal microscopy. Results: Analyzing the potential of swelling in CEP discs, there was an increase in volume to a maximum of 25% and retention of shape and morphology. Whereas in NEP discs, there was an excessive deformation and a two-fold time increase in volume than CEP discs. The cell

  9. Development and experiments of the Sea-Wing underwater glider

    Science.gov (United States)

    Yu, Jian-Cheng; Zhang, Ai-Qun; Jin, Wen-Ming; Chen, Qi; Tian, Yu; Liu, Chong-Jie

    2011-12-01

    Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.

  10. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs.

    Directory of Open Access Journals (Sweden)

    Ildiko M L Somorjai

    2008-08-01

    Full Text Available Armadillo, the Drosophila orthologue of vertebrate ss-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the "degradation complex" is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets.Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the "transcriptional" and "adhesive" pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. Arm(S10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, DeltaNArm(1-155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-DeltaNArm(1-155 produced comparable nuclear accumulation of Armadillo and signalling to Arm(S10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin.Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of

  11. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  12. Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber

    NARCIS (Netherlands)

    Keidel, D.H.K.; Sodja, J.; Werter, N.P.M.; De Breuker, R.; Ermanni, P.; Monajjemi, M.; Liang, W.

    2015-01-01

    Driven by the need to improve the performance and energy-efficiency of aircraft, current research in the field of morphing wings is growing in significance. The most recently developed concepts typically adjust only one characteristic of the wing. Within this paper a new concept for morphing wings

  13. DEVELOPMENT OF EDUCATIONAL SOFTWARE FOR STRESS ANALYSIS OF AN AIRCRAFT WING

    Directory of Open Access Journals (Sweden)

    TAZKERA SADEQ

    2012-06-01

    Full Text Available A stress analysis software based on MATLAB, Graphic user interface (GUI has been developed. The developed software can be used to estimate load on a wing and to compute the stresses at any point along the span of the wing of a given aircraft. The generalized formulation allows performing stress analysis even for a multispar (multicell wing. The software is expected to be a useful tool for effective teaching learning process of courses on aircraft structures and aircraft structural design.

  14. Disrupted in schizophrenia 1 (DISC1) inhibits glioblastoma development by regulating mitochondria dynamics

    Science.gov (United States)

    Hu, Zhifang; Hu, Fengrui; liu, Dou; Gao, Lei; Gou, Xingchun; Jin, Weilin

    2016-01-01

    Glioblastoma(GBM) is one of the most common and aggressive malignant primary tumors of the central nervous system and mitochondria have been proposed to participate in GBM tumorigenesis. Previous studies have identified a potential role of Disrupted in Schizophrenia 1 (DISC1), a multi-compartmentalized protein, in mitochondria. But whether DISC1 could regulate GBM tumorigenesis via mitochondria is still unknown. We determined the expression level of DISC1 by both bioinformatics analysis and tissue analysis, and found that DISC1 was highly expressed in GBM. Knocking down of DISC1 by shRNA in GBM cells significantly inhibited cell proliferation both in vitro and in vivo. In addition, down-regulation of DISC1 decreased cell migration and invasion of GBM and self renewal capacity of glioblastoma stem-like cells. Furthermore, multiple independent rings or spheres could be observed in mitochondria in GBM depleted of DISC1, while normal filamentous morphology was observed in control cells, demonstrating that DISC1 affected the mitochondrial dynamic. Dynamin-related protein 1 (Drp1) was reported to contribute to mitochondrial dynamic regulation and influence glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Our data showed a significant decrease of Drp1 both in mRNA and protein level in GBM lack of DISC1, indicating that DISC1 maybe affect the mitochondrial dynamic by regulating Drp1. Taken together, our findings reveal that DISC1 affects glioblastoma cell development via mitochondria dynamics partly by down regulation of Drp1. PMID:27852062

  15. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  16. Material development for laminar flow control wing panels

    Science.gov (United States)

    Meade, L. E.

    1977-01-01

    The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

  17. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    Science.gov (United States)

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc.

    Science.gov (United States)

    Brock, Amanda R; Seto, Mabel; Smith-Bolton, Rachel K

    2017-07-01

    Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar ( cnc ), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling. Copyright © 2017 by the Genetics Society of America.

  19. A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing

    NARCIS (Netherlands)

    Ferreira, J.P.; De Breuker, R.

    2016-01-01

    This study describes the development of a morphing wing concept for a Portuguese Air Force Unmanned Air Vehicle (UAV), the UAS-30. Nowadays, optimized fuel efficiency is a primary requirement in the aerospace industry, and it can be significantly improved by designing adaptive wings which can change

  20. BmCHSA-2b, a Lepidoptera specific alternative splicing variant of epidermal chitin synthase, is required for pupal wing development in Bombyx mori.

    Science.gov (United States)

    Xu, Guanfeng; Zhang, Jie; Lyu, Hao; Liu, Jia; Ding, Yang; Feng, Qili; Song, Qisheng; Zheng, Sichun

    2017-08-01

    Insect chitin synthase A (CHSA) is an epidermis-specific enzyme that plays an essential role in insect development. In this study, the function and regulation of CHSA-2b, an alternative splicing variant of Bombxy mori CHSA that is discovered only in Lepidopteran insects, were investigated. Analysis of mRNA level showed that BmCHSA-2b was responsive to 20-hydroxyecdysone (20E) in pupal wing unlike BmCHSA-2a, which shares almost the identical sequence as BmCHSA-2b except the first 31 amino acids, suggesting that the expression of these two alternative splicing variants is driven by different promoters of CHSA gene. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that BmCHSA-2b was up-regulated in the wing of mid-pupa unlike BmCHSA-2a, which was up-regulated in epidermis and wing disc at the beginning and end of pupal stage. Further analysis reveals that the up-regulations of BmCHSA-2a and BmCHSA-2b in pupal wing were consistent with the increase of chitin content and wing area at the same stages, respectively. Furthermore, the higher transcription level of BmCHSA-2b in the mid-pupal wing of male than that in female was consistent with the chitin content of pupal wing between genders. Injection of double-stranded RNAs of BmCHSA-2b resulted in the decrease in the area and chitin content of the wing, and irregular and crimpled vein. All these results together suggest that B. mori evolves an extra promoter in CHSA gene to activate BmCHSA-2b expression in the wing of mid-pupal stage in response to 20E, and BmCHSA-2b is required for the wing development in the mid-pupa of B. mori. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration

    National Research Council Canada - National Science Library

    Stute, Nicholas

    2001-01-01

    The purpose of this document is to describe the results for the Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration task jointly sponsored by the Logistics Readiness Branch...

  2. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings.

    Science.gov (United States)

    Feindt, Wiebke; Oppenheim, Sara J; DeSalle, Robert; Goldstein, Paul Z; Hadrys, Heike

    2018-01-01

    The evolution, development and coloration of insect wings remains a puzzling subject in evolutionary research. In basal flying insects such as Odonata, genomic research regarding bauplan evolution is still rare. Here we focus on the world's largest odonate species-the "forest giant" Megaloprepus caerulatus, to explore its potential for looking deeper into the development and evolution of wings. A recently discovered cryptic species complex in this genus previously considered monotypic is characterized by morphological differences in wing shape and color patterns. As a first step toward understanding wing pattern divergence and pathways involved in adaptation and speciation at the genomic level, we present a transcriptome profiling of M. caerulatus using RNA-Seq and compare these data with two other odonate species. The de novo transcriptome assembly consists of 61,560 high quality transcripts and is approximately 93% complete. For almost 75% of the identified transcripts a possible function could be assigned: 48,104 transcripts had a hit to an InterPro protein family or domain, and 28,653 were mapped to a Gene Ontology term. In particular, we focused on genes related to wing development and coloration. The comparison with two other species revealed larva-specific genes and a conserved 'core' set of over 8,000 genes forming orthologous clusters with Ischnura elegans and Ladona fulva. This transcriptome may provide a first point of reference for future research in odonates addressing questions surrounding the evolution of wing development, wing coloration and their role in speciation.

  3. Abnormal development of the lesser wing of the sphenoid with microphthalmos and microcephaly

    International Nuclear Information System (INIS)

    Jacquemin, C.; Bosley, T.M.

    2001-01-01

    We report two patients with abnormal development of the lesser wing of the sphenoid bone, globe, optic nerve and cerebral hemisphere without stigmata of neurofibromatosis type 1. The lesser wing of the sphenoid bone was abnormally formed and was not ossified ipsilateral to the dysmorphic eye and underdeveloped cerebral hemisphere. Maldevelopment of the sphenoid wing may interfere with the normal closure of the optic vesicle and normal growth of encephalic structures, possibly by disturbing developmental tissue interactions. These patients may exhibit a type of restricted primary sphenoid dysplasia, while the sphenoid dysplasia of neurofibromatosis type 1 may be secondary to orbital or ocular neurofibromas and other factors associated with that disease. (orig.)

  4. Wing Infrastructure and Development Outlook (WINDO) Final Environmental Assessment

    Science.gov (United States)

    2006-06-01

    divert airfield for military aircraft training in the NTTR and support the flying operations of the 57th Wing, other Air Force units, Navy, Marine ...includes desert iguana (Dipsosaurus dorsalis), zebra-tailed lizard (Callosaurus draconoides), side-blotched lizard, horned lizards (Phrynosoma spp...be stored or used in work areas. Marine mammal —any mammal that is morphologically adapted to the marine environment, or primarily inhabits the

  5. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  6. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  7. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs.

    Science.gov (United States)

    Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre

    2018-03-05

    During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.

  8. Rheb1 mediates DISC1-dependent regulation of new neuron development in the adult hippocampus.

    Science.gov (United States)

    Kang, Eunchai; Kim, Ju Young; Liu, Cindy Y; Xiao, Bo; Chen, Po Yu; Christian, Kimberly M; Worley, Paul F; Song, Hongjun; Ming, Guo-Li

    2015-01-01

    A large number of susceptibility genes have been implicated in psychiatric disorders with a developmental origin, yet their biological roles and signaling mechanisms in neurodevelopment are largely unknown. Disrupted-In-Schizophrenia 1 (DISC1), a susceptibility gene for several major psychiatric disorders, regulates the development of newborn neurons in the adult hippocampus. Systemic pharmacological inhibition of mTOR signaling with rapamycin has been shown to rescue DISC1 deficiency-induced neurodevelopmental defects, as well as cognitive and affective deficits. Whether mTOR signaling plays a cell-autonomous and/or non-cell-autonomous role in DISC1-dependent regulation of neuronal development is not clear. Here we provide genetic evidence that hyper-activation of mTOR activator Rheb1 (Ras homolog enriched in brain 1) in newborn neurons recapitulates DISC1 deficiency-induced neurodevelopmental defects, including neuronal morphogenesis and migration. We further show that genetic deletion of Rheb1 rescues those defects in a cell-autonomous fashion in developing newborn neurons in the adult hippocampus. Our genetic and functional studies demonstrate that Rheb1 acts as a key mediator of DISC1-dependent regulation of mTOR signaling and neuronal development during adult hippocampal neurogenesis.

  9. Tests and developments of the PANDA Endcap Disc DIRC

    International Nuclear Information System (INIS)

    Etzelmüller, E.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.

    2016-01-01

    The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification. Two different DIRC detectors will utilize internally reflected Cherenkov light of charged particles to enable the separation of pions and kaons up to momenta of 4 GeV/c. The Endcap Disc DIRC will be placed in the forward endcap of PANDA's central spectrometer covering polar angles between 5° and 22°. Its final design is based on MCP-PMTs for the photon detection and an optical system made of fused silica. A new prototype has been investigated during a test beam at CERN in May 2015 and first results will be presented. In addition a new synthetic fused silica material by Nikon has been tested and was found to be radiation hard.

  10. Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    Science.gov (United States)

    2016-01-01

    B) was developed in Abaqus software. The boundary conditions and material properties are adopted in the model from experimental data and literature...time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this...Experiments on Cervical Spine Disc Segments and Developing a FE Product to Predict Spine Fatigue Using the Experimental Data

  11. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    Science.gov (United States)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  12. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.

    Science.gov (United States)

    Martin, Arnaud; Reed, Robert D

    2014-11-15

    Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  14. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx).

    Science.gov (United States)

    Bischoff, Kara; Ballew, Anna C; Simon, Michael A; O'Reilly, Alana M

    2009-12-01

    The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  15. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    2009-12-01

    Full Text Available The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1].Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells.Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  16. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world´s largest wings

    Science.gov (United States)

    The arrival of the term Eco-Evo-Devo highlights the need to incorporate ecology and development into modern evolutionary research to better understand processes such as adaptation and speciation as well as the effect of environmental changes a species. As basal winged insects (pterygotes), dragonfli...

  17. A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.

    Science.gov (United States)

    Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar

    2016-09-01

    Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.

  18. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  19. Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism

    Directory of Open Access Journals (Sweden)

    Shan-Shan eGuo

    2016-02-01

    Full Text Available In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS pathway regulate alteration of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5 affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax of the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryo size and higher carbohydrate and protein contents compared to control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid.

  20. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  1. Overview of recent progress on the DARPA/USAF Wright Laboratory Smart Materials and Structures Development--Smart Wing program

    Science.gov (United States)

    Kudva, Jayanth N.; Appa, Kari; Jardine, A. Peter; Martin, Christopher A.; Carpenter, Bernie F.

    1997-05-01

    The concept of an adaptive aircraft wing, i.e., whose shape parameters such as camber, span-wise twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied by numerous researchers. While the aerodynamic benefits (in terms of increased lift/drag ratios, improved maneuverability, and delayed flow separation) have been analytically and experimentally established, the complexity and weight penalty of the designs and actuation using smart materials could potentially alleviate the shortcomings of prior designs, leading the way to a more practical `smart' adaptive wing which responds to changes in flight and environmental conditions by optimally modifying its shape. A summary of recent work in the area of adaptive wing concepts incorporating smart structures technologies is presented. Emphasis is placed on continuing research at Northrop Grumman under a United States Defense Advanced Research Projects Agency contract entitled `Smart Structures and Materials Development-Smart Wing,'. Limitations and potential benefits of adaptive wing designs, applications and advantages of smart material actuators and sensors, and results of recent tests are discussed. Recommendations for future work required to develop an operational smart adaptive wing are also outlined.

  2. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  3. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho

    2015-12-01

    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  4. Development of a wing-beat-modulation scanning lidar system for insect studies

    Science.gov (United States)

    Tauc, Martin Jan; Fristrup, Kurt M.; Shaw, Joseph A.

    2017-08-01

    The spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulated scattered laser light. The oscillating signal from wing-beat returns allowed for reliable separation of lidar returns for insects and stationary objects. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four-day field campaign at Grand Teton National Park in June of 2016, 76 very likely insects and 662 somewhat likely insects were detected, with a maximum range to the insect of 87.6 m for very likely insects

  5. Tactile Reflex Development Through Wing Tsun’s “Sticking Hands” Practice, by Jeff Webb

    Directory of Open Access Journals (Sweden)

    Jeff Webb

    2012-07-01

    Full Text Available It was the late Bruce Lee who first demonstrated Wing Tsun gongfu’s “sticking hands” (chi-sau exercise in the US, during the 1964 Long Beach International Karate Championships. Forty-four years later, very few outside of the art truly understand the purpose of chi-sau let alone how it develops tactile reflexes. This article will describe both the fundamental and complex methods of chi-sau training in detail. It will also explain the rationale and theories behind this method as well as discuss a variety of factors that can either improve or retard the acquisition of tactile reflexes.

  6. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc.

    Directory of Open Access Journals (Sweden)

    Karunan Joseph

    Full Text Available The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.

  7. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  8. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  9. The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development.

    Science.gov (United States)

    Morriss, Ginny R; Jaramillo, Carmelita T; Mikolajczak, Crystal M; Duong, Sandy; Jaramillo, Maryann S; Cripps, Richard M

    2013-11-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.

  10. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    Science.gov (United States)

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological

  11. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  12. Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors

    Directory of Open Access Journals (Sweden)

    Yean-Der Kuan

    2014-05-01

    Full Text Available The direct methanol fuel cell (DMFC adopts methanol solution as a fuel suitable for low power portable applications. A miniature, lightweight, passive air-breathing design is therefore desired. This paper presents a novel planar disc-type DMFC with multiple cells containing a novel developed lightweight current collector at both the anode and cathode sides. The present lightweight current collector adopts FR4 Glass/Epoxy as the substrate with the current collecting areas located at the corresponding membrane electrolyte assembly (MEA areas. The current collecting areas are fabricated by sequentially coating a corrosion resistant layer and electrical conduction layer via the thermal evaporation technique. The anode current collector has carved flow channels for fuel transport and production. The cathode current collector has drilled holes for passive air breathing. In order to ensure feasibility in the present concept a 3-cell prototype DMFC module with lightweight disc type current collectors is designed and constructed. Experiments were conducted to measure the cell performance. The results show that the highest cell power output is 54.88 mW·cm−2 and successfully demonstrate the feasibility of this novel design.

  13. Ball-on-DiscTribometers Protocol Development: Loss of Lubrication Evaluation

    Science.gov (United States)

    2016-02-01

    average of the ball’s and disc’s linear velocities. The slip percentage is shown in Eq. 1. The ball thermocouple (Tb) and disc thermocouple ( Td ...surfaces rubbed against each other until the head of the bolt was caught on the top of the oil slinger and broke the screw at its connection to the spindle...single-tooth load capacity Tb ball thermocouple TC thermocouple Td disc thermocouple Ub ball linear velocity Ud disc linear velocity Ue

  14. Lay-up Optimisation of Fibre Metal Laminates : Development of a Design Methodology for Wing Structures

    NARCIS (Netherlands)

    ?en, I.

    2015-01-01

    The lower wing skin is one of the primary structures of an aircraft. To further improve the fatigue and damage tolerance (F&DT) performance of the lower wing, fibre metal laminates (FML) are proposed as a new material solution. FML consist of thin metal layers bonded with layers of fibre composites.

  15. An efficient fluid-structure interaction method for conceptual design of flexible micro air vehicle wings: Development, comparison, and application

    Science.gov (United States)

    Combes, Thomas P.

    This thesis summarizes the development, comparison, and applications of an efficient fluid-structure interaction method capable of simulating the effects that wing flexibility has on micro air vehicle (MAV) performance. Micro air vehicles wing designs often incorporate flexible wing structures that mimic the skeleton / membrane designs found in natural flyers such as bats and insects. However, accurate performance prediction for these wings requires the coupling of the simulation of the fluid physics around the wing and the simulation of the structural deformation. These fluid-structure interaction (FSI) simulations are often accomplished using high fidelity, computationally expensive techniques such as computational fluid dynamics (CFD) for the fluid physics and nonlinear finite element analysis (FEA) for the structural simulation. The main drawback of these methods, especially for use simulating vehicles that are able to be manufactured relatively quickly, is that the computational cost required to perform relevant trade studies on the design is prohibitively large and time-consuming. The main goal of this research is the development of a coupled fluid-structure interaction method computationally efficient and accurate enough to be used for conceptual design of micro air vehicles. An advanced potential flow model is used to calculate aerodynamic performance and loading, while a simplified finite element structural model using frame and shell elements calculates the wing deflection due to aerodynamic loading. The contents of this thesis include a literature survey of current approaches, an introduction to the efficient FSI formulation, comparison of the presented FSI method with higher-fidelity simulation methods, demonstrations of the method's capability for tradeoff and optimization studies, and an overview of contributions to a nonlinear dynamic algorithm for the simulation of flapping flight.

  16. Development and design of flexible Fowler flaps for an adaptive wing

    Science.gov (United States)

    Monner, Hans P.; Hanselka, Holger; Breitbach, Elmar J.

    1998-06-01

    Civil transport airplanes fly with fixed geometry wings optimized only for one design point described by altitude, Mach number and airplane weight. These parameters vary continuously during flight, to which means the wing geometry seldom is optimal. According to aerodynamic investigations a chordwide variation of the wing camber leads to improvements in operational flexibility, buffet boundaries and performance resulting in reduction of fuel consumption. A spanwise differential camber variation allows to gain control over spanwise lift distributions reducing wing root bending moments. This paper describes the design of flexible Fowler flaps for an adaptive wing to be used in civil transport aircraft that allows both a chordwise as well as spanwise differential camber variation during flight. Since both lower and upper skins are flexed by active ribs, the camber variation is achieved with a smooth contour and without any additional gaps.

  17. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  18. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc

    2015-01-01

    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc’s rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film’s vibration during the disc’s rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62°C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms. PMID:26422249

  19. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  20. Wind-tunnel tests on model wing with Fowler flap and specially developed leading-edge slot

    Science.gov (United States)

    Weick, Fred E; Platt, Robert C

    1933-01-01

    An investigation was made in the NACA 7 by 10 foot wind tunnel to find the increase in maximum lift coefficient which could be obtained by providing a model wing with both a Fowler trailing-edge extension flap and a Handley Page type leading-edge slot. A conventional Handley page slot proportioned to operate on the plain wing without a flap gave but a slight increase with the flap; so a special form of slot was developed to work more effectively with the flap. With the best combined arrangement the maximum lift coefficient based on the original area was increased from 3.17, for the Fowler wing, to 3.62. The minimum drag coefficient with both devices retracted was increased in approximately the same proportion. Tests were also made with the special-type slot on the plain wing without the flap. The special slot, used either with or without the Fowler flap, gave definitely higher values of the maximum lift coefficient than the slots of conventional form, with an increase of the same order in the minimum drag coefficient.

  1. Crosstalk between epithelial and mesenchymal tissues in tumorigenesis and imaginal disc development.

    Science.gov (United States)

    Herranz, Héctor; Weng, Ruifen; Cohen, Stephen M

    2014-07-07

    Cancers develop in a complex mutational landscape. Interaction of genetically abnormal cancer cells with normal stromal cells can modify the local microenvironment to promote disease progression for some tumor types. Genetic models of tumorigenesis provide the opportunity to explore how combinations of cancer driver mutations confer distinct properties on tumors. Previous Drosophila models of EGFR-driven cancer have focused on epithelial neoplasia. Here, we report a Drosophila genetic model of EGFR-driven tumorigenesis in which the neoplastic transformation depends on interaction between epithelial and mesenchymal cells. We provide evidence that the secreted proteoglycan Perlecan can act as a context-dependent oncogene cooperating with EGFR to promote tumorigenesis. Coexpression of Perlecan in the EGFR-expressing epithelial cells potentiates endogenous Wg/Wnt and Dpp/BMP signals from the epithelial cells to support expansion of a mesenchymal compartment. Wg activity is required in the epithelial compartment, whereas Dpp activity is required in the mesenchymal compartment. This genetically normal mesenchymal compartment is required to support growth and neoplastic transformation of the genetically modified epithelial population. We report a genetic model of tumor formation that depends on crosstalk between a genetically modified epithelial cell population and normal host mesenchymal cells. Tumorigenesis in this model co-opts a regulatory mechanism that is normally involved in controlling growth of the imaginal disc during development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    Directory of Open Access Journals (Sweden)

    V. Sivakamasundari

    2017-02-01

    Full Text Available Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis.

  3. Development of MCAERO wing design panel method with interactive graphics module

    Science.gov (United States)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  4. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  5. Update on the pathophysiology of degenerative disc disease and new developments in treatment strategies

    Directory of Open Access Journals (Sweden)

    Adam H Hsieh

    2010-10-01

    Full Text Available Adam H Hsieh1,2 , S Tim Yoon31Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; 2Department of Orthopedics, University of Maryland, Baltimore, MD, USA; 3Department of Orthopedic Surgery, Emory University, Chief of Orthopedic Surgery, Veterans Affairs Medical Center, Atlanta, GA, USAAbstract: Degenerative disc disease (DDD continues to be a prevalent condition that afflicts populations on a global scale. The economic impact and decreased quality of life primarily stem from back pain and neurological deficits associated with intervertebral disc degeneration. Although much effort has been invested into understanding the etiology of DDD and its relationship to the onset of back pain, this endeavor is a work in progress. The purpose of this review is to provide focused discussion on several areas in which recent advances have been made. Specifically, we have categorized these advances into early, middle, and late phases of age-related or degenerative changes in the disc and into promising minimally invasive treatments, which aim to restore mechanical and biological functions to the disc.Keywords: degenerative disc disease, quality of life, intervertebral, aging

  6. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    Science.gov (United States)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  7. Development of Rotary-Wing UAS for Use in Atmospheric Sensing of Near-Storm Environments

    Science.gov (United States)

    Greene, B. R.; Chilson, P. B.; Salazar-Cerreno, J.; Duthoit, S.; Doyle, B.; Wolf, B.; Segales, A.; Fiebrich, C. A.; Waugh, S.; Fredrickson, S.; Oncley, S.; Tudor, L.; Semmer, S.

    2017-12-01

    The capabilities of small unmanned aircraft systems (sUAS) to make atmospheric observations is rapidly being realized as a means to collect previously unobtainable observations in the lowest part of Earth's atmosphere. However, in order for these systems to provide meaningful kinematic and thermodynamic data, it is imperative to establish an understanding of the strengths and limitations of the sensors and retrieval algorithms implemented in both controlled and realistic conditions. This initial objective is comprised of two experimental stages, the first of which is calibration of thermodynamic sensors against references from the Oklahoma Mesonet and the National Center for Atmospheric Research in order to understand their quasi-ideal response characteristics. Furthermore, efforts have been made to calculate horizontal wind fields using Euler angles derived from the sUAS's autopilot. The second stage is validation of these sensor performances once mounted onto a rotary-wing sUAS by comparing measurements with instrumented towers, radiosondes, and other sUAS. It appears that these measurements are robust provided that instrument packages are mounted such that they receive adequate air flow and proper solar shielding. Moreover, experiments to locate this optimal location have been performed, and involved systematically displacing the sensors and wind probe underneath the rotor wash in an isolated chamber using a linear actuator. Once a platform's atmospheric sensing capabilities are optimized, its utility has been proven in applications from turbulence to providing forecasters with quasi-real time profiles in convective environments deemed by the Storm Prediction Center to be of highest risk for severe thunderstorms. After addressing the development of platforms operated by the University of Oklahoma, results from recent field campaigns, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) and Environmental Profiling

  8. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  9. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  10. BiS: the formation and development of a left-wing library society in ...

    African Journals Online (AJOL)

    BiS was noted for its promotion of egalitarianism. It advanced alternative, Left wing approaches that recognised social responsibility. One of its concerns was the fate of libraries in apartheid South Africa. The overall history of BiS reflects a high level of personal commitment which prompts a concluding query as to whether ...

  11. The application of CAD, CAE & CAM in development of butterfly valve’s disc

    Science.gov (United States)

    Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin

    2017-06-01

    The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.

  12. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  13. Developments towards the technical design and prototype evaluation of the anti PANDA Endcap Disc DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Etzelmueller, Erik

    2017-04-15

    The envisaged physics program of the PANDA (antiProton ANnihilation at Darmstadt) experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification over the full solid angle. The Endcap Disc DIRC (EDD) will cover forward polar angles between 5 and 22 and is one of three dedicated subdetectors for the identification of charged hadrons and the separation of pions and kaons in particular. DIRC stands for Detection of Internally Reflected Cherenkov light and implies that the emitted Cherenkov photons are trapped inside the radiator by total internal reflection. The central part of each DIRC detector is its optical system which is responsible for a low-loss and angle-preserving transport of the Cherenkov photons. The work at hand experimentally addresses several objectives in connection with the optical components and the system as a whole. Radiator prototypes were evaluated with high precision and adapted specifications were identified based on the results. The imaging performance of the Focusing Elements (FELs) was verified and different options regarding the coupling of the individual components were evaluated. In addition a radiation hardness study of a new fused silica material provided an insight into the long term behavior of induced defects and confirmed the material to be suitable for high energy physics experiments. A conceptual design for the mechanical integration was developed featuring a rigid optical system which is mounted into a cross-like structure. In this context the spatial constrains for the holding structure and the FELs were identified and an assembly procedure was developed. The existing prototype was revised and newly developed concepts were integrated and tested. Furthermore a data analysis of an earlier prototype test at a mixed hadron beam at CERN was carried out. It was the first evaluation of an EDD prototype which consisted of optical components made of fused silica only and had highly

  14. Development of Photographic Dynamic Measurements Applicable to Evaluation of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2011-12-01

    Selectable error plot from calib_gui.m……………………………………………… 27 Figure 16: O’Hara flapper ……………………………………………………………………….. 30 Figure 17: Record tab in Motion...Wing downstroke three dimensional point cloud, from the top of the wing stroke... 57 Figure 38: Deleón flapper with hightlighted reference points...purposes. One point is directly over the flapper mount and the other is placed near the mount. The two points can be considered rigid to one another

  15. Development and Translation of a Tissue-Engineered Disc in a Preclinical Rodent Model

    Science.gov (United States)

    2014-12-01

    wrapped concentrically to form the AF. These were fabricated with one layer (th=125µm) of poly( ethylene oxide ) for every two layers of PCL (th=125 µm...250µm) of poly( ethylene oxide ) (PEO, water soluble and rapidly degrading) or 75:25 poly(lactic-co-glycolic acid) (PLGA, slowly degrading) for every two...annulus fibrosus tissue into full 3D Disc-like Angle Ply Structures (DAPS), inclusive of a hyaluronic acid hydrogel seeded with adult stem cells, that

  16. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of a structure-dependent material model for complex, high-temperature environments and stresses. Example: turbine blades, turbine discs

    International Nuclear Information System (INIS)

    Schubert, F.

    1988-01-01

    For the optimum use of new high-temperature superalloys for turbine discs and blades, it is necessary to develop new design concepts which, on the one hand, permit a quantitative allocation of the structural characteristics to the deformation behaviour and damage mechanisms and, on the other hand, take into account the real course of stress. It is planned to use PM-Udinet 700 as material for turbine discs and IN 738 LC with supplementary tests of IN 100 for turbine blades. For turbine discs, a probabilistic model is developed, for turbine blades, cooled at the interior, first a deterministic model is developed and then a probabilistic model is prepared. The concept for the development of the models is dealt with in detail. The project started in April 1987, therefore only first investigation results can be reported. (orig.) [de

  18. Cervical intervertebral disc replacement.

    Science.gov (United States)

    Cason, Garrick W; Herkowitz, Harry N

    2013-02-06

    Symptomatic adjacent-level disease after cervical fusion has led to the development and testing of several disc-replacement prostheses. Randomized controlled trials of cervical disc replacement (CDR) compared with anterior cervical discectomy and fusion (ACDF) have demonstrated at least equivalent clinical results for CDR with similar or lower complication rates. Biomechanical, kinematic, and radiographic studies of CDR reveal that the surgical level and adjacent vertebral level motion and center of rotation more closely mimic the native state. Lower intradiscal pressures adjacent to CDR may help decrease the incidence of adjacent spinal-level disease, but long-term follow-up is necessary to evaluate this theory.

  19. Isolated Optic Disc Tuberculosis

    Science.gov (United States)

    Mansour, Ahmad M.; Tabbara, Khalid F.; Tabbarah, Zuhair

    2015-01-01

    We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation. PMID:26483675

  20. Isolated Optic Disc Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2015-09-01

    Full Text Available We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation.

  1. Spontaneous regression of an intraspinal disc cyst

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, P.; Eerens, I.; Wilms, G. [University Hospital, Leuven (Belgium). Dept. of Radiology; Goffin, J. [Dept. of Neurosurgery, University Hospitals, Leuven (Belgium)

    2001-11-01

    We present a patient with a so-called disc cyst. Its location in the ventrolateral epidural space and its communication with the herniated disc are clearly shown. The disc cyst developed rapidly and regressed spontaneously. This observation, which has not been reported until now, appears to support focal degeneration with cyst formation as the pathogenesis. (orig.)

  2. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  3. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  4. The DISC Quotient

    Science.gov (United States)

    Elliott, John R.; Baxter, Stephen

    2012-09-01

    D.I.S.C: Decipherment Impact of a Signal's Content. The authors present a numerical method to characterise the significance of the receipt of a complex and potentially decipherable signal from extraterrestrial intelligence (ETI). The purpose of the scale is to facilitate the public communication of work on any such claimed signal, as such work proceeds, and to assist in its discussion and interpretation. Building on a "position" paper rationale, this paper looks at the DISC quotient proposed and develops the algorithmic steps and comprising measures that form this post detection strategy for information dissemination, based on prior work on message detection, decipherment. As argued, we require a robust and incremental strategy, to disseminate timely, accurate and meaningful information, to the scientific community and the general public, in the event we receive an "alien" signal that displays decipherable information. This post-detection strategy is to serve as a stepwise algorithm for a logical approach to information extraction and a vehicle for sequential information dissemination, to manage societal impact. The "DISC Quotient", which is based on signal analysis processing stages, includes factors based on the signal's data quantity, structure, affinity to known human languages, and likely decipherment times. Comparisons with human and other phenomena are included as a guide to assessing likely societal impact. It is submitted that the development, refinement and implementation of DISC as an integral strategy, during the complex processes involved in post detection and decipherment, is essential if we wish to minimize disruption and optimize dissemination.

  5. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  6. Herniated lumbar disc

    OpenAIRE

    Jordon, Jo; Konstantinou, Kika; O'Dowd, John

    2009-01-01

    Herniated lumbar disc is a displacement of disc material (nucleus pulposus or annulus fibrosis) beyond the intervertebral disc space. The highest prevalence is among people aged 30-50 years, with a male to female ratio of 2:1.

  7. Herniated lumbar disc

    OpenAIRE

    Jordan, Jo; Konstantinou, Kika; O'Dowd, John

    2011-01-01

    Herniated lumbar disc is a displacement of disc material (nucleus pulposus or annulus fibrosis) beyond the intervertebral disc space. The highest prevalence is among people aged 30 to 50 years, with a male to female ratio of 2:1.

  8. Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.

    Science.gov (United States)

    Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth

    2018-03-05

    Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.

  9. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development.

    Science.gov (United States)

    Soyer, Josselin; Flasse, Lydie; Raffelsberger, Wolfgang; Beucher, Anthony; Orvain, Christophe; Peers, Bernard; Ravassard, Philippe; Vermot, Julien; Voz, Marianne L; Mellitzer, Georg; Gradwohl, Gérard

    2010-01-01

    The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.

  10. Wind-tunnel evaluation of NASA developed control laws for flutter suppression on a DC-10 derivative wing

    Science.gov (United States)

    Abel, I.; Newsom, J. R.

    1981-01-01

    Two flutter suppression control laws were synthesized, implemented, and tested on a low speed aeroelastic wing model of a DC-10 derivative. The methodology used to design the control laws is described. Both control laws demonstrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. The effect of variations in gain and phase on the closed loop performance was measured and compared with analytical predictions. The analytical results are in good agreement with experimental data.

  11. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  12. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  13. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Science.gov (United States)

    Horstmann, Jan T; Henningsson, Per; Thomas, Adrian L R; Bomphrey, Richard J

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  14. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Directory of Open Access Journals (Sweden)

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  15. Development of Tollmien-Schlichting disturbances in the presence of laminar separation bubbles on an unswept infinite wavy wing

    Science.gov (United States)

    Thomas, Christian; Mughal, Shahid; Ashworth, Richard

    2017-04-01

    The effect of long-wavelength sinusoidal surface waviness on the development of Tollmien-Schlichting (TS) wave instabilities is investigated. The analysis is based on the compressible flow that forms over an unswept infinite wavy wing with surface variations of variable amplitude, wavelength, and phase. Boundary layer profiles are extracted directly from solutions of a Navier-Stokes solver, which allows a thorough parametric analysis to be undertaken. Many wavy surface configurations are examined that can be sufficient to establish localized pockets of separated flow. Linear stability analysis is undertaken using parabolized stability equations (PSE) and linearized Navier-Stokes (LNS) methods, and surface waviness is generally found to enhance unstable behavior. Results of the two schemes are compared and criteria for PSE to establish accurate solutions in separated flows are determined, which are based on the number of TS waves per wavelength of the surface deformation. Relationships are formulated, relating the instability variations to the surface parameters, which are consistent with previous observations regarding the growth of TS waves on a flat plate. Additionally, some long-wavelength surface deformations are found to stabilize TS disturbances.

  16. Design, Development and Tests in Real Time of Control Methodologies for a Morphing Wing in Wind Tunnel =

    Science.gov (United States)

    Tchatchueng Kammegne, Michel Joel

    In order to leave a cleaner environmental space to future generations, the international community has been mobilized to find green solutions that are effective and feasible in all sectors. The CRIAQ MDO505 project was initiated to test the morphing wingtip (wing and aileron) technology as one of these possible solutions. The main objectives of this project are: the design and manufacturing of a morphing wing prototype, the extension and control of the laminar region over the extrados, and to compare the effects of morphing and rigid aileron in terms of lift, drag and pressure distributions. The advantage of the extension of the laminar region over a wing is the drag reduction that results by delaying the transition towards its trailing edge. The location of the transition region depends on the flight case and it is controlled, for a morphing wing, via the actuators positions and displacements. Therefore, this thesis work focuses on the control of the actuators positions and displacements. This thesis presents essentially the modeling, instrumentation and wind tunnel testing results. Three series of wind tunnel tests with different values of aileron deflection angle, angle of attack and Mach number have been performed in the subsonic wind tunnel of the IAR-NRC. The used wing airfoil consisted of stringers, ribs, spars and a flexible upper surface mad of composite materials (glass fiber carbon), a rigid aileron and flexible aileron. The aileron was able to move between +/-6 degrees. The demonstrator's span measures 1.5 m and its chord measures 1.5 m. Structural analyses have been performed to determine the plies orientation, and the number of fiberglass layers for the flexible skin. These analyses allowed also to determine the actuator's forces to push and pull the wing upper surface. The 2D XFoil and 3D solvers Fluent were used to find the optimized airfoil and the optimal location of the transition for each flight case. Based on the analyses done by the

  17. The insulator protein Suppressor of Hairy wing is required for proper ring canal development during oogenesis in Drosophila.

    Science.gov (United States)

    Hsu, Shih-Jui; Plata, Maria P; Ernest, Ben; Asgarifar, Saghi; Labrador, Mariano

    2015-07-01

    Chromatin insulators orchestrate gene transcription during embryo development and cell differentiation by stabilizing interactions between distant genomic sites. Mutations in genes encoding insulator proteins are generally lethal, making in vivo functional analyses of insulator proteins difficult. In Drosophila, however, mutations in the gene encoding the Suppressor of Hairy wing insulator protein [Su(Hw)] are viable and female sterile, providing an opportunity to study insulator function during oocyte development. Whereas previous reports suggest that the function of Su(Hw) in oogenesis is independent of its insulator activity, many aspects of the role of Su(Hw) in Drosophila oogenesis remain unexplored. Here we show that mutations in su(Hw) result in smaller ring canal lumens and smaller outer ring diameters, which likely obstruct molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals that lack of Su(Hw) leads to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found that misexpression of the Src oncogene at 64B (Src64B) may cause ring canal development defects as microarray analysis and real-time RT-PCR revealed there is a three fold decrease in Src64B expression in su(Hw) mutant ovaries. Restoration of Src64B expression in su(Hw) mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of su(Hw) affects expression of many oogenesis related genes and down-regulates Src64B, resulting in ring canal defects potentially contributing to obstruction of molecular flow and an eventual failure of egg chamber organization. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development.

    Science.gov (United States)

    Mouchel-Vielh, Emmanuèle; Rougeot, Julien; Decoville, Martine; Peronnet, Frédérique

    2011-03-14

    Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  19. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Directory of Open Access Journals (Sweden)

    Peronnet Frédérique

    2011-03-01

    Full Text Available Abstract Background Mitogen-activated protein kinase (MAPK cascades (p38, JNK, ERK pathways are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  20. X-1 to X-Wings: Developing a Parametric Cost Model

    Science.gov (United States)

    Sterk, Steve; McAtee, Aaron

    2015-01-01

    In todays cost-constrained environment, NASA needs an X-Plane database and parametric cost model that can quickly provide rough order of magnitude predictions of cost from initial concept to first fight of potential X-Plane aircraft. This paper takes a look at the steps taken in developing such a model and reports the results. The challenges encountered in the collection of historical data and recommendations for future database management are discussed. A step-by-step discussion of the development of Cost Estimating Relationships (CERs) is then covered.

  1. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis.

    Science.gov (United States)

    Yang, Yingzi

    2003-11-01

    In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.

  2. Development of a Methodology to Support Design of Complex Aircraft Wings

    NARCIS (Netherlands)

    Cooper, C.A.

    2011-01-01

    The design of complex systems in today’s aerospace domain requires a balance between the ever-increasing complexity of the supporting technology and the drive to develop those systems in a compressed timeframe. The performance knowledge of a preliminary design must shift backwards in the lifecycle

  3. Development and Employment of Fixed-Wing Gunships 1962-1972

    Science.gov (United States)

    1982-01-01

    significant impact on the infiltration of supplies. To be sure they would encounter antiaircraft fire, and a massive suppression effort would be...December 27, the eighteenth, and last, AC-I19K ending its transpacific flight on January 25, 1970.12- All aircraft were combat- configured by February...vulnerability to antiaircraft fire, especially to fire encountered over the Laotian trail and road system, led to use of fighter escorts as developed on AC

  4. Environmental Assessment for Wing Infrastructure Development Outlook (WINDO) Plan Shaw Air Force Base, South Carolina

    Science.gov (United States)

    2004-10-01

    community includes broomsedge, primrose, wild plum, blackberry , and hawthorn. Examples of the animal species likely to occur within this community...understory species include sweetbay, witchhazel, possumhaw viburnam, switchcane, greenbriar, blackberry , and cinnamon fern. Within this community, Long...retains a reasonably well-developed hardwood canopy of native tree species such as red maple, ash, laurel- leaf oak, and hackberry, as well as an

  5. The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development.

    Directory of Open Access Journals (Sweden)

    David R Hipfner

    2003-11-01

    Full Text Available Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into the mechanisms that coordinate cell growth, proliferation, and death during development and that fail to do so in diseases of cell proliferation. We present evidence that the Drosophila Sterile-20 kinase Slik promotes cell proliferation and controls cell survival. At normal levels, Slik provides survival cues that prevent apoptosis. Cells deprived of Slik activity can grow, divide, and differentiate, but have an intrinsic survival defect and undergo apoptosis even under conditions in which they are not competing with normal cells for survival cues. Like some oncogenes, excess Slik activity stimulates cell proliferation, but this is compensated for by increased cell death. Tumor-like tissue overgrowth results when apoptosis is prevented. We present evidence that Slik acts via Raf, but not via the canonical ERK pathway. Activation of Raf can compensate for the lack of Slik and support cell survival, but activation of ERK cannot. We suggest that Slik mediates growth and survival cues to promote cell proliferation and control cell survival during Drosophila development.

  6. The early development of neutron diffraction: science in the wings of the Manhattan Project.

    Science.gov (United States)

    Mason, T E; Gawne, T J; Nagler, S E; Nestor, M B; Carpenter, J M

    2013-01-01

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan's group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.

  7. Assessing the Effect of Spaceflight on the Propensity for Astronauts to Develop Disc Herniation

    Science.gov (United States)

    Feiveson, A.; Mendez, C.; Somers, J.

    2015-01-01

    A previous study reported that the instantaneous risk of developing a Herniated Nucleus Pulposus (HNP) was higher in astronauts who had flown at least one mission, as compared with those in the corps who had not yet flown. However, the study only analyzed time to HNP after the first mission (if any) and did not account for the possible effects of multiple missions. While many HNPs occurred well into astronauts' careers or in somecases years after retirement, the higher incidence of HNPs relatively soon after completion of space missions appears to indicate that spaceflight may lead to an increased risk of HNP. In addition, when an HNP occurs after spaceflight, is it related to previous spaceflight exposure? The purpose of this study was to investigate whether multiple missions, sex, age, vehicle landing dynamics, and flight duration affect the risk of developing an HNP usinga competing risks model. The outcome of the study will inform the Human System Risk Board assessment of back pain, inform the risk of injury due to dynamic loads, and update the previous dataset, which contained events up to December 31, 2006.

  8. The early development of neutron diffraction: science in the wings of the Manhattan Project

    International Nuclear Information System (INIS)

    Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.

    2013-01-01

    Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool

  9. Structural development of laminar flow control aircraft chordwise wing joint designs

    Science.gov (United States)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  10. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Herniated Cervical Disc

    Science.gov (United States)

    ... and inflammation that occur as a result of disc herniation. These include aspirin, ibuprofen, naproxen and a variety ... many factors including the exact location of the disc herniation and the experience and preference of the surgeon. ...

  12. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  13. [Temporomandibular joint disc surgery].

    Science.gov (United States)

    Potier, J; Maes, J-M; Nicot, R; Dumousseau, T; Cotelle, M; Ferri, J

    2016-09-01

    Temporomandibular joint (TMJ) disorders are a common disease and may be responsible for major functional and painful repercussions. Treatment is not consensual. The literature highlights the role of conservative treatments (physiotherapy, analgesics, splints) in a first attempt. Minimally invasive surgical techniques (arthroscopy, arthrocentesis) have developed rapidly in recent decades. They have proven effective and reliable, especially in patients suffering from irreducible or reducible anterior disc dislocation or presenting with arthopathies. The goal of our work was to make an update about disk surgery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  15. Physiological trade-off between cellular immunity and flight capability in the wing-dimorphic cricket, Gryllus firmus

    Science.gov (United States)

    The sand cricket, Gryllus firmus, is a wing-dimorphic species with long-wing (LW) and short wing (LW) morphs. The LW forms have very well developed wings and flight muscles and their SW counterparts have reduced wings and flight muscles, coupled with greater resource allocations to reproduction. Thi...

  16. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-01-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which in general yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term which would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  17. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  18. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  19. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  20. CT-discography; diagnostic accuracy in lumbar disc herniation and significance of induced pain during procedure

    Energy Technology Data Exchange (ETDEWEB)

    Jin, En Hao [Yan Bian Medical College, Beijing (China); Chung, Tae Sub; Jeong, Mi Gyoung; Kim, Young Soo; Roh, Sung Woo [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-01-01

    To evaluate the usefulness and the accuracy of CT-discography in lumbar disc disease by analyzing the findings of CT-discogram and types of evoked pain during the procedure. CT-discograms were retrospectively evaluated in 47 intervertebral discs of 20 patients with multilevel involvement of lumbar disc diseases. In 28 herniated discs confirmed at surgery, the findings of CT-discogram (28 disc levels/20 patients), MRI(23/16) and CT(21/15) were comparatively analysed. The type of pain after infusion of contrast media during CT-discography was compared with that prior to the procedure. The accuracy for determining types of the herniated lumbar disc when compared with post-operative results was 96.4%(27 discs/28 discs) in the CT-discogram, 82.6%(19 discs/23 discs) in MRI and 71.4%(15 discs/21 discs) in the CT scan. Pains encountered during discography were radiating pain in 12 discs and back pain in 24 discs. CT-discography was especially helpful in 10 patients with multilevel involvement of the lumbar disc diseases to evaluate the exact location of diseased disc(s) that provoked the pain. CT-discography is a highly accurate method in diagnosis of the herniated lumbar intervertebral discs and is very useful in determining the precise location related to the development of pain in such cases.

  1. CT-discography; diagnostic accuracy in lumbar disc herniation and significance of induced pain during procedure

    International Nuclear Information System (INIS)

    Jin, En Hao; Chung, Tae Sub; Jeong, Mi Gyoung; Kim, Young Soo; Roh, Sung Woo

    1996-01-01

    To evaluate the usefulness and the accuracy of CT-discography in lumbar disc disease by analyzing the findings of CT-discogram and types of evoked pain during the procedure. CT-discograms were retrospectively evaluated in 47 intervertebral discs of 20 patients with multilevel involvement of lumbar disc diseases. In 28 herniated discs confirmed at surgery, the findings of CT-discogram (28 disc levels/20 patients), MRI(23/16) and CT(21/15) were comparatively analysed. The type of pain after infusion of contrast media during CT-discography was compared with that prior to the procedure. The accuracy for determining types of the herniated lumbar disc when compared with post-operative results was 96.4%(27 discs/28 discs) in the CT-discogram, 82.6%(19 discs/23 discs) in MRI and 71.4%(15 discs/21 discs) in the CT scan. Pains encountered during discography were radiating pain in 12 discs and back pain in 24 discs. CT-discography was especially helpful in 10 patients with multilevel involvement of the lumbar disc diseases to evaluate the exact location of diseased disc(s) that provoked the pain. CT-discography is a highly accurate method in diagnosis of the herniated lumbar intervertebral discs and is very useful in determining the precise location related to the development of pain in such cases

  2. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  3. The reports of thick discs' deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light

    Science.gov (United States)

    Comerón, S.; Salo, H.; Knapen, J. H.

    2018-02-01

    Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up

  4. Europa's plasma interaction with an inhomogeneous atmosphere: Development of Alfvén winglets within the Alfvén wings

    Science.gov (United States)

    Blöcker, Aljona; Saur, Joachim; Roth, Lorenz

    2016-10-01

    We apply a three-dimensional magnetohydrodynamic (MHD) model to study the influence of inhomogeneities in Europa's atmosphere, as, for example, water vapor plumes, on Europa's plasma interaction with the Jovian magnetosphere. In our model we have included electromagnetic induction in a subsurface water ocean, collisions between ions and neutrals, plasma production and loss due to electron impact ionization, and dissociative recombination. We present a systematic study of the plasma interaction when a local inhomogeneity in the neutral density is present within a global sputtering generated atmosphere. We show that an inhomogeneity near the north or south pole affects the plasma interaction in a way that a pronounced north-south asymmetry is generated. We find that an Alfvén winglet develops within Europa's main Alfvén wing on that side where the inhomogeneity is located. In addition to the MHD model we apply an analytic model based on the model of Saur et al. (2007) to understand the role of steep gradients and discontinuities in the interaction. We compare our model results with the measured magnetic field data from three flybys of the Galileo spacecraft at Europa which included Alfvén wing crossings. Our analysis suggests that the magnetic field might be influenced by atmospheric inhomogeneities during the E26 flyby. The findings of this work will aid in the search for plumes at Europa in future plasma and field observations.

  5. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  6. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  7. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  8. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  9. Disc operational system

    International Nuclear Information System (INIS)

    Veretenov, V.Yu.; Volkov, A.I.; Gurevich, M.I.; Kozik, V.S.; Pod'yachev, E.I.; Shapiro, M.L.

    1974-01-01

    A disc operational system is proposed, which is based on the file structure and designed for use in a BESM-6 computer with the software system comprising a dispatcher DD-73 and a monitor 'Dubna'. The main distinguishing feature of the disc operational system is the decentralization of the file system. Each disc package is an independent file unaffected by the state of the other disc packages. The use of several disc packages is allowed. The above feature of the disc operational system makes it possible to simplify the language of communication with the system, to give the user the opportunity of controlling the file quite independently, and to simplify the maintenance of the discs by the computer personnel. One and the same disc can be simultaneously addressed by all problems in the processor (both mathematical and service). A single file, however, may be used in the recording mode by only one problem. The description presented is the instruction for users. It also describes special possibilities open to the system programmers [ru

  10. Intratracheal Seal Disc

    DEFF Research Database (Denmark)

    Christiansen, Karen J; Moeslund, Niels; Lauridsen, Henrik

    2017-01-01

    21, CT was repeated before euthanasia. The trachea and epidermis were excised en bloc for histopathological evaluation. RESULTS: Insertion and correct placement of the disc was unproblematic in all animals. CT at day 14 confirmed a clear airway, appropriate placement of the disc, and full closure...

  11. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  12. Be discs in binary systems - II. Misaligned orbits

    Science.gov (United States)

    Cyr, I. H.; Jones, C. E.; Panoglou, D.; Carciofi, A. C.; Okazaki, A. T.

    2017-10-01

    We use a smoothed particle hydrodynamics (SPH) code to examine the effects of misaligned binary companions on Be star discs. We systematically vary the degree of misalignment between the disc and the binary orbit, as well as the disc viscosity and orbital period to study their effects on the density in the inner and outer parts of the disc. We find that varying the degree of misalignment, the viscosity and the orbital period affects both the truncation radius and the density structure of the outer disc, while the inner disc remains mostly unaffected. We also investigate the tilting of the disc in the innermost part of the disc and find the tilt increases with radius until reaching a maximum around 5 stellar radii. The direction of the line of nodes, with respect to the equator of the central star, is found to be offset compared to the orbital line of nodes, and to vary periodically in time, with a period of half a orbital phase. We also compare the scaleheight of our discs with the analytical scaleheight of an isothermal disc, which increases with radius as r1.5. We find that this formula reproduces the scaleheight well for both aligned and misaligned systems but underestimates the scaleheight in regions of the disc where density enhancements develop.

  13. Development of a simple and effective protocol for Agrobacterium tumefaciens mediated leaf disc transformation of commercial tomato cultivars.

    Science.gov (United States)

    Van, Dang Thi; Ferro, Noel; Jacobsen, Hans-Jörg

    2010-01-01

    The transformation of tomato (Solanum lycopersicum) through Agrobacterium tumefaciens is still far from being routine, particularly when it comes to commercial varieties. In the present paper, we present an efficient and simple protocol for leaf disc transformation of three Vietnamese tomato cultivars (DM8, MTS, FM372C) by comparing shoot regeneration media for expanding leaves and examining different parameters of inoculation, co-culture and selection conditions. The present transformation method requires neither feeder layers of cell suspension cultures nor pre-culture. The data clearly show that appropriate cytokinin- and auxin combinations and concentrations provide competent tissues for transformation. Supplementing of 8 µM trans-zeatin and 5 µM indoleacetic acid (IAA) into pre-treatment, inoculation and co-culture media resulted in higher frequency of transformation and stronger GUS-expression than that of media supplemented with 4 µM trans-zeatin and 2 µM IAA. The experiments also exhibited that tomato leaf tissues were more sensitive to glufosinate after inoculation with Agrobacteria compared to the untreated controls, so a more sophisticated scheme for the glufosinate selection had to be established.

  14. Optic disc oedema

    DEFF Research Database (Denmark)

    Nielsen, Marianne Kromann; Hamann, Steffen

    2014-01-01

    Optic disc oedema describes the nonspecific, localized swelling of the optic nerve head regardless of aetiology. Therefore, differentiating among the various aetiologies depends on a thorough history and knowledge of the clinical characteristics of the underlying conditions. Papilloedema strictly...... refers to optic disc oedema as a consequence of elevated intracranial pressure. It is usually a bilateral condition and visual function is preserved until late. Optic disc oedema caused by an anterior optic neuropathy is usually unilateral and accompanied by the loss of visual function....

  15. The development of discopathy in lumbar discs adjacent to a lumbar anterior interbody spondylodesis. A retrospective matched-pair study with a postoperative follow-up of 16 years.

    Science.gov (United States)

    Van Horn, J R; Bohnen, L M

    1992-01-01

    Of 46 patients who underwent a lumbar or lumbo-sacral anterior interbody fusion at one or two levels, 16 were available for a follow-up of 16-20 years. The indications for operation were instability, degenerative disc disease, pseudarthrosis of a posterior fusion, and spondylolisthesis. Preoperative roentgenograms were compared with those made at follow-up 16 years (or more) later. In only a minority of patients was discopathy or instability found. The roentgenographic findings of the operated patients at a follow-up of at least 16 years were compared with those of a group of age- and sex-matched controls not previously treated for backache. We found that most degenerative changes of the adjacent discs occurred at a rate nearly similar to that in the corresponding levels of the controls. These results may suggest that lumbar anterior interbody spondylodesis does not accelerate the development of degenerative changes in adjacent discs.

  16. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  17. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  18. Free vibration analysis of dragonfly wings using finite element method

    OpenAIRE

    M Darvizeh; A Darvizeh; H Rajabi; A Rezaei

    2016-01-01

    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...

  19. The occurrence and regional distribution of DR4 on herniated disc cells: a potential apoptosis pathway in lumbar intervertebral disc.

    Science.gov (United States)

    Zhang, Liang; Niu, Tao; Yang, Shang-You; Lu, Zhenhua; Chen, Bohua

    2008-02-15

    Intervertebral discs surgically obtained from 60 herniated patients and 5 normal individuals were examined to correlate the regional distribution of DR4-receptor and apoptosis. To explore the role of a tumor necrosis factor superfamily member DR4 and the TRAIL/DR4 mediated apoptosis in the human lumbar intervertebral disc. The pathogenesis of lumbar degenerative intervertebral discs remains not completely understood. In herniated lumbar disc tissues, increased apoptosis and higher expression of Fas/Fas ligand and caspase-3 have been reported, suggesting a pivotal role of apoptotic mechanisms in intervertebral disc degeneration. However, it is not clear that apoptosis mediators such as TRAIL and Death Receptor 4 (DR4), which often represent different apoptosis signal pathways, contribute to the apoptosis process during the development of the degenerated intervertebral discs. Apoptosis was determined by poly(ADP-ribose) polymerase (PARP) p85 immunohistochemistry. Expression of DR4 was revealed by immunohistochemistry analysis. Statistical difference among groups was analyzed using one-way ANOVA with LSD post hoc multiple comparisons and the bivariate correlations. Apoptotic cells were detected in the nucleus pulposus and anulus fibrosus of all samples. However, the number of apoptotic cells was significantly higher in the nucleus compared with the anulus. Further, there were significantly more apoptotic cells in the herniated discs compared with the normal discs. Within herniated discs, a remarkably higher percentage of positive staining cells were detected in the uncontained discs than the contained ones. Strong expression of DR4 was detected in all samples of degenerative herniated discs, whereasmuch weaker expression was sporadically identified in normal discs. In addition, the prevalence of apoptosis positively correlated with the severity of disc degeneration. The concomitant increase of DR4 expression in the regions of heavy apoptotic cell aggregation suggests

  20. On total disc replacement.

    Science.gov (United States)

    Berg, Svante

    2011-02-01

    Low back pain consumes a large part of the community's resources dedicated to health care and sick leave. Back disorders also negatively affect the individual leading to pain suffering, decreased quality-of-life and disability. Chronic low back pain (CLBP) due to degenerative disc disease (DDD) is today often treated with fusion when conservative treatment has failed and symptoms are severe. This treatment is as successful as arthroplasty is for hip arthritis in restoring the patient's quality of life and reducing disability. Even so, there are some problems with this treatment, one of these being recurrent CLBP from an adjacent segment (ASD) after primarily successful surgery. This has led to the development of alternative surgical treatments and devices that maintain or restore mobility, in order to reduce the risk for ASD. Of these new devices, the most frequently used are the disc prostheses used in Total Disc Replacement (TDR). This thesis is based on four studies comparing total disc replacement with posterior fusion. The studies are all based on a material of 152 patients with DDD in one or two segments, aged 20-55 years that were randomly treated with either posterior fusion or TDR. The first study concerned clinical outcome and complications. Follow-up was 100% at both one and two years. It revealed that both treatment groups had a clear benefit from treatment and that patients with TDR were better in almost all outcome scores at one-year follow-up. Fusion patients continued to improve during the second year. At two-year follow-up there was a remaining difference in favour of TDR for back pain. 73% in the TDR group and 63% in the fusion group were much better or totally pain-free (n.s.), while twice as many patients in the TDR group were totally pain free (30%) compared to the fusion group (15%). Time of surgery and total time in hospital were shorter in the TDR group. There was no difference in complications and reoperations, except that seventeen of the

  1. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available A variable stability, blended-wing-body research mini-UAV was developed at the CSIR in South Africa. The purpose of the UAV was to study some of the aerodynamic design and control issues associated with flying wing geometries and to develop a...

  2. Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

    Science.gov (United States)

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie

    2014-01-01

    Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016

  3. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  4. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  5. A method for quantitative measurement of lumbar intervertebral disc structures

    DEFF Research Database (Denmark)

    Tunset, Andreas; Kjær, Per; Samir Chreiteh, Shadi

    2013-01-01

    There is a shortage of agreement studies relevant for measuring changes over time in lumbar intervertebral disc structures. The objectives of this study were: 1) to develop a method for measurement of intervertebral disc height, anterior and posterior disc material and dural sac diameter using MRI......, 2) to evaluate intra- and inter-rater agreement and reliability for the measurements included, and 3) to identify factors compromising agreement....

  6. Fenomena Komunikasi Female Disc Jockey di Kota Pekanbaru

    OpenAIRE

    Febriasistari, Atika Hersa; Wirman, Welly

    2016-01-01

    Female Disc Jockey becomes a phenomenon that thriving nowadays. Female Disc Jockey comes from different circle such student and even housewife. Until now the phenomenon of Female Disc Jockey is getting more develop marked by increasing the number of their performance on many event such night club in Pekanbaru. On their performance they often wearing sexy clothes. Meanwhile their work place is close to some kind of negative such alcohol, drugs, freesex and led to a negative stigma from many pe...

  7. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Vivian Petersen

    Full Text Available Abstract: INTRODUCTION: Mass production of mosquitoes under laboratory conditions allows implementing methods to control vector mosquitoes. Colony development depends on mosquito size and weight. Body size can be estimated from its correlation with wing size, whereas weight is more difficult to determine. Our goal was to test whether wing size can predict the weight. METHODS: We compared dry weight and wing centroid size of Culex quinquefasciatus reared at different temperatures and four diets. RESULTS: Weight and wing size were strongly correlated. The diets did not influence wing size. CONCLUSIONS: Wing centroid size is a good predictor of Cx. quinquefasciatus body weight.

  8. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus.

    Science.gov (United States)

    Petersen, Vivian; Marchi, Marco Jacometto; Natal, Delsio; Marrelli, Mauro Toledo; Barbosa, Admilson Clayton; Suesdek, Lincoln

    2016-01-01

    Mass production of mosquitoes under laboratory conditions allows implementing methods to control vector mosquitoes. Colony development depends on mosquito size and weight. Body size can be estimated from its correlation with wing size, whereas weight is more difficult to determine. Our goal was to test whether wing size can predict the weight. We compared dry weight and wing centroid size of Culex quinquefasciatus reared at different temperatures and four diets. Weight and wing size were strongly correlated. The diets did not influence wing size. Wing centroid size is a good predictor of Cx. quinquefasciatus body weight.

  9. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  10. Pseudoenhancement of intervertebral disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Y.; Ootani, M.; Furukawa, T.; Tsukaguchi, I. (Dept. of Radiology, Osaka Rosai Hospital (Japan)); Mitomo, M. (Dept. of Radiology, Osaka Univ. Medical School (Japan))

    1992-08-01

    Two patients with intervertebral disc herniation appeared to demonstrate abnormally diffuse and intense enhancement of the disc after intravenous administration of gadolinium-DTPA for MRI. Surgery disclosed a dilated epidural venous plexus in one and vascular granulation tissue in the other, associated with the herniated disc material. The mechanism of this 'pseudoenhancement' of the disc appears to be a partial volume effect of disc material and the adjacent veins or granulation tissue. Pseudoenhancement of a herniated disc should be included in the differential diagnosis of a diffusely enhancing epidural mass. (orig.).

  11. Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development

    Directory of Open Access Journals (Sweden)

    Zhiqiang Shu

    2017-03-01

    Full Text Available Tissue integrity and homeostasis are accomplished through strict spatial and temporal regulation of cell growth and proliferation during development. Various signaling pathways have emerged as major growth regulators across metazoans; yet, how differential growth within a tissue is spatiotemporally coordinated remains largely unclear. Here, we report a role of a growth modulator Yorkie (Yki, the Drosophila homolog of Yes-associated protein (YAP, that differentially regulates its targets in Drosophila wing imaginal discs; whereby Yki interacts with its transcriptional partner, Scalloped (Sd, the homolog of the TEAD/TEF family transcription factor in mammals, to control an essential cell cycle regulator Cyclin E (CycE. Interestingly, when Yki was coexpressed with Fizzy-related (Fzr, a Drosophila endocycle inducer and homolog of Cdh1 in mammals, surrounding hinge cells displayed larger nuclear size than distal pouch cells. The observed size difference is attributable to differential regulation of CycE, a target of Yki and Sd, the latter of which can directly bind to CycE regulatory sequences, and is expressed only in the pouch region of the wing disc starting from the late second-instar larval stage. During earlier stages of larval development, when Sd expression was not detected in the wing disc, coexpression of Fzr and Yki did not cause size differences between cells along the proximal–distal axis of the disc. We show that ectopic CycE promoted cell proliferation and apoptosis, and inhibited transcriptional activity of Yki targets. These findings suggest that spatiotemporal expression of transcription factor Sd induces differential growth regulation by Yki during wing disc development, highlighting coordination between Yki and CycE to control growth and maintain homeostasis.

  12. Expression of heparanase isoforms in intervertebral discs classified according to Pfirrmann grading system for disc degeneration.

    Science.gov (United States)

    Rodrigues, Luciano Miller Reis; Oliveira, Lilian Zerbinatti de; Pinhal, Maria Aparecida da Silva

    2013-06-01

    This is a quantitative study of heparanase isoforms expression in degenerative and nondegenerative intervertebral discs (IVDs). To quantify the expression of both heparanase isoforms (HPSE1 and HPSE2) in IVD tissues as classified by different degeneration grades using the Pfirrmann grading system, and to correlate the expression with the loss of extracellular matrix molecules observed in patients with the disease. The loss of proteoglycans as observed in IVD degeneration may occur due to the enhanced expression of matrix degrading enzymes, such as heparanase. However, the heparanase function in IVD degeneration remains unclear. This study comprised 53 surgical samples of degenerative discs obtained from patients with lumbar disc degeneration and 12 control samples collected from healthy individuals without any degenerative lumbar disc alterations who had accidental spine fractures.All patients underwent magnetic resonance imaging based on the Pfirrmann grading system for disc degeneration. Only the specimens that were classified according to magnetic resonance imaging evaluations as Pfirrmann grades I, II, III, and IV were analyzed.The tissue sections of the disc samples were subject to immunohistochemical staining with antibodies against the heparanase isoforms and to quantitative real time PCR to amplify heparanase isoforms cDNA. Protein and mRNA expressions were quantified. Analysis of variance and Student t test were used to compare the means of the study populations. The data demonstrated a gradual increase in both the heparanase isoform protein expression and disc degeneration progression. Besides, mRNA expression of both heparanase isoforms were significantly higher in degenerative than nondegenerative IVDs. The overexpression of HPSE1 and HPSE2 in the intervertebral degenerated discs suggests a role for these factors in mediating extracellular matrix remodeling in degenerative discs during disease development.

  13. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  14. Bovine explant model of degeneration of the intervertebral disc

    Directory of Open Access Journals (Sweden)

    Sivan Sarit

    2008-02-01

    Full Text Available Abstract Background Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc degeneration in an explant bovine model via enzymatic digestion. Methods Bovine coccygeal discs were incubated with different concentrations of the proteolytic enzymes, trypsin and papain, and maintained in culture for up to 3 weeks. A radio-opaque solution was injected to visualise cavities generated. Degenerative features were monitored histologically and biochemically (water and glycosaminoglycan content, via dimethylmethylene blue. Results and Conclusion The central region of both papain and trypsin treated discs was macro- and microscopically fragmented, with severe loss of metachromasia. The integrity of the surrounding tissue was mostly in tact with cells in the outer annulus appearing viable. Biochemical analysis demonstrated greatly reduced glycosaminoglycan content in these compared to untreated discs. We have shown that bovine coccygeal discs, treated with proteolytic enzymes can provide a useful in vitro model system for developing and testing potential new treatments of disc degeneration, such as injectable implants or biological therapies.

  15. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  16. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  18. Sphenoid wing en plaque meningioma development following craniopharyngioma surgery and radiotherapy: Radiation-induced after three decades

    OpenAIRE

    Raheja, Amol; Satyarthee, Guru Dutta

    2017-01-01

    Radiation therapy is widely used as adjuvant or primary treatment modality of neoplastic lesions. Radiation therapy may cause an acute adverse effect such as brain edema, radiation necrosis, or delayed, for example, panhypopituitarism, vasculitis, and rare de-novo neoplasm development. However, radiation-induced meningioma (RIM) occurrence is extremely rare. A detailed PubMed and Medline search yielded only three isolated Case-reports of RIM development in craniopharyngioma cases receiving ra...

  19. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  20. Metallicity gradient of the thick disc progenitor at high redshift

    Science.gov (United States)

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  1. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S

    2017-01-23

    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optic disc drusen

    DEFF Research Database (Denmark)

    Fledelius, Hans C

    2017-01-01

    , which, in view of the small disc at risk, may seem a paradox. METHODS: This is an observational retrospective study on an eye clinic series (n = 49), focusing on visual acuity, kinetic/static perimetry, and longitudinal trends, to include the question of eventual visual incapacity. RESULTS: Forty...

  3. Design and development of electrochemical polymer-based lab-on-a-disc devices for biological applications

    DEFF Research Database (Denmark)

    Sanger, Kuldeep

    detection based centrifugal microfluidic platforms towards applications in bioprocess monitoring, medical diagnostics, food and environmental analysis, etc. Stencil based electrode fabrication approach was developed and optimized to pattern reliable and reproducible electrodes on a polymeric substrate. Also......, enrichment). The applicability of the developed microfluidic systems was demonstrated by monitoring a biological process, namely quantifying the amount of the bacterial metabolite p-Coumaric acid (pHCA) produced by genetically modified E. coli cells. The first generation LoD device (with integrated...

  4. A new genus of long-legged flies displaying remarkable wing directional asymmetry.

    OpenAIRE

    Runyon, Justin B; Hurley, Richard L

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left-right axis during development, a level of differentiation whose existence has been questioned for insects. Wing asymmetry of this magnitude has implications ...

  5. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    International Nuclear Information System (INIS)

    Fatchurrohman, N; Marini, C D; Suraya, S; Iqbal, AKM Asif

    2016-01-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc. (paper)

  6. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  7. Feeding and development of the glassy-winged sharpshooter, Homalodisca vitripennis, on Australian native plant species and implications for Australian biosecurity.

    Directory of Open Access Journals (Sweden)

    Anna A Rathé

    Full Text Available In any insect invasion the presence or absence of suitable food and oviposition hosts in the invaded range is a key factor determining establishment success. The glassy-winged sharpshooter, Homalodisca vitripennis, is an important insect vector of the xylem-limited bacterial plant pathogen, Xylella fastidiosa, which causes disease in numerous host plants including food and feedstock crops, ornamentals and weeds. Both the pathogen and the vector are native to the Americas and are considered to be highly invasive. Neither has been detected in Australia. Twelve Australian native plant species present in the USA were observed over two years for suitability as H. vitripennis feeding, oviposition and nymph development hosts. Hosts providing evidence of adult or nymph presence were Leptospermum laevigatum, Acacia cowleana, Eremophila divaricata, Eucalyptus wandoo, Hakea laurina, Melaleuca laterita and Swainsona galegifolia. An oviposition-suitability field study was conducted with citrus, a favoured oviposition host, as a positive control. Citrus and L. laevigatum, A. cowleana, B. ericifolia×B. spinulosa, C. pulchella, E. divaricata, E. wandoo, H. laurina, and S. galegifolia were found to be oviposition hosts. Egg parasitism by the mymarid parasitoid Gonatocerus ashmeadi was observed on all Australian plants. A number of Australian plants that may facilitate H. vitripennis invasion have been identified and categorised as 'high risk' due to their ability to support all three life stages (egg, nymph and adult of the insect in the field (L. laevigatum, A. cowleana, E. divaricata, H. laurina, and S. galegifolia. The implications of these host status and natural enemy research findings are discussed and placed in an Australian invasion context.

  8. Wing design for light transport aircraft with improved fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, D.; Birrenbach, R.; Haberland, W.

    An advanced technology wing has been designed for a light utility and commuter service aircraft with the requirements for economy, safety and flexibility. Trade-off studies give optimum area and aspect-ratio of the wing. A new airfoil was developed to fulfill the performance requirements. Wing planform and twist were chosen to give high maximum lift, low drag and good stall characteristics. Preset ailerons were optimized for wheel forces and lateral control. The applied aerodynamic methods, including two- and three-dimensional wind tunnel tests are shown. Various structural configurations of the wing and various flap systems are evaluated. The cantilever tapered wing and a Fowler-flap with a two-lever mechanism were found to be the most economic ones. The wing was constructed and flight-tested with a modified Dornier Do 28 Skyservant as a test bed. The new wing is being applied to a family of light transport aircraft. Finally, aircraft with the new wing are compared performancewise with contemporary aircraft.

  9. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  10. Potassium terbium fluoride crystal growth development for faraday rotator discs fabrication, 6 July 1978--6 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-17

    Crystal growth experiments were performed and growth of KTb/sub 3/F/sub 10/ crystals were accomplished. The crystal growth experiments consisted of hot zone modification and development of growth parameters. Several boules of KTb/sub 3/F/sub 10/ 30 to 40mm in diameter and one boule 50mm in diameter were grown at rates varying from .5mm/hr to 3.0mm/hr. The crystals evaluated display excellent optical quality. The optical path distortion was less than 0.5 fringe/cm at 633nm as viewed in Twyman--Green interferometry. Growth of large crystals has been limited by mechanical cleavage.

  11. Use of polystyrene spin-coated compact discs for microimmunoassaying

    International Nuclear Information System (INIS)

    Tamarit-Lopez, Jesus; Morais, Sergi; Puchades, Rosa; Maquieira, Angel

    2008-01-01

    The analytical potential of polystyrene (PS) spin-coated modified compact discs (CDs) surface as platforms for the development of microarray immunoassays is presented. The surface maintained the optical characteristics of compact discs, obtaining a transparent and smooth film polymer of 70 nm thickness, the track being read (λ 780 nm) without errors in a commercial CD reader/writer. The analytical capability of the methodology was demonstrated through an analysis of a neurotoxic compound (2560 spots per disc), reaching 0.08 μg L -1 as limit of detection. These figures demonstrate the enormous potential of using PS spin-coated compact discs in combination with CD players as an easy-to-operate and portable device to develop lab-on-a-disc analytical applications

  12. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  13. The Drosophila DOCK family protein Sponge is required for development of the air sac primordium

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Kazushge; Anh Suong, Dang Ngoc; Yoshida, Hideki; Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp

    2017-05-15

    Dedicator of cytokinesis (DOCK) family genes are known as DOCK1-DOCK11 in mammals. DOCK family proteins mainly regulate actin filament polymerization and/or depolymerization and are GEF proteins, which contribute to cellular signaling events by activating small G proteins. Sponge (Spg) is a Drosophila counterpart to mammalian DOCK3/DOCK4, and plays a role in embryonic central nervous system development, R7 photoreceptor cell differentiation, and adult thorax development. In order to conduct further functional analyses on Spg in vivo, we examined its localization in third instar larval wing imaginal discs. Immunostaining with purified anti-Spg IgG revealed that Spg mainly localized in the air sac primordium (ASP) in wing imaginal discs. Spg is therefore predicted to play an important role in the ASP. The specific knockdown of Spg by the breathless-GAL4 driver in tracheal cells induced lethality accompanied with a defect in ASP development and the induction of apoptosis. The monitoring of ERK signaling activity in wing imaginal discs by immunostaining with anti-diphospho-ERK IgG revealed reductions in the ERK signal cascade in Spg knockdown clones. Furthermore, the overexpression of D-raf suppressed defects in survival and the proliferation of cells in the ASP induced by the knockdown of Spg. Collectively, these results indicate that Spg plays a critical role in ASP development and tracheal cell viability that is mediated by the ERK signaling pathway. - Highlights: • Spg mainly localizes in the air sac primordium in wing imaginal discs. • Spg plays a critical role in air sac primordium development. • Spg positively regulates the ERK signal cascade.

  14. Demographical Aspects of Central Large Lumbar Disc Herniation.

    Science.gov (United States)

    Topuz, Kivanc; Eroglu, Ahmet; Simsek, Hakan; Atabey, Cem; Cetinkal, Ahmet; Colak, Ahmet

    2016-01-01

    The purpose of this study was to investigate the risk factors for the development of the central large disc herniations and to compare the demographic data between central mass prolapse and broad-based central disc herniation. Between 2002 and 2007, 1630 patients underwent surgery and a large disc herniation was the main problem in 59 patients (3.6%). We performed a retrospective analysis of the demographic data of these patients. Magnetic resonance (MR) images were evaluated according to the disc type and level. Variables were evaluated both at baseline and follow-up, with special emphasis on physical job characteristics, sports activities, and MR - based morphologic findings. Central large disc herniation was diagnosed in 59 patients consisting of 41 males and 18 females. The average age was 34.7 years. 36 patients had a central mass prolapse that occupied more than 50% of the spinal canal. Intraoperative observations confirmed that 29 out of 36 central disc prolapse patients (80.5%) had intact posterior longitudinal ligaments. Interestingly, the condition in these 29 patients was found to have a direct relation with age and occupation or other body training sports activities. The size of the large central disc herniation, physical activity, age and gender are major factors in the development of disc herniation.

  15. LUMBAR DISC HERNIATION

    Science.gov (United States)

    Vialle, Luis Roberto; Vialle, Emiliano Neves; Suárez Henao, Juan Esteban; Giraldo, Gustavo

    2015-01-01

    Lumbar disc herniation is the most common diagnosis among the degenerative abnormalities of the lumbar spine (affecting 2 to 3% of the population), and is the principal cause of spinal surgery among the adult population. The typical clinical picture includes initial lumbalgia, followed by progressive sciatica. The natural history of disc herniation is one of rapid resolution of the symptoms (four to six weeks). The initial treatment should be conservative, managed through medication and physiotherapy, sometimes associated with percutaneous nerve root block. Surgical treatment is indicated if pain control is unsuccessful, if there is a motor deficit greater than grade 3, if there is radicular pain associated with foraminal stenosis, or if cauda equina syndrome is present. The latter represents a medical emergency. A refined surgical technique, with removal of the extruded fragment and preservation of the ligamentum flavum, resolves the sciatic symptoms and reduces the risk of recurrence over the long term. PMID:27019834

  16. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  17. Cervical Total Disc Arthroplasty

    OpenAIRE

    Basho, Rahul; Hood, Kenneth A.

    2012-01-01

    Symptomatic adjacent segment degeneration of the cervical spine remains problematic for patients and surgeons alike. Despite advances in surgical techniques and instrumentation, the solution remains elusive. Spurred by the success of total joint arthroplasty in hips and knees, surgeons and industry have turned to motion preservation devices in the cervical spine. By preserving motion at the diseased level, the hope is that adjacent segment degeneration can be prevented. Multiple cervical disc...

  18. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  19. Total disc replacement.

    Science.gov (United States)

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Solid angle subtended by two circular discs

    International Nuclear Information System (INIS)

    Gilly, Louis.

    1978-09-01

    Methods of calculation of solid angles, subtended by two circular discs are analysed. Calculus are methodically classified as follow: series development Legendre polynomes, defined integral, elliptic integrals, Bessel integrals, multiple integrals, Monte Carlo method, electrostatic analogy. Applications in Nuclear Physics are added as examples. List of numeric tables completes bibliography [fr

  1. Antibiotics, primary symbionts and wing polyphenism in three aphid species.

    Science.gov (United States)

    Hardie, Jim; Leckstein, Peter

    2007-08-01

    The possible role of the primary Buchnera symbionts in wing polyphenism is examined in three aphid species. Presumptive winged aphids were fed on antibiotic-treated beans to destroy these symbionts. As previously reported, this leads to inhibited growth and low/zero fecundity. When such treatment is applied to the short-day-induced gynoparae (the winged autumn migrant) of the black bean aphid, Aphis fabae, it also causes many insects to develop as wingless or winged/wingless intermediate adult forms (apterisation). However, whilst antibiotic treatment of crowd-induced, long-day winged forms of the pea aphid, Acyrthosiphon pisum (a green and a pink clone) and the vetch aphid, Megoura viciae has similar effects on size and fecundity, it does not affect wing development. Food deprivation also promotes apterisation in A. fabae gynoparae but not in the crowd-induced winged morphs of the other two species. Thus, it appears that apterisation in A. fabae is not a direct effect of antibiotic treatment or a novel role for symbionts but is most likely related to impaired nutrition induced by the loss of the symbiont population.

  2. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation.

    Science.gov (United States)

    Wilke, Hans-Joachim; Kienle, Annette; Maile, Sebastian; Rasche, Volker; Berger-Roscher, Nikolaus

    2016-05-01

    The cause of disc herniation is not well understood yet. It is assumed that heavy lifting and extreme postures can cause small injuries starting either in the inner anulus or from the outside close to the endplate. Such injuries are accumulated over years until its structure is weakened and finally a single loading event leads to a sudden failure of the last few intact lamellae. This paper describes a novel, custom-developed dynamic 6-DOF disc-loading simulator that allows complex loading to provoke such disc damage and herniations. The machine's axes are driven by six independent servomotors providing high loads (10 kN axial compression, 2 kN shear, 100 Nm torque) up to 5 Hz. A positional accuracy test was conducted to validate the machine. Subsequently, initial experiments with lumbar ovine motion segments under complex loading were performed. After testing, the discs were examined in an ultra-high field MRI (11.7 T). A three-dimensional reconstruction was performed to visualise the internal disc lesions. Validation tests demonstrated positioning with an accuracy of ≤0.08°/≤0.026 mm at 0.5 Hz and ≤0.27°/≤0.048 mm at 3.0 Hz with amplitudes of ±17°/±2 mm. Typical failure patterns and herniations could be provoked with complex asymmetrical loading protocols. Loading with axial compression, flexion, lateral bending and torsion lead in 8 specimens to 4 herniated discs, two protrusions and two delaminations. All disc failures occurred in the posterior region of the disc. This new dynamic disc-loading simulator has proven to be able to apply complex motion combinations and allows to create artificial lesions in the disc with complex loading protocols. The aim of further tests is to better understand the mechanisms by which disc failure occurs at the microstructural level under different loading conditions. Visualisation with ultra-high field MRI at different time points is a promising method to investigate the gradual development of such lesions

  3. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  4. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  5. Free vibration analysis of dragonfly wings using finite element method

    Directory of Open Access Journals (Sweden)

    M Darvizeh

    2016-04-01

    Full Text Available In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.

  6. Herniated lumbar disc: injection interventions for sciatica

    OpenAIRE

    Jordan, Joanne L; Konstantinou, Kika; O'Dowd, John

    2016-01-01

    Herniated lumbar disc is a displacement of disc material (nucleus pulposus or annulus fibrosus) beyond the intervertebral disc space. The highest prevalence is among people aged 30 to 50 years, with a male to female ratio of 2:1.

  7. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  8. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    Science.gov (United States)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  9. [Physiotherapy in lumbar disc herniation ].

    Science.gov (United States)

    Stoll, T; Germann, D; Hagmann, H

    2001-08-01

    Physiotherapy is the treatment of choice in patients with symptoms caused by a lumbar disc herniation. In clinical practice a broad range of physiotherapeutic modalities has been revealed to be helpful. During the acute stage the efficacy of the McKenzie-concept, mobilisation therapies and traction has been demonstrated in randomized controlled trials with a blind assessor. In addition, pain reducing physical therapies such as cold or electrotherapy and non-steroidal anti-inflammatory drugs, analgesics and/or muscle relaxants are sensible initial accompanying treatments. The effectiveness of active physiotherapies such as training of local strength endurance of back and abdominal muscles has been proven in patients during the chronic stage. The indications for a in-patient rehabilitation programme, for surgery and the danger of developing chronic low back pain are discussed.

  10. Matrix Remodeling During Intervertebral Disc Growth and Degeneration Detected by Multichromatic FAST Staining

    Science.gov (United States)

    Leung, Victor Y.L.; Chan, Wilson C.W.; Hung, Siu-Chun; Cheung, Kenneth M.C.; Chan, Danny

    2009-01-01

    Various imaging techniques have been used to assess degeneration of the intervertebral disc, including many histological methods, but cartilage-oriented histological stains do not clearly show the comparatively complex structures of the disc. In addition, there is no integrated method to assess efficiently both the compartmental organization and matrix composition in disc samples. In this study, a novel histological method, termed FAST staining, has been developed to investigate disc growth and degeneration by sequential staining with fast green, Alcian blue, Safranin-O, and tartrazine to generate multichromatic histological profiles (FAST profiles). This identifies the major compartments of the vertebra-disc region, including the cartilaginous endplate and multiple zones of the annulus fibrosus, by specific FAST profile patterns. A disc degeneration model in rabbit established using a previously described puncture method showed gradual but profound alteration of the FAST profile during disc degeneration, supporting continual alteration of glycosaminoglycan. Changes of the FAST profile pattern in the nucleus pulposus and annulus fibrosus of the postnatal mouse spine suggested matrix remodeling activity during the growth of intervertebral discs. In summary, we developed an effective staining method capable of defining intervertebral disc compartments in detail and showing matrix remodeling events within the disc. The FAST staining method may be used to develop a histopathological grading system to evaluate disc degeneration or malformation. (J Histochem Cytochem 57:249–256, 2009) PMID:19001641

  11. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  12. Radicular interdural lumbar disc herniation

    Science.gov (United States)

    Boulahroud, Omar; Elasri, Abad; Elmostarchid, Brahim; Boucetta, Mohammed

    2009-01-01

    Intraradicular lumbar disc herniation is a rare complication of disc disease that is generally diagnosed only during surgery. The mechanism for herniated disc penetration into the intradural space is not known with certainty, but adhesion between the radicular dura and the posterior longitudinal ligament was suggested as the most important condition. The authors report the first case of an intraradicular lumbar disc herniation without subdural penetration; the disc hernia was lodged between the two radicular dura layers. The patient, a 34-year-old soldier, was admitted with a 12-month history of low back pain and episodic left sciatica. Neurologic examination showed a positive straight leg raising test on the left side without sensory, motor or sphincter disturbances. Spinal CT scan and MRI exploration revealed a left posterolateral osteophyte formation at the L5–S1 level with an irregular large disc herniation, which migrated superiorly. An intradural extension was suspected. A left L5 hemilaminectomy and S1 foraminotomy were performed. The exploration revealed a large fragment of disc material located between the inner and outer layers of the left S1 radicular dura. The mass was extirpated without cerebrospinal fluid outflow. The postoperative course was uneventful. Radicular interdural lumbar disc herniation should be suspected when a swollen, hard and immobile nerve root is present intraoperatively. PMID:19888608

  13. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  14. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  15. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  16. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    Science.gov (United States)

    Pierens, A.; Nelson, R. P.

    2018-03-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  17. Floppy disc units for data collection from neutron beam experiments

    International Nuclear Information System (INIS)

    Hall, J.W.

    1976-02-01

    The replacement of paper tape output facilities on neutron beam equipment on DIDO and PLUTO reactors by floppy discs will improve reliability and provide a more manageable data storage medium. The cost of floppy disc drives is about the same as a tape punch and printer and less than other devices such as a magnetic tape. Suitable floppy disc controllers are not at present available and a unit was designed as a directly pluggable replacement for paper tape punches. This design was taken as the basis in the development of a prototype unit for use in neutron beam equipment. The circuit operation for this prototype unit is described. (author)

  18. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Paulo Ernesto; Correia, Ciro Teixeira [Sao Paulo Univ., SP (Brazil). Dept. of Mineralogia e Geotectonia; Reeves, Shane [Melbourne Univ., Parkville, VIC (Australia). School of Earth Sciences; Haukka, Maunu [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemical Engineering

    1999-09-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  19. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    International Nuclear Information System (INIS)

    Mori, Paulo Ernesto; Correia, Ciro Teixeira; Reeves, Shane; Haukka, Maunu

    1999-01-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  20. A Novel Murine Gene, Sickle tail, Linked to the Danforth's short tail Locus, Is Required for Normal Development of the Intervertebral Disc

    OpenAIRE

    Semba, Kei; Araki, Kimi; Li, Zhengzhe; Matsumoto, Ken-ichirou; Suzuki, Misao; Nakagata, Naoki; Takagi, Katsumasa; Takeya, Motohiro; Yoshinobu, Kumiko; Araki, Masatake; Imai, Kenji; Abe, Kuniya; Yamamura, Ken-ichi

    2006-01-01

    We established the mutant mouse line, B6;CB-SktGtAyu8021IMEG (SktGt), through gene-trap mutagenesis in embryonic stem cells. The novel gene identified, called Sickle tail (Skt), is composed of 19 exons and encodes a protein of 1352 amino acids. Expression of a reporter gene was detected in the notochord during embryogenesis and in the nucleus pulposus of mice. Compression of some of the nuclei pulposi in the intervertebral discs (IVDs) appeared at embryonic day (E) 17.5, resulting in a kinky-...

  1. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  2. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  3. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  4. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  5. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  6. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  7. Minimally invasive transmuscular approach for the treatment of lumbar herniated disc: far lateral lumbar disc herniation: a clinical study. Applications for cervical and thoracic disc herniation.

    Science.gov (United States)

    Peltier, E; Blondel, B; Dufour, H; Fuentes, S

    2013-06-01

    In this study, we are using a recently developed method: a minimally invasive retractor system and an operating microscope to treat far lateral lumbar herniated disc. This method decreases tissue dissection and blood loss, and improves postoperative recovery. This is a retrospective study of 46 patients, there was 25 female and 21 male. They all underwent minimal invasive surgery. The average age was 56 years old (19-83 years). Lumbar disc herniation is a common pathology. Far lateral disc herniation accounts for 2.6% to 11.2% of all lumbar disc herniation. A few surgical techniques have been describes to treat this type of disc pathology. All patients were operated under general anesthesia. The fluoroscopic guidance was absolutely necessary. A 12-15 mm skin incision was made on the side of the disc herniation (30 mm from the midline). Then, we inserted a tubular retractor system (muscle splitting approach) followed by a 14 mm diameter-working channel. Under operating microscope the pars interarticularis was dreamed to expose the nerve root and the disc. After removing the intertransverse ligament, we removed the herniated disc. The average time of surgery was 55 min. The operating time decreased with the experience of the surgical team. Postoperatively the radicular pain was around 2 (using an analogical visual scale), over 7 preoperatively. The length of hospitalization was 3 days. There were no complications in our study. The average follow-up was 2 years (6-36 months). There was no complication, no postoperative infection. This technique combines the advantages of endoscopic surgery and microscope guided surgery (3D vision) and provides good functional results in this study.

  8. The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars

    Science.gov (United States)

    Rímulo, L. R.; Carciofi, A. C.; Vieira, R. G.; Rivinius, Th; Faes, D. M.; Figueiredo, A. L.; Bjorkman, J. E.; Georgy, C.; Ghoreyshi, M. R.; Soszyński, I.

    2018-02-01

    Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc (VDD) model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disk mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that uses a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disk events are of the order of ˜10-10 M⊙ yr-1 and ˜5 × 1036 g cm2 s-2, respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up (⟨αbu⟩ = 0.63) than at dissipation (⟨αd⟩ = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.

  9. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  10. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  11. Leaf Disc Regeneration of Passion Fruit | Amugune | African Crop ...

    African Journals Online (AJOL)

    A leaf disc regeneration system was developed for passion fruit, Passiflora edulis Sims. Leaf discs were cultured on a modified MS medium containing 8.90 µM BAP or on 8.90 µM BAP and 2.32 µM KIN. Shoots appeared within four weeks. These could be rooted when transferred to the same medium containing 0.54, 2.69 ...

  12. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  13. Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease.

    Science.gov (United States)

    Natarajan, Raghu N; Andersson, Gunnar B J

    2017-01-01

    Treatment of degenerative spinal disorders by fusion produces abnormal mechanical conditions at mobile segments above or below the site of spinal disorders and is clinically referred to as adjacent segments disc disease (ASDD) or transition syndrome in the case of a previous surgical treatment. The aim of the current study is to understand with the help of poro-elastic finite element models how single or two level degeneration of lower lumbar levels influences motions at adjacent levels and compare the findings to motions produced by single or two level fusions when the adjacent disk has varying degree of degeneration. Validated grade-specific finite element models including varying grades of disc degeneration at lower lumbar levels with and without fusion were developed and used to determine motions at all levels of the lumbar spine due to applied moment loads. Results showed that adjacent disc motions do depend on severity of disc degeneration, number of disc degenerated or fused, and level at which degeneration or fusion occurred. Furthermore, single level degeneration and single level fusion produced similar amount of adjacent disc motions. The pattern of increase in adjacent segment motions due to disc degeneration and increase in motions at segment adjacent to fusion was similar. Based on the current study, it can be concluded that disc degeneration should also be considered as a risk factor in addition to fusion for generating adjacent disc degeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:123-130, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  15. Computerized phased array UT system for turbine disc rim inspection

    International Nuclear Information System (INIS)

    Goto, M.; Ohmatsu, K.; Nagai, S.; Komura, I.

    1988-01-01

    Turbine disc rim cracking in the nuclear power plants has been a major reliability issue in recent years. This problem has led to increased interest in periodic nondestructive examination and the computerized inspection system using phased array probe called PADRIS (phased array disc rim inspection system) has been developed. It provides for rapid assessment of disk rim integrity without removing blades from the disc rim during a brief unit shutdown and in highly confined spaces. PADRIS has performed successfully during recent field trials at the nuclear power plants, and both the rapid inspection and the precise evaluation capability for the disc rim cracking was established. This paper summarizes the outline of the PADRIS system and the results of the field trial

  16. [Endovascular repair of iliocaval arteriovenous fistula complicating lumbar disc surgery].

    Science.gov (United States)

    Ben Jemaa, H; Maalej, A; Lazzez, K; Jemal, H; Karray, S; Ben Mahfoudh, K

    2016-05-01

    Vascular complications of lumbar disc surgery are rare. Few cases have been reported. Arteriovenous fistulas are the most common. They are due to anatomical relationships between the last lumbar vertebrae, the corresponding discs, and the iliac vessels; degenerative lesions of the intervertebral discs facilitate instrumental vessel perforation, and operative difficulty. Computed tomography is particularly accurate for making the diagnosis. Treatment strategies consist in surgery or endovascular management. Percutaneous endovascular treatment using a stent-graft is a reasonable option for treating arteriovenous fistula. We describe the case of a 50-year-old patient who developed an iliocaval arteriovenous fistula following lumbar disc hernia surgery. The lesion was excluded by a stent-graft. The postoperative period was uneventful. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Wing sexual dimorphism of pathogen-vector culicids.

    Science.gov (United States)

    Virginio, Flávia; Oliveira Vidal, Paloma; Suesdek, Lincoln

    2015-03-14

    Sexual dimorphism in animals has been studied from different perspectives for decades. In 1874 Darwin hypothesized that it was related to sexual selection, and even after nearly 140 years, when additional empirical data has become available and the subject has been investigated from a contemporary viewpoint, this idea is still supported. Although mosquito (Culicidae) wings are of great importance as they play a sex-specific role, little is known about wing sexual dimorphism in these pathogen-vector insects. Detection and characterization of wing sexual dimorphism in culicids may indirectly enhance our knowledge of their epidemiology or reveal sex-linked genes, aspects that have been discussed by vector control initiatives and developers of genetically modified mosquitoes. Using geometric morphometrics, we carried out a comparative assessment of wing sexual dimorphism in ten culicid species of medical/veterinary importance from genera Culex, Aedes, Anopheles and Ochlerotatus collected in Brazil. Discriminant analysis revealed significant sexual dimorphism in all the species studied, indicating that phenotypic expression of wing shape in mosquitoes is indeed sex-specific. A cross-validated test performed to reclassify the sexes with and without allometry yielded very similar results. Mahalanobis distances among the ten species showed that the species had different patterns of shape sexual dimorphism and that females are larger than males in some species. Wing morphology differed significantly between species. The finding of sexual dimorphism in all the species would suggest that the wing geometry of Culicidae is canalized. Although sexual dimorphism is prevalent, species-specific patterns occur. Allometry was not the main determinant of sexual dimorphism, which suggests that sexual selection or other evolutionary mechanisms underlie wing sexual dimorphism in these insects.

  18. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  19. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    Science.gov (United States)

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  20. Lumbar disc excision through fenestration

    Directory of Open Access Journals (Sweden)

    Sangwan S

    2006-01-01

    Full Text Available Background : Lumbar disc herniation often causes sciatica. Many different techniques have been advocated with the aim of least possible damage to other structures while dealing with prolapsed disc surgically in the properly selected and indicated cases. Methods : Twenty six patients with clinical symptoms and signs of prolapsed lumbar intervertebral disc having radiological correlation by MRI study were subjected to disc excision by interlaminar fenestration method. Results : The assessment at follow-up showed excellent results in 17 patients, good in 6 patients, fair in 2 patients and poor in 1 patient. The mean preoperative and postoperative Visual Analogue Scores were 9.34 ±0.84 and 2.19 ±0.84 on scale of 0-10 respectively. These were statistically significant (p value< 0.001, paired t test. No significant complications were recorded. Conclusion : Procedures of interlaminar fenestration and open disc excision under direct vision offers sufficient adequate exposure for lumbar disc excision with a smaller incision, lesser morbidity, shorter convalescence, early return to work and comparable overall results in the centers where recent laser and endoscopy facilities are not available.

  1. Planetary-like spirals caused by moving shadows in transition discs

    Science.gov (United States)

    Montesinos, Matías; Cuello, Nicolás

    2018-03-01

    Shadows and spirals seem to be common features of transition discs. Among the spiral-triggering mechanisms proposed, only one establishes a causal link between shadows and spirals so far. In fact, provided the presence of shadows in the disc, the combined effect of temperature gradient and differential disc rotation creates strong azimuthal pressure gradients. After several thousand years, grand-design spirals develop in the gas phase. Previous works have only considered static shadows caused by an inclined inner disc. However, in some cases, the inner regions of circumbinary discs can break and precess. Thus, it is more realistic to consider moving shadow patterns in the disc. In this configuration, the intersection between the inner and the outer discs defines the line of nodes at which the shadows are cast. Here, we consider moving shadows and study the resulting circumbinary disc structure. We find that only static and prograde shadows trigger spirals, in contrast to retrograde ones. Interestingly, if a region of the disc corotates with the shadow, a planet-like signature develops at the co-rotation position. The resulting spirals resemble those caused by a planet embedded in the disc, with similar pitch angles.

  2. A new genus of long-legged flies displaying remarkable wing directional asymmetry

    Science.gov (United States)

    Justin B. Runyon; Richard L. Hurley

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left­right axis during development...

  3. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  4. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    Science.gov (United States)

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.

  5. Application of percutaneous cervical nucleoplasty using the navigable disc decompression device in patient of cervical herniated intervertebral disc: a case report.

    Science.gov (United States)

    Lim, Ji-Hoon; Lee, Hye-Jin; Lee, Sang-Heon

    2013-10-01

    Recent years, various percutaneous procedures including cervical nucleoplasty have been developed for disc decompressions to relieve radicular pains caused by disc herniations. We report the application of percutaneous cervical nucleoplasty (PCN) by using the navigable disc decompression device in two patients of cervical herniated intervertebral discs (HIVD). A 38-year-old female diagnosed with C4-C5 disc extrusion with bilateral C5 roots impingement received nucleoplasty twice at C4-C5 disc level. After second procedure, her pain was improved from 6-7/10 to 1-2/10 by visual analog scale (VAS). The second case, a 51-year-male was diagnosed with C6-C7 disc extrusion with right C7 roots impingement and received the procedure at C6-C7 disc level. The pain improved from 8/10 to 3-4/10 by VAS. Successfully, we decompressed cervical herniated discs in 2 HIVD patients without major complications. The PCN with the navigable device will be recommended as an alternative treatment method for cervical HIVD.

  6. Origin of chemically distinct discs in the Auriga cosmological simulations

    Science.gov (United States)

    Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker

    2018-03-01

    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.

  7. The use of genetic algorithms to model protoplanetary discs

    Science.gov (United States)

    Hetem, Annibal; Gregorio-Hetem, Jane

    2007-12-01

    The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.

  8. Transient events in bright debris discs: Collisional avalanches revisited

    Science.gov (United States)

    Thebault, P.; Kral, Q.

    2018-01-01

    avalanche would be a two-belt structure, with an inner belt (at 1 or 10 au for the "warm" and "cold" disc cases, respectively) of fractional luminosity f ≳ 10-4 where breakups of massive planetesimals occur, and a more massive outer belt, with τ of a few 10-3, into which the avalanche chain reaction develops and propagates.

  9. Cranial thoracic disc protrusions in three German Shepherd dogs.

    Science.gov (United States)

    Gaitero, Lluís; Añor, Sònia

    2009-11-01

    Although intervertebral disc degeneration can occur at any level of the spine, cervical and thoraco-lumbar discs are more commonly affected. The presence of the inter-capital ligament between the rib heads results in an extremely low incidence of cranial thoracic intervertebral disc herniation. In this case series, the clinical, radiological, and surgical findings, as well as the post-operative outcome, in three German Shepherd dogs with T2-T3 disc protrusions is reported. These dogs had chronic progressive paraparesis and lumbar myelography and post-myelographic computerised tomography revealed ventrolateral, extra-dural spinal cord compressions over the T2-T3 intervertebral disc. All animals exhibited transient deterioration in their clinical signs and one developed unilateral Horner's syndrome following T2-T3 hemi-dorsal laminectomy. Subsequently two of the dogs improved progressively and neurological dysfunction had completely resolved by 2 months. To the authors' knowledge, this is the first case series describing T2-T3 disc protrusions in the dog.

  10. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    S Capossela

    2014-04-01

    Full Text Available Degeneration of intervertebral discs (IVDs is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases.

  11. [The Autocad system for planimetric study of the optic disc in glaucoma: technique and reproducibility study].

    Science.gov (United States)

    Sánchez Pérez, A; Honrubia López, F M; Larrosa Poves, J M; Polo Llorens, V; Melcon Sánchez-Frieras, B

    2001-09-01

    To develop a lens planimetry technique for the optic disc using AutoCAD. To determine variability magnitude of the optic disc morphological measurements. We employed AutoCAD R.14.0 Autodesk: image acquisition, contour delimitation by multiple lines fitting or ellipse adjustment, image sectorialization and measurements quantification (optic disc and excavation, vertical diameters, optic disc area, excavation area, neuroretinal sector area and Beta atrophy area). Intraimage or operator and interimage o total reproducibility was studied by coefficient of variability (CV) (n=10) in normal and myopic optic discs. This technique allows to obtain optic disc measurement in 5 to 10 minutes time. Total or interimage variability of measurements introduced by one observer presents CV range from 1.18-4.42. Operator or intraimage measurement presents CV range from 0.30-4.21. Optic disc contour delimitation by ellipse adjustment achieved better reproducibility results than multiple lines adjustment in all measurements. Computer assisted AutoCAD planimetry is an interactive method to analyse the optic disc, feasible to incorporate to clinical practice. Reproducibility results are comparable to other analyzers in quantification optic disc morphology. Ellipse adjustment improves results in optic disc contours delimitation.

  12. Radio interference measurements on a ceramic disc insulator string with field reduction electrode

    Energy Technology Data Exchange (ETDEWEB)

    Subba Reddy, B; Kumar, U, E-mail: reddy@hve.iisc.ernet.i [High Voltage Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bangalore (India)

    2010-07-15

    This paper presents a laboratory study of the discharge radio noise generated by ceramic insulator strings under normal conditions. In the course of study, a comparison on the performance of two types of insulator strings under two different conditions was studied namely (a) normal disc insulators in a string and (b) disc insulators integrated with a newly developed field reduction electrode fixed to the disc insulator at the pin junction. The results obtained during the study are discussed and presented.

  13. Characterization of big bang, a novel gene encoding for PDZ domain-containing proteins that are dynamically expressed throughout Drosophila development.

    Science.gov (United States)

    Kim, Sabrina Y; Renihan, Maia K; Boulianne, Gabrielle L

    2006-06-01

    PDZ (PSD-95, Discs-large, ZO-1) domain proteins often function as scaffolding proteins and have been shown to play important roles in diverse cellular processes such as the establishment and maintenance of cell polarity, and signal transduction. Here, we report the identification and cloning of a novel Drosophila melanogaster gene that is predicted to produce several different PDZ domain-containing proteins through alternative promoter usage and alternative splicing. This gene, that we have named big bang (bbg), was first identified as C96-GAL4, a GAL4 enhancer trap line that was generated in our lab. To further characterize bbg, its expression pattern was examined in ovaries, embryos, and late third instar larvae using UAS reporter gene constructs, in situ hybridization, or immunocytochemistry. In addition, the expression of alternatively spliced transcripts was examined in more detail using in situ hybridization. We find that during embryogenesis bbg is predominantly expressed in the developing gut, but it is also expressed in external sensory organs found in the epidermis. In the late third instar larva, bbg is expressed along the presumptive wing margin in the wing disc, broadly in the eye disc, and in other imaginal discs as well as in the brain. The expression patterns observed are dynamic and specific during development, suggesting that like other genes that encode for several different PDZ domain protein isoforms, bbg likely plays important roles in multiple developmental processes.

  14. Development of a monoclonal antibody against the left wing of ciguatoxin CTX1B: thiol strategy and detection using a sandwich ELISA.

    Science.gov (United States)

    Tsumuraya, Takeshi; Takeuchi, Katsutoshi; Yamashita, Shuji; Fujii, Ikuo; Hirama, Masahiro

    2012-09-01

    Ciguatera fish poisoning (CFP) is a form of food poisoning caused by the ingestion of a variety of reef fish that have accumulated trace amounts of ciguatoxins produced by dinoflagellates of the genus Gambierdiscus through the food chain. CFP affects more than 50,000 people each year. The extremely low level of the causative neurotoxins, ciguatoxins, in fish has hampered the preparation of antibodies for detecting the toxins. In this paper, we describe a thiol strategy for synthesizing a keyhole limpet hemocyanin (KLH)-conjugate (20) of the ABCDE-ring fragment of the Pacific ciguatoxins, CTX1B (1) and 54-deoxyCTX1B (4). We succeeded in producing a monoclonal antibody (3G8) against the left wings of these ciguatoxins by immunizing mice with the hapten-KLH conjugate (20) as the synthetic antigen. The most promising mAb, 3G8, does not cross-react with other related marine toxins. Sandwich enzyme-linked immunosorbent assay (ELISA) utilizing 3G8 and the previously prepared monoclonal antibody (8H4) enabled us to detect 1 specifically at less than 0.28 ng/mL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  16. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  17. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  18. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    Science.gov (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  19. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  20. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  1. Aerodynamic characteristics and flow field of delta wings with the canard

    Directory of Open Access Journals (Sweden)

    Mochizuki Saya

    2018-01-01

    Full Text Available Now, many kinds of explorations for outer planets have been proposed around the world. Among them Mars attracts much attention for future exploration. Orbiters and landers have been used for Mars exploration. Recently as a new exploration method, the usage of an airplane has been seriously considered and there are some development projects for Mars airplane. However, the airplane flying on the Earth atmosphere cannot fly on the Mars atmosphere, because atmospheric conditions are much different each other. Therefore, we focused on the usage of the airplane with unfolding wings for Mars exploration. These unfolding wings are designed as delta wings. However, delta wings do not have enough aerodynamics characteristics in a low speed region. In this study, to improve the aerodynamic characteristics of delta wings, we have proposed the usage of canard wings. The purpose of this study is to examine the effectiveness of canard wings to improve aerodynamic characteristics in a low speed region. CFD analysis is performed using four wing models with different canard shapes. The result shows that the usage of canards is effective to improve aerodynamic characteristics of delta wings in a low speed region. In addition, increasing lift coefficient is possible by changing the shape of canards.

  2. Pathogenesis of optic disc edema in raised intracranial pressure.

    Science.gov (United States)

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  3. Vertebral osteomyelitis without disc involvement

    Energy Technology Data Exchange (ETDEWEB)

    Kamani, I.; Syed, I.; Saifuddin, A. E-mail: asaifuddin@aol.com; Green, R.; MacSweeney, F

    2004-10-01

    Vertebral osteomyelitis is most commonly due to pyogenic or granulomatous infection and typically results in the combined involvement of the intervertebral disc and adjacent vertebral bodies. Non-infective causes include the related conditions of chronic recurrent multifocal osteomyelitis (CRMO) and SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome. Occasionally, these conditions may present purely within the vertebral body, resulting in various combinations of vertebral marrow oedema and sclerosis, destructive lesions of the vertebral body and pathological vertebral collapse, thus mimicking neoplastic disease. This review illustrates the imaging features of vertebral osteomyelitis without disc involvement, with emphasis on magnetic resonance imaging (MRI) findings.

  4. Development of a short version of the dual process model scales: right-wing authoritarianism, social dominance orientation, dangerous and competitive worldviews

    Directory of Open Access Journals (Sweden)

    Dmitry S. Grigoryev

    2017-12-01

    Full Text Available Objective. The article describes a short version of the dual process model scales by J. Duckitt that allow elaborating on an integrated exploratory approach for the assessment of authoritarianism. Background. This area of research is not widespread in Russia in contrast to foreign social psychology. Unfortunately, there are only a few studies in Russia that advance our understanding of the indicated problems, and these few studies likely put more questions than give answers. It can be partly explained by the lack of appropriate available, reliable and valid measures in Russian. Dual process model for the study of authoritarianism offers the scales designed to measure: (1 right-wing authoritarianism that reflects the motivation and attitudes to maintain and preservation of the social cohesion, order, stability, and collective security; (2 social dominance orientation that reflects the motivation and attitudes to maintain and preservation of the dominance and superiority; (3 dangerous worldview that reflects views of the social world as the dangerous and threatening; and (4 competitive worldview that reflects views of the social world as the competitive and ferocious. Design. The data for the analysis were collected in the survey of 241 participants, mostly residents of Moscow (Central Federal District, Russia, and Ulyanovsk (Volga Federal District, Russia. Using confirmatory factor analysis the four measurement models containing the different number of dimensions of the short version of the dual process model scales were tested. Also, cross-validation was performed (N = 576. Results. The tested measurement models had acceptable reliability and validity indices. However, the best fit was shown by the model with multidimensional structure in which all the subfactors were as separate constructs. Conclusion. The short version of scales was successfully compiled, the measures can be considered a reliable and valid measure to study of authoritarianism

  5. Environmental Assessment for the 920th Rescue Wing Beddown Patrick Air Force Base, Florida

    Science.gov (United States)

    2005-10-01

    Vista Technologies Inc. Environmental Assessment, Development and Maintenance of Patrick Air Force Base, Florida. January 1997. Canter , Larry W...Space Wing 45 CES/CEVC PAFB, Florida 920th Rescue Wing Beddown Environmental Assessment 8-1 8.0 LIST OF PREPARERS 1. David B

  6. Live-bed scour experiments with 45 wing-wall abutments

    Indian Academy of Sciences (India)

    The armour-layer gradually increases the effective bed shear resistance, which restricts the development of scour hole. 4. Maximum equilibrium local scour depth around 45. ◦ wing-wall abutment. Maximum equilibrium local scour depth at 45. ◦ wing-wall abutment in non-cohesive bed sedi- ments depends on the variables ...

  7. Intervertebral disc degeneration : Studies in the loaded disc culture system

    NARCIS (Netherlands)

    Paul, C.P.L.

    2018-01-01

    In dit proefschrift wordt een model beschreven, het Loaded Disc Culture System (LDCS), voor het ex vivo bestuderen van de effecten van mechanische belasting op de tussenwervelschijf. In hoofdstuk 2 laten we zien dat een zekere dosis aan dagelijkse belasting nodig is om de cellen van de

  8. Dead discs, unstable discs and the stars they surround

    Directory of Open Access Journals (Sweden)

    D’Angelo Caroline

    2014-01-01

    Full Text Available Strong stellar magnetic fields significantly alter the behaviour of surrounding accretion discs. Recent work has demonstrated that at low accretion rates a large amount of mass can remain confined in the disc, contrary to the standard assumption that the magnetic field will expel the disc in an outflow (the “propeller regime”. These “dead discs” often become unstable, causing cycles of accretion onto the central star. Here I present the main predictions of this model, and argue that it provides a good explanation for the peculiar behaviour seen in several accreting sources with strong magnetic fields. I will focus in particular on three accreting millisecond X-ray pulsars: SAX J1808.4-3658, NGC 6440 X-2 and IGR J00291+5934. These sources all show low-frequency quasi-periodic oscillations consistent with a variable accretion rate, as well as unusual outburst patterns that suggest gas is confined in the inner disc regions during quiescence.

  9. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  10. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  11. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  12. Generation of inclined protoplanetary discs and misaligned planets through mass accretion - I. Coplanar secondary discs

    Science.gov (United States)

    Xiang-Gruess, M.; Kroupa, P.

    2017-10-01

    We study the three-dimensional (3D) evolution of a viscous protoplanetary disc that accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accretion scenario to generate strongly inclined gaseous discs that could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space that allows significant disc inclination generation. Thies et al. suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fulfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary disc's orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the 3D disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs that could later form misaligned planets.

  13. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  14. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  15. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  16. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  17. Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model.

    Science.gov (United States)

    Yoshida, Masakazu; Nakamura, Takafumi; Sei, Akira; Kikuchi, Taro; Takagi, Katsumasa; Matsukawa, Akihiro

    2005-01-01

    A new hernia model that simulates human disc herniations was developed in rabbits. The herniated discs were examined by gross appearance and histology and production of tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 was investigated. To clarify the early mechanism of spontaneous herniated disc resorption. Macrophage infiltration in herniated discs is essential for disc resorption. However, surgically removed human herniated disc tissues and existing animal hernia models are not suitable for analyzing the mechanism of macrophage infiltration. Recently, we have demonstrated that intervertebral disc cells are capable of producing monocyte chemoattractant protein-1, a potent macrophage chemoattractant, after stimulation with tumor necrosis factor alpha and interleukin-1beta. Intervertebral disc herniations were surgically developed in rabbits using a new technique. The herniated discs were excised at appropriate time intervals after the surgery, and the size and histologic findings were examined. Expressions of tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 in herniated discs were investigated immunohistochemically. A new rabbit model of disc herniation was established. The herniated discs spontaneously reduced in size by 12 weeks postsurgery. Infiltrating cells, mainly composed of macrophages, were observed from day 3. Immunohistochemically, intervertebral disc cells in the herniated discs produced tumor necrosis factor alpha and interleukin-1beta on day 1, followed by monocyte chemoattractant protein-1 on day 3. The new hernia model appears to be very useful for studying herniated disc resorption. Intervertebral disc cells may produce inflammatory cytokines/chemokine immediately after the onset of disc herniation, possibly triggering subsequent macrophage infiltration that leads to disc resorption.

  18. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  19. Thermochemical modelling of brown dwarf discs

    NARCIS (Netherlands)

    Greenwood, A. J.; Kamp, I.; Waters, L. B. F. M.; Woitke, P.; Thi, W.-F.; Rab, Ch.; Aresu, G.; Spaans, M.

    The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. ALMA has by far the best capabilities to observe these discs in sub-mm CO lines and dust continuum, while also spatially resolving some discs. To what extent brown dwarf

  20. 46 CFR 64.61 - Rupture disc.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture disc...

  1. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy.

    Science.gov (United States)

    Fernandez-Moure, Joseph; Moore, Caitlyn A; Kim, Keemberly; Karim, Azim; Smith, Kevin; Barbosa, Zonia; Van Eps, Jeffrey; Rameshwar, Pranela; Weiner, Bradley

    2018-01-01

    Intervertebral disc degeneration is a disease of the discs connecting adjoining vertebrae in which structural damage leads to loss of disc integrity. Degeneration of the disc can be a normal process of ageing, but can also be precipitated by other factors. Literature has made substantial progress in understanding the biological basis of intervertebral disc, which is reviewed here. Current medical and surgical management strategies have shortcomings that do not lend promise to be effective solutions in the coming years. With advances in understanding the cell biology and characteristics of the intervertebral disc at the molecular and cellular level that have been made, alternative strategies for addressing disc pathology can be discovered. A brief overview of the anatomic, cellular, and molecular structure of the intervertebral disc is provided as well as cellular and molecular pathophysiology surrounding intervertebral disc degeneration. Potential therapeutic strategies involving stem cell, protein, and genetic therapy for intervertebral disc degeneration are further discussed.

  2. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  3. OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients.

    Directory of Open Access Journals (Sweden)

    Naoko Takada

    Full Text Available To objectively classify the optic discs of open-angle glaucoma (OAG patients into Nicolela's four disc types, i.e., focal ischemic (FI, myopic (MY, senile sclerotic (SS, and generalized enlargement (GE, with swept-source optical coherence tomography (SS-OCT.This study enrolled 113 eyes of 113 OAG patients (mean age: 62.5 ± 12.6; Humphrey field analyzer-measured mean deviation: -9.4 ± 7.3 dB. Newly developed software was used to quantify a total of 20 optic disc parameters in SS-OCT (DRI OCT-1, TOPCON images of the optic disc. The most suitable reference plane (RP above the plane of Bruch's membrane opening was determined by comparing, at various RP heights, the SS-OCT-measured rim parameters and spectral-domain OCT-measured circumpapillary retinal nerve fiber layer thickness (cpRNFLT, with Pearson's correlation analysis. To obtain a discriminant formula for disc type classification, a training group of 72 eyes of 72 OAG patients and a validation group of 60 eyes of 60 OAG patients were set up.Correlation with cpRNFLT differed with disc type and RP height, but overall, a height of 120 μm minimized the influence of disc type. Six parameters were most significant for disc type discrimination: disc angle (horizontal, average cup depth, cup/disc ratio, rim-decentering ratio, average rim/disc ratio (upper and lower nasal. Classifying the validation group with these parameters returned an identification rate of 80.0% and a Cohen's Kappa of 0.73.Our new, objective SS-OCT-based method enabled us to classify glaucomatous optic discs with high reproducibility and accuracy.

  4. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  5. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  6. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  7. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, Niklas

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  8. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, N.|info:eu-repo/dai/nl/314418059

    2011-01-01

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  9. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  10. Episodic cauda equina compression from an intradural lumbar herniated disc: a case of 'floppy disc'.

    Science.gov (United States)

    Nagaria, J; Chan, Cc; Kamel, Mh; McEvoy, L; Bolger, C

    2011-09-01

    Intradural disc herniation (IDDH) is a rare complication of intervertebral disc disease and comprises 0.26-0.30% of all herniated discs, with 92% of them located in the lumbar region (1). We present a case of IDDH that presented with intermittent symptoms and signs of cauda equina compression. We were unable to find in the literature, any previously described cases of intermittent cauda equina compression from a herniated intradural disc fragment leading to a "floppy disc syndrome". © JSCR.

  11. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    OpenAIRE

    Hakan, Tayfun; G?rcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain ...

  12. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  13. Age-class separation of blue-winged ducks

    Science.gov (United States)

    Hohman, W.L.; Moore, J.L.; Twedt, D.J.; Mensik, John G.; Logerwell, E.

    1995-01-01

    Accurate determination of age is of fundamental importance to population and life history studies of waterfowl and their management. Therefore, we developed quantitative methods that separate adult and immature blue-winged teal (Anas discors), cinnamon teal (A. cyanoptera), and northern shovelers (A. clypeata) during spring and summer. To assess suitability of discriminant models using 9 remigial measurements, we compared model performance (% agreement between predicted age and age assigned to birds on the basis of definitive cloacal or rectral feather characteristics) in different flyways (Mississippi and Pacific) and between years (1990-91 and 1991-92). We also applied age-classification models to wings obtained from U.S. Fish and Wildlife Service harvest surveys in the Mississippi and Central-Pacific flyways (wing-bees) for which age had been determined using qualitative characteristics (i.e., remigial markings, shape, or wear). Except for male northern shovelers, models correctly aged lt 90% (range 70-86%) of blue-winged ducks. Model performance varied among species and differed between sexes and years. Proportions of individuals that were correctly aged were greater for males (range 63-86%) than females (range 39-69%). Models for northern shovelers performed better in flyway comparisons within year (1991-92, La. model applied to Calif. birds, and Calif. model applied to La. birds: 90 and 94% for M, and 89 and 76% for F, respectively) than in annual comparisons within the Mississippi Flyway (1991-92 model applied to 1990-91 data: 79% for M, 50% for F). Exclusion of measurements that varied by flyway or year did not improve model performance. Quantitative methods appear to be of limited value for age separation of female blue-winged ducks. Close agreement between predicted age and age assigned to wings from the wing-bees suggests that qualitative and quantitative methods may be equally accurate for age separation of male blue-winged ducks. We interpret annual

  14. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Jin, Wook [Kyung Hee University East-west Neo Medical Center, Seoul (Korea, Republic of)

    2007-10-15

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant ({rho} 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant ({rho} = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch.

  15. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    International Nuclear Information System (INIS)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant (ρ 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant (ρ = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch

  16. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  17. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  18. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  19. Intervertebral disc calcifications in children.

    Science.gov (United States)

    Beluffi, G; Fiori, P; Sileo, C

    2009-03-01

    This study was done to assess the presence of both asymptomatic and symptomatic intervertebral disc calcifications in a large paediatric population. We retrospectively reviewed the radiographs taken during the past 26 years in children (age 0-18 years) undergoing imaging of the spine or of other body segments in which the spine was adequately depicted, to determine possible intervertebral disc calcifications. The following clinical evaluation was extrapolated from the patients' charts: presence of spinal symptoms, history of trauma, suspected or clinically evident scoliosis, suspected or clinically evident syndromes, bone dysplasias, and pre- or postoperative chest or abdominal X-rays. We detected intervertebral disc calcifications in six patients only. Five calcifications were asymptomatic (one newborn baby with Patau syndrome; three patients studied to rule out scoliosis, hypochondroplasia and syndromic traits; one for dyspnoea due to sunflower seeds inhalation). Only one was symptomatic, with acute neck pain. Calcifications varied in number from one in one patient to two to five in the others. Apart from the calcification in the patient with cervical pain, all calcifications were asymptomatic and constituted an incidental finding (particularly those detected at the thoracic level in the patient studied for sunflower-seed inhalation). Calcification shapes were either linear or round. Our series confirms that intervertebral disc calcifications are a rare finding in childhood and should not be a source of concern: symptomatic calcifications tend to regress spontaneously within a short time with or without therapy and immobilisation, whereas asymptomatic calcifications may last for years but disappear before the age of 20 years. Only very few cases, such as those of medullary compression or severe dysphagia due to anterior herniation of cervical discs, may require surgical procedures.

  20. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  1. Accommodation of repetitive sensor faults - applied to surface faults on compact discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2008-01-01

    Surface defects such as scratches and fingerprints on compact discs (CDs) can cause CD players to lose focus and tracking on the discs. A scheme for handling these defects has previously been proposed. In this brief, adaptive and predictive versions of this scheme are developed. The adaptive sche...

  2. CT findings of lumbar intervertebral disc: II. Disc herniation (HNP)

    International Nuclear Information System (INIS)

    Yang, W. J.; Lee, J. M.; Bahk, Y. W.

    1984-01-01

    In lumbar region the epidural fat pad is relatively abundant so that CT can provides sufficient information in diagnosis of lumbar HNP. Many authors have reported on the CT findings of HNP such as focal nodular protrusion of the posterior disc margin, obliteration of epidural fat pad, impingement of dural sac and nerve root, swelling of nerve root, soft tissue density in the spinal canal and calcification of disc. However there was so previous report describing incidence and reliability of the findings. It is the purpose of the present study to survey the frequency, reliability, and limitation of these CT findings. The clinical material was consisted of 30 operatively proven cases of HNP of the lumbar spine. Each lumbar CT scan was reviewed retrospectively and the findings were analysed by two radiologists independently. There were 20 males and 10 females and the mean age was 36.7 years. Involvement of L4-S5 level was 2.3 times more frequent than that of L5-S1 level. Of 30 cases, 22 were unilateral posterolateral types and 8 cases central or unilateral far lateral types. CT findings observed were nodular protrusion of the posterior margin of the disc, obliteration of epidural fat pad, impingement of dural sac or nerve root, soft tissue density in the spinal canal and calcification in the posterior portion of the protruded disc, in order of decreasing frequency. The conclusions are follows: 1. Nodular protrusion of the posterior disc margin accompanied by obliteration of epidural fat pad was observed in every case. The former findings was designated as direct sign and the latter indirect. 2. Obliteration of the epidural fat appears to be significant in lateral recesses especially when it occurs unilaterally. This was not true, however, in the centrally located fat pad. 3. Impingement of the dural sac and nerve root were observed in 90% and 67%, respectively, and were very helpful in establishing HNP diagnosis when the direct and indirect signs were equivocal

  3. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  4. Factors that influence recurrent lumbar disc herniation.

    Science.gov (United States)

    Yaman, M E; Kazancı, A; Yaman, N D; Baş, F; Ayberk, G

    2017-06-01

    The most common cause of poor outcome following lumbar disc surgery is recurrent herniation. Recurrence has been noted in 5% to 15% of patients with surgically treated primary lumbar disc herniation. There have been many studies designed to determine the risk factors for recurrent lumbar disc herniation. In this study, we retrospectively analysed the influence of disc degeneration, endplate changes, surgical technique, and patient's clinical characteristics on recurrent lumbar disc herniation. Patients who underwent primary single-level L4-L5 lumbar discectomy and who were reoperated on for recurrent L4-L5 disc herniation were retrospectively reviewed. All these operations were performed between August 2004 and September 2009 at the Neurosurgery Department of Ataturk Education and Research Hospital in Ankara, Turkey. During the study period, 126 patients were reviewed, with 101 patients underwent primary single-level L4-L5 lumbar discectomy and 25 patients were reoperated on for recurrent L4-L5 disc herniation. Preoperative higher intervertebral disc height (Pdisc herniation had preoperative higher disc height and higher body mass index. Modic endplate changes had a higher tendency for recurrence of lumbar disc herniation. Well-planned and well-conducted large-scale prospective cohort studies are needed to confirm this and enable convenient treatment modalities to prevent recurrent disc pathology.

  5. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  6. How the pterosaur got its wings.

    Science.gov (United States)

    Tokita, Masayoshi

    2015-11-01

    Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now

  7. Three-level cervical disc herniation

    Directory of Open Access Journals (Sweden)

    St. Iencean Andrei

    2015-09-01

    Full Text Available Multilevel cervical degenerative disc disease is well known in the cervical spine pathology, with radicular syndromes or cervical myelopathy. One or two level cervical herniated disc is common in adult and multilevel cervical degenerative disc herniation is common in the elderly, with spinal stenosis, and have the same cause: the gradual degeneration of the disc. We report the case of a patient with two level cervical disc herniation (C4 – C5 and C5 – C6 treated by anterior cervical microdiscectomy both levels and fusion at C5 – C6; after five years the patient returned with left C7 radiculopathy and MRI provided the image of a left C6 – C7 disc herniation, he underwent an anterior microsurgical discectomy with rapid relief of symptoms. Three-level cervical herniated disc are rare in adults, and the anterior microdiscectomy with or without fusion solve this pathology.

  8. Migrated herniated disc mimicking a neoplasm.

    Science.gov (United States)

    Hoch, Benjamin; Hermann, George

    2010-12-01

    Disc sequestration is defined as migration of a herniated disc fragment into the epidural space such that it is completely separated from the parent disc. We report a case of a migrated herniated disc that was initially pathologically diagnosed as a cartilage neoplasm. In addition to confounding morphological features, this interpretation may have been influenced by an initial radiological interpretation that did not include herniated disc in the differential diagnosis of a spinal lesion with prominent peripheral contrast enhancement. MR imaging is most helpful in considering other lesions in the differential diagnosis including abscess, hematoma, and primary or metastatic neoplasms. Pathologically, degenerative changes in herniated discs, including clustering of chondrocytes and neovascularization, may be severe resulting in a pseudoneoplastic appearance. Increased awareness of the radiological and pathological features of migrated herniated disc should limit confusion with other tumors.

  9. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  10. Investigating Biological Controls to Suppress Spotted Wing Drosophila Populations

    Science.gov (United States)

    The spotted wing drosophila has become a major cherry pest in California. To develop sustainable management options for this highly mobile pest, we worked with cooperators at Oregon State University and the USDA to discover and import natural enemies of the fly from its native range in South Korea ...

  11. Calculation of Airloads for a Flexible Wing via NASTRAN.

    Science.gov (United States)

    1980-12-01

    IV. C oiiutiuULtiozial 1rcdu’.......... . .. .. . ..... interfaced NASTRAN -USSAERO Sequence .... 9 The DMAP Sequence.................11...not considered. A new instruction sequence known as a Direct Matrix Abstraction Program ( DMAP ) was developed for use within NASTRAN to ualculate...since the inclusion of aerodynamic theories in the NASTRAN program. The calculation of flexible wing airloads by this DMAP sequence is an iterative

  12. Model identification of a flapping wing micro aerial vehicle

    NARCIS (Netherlands)

    Aguiar Vieira Caetano, J.V.

    2016-01-01

    Different flapping wing micro aerial vehicles (FWMAV) have been developed for academic (Harvard’s RoboBee), military (Israel Aerospace Industries’ Butterfly) and technology demonstration (Aerovironment’s NanoHummingBird) purposes. Among these, theDelFly II is recognized as one of themost successful

  13. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  14. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  15. Resilin-based rubber-like elastic elements in the insect wing: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorb, S.N. [Max-Planck-Institut fuer Entwicklungsbiologie, Tuebingen (Germany)

    2000-07-01

    This report summarises data on the presence of resilin, a rubber-like protein in the flexibly-joined junctions of wing veins. This protein is a substance which is responsible for elastic energy storage. Previously this protein has been described in jumping systems of beetles, fleas and leafhoppers abdominal cuticle of workers of the honey-ants and queen termites; eye lens cuticle of dragonflies and the food-pump of reduviid bugs. It is also known in tendons of the dragonfly flight muscles. This protein has not been previously described in the distal regions of damselfly wings. The pattern of resilin distribution in the insect wings is one of several mechanisms which are responsible for automatic performance of passive wing movements. Any folding of the distal wing parts can not be achieved by local muscles, but must be done by remote (thoracic) muscles or local elasticity. Many insects, such as earwigs and beetles, have developed complex mechanisms of wing folding, which are advantagenous for insects living in soil or other narrow substrata. The folding pattern depends on the wing geometry, venation pattern, and material properties of structures involved. Thus design of wings with folding function has an additional complexity: their design is a kind of compromise between flight and folding. (orig.)

  16. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

    Science.gov (United States)

    Kang, Chang-kwon; Shyy, Wei

    2013-01-01

    We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300

  17. Letting Thoughts Take Wing

    Science.gov (United States)

    Jorgensen, Chuck; Wheeler, Kevin

    2002-01-01

    Scientists are conducting research into electroencephalograms (EEGs) of brainwave activity, and electromyography (EMG) of muscle activity, in order to develop systems which can control an aircraft with only a pilot's thoughts. This article describes some EEG and EMG signals, and how they might be analyzed and interpreted to operate an aircraft. The development of a system to detect and interpret fine muscle movements is also profiled in the article.

  18. Female-specific wing degeneration caused by ecdysteroid in the Tussock Moth, Orgyia recens: Hormonal and developmental regulation of sexual dimorphism

    Directory of Open Access Journals (Sweden)

    Saori Lobbia

    2003-04-01

    Full Text Available Females of the tussock moth Orgyia recens have vestigial wings, whereas the males have normal wings. During early pupal development, female wings degenerate drastically compared with those of males. To examine whether ecdysteroid is involved in this sex-specific wing development, we cultured pupal wings just after pupation with ecdysteroid (20-hydroxyecdysone, 20E. In the presence of 20E, the female wings degenerated to about one-fifth their original size. In contrast, the male wings cultured with 20E showed only peripheral degeneration just outside the bordering lacuna, as in other butterflies and moths. TUNEL analysis showed that apoptotic signals were induced by 20E over the entire region of female wings, but only in the peripheral region of male wings. Semi-thin sections of the wings cultured with ecdysteroid showed that phagocytotic hemocytes were observed abundantly throughout the female wings, but in only peripheral regions of male wings. These observations indicate that both apoptotic events and phagocytotic activation are triggered by ecdysteroid, in sex-specific and region-specific manners.

  19. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  20. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  1. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  2. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  3. Computation of Lifting Wing-Flap Configurations

    Science.gov (United States)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  4. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  5. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science.

    Science.gov (United States)

    Boos, Norbert; Weissbach, Sabine; Rohrbach, Helmut; Weiler, Christoph; Spratt, Kevin F; Nerlich, Andreas G

    2002-12-01

    A histologic study on age-related changes of the human lumbar intervertebral disc was conducted. To investigate comprehensively age-related temporospatial histologic changes in human lumbar intervertebral disc, and to develop a practicable and reliable classification system for age-related histologic disc alteration. No comprehensive microscopic analysis of age-related disc changes is available. There is no conceptual morphologic framework for classifying age-related disc changes as a reference basis for more sophisticated molecular biologic analyses of the causative factors of disc aging or premature aging (degeneration). A total of 180 complete sagittal lumbar motion segment slices obtained from 44 deceased individuals (fetal to 88 years of age) were analyzed with regard to 11 histologic variables for the intervertebral disc and endplate, respectively. In addition, 30 surgical specimens (3 regions each) were investigated with regard to five histologic variables. Based on the semiquantitative analyses of 20,250 histologic variable assessments, a classification system was developed and tested in terms of validity, practicability, and reliability. The classification system was applied to cadaveric and surgical disc specimens not included in the development of the classification system, and the scores were assessed by two additional independent raters. A semiquantitative analyses provided clear histologic evidence for the detrimental effect of a diminished blood supply on the endplate, resulting in the tissue breakdown beginning in the nucleus pulposus and starting in the second life decade. Significant temporospatial variations in the presence and abundance of histologic disc alterations were observed across levels, regions, macroscopic degeneration grades, and age groups. A practicable classification system for age-related histologic disc alterations was developed, resulting in moderate to excellent reliability (kappa values, 0.49-0.98) depending on the histologic

  6. Gravitating discs around black holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Huré, J.-M.; Semerák, O.

    2004-01-01

    Roč. 21, č. 7 (2004), R1-R5 ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004

  7. The PANDA Endcap Disc DIRC

    Science.gov (United States)

    Föhl, K.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Böhm, M.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Hayrapetyan, A.; Kreutzfeld, K.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2018-02-01

    Positively identifying charged kaons in the PANDA forward endcap solid angle range can be achieved with the Endcap Disc DIRC, allowing kaon-pion separation from 1 up to 4 GeV/c with a separation power of at least 3 standard deviations. Design, performance, and components of this DIRC are given, including the recently introduced TOFPET-ASIC based read-out. Results of a prototype operated in a test beam at DESY in 2016 are shown.

  8. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  9. Obtención de modelo matemático para el desarrollo del perfil del ala de una aeronave. // Obtaining a mathematical model for the development of the profile of the airship wing.

    Directory of Open Access Journals (Sweden)

    R. Cabrera Pedroso

    2008-05-01

    Full Text Available El presente trabajo está dirigido a brindar un modelo matemático que permita el cálculo y determinación de una funciónanalítica para la obtención del perfil de un ala de geometría simétrica y variable de una aeronave con el empleo de métodoscomputacionales. En el artículo se analiza los métodos para la elaboración de sistemas de cálculo basados en modelosmatemáticos obtenidos en MATLAB 7.0 e implementados con el software LabVIEW 6.0 a través de programas de diseñosasistidos por computadoras en AUTOCAD (AUTOLISP. Los diferentes tópicos abordados dan a los interesados una ideaglobal del desarrollo de esta tecnología computacional y su aplicación a ramas de la mecánica, así como la metodologíaseguida para obtener el perfil aerodinámico de un ala. También se exponen aspectos generales del empleo de la funciónAUTOLISP y el código fuente del programa diseñado.Palabras claves: perfil de alas, modelos matemáticos, AutoCAD, AutoLISP, medición experimental.__________________________________________________________________________Abstract.This article was carried out to obtain a mathematical model that allows the calculation and determination of an analyticfunction of symmetrical geometry profile and variable. In the article it is analyzed the methods for the elaboration ofsystem of calculations based on mathematical models obtained with the software language LabVIEW 6.0 and it is used todeveloping the program attended by the computers AUTOCAD (AUTOLISP. The approached topics give to the interestedparties a global idea of the development it gives this technology and their application to branches of the mechanicalspecialties, as well as the followed methodology to obtain the aerofoil profile of a wing. General aspects are also exposedof the employment of the function AUTOLISP and the source code on the sketch program.Key words: Wing profiles, mathematical models, AutoCAD, AutoLISP, experimental measurement.

  10. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  11. PROVIDING STABLE FRICTION PROPERTIES OF DISC BRAKES FOR RAILWAY VEHICLES

    Directory of Open Access Journals (Sweden)

    Yuri Y. OSENIN

    2017-04-01

    Full Text Available A new approach is developed to ensure the stability of the coefficient of friction at different braking modes for the entire speed range of braking high-speed ground transport. The new approach is a combination of friction materials with individual effort effects on the brake disc. A brake pad design and its performance are confirmed experimentally.

  12. The cellular memory disc of reprogrammed cells.

    Science.gov (United States)

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  13. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  14. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  15. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  16. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Science.gov (United States)

    Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien

    2015-01-01

    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.

  17. A study on the utilization of advanced composites in commercial aircraft wing structure

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  18. Energy thrift and improved performance achieved through novel railway brake discs

    International Nuclear Information System (INIS)

    Tirovic, Marko

    2009-01-01

    A disc with radial vanes and circumferential pillars proves to be successful in operation and achieves energy efficiency improvements compared with those of traditional design. Cooling characteristics of this novel design are practically identical to the disc with tangential vanes but the equivalent aerodynamic (air pumping) losses are approximately 50% less. It is shown that these reductions in pumping losses can lead to substantial energy savings in train operations. When developing new designs and/or comparing different railway disc designs, the proposed disc cooling to aerodynamic efficiency ratio (η v ) was found to be a very useful parameter to assess. This 'efficiency ratio' - a ratio of convective power dissipation to aerodynamic power losses can help in achieving adequate balance of cooling efficiency and aerodynamic losses to suit particular application. The use of CFD is of enormous benefit in generating discs that fulfil these demanding requirements, with the spin rig being exceptionally useful for experimental work

  19. Stress analysis of automotive ventilated disc brake rotor and pads using finite element method

    Directory of Open Access Journals (Sweden)

    A Belhocine

    2016-03-01

    Full Text Available The complexity of the physical or technological systems to be developed or studied led to employing numerical methods based on the principle of an approach as possible nominal solution, but these require large computations requiring efficient computers. The computer code ANSYS also allows the determination and the visualization of the structural deformations due to the contact of slipping between the disc and the pads. The results of the calculations of contact described in this work relate to displacements, Von Mises stress on the disc, contact pressures of the inner and outer pad at various moments of simulation. One precedes then the influence of some parameters on the computation results such as rotation of the disc, the smoothness of the mesh, the material of the brake pads and the friction coefficient enter the disc and the pads, the number of revolutions and the material of the disc, the pads groove.

  20. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  1. Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae).

    Science.gov (United States)

    Montealegre-Z, Fernando; Jonsson, Thorin; Robert, Daniel

    2011-06-15

    Male field crickets emit pure-tone mating calls by rubbing their wings together. Acoustic radiation is produced by rapid oscillations of the wings, as the right wing (RW), bearing a file, is swept across the plectrum borne on the left wing (LW). Earlier work found the natural resonant frequency (f(o)) of individual wings to be different, but there is no consensus on the origin of these differences. Previous studies suggested that the frequency along the song pulse is controlled independently by each wing. It has also been argued that the stridulatory file has a variable f(o) and that the frequency modulation observed in most species is associated with this variability. To test these two hypotheses, a method was developed for the non-contact measurement of wing vibrations during singing in actively stridulating Gryllus bimaculatus. Using focal microinjection of the neuroactivator eserine into the cricket's brain to elicit stridulation and micro-scanning laser Doppler vibrometry, we monitored wing vibration in actively singing insects. The results show significantly lower f(o) in LWs compared with RWs, with the LW f(o) being identical to the sound carrier frequency (N=44). But during stridulation, the two wings resonate at one identical frequency, the song carrier frequency, with the LW dominating in amplitude response. These measurements also demonstrate that the stridulatory file is a constant resonator, as no variation was observed in f(o) along the file during sound radiation. Our findings show that, as they engage in stridulation, cricket wings work as coupled oscillators that together control the mechanical oscillations generating the remarkably pure species-specific song.

  2. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  3. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  4. Neural evidence supports a dual sensory-motor role for insect wings.

    Science.gov (United States)

    Pratt, Brandon; Deora, Tanvi; Mohren, Thomas; Daniel, Thomas

    2017-09-13

    Flying insects use feedback from various sensory modalities including vision and mechanosensation to navigate through their environment. The rapid speed of mechanosensory information acquisition and processing compensates for the slower processing times associated with vision, particularly under low light conditions. While halteres in dipteran species are well known to provide such information for flight control, less is understood about the mechanosensory roles of their evolutionary antecedent, wings. The features that wing mechanosensory neurons (campaniform sensilla) encode remains relatively unexplored. We hypothesized that the wing campaniform sensilla of the hawkmoth, Manduca sexta, rapidly and selectively extract mechanical stimulus features in a manner similar to halteres. We used electrophysiological and computational techniques to characterize the encoding properties of wing campaniform sensilla. To accomplish this, we developed a novel technique for localizing receptive fields using a focused IR laser that elicits changes in the neural activity of mechanoreceptors. We found that (i) most wing mechanosensors encoded mechanical stimulus features rapidly and precisely, (ii) they are selective for specific stimulus features, and (iii) there is diversity in the encoding properties of wing campaniform sensilla. We found that the encoding properties of wing campaniform sensilla are similar to those for haltere neurons. Therefore, it appears that the neural architecture that underlies the haltere sensory function is present in wings, which lends credence to the notion that wings themselves may serve a similar sensory function. Thus, wings may not only function as the primary actuator of the organism but also as sensors of the inertial dynamics of the animal. © 2017 The Authors.

  5. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.

  6. Optic Disc Identification Methods for Retinal Images

    Directory of Open Access Journals (Sweden)

    Florin Rotaru

    2014-07-01

    Full Text Available Presented are the methods proposed by authors to identify and model the optic disc in colour retinal images. The first three our approaches localized the optic disc in two steps: a in the green component of RGB image the optic disc area is detected based on texture indicators and pixel intensity variance analysis; b on the segmented area the optic disc edges are extracted and the resulted boundary is approximated by a Hough transform. The last implemented method identifies the optic disc area by analysis of blood vessels network extracted in the green channel of the original image. In the segmented area the optic disc edges are obtained by an iterative Canny algorithm and are approximated by a circle Hough transform.

  7. The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture.

    Science.gov (United States)

    Shi, Jianmin; Pang, Lianglong; Jiao, Shouguo

    2018-04-27

    Mechanical stimuli obviously affect disc nucleus pulposus (NP) biology. Previous studies have indicated that static compression exhibits detrimental effects on disc biology compared with dynamic compression. To study disc NP cell senescence under static compression and dynamic compression in a disc organ culture, porcine discs were cultured and subjected to compression (static compression: 0.4 MPa for 4 h once per day; dynamic compression: 0.4 MPa at a frequency of 1.0 Hz for 4 h once per day) for 7 days using a self-developed mechanically active bioreactor. The non-compressed discs were used as controls. Compared with the dynamic compression, static compression significantly promoted disc NP cell senescence, reflected by the increased senescence-associated β-galactosidase (SA-β-Gal) activity, senescence-associated heterochromatic foci (SAHF) formation and senescence markers expression, and the decreased telomerase (TE) activity and NP matrix biosynthesis. Static compression accelerates disc NP cell senescence compared with the dynamic compression in a disc organ culture. The present study provides that acceleration of NP cell senescence may be involved in previously reported static compression-mediated disc NP degenerative changes. © 2018 The Author(s).

  8. Anterolateral Approach for Central Thoracic Disc Prolapse-Surgical Strategies Used to Tackle Differing Operative Findings: 3-Dimensional Operative Video.

    Science.gov (United States)

    Patel, Krunal; Budohoski, Karol P; Kenyon, Olivia R P; Barone, Damiano G; Santarius, Thomas; Kirollos, Ramez W; Mannion, Richard J; Trivedi, Rikin A

    2018-04-02

    Thoracic disc prolapses causing cord compression can be challenging. For compressive central disc protrusions, a posterior approach is not suitable due to an unacceptable level of cord manipulation. An anterolateral transthoracic approach provides direct access to the disc prolapse allowing for decompression without disturbing the spinal cord. In this video, we describe 2 cases of thoracic myelopathy from a compressive central thoracic disc prolapse. In both cases, informed consent was obtained. Despite similar radiological appearances of heavy calcification, intraoperatively significant differences can be encountered. We demonstrate different surgical strategies depending on the consistency of the disc and the adherence to the thecal sac. With adequate exposure and detachment from adjacent vertebral bodies, soft discs can be, in most instances, separated from the theca with minimal cord manipulation. On the other hand, largely calcified discs often present a significantly greater challenge and require thinning the disc capsule before removal. In cases with significant adherence to dura, in order to prevent cord injury or cerebrospinal fluid leak a thinned shell can be left, providing total detachment from adjacent vertebrae can be achieved. Postoperatively, the first patient, with a significantly calcified disc, developed a transient left leg weakness which recovered by 3-month follow-up. This video outlines the anatomical considerations and operative steps for a transthoracic approach to a central disc prolapse, whilst demonstrating that computed tomography appearances are not always indicative of potential operative difficulties.

  9. Eccentricity evolution during planet-disc interaction

    Science.gov (United States)

    Ragusa, Enrico; Rosotti, Giovanni; Teyssandier, Jean; Booth, Richard; Clarke, Cathie J.; Lodato, Giuseppe

    2018-03-01

    During the process of planet formation, the planet-disc interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long (t ˜ 3 × 105 orbits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.

  10. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  11. Multilayer optical disc system using homodyne detection

    Science.gov (United States)

    Kurokawa, Takahiro; Ide, Tatsuro; Tanaka, Yukinobu; Watanabe, Koichi

    2014-09-01

    A write/read system using high-productivity multilayer optical discs was developed. The recording medium used in the system consists of planar recording layers and a separated guide layer, and is fabricated by web coating and lamination process. The recording layers in the medium are made of one-photon-absorption material, on which data can be recorded with a normal laser diode. The developed system is capable of focusing and tracking on the medium and amplifying readout signals by using phase-diversity homodyne detection. A highly layer-selective focusing method using homodyne detection was also proposed. This method obtains stable focus-error signals with clearly separated S-shaped curves even when layer spacing is quite narrow, causing large interlayer crosstalk. Writing on the medium and reading with the signal amplification effect of homodyne detection was demonstrated. In addition, the effectiveness of the method was experimentally evaluated.

  12. Inerting a Boeing 747SP Center Wing Tank Scale Model With Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Cavage, William

    2002-01-01

    Tests were performed in a 0.24 scale model of a Boeing 747SP center wing tank to validate the existing assumptions for inerting complex geometric spaces, which were developed from previous experiments, and to facilitate design...

  13. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  14. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  15. Intradural cervical disc herniation: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Eun; Lee, Sang Ho; Jo, Byung June; Yoon, Deug Hee [Wooridul Spine Hospital, Seoul (Korea, Republic of); Kim, Tae Hong [Inje University College of Medicine, Inje (Korea, Republic of)

    2005-07-15

    Intradural cervical disc herniation is an extremely rare condition and its pathogenesis is not certain. We experienced a case of intradural cervical disc herniation at the C4-5 level in a 56-year-old man. The preoperative sagittal T1- and T2- weighted images revealed an intradural iso-intensity lesion, with the spinal cord behind the posterior longitudinal ligament at the C4-5 disc level. The post-contrast T1-weighted image revealed a peripheral enhanced intradural lesion. We report here on a case of an intradural cervical disc herniation that was diagnosed by radiological examination, and we include a review of the related literature.

  16. Computed tomography in lumbar herniated disc

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chul Soon; Chang, Kee Hyun; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1984-09-15

    197 spine CTs were performed from 29th , March 1982 to 7th March, 1984. Among them, 39 patients preoperatively diagnosed as herniated nucleus pulposus or bulging disc with CT and myelography were operated. 43 disc spaces of disc disease are analysed in true positive and false negative cases. Finally the accuracy, sensitivity and specificity of spine CT and myelography are calculated. The results are as follows: 1. The CT findings of disc diseases are in order of frequency, asymmetrical obliteration of epidural fat (82%) , ventral indentation or compression on dural sac (72%), focal protrusion of disc (64%), root changes - obliteration, displacement, compression, non-filling of metrizamide - (54%), diffuse disc bulging (36%), disc at body level (31%), disc calcifications (26%), disc vacuum (10%) and other associated findings - spinal stenosis, foraminal stenosis, ligament flavum thickening, facet joint hypertrophy (26%). 2. Sensitivities of spine CT and myelography are 95% and 94%, specificities are 67%, 50% and overall accuracies 93%, 87%, respectively. 3. Therefore, it is recommended that the spine CT be used as a primary diagnostic method and the myelography as a secondary complementary study when the CT gives no conclusive findings.

  17. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  18. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  19. Experimental Disc Herniation in the Rat Causes Downregulation of Serotonin Receptor 2c in a TNF-dependent Manner.

    Science.gov (United States)

    Jonsson, Daniel; Finskas, Oscar; Fujioka, Yuki; Ståhlberg, Anders; Olmarker, Kjell

    2015-06-01

    During recent decades, the knowledge of the pathophysiology of disc herniation and sciatica has drastically improved. What previously was considered a strict biomechanical process is now considered a more complex interaction between leaked nucleus pulposus and the tissue in the spinal canal. An inflammatory reaction, with tumor necrosis factor (TNF) playing an essential role, has been demonstrated. However, the exact mechanisms of the pathophysiology of disc herniation remain unknown. In this study we use an animal model to investigate (1) if and/or how experimental disc herniation affects gene expression in the early phase (24 hours postsurgery) in the dorsal root ganglion; and (2) if TNF inhibition can reduce any observed changes. A rat model of disc herniation was used. Twenty rats were evenly divided into four groups: naïve, sham, disc herniation, and disc herniation with TNF inhibition. The dorsal root ganglion of the affected nerve root was harvested 24 hours after surgery and analyzed with a TaqMan Low Density Array(®) quantitative polymerase chain reaction assay. Gene expression levels in sham were compared with disc herniation to assess question 1 and disc herniation to disc herniation with TNF inhibition to assess question 2. Experimental disc herniation caused a decrease in the expression of the serotonin receptor 2c gene (p = 0.022). TNF inhibition was found to reduce the observed decrease in expression of serotonin receptor 2c (p = 0.037). Our results suggest that a decrease in the expression of the serotonin receptor 2c gene may contribute to the pathophysiology of disc herniation. Further research on its involvement is warranted. This pilot study gives a brief insight into cellular changes that may contribute to the pathophysiology of disc herniation. This knowledge may contribute to the development of more and better treatment options for patients with disc herniation and sciatica.

  20. Reinforcements in avian wing bones: Experiments, analysis, and modeling.

    Science.gov (United States)

    Novitskaya, E; Ruestes, C J; Porter, M M; Lubarda, V A; Meyers, M A; McKittrick, J

    2017-12-01

    Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Vertebral degenerative disc disease severity evaluation using random forest classification

    Science.gov (United States)

    Munoz, Hector E.; Yao, Jianhua; Burns, Joseph E.; Pham, Yasuyuki; Stieger, James; Summers, Ronald M.

    2014-03-01

    Degenerative disc disease (DDD) develops in the spine as vertebral discs degenerate and osseous excrescences or outgrowths naturally form to restabilize unstable segments of the spine. These osseous excrescences, or osteophytes, may progress or stabilize in size as the spine reaches a new equilibrium point. We have previously created a CAD system that detects DDD. This paper presents a new system to determine the severity of DDD of individual vertebral levels. This will be useful to monitor the progress of developing DDD, as rapid growth may indicate that there is a greater stabilization problem that should be addressed. The existing DDD CAD system extracts the spine from CT images and segments the cortical shell of individual levels with a dual-surface model. The cortical shell is unwrapped, and is analyzed to detect the hyperdense regions of DDD. Three radiologists scored the severity of DDD of each disc space of 46 CT scans. Radiologists' scores and features generated from CAD detections were used to train a random forest classifier. The classifier then assessed the severity of DDD at each vertebral disc level. The agreement between the computer severity score and the average radiologist's score had a quadratic weighted Cohen's kappa of 0.64.

  2. Abdominal vascular injury during lumbar disc surgery: report of three cases.

    Science.gov (United States)

    Torun, Fuat; Tuna, Hakan; Deda, Haluk

    2007-04-01

    Anterior longitudinal ligament perforation and abdominal vascular injury is one of the most critical complications that may develop during lumbar disc surgery. The vascular injury-related symptoms that warns the surgeon may be late to appear; they usually turn out to be mortal. The hypotension during the operation, tachycardia and pulsatile unstoppable hemorrhage observed in the disc space are the major findings. Urgent detection of this complication and the repair of the vascular injury prevent the case from turning out to be fatal. In the present study, three patients who underwent surgical treatment of abdominal vascular injuries that had developed during lumbar disc surgery, were presented.

  3. Total Disc Replacement in Lumbar Degenerative Disc Diseases.

    Science.gov (United States)

    Park, Chun Kun

    2015-11-01

    More than 10 years have passed since lumbar total disc replacement (LTDR) was introduced for the first time to the world market for the surgical management of lumbar degenerative disc disease (DDD). It seems like the right time to sum up the relevant results in order to understand where LTDR stands on now, and is heading forward to. The pathogenesis of DDD has been currently settled, but diagnosis and managements are still controversial. Fusion is recognized as golden standard of surgical managements but has various kinds of shortcomings. Lately, LTDR has been expected to replace fusion surgery. A great deal of LTDR reports has come out. Among them, more than 5-year follow-up prospective randomized controlled studies including USA IDE trials were expected to elucidate whether for LTDR to have therapeutic benefit compared to fusion. The results of these studies revealed that LTDR was not inferior to fusion. Most of clinical studies dealing with LTDR revealed that there was no strong evidence for preventive effect of LTDR against symptomatic degenerative changes of adjacent segment disease. LTDR does not have shortcomings associated with fusion. However, it has a potentiality of the new complications to occur, which surgeons have never experienced in fusion surgeries. Consequently, longer follow-up should be necessary as yet to confirm the maintenance of improved surgical outcome and to observe any very late complications. LTDR still may get a chance to establish itself as a substitute of fusion both nominally and virtually if it eases the concerns listed above.

  4. Total Disc Arthroplasty for Treating Lumbar Degenerative Disc Disease

    Science.gov (United States)

    2015-01-01

    Study Design Lumber disc arthroplasty is a technological advancement that has occurred in the last decade to treat lumbar degenerative disk diseases. Purpose The aim of this retrospective study was to establish the impact and outcomes of managing patients with lumbar degenerative disk disease who have been treated with lumbar total disc arthroplasty (TDA). Overview of Literature Several studies have shown promising results following this surgery. Methods We reviewed the files of 104 patients at the Department of Neurosurgery in Colmar (France) who had been operated on by lumbar spine arthroplasty (Prodisc) between April 2002 and October 2008. Results Among the 104 patients, 67 were female and 37 were male with an average age of 33.1 years. We followed the cases for a mean of 20 months. The most frequent level of discopathy was L4-L5 with 62 patients (59.6%) followed by L5-S1 level with 52 patients (50%). Eighty-three patients suffered from low back pain, 21 of which were associated with radiculopathy. The status of 82 patients improved after surgery according to the Oswestry Disability Index score, and 92 patients returned to work. Conclusions The results indicate that TDA is a good alternative treatment for lumbar spine disk disease, particularly for patients with disabling and chronic low back pain. This technique contributes to improve living conditions with correct patient selection for surgery. PMID:25705336

  5. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    Science.gov (United States)

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. A method for quantifying intervertebral disc signal intensity on T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Masaki [Dept. of Orthopaedic Surgery, Keio Univ. School of Medicine, Tokyo (Japan); Dept. of Orthopaedic Surgery, Kitasato Univ. Kitasato Inst. Hospital, Tokyo (Japan); Abe, Hitoshi [Dept. of Orthopaedic Surgery, Kitasato Univ. Kitasato Inst. Hospital, Tokyo (Japan)], E-mail: hit-abe@insti.kitasato-u.ac.jp; Amaya, Kenji [Graduate School of Information Science and Engineering, Tokyo Inst. of Technology, Tokyo (Japan); Matsumoto, Hideo [Inst. for Integrated Sports Medicine, Keio Univ. School of Medicine, Tokyo (Japan); Yanaihara, Hisashi [Dept. of Diagnostic Radiology, Kitasato Univ. Kitasato Inst. Hospital, Tokyo (Japan); Nishiwaki, Yuji [Dept. of Environmental and Occupational Health, Toho Univ. School of Medicine, Tokyo (Japan); Toyama, Yoshiaki; Matsumoto, Morio [Dept. of Orthopaedic Surgery, Keio Univ. School of Medicine, Tokyo (Japan)

    2012-11-15

    Background Quantification of intervertebral disc degeneration based on intensity of the nucleus pulposus in magnetic resonance imaging (MRI) often uses the mean intensity of the region of interest (ROI) within the nucleus pulposus. However, the location and size of ROI have varied in different reports, and none of the reported methods can be considered fully objective. Purpose To develop a more objective method of establishing ROIs for quantitative evaluation of signal intensity in the nucleus pulposus using T2-weighted MRI. Material and Methods A 1.5-T scanner was used to obtain T2-weighted mid-sagittal images. A total of 288 intervertebral discs from 48 patients (25 men, 23 women) were analyzed. Mean age was 47.4 years (range, 17-69 years). All discs were classified into five grades according to Pfirrmann et al. Discs in grades I and II were defined as bright discs, and discs in grades IV and V were defined as dark discs. Eight candidate methods of ROI determination were devised. The method offering the highest degree of discrimination between bright and dark discs was investigated among these eight methods. Results The method with the greatest degree of discrimination was as follows. The quadrangle formed by anterior and posterior edges of the upper and lower end plates in contact with the intervertebral disc to be measured was defined as the intervertebral area. A shape similar to the intervertebral area but with one-quarter the area was drawn. The geometrical center of the shape was matched to the center of intensity, and this shape was then used as the ROI. Satisfactory validity and reproducibility were obtained using this method. Conclusion The present method offers adequate discrimination and could be useful for longitudinal tracking of intervertebral disc degeneration with sufficient reproducibility.

  7. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  8. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  9. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  10. Functional and Structural Analysis of Wing Folding Mechanism Based on Cockchafer (Melolontha Melolontha

    Directory of Open Access Journals (Sweden)

    Geisler Tomasz

    2014-09-01

    Full Text Available Insects are among nature’s most nimble flyers. In this paper we present the functional and structural analysis of wing joint mechanism. Detailed action of the axillary plates and their mutual interaction was also described. Because of the small dimensions of the wing joint elements and the limited resolution of the light microscope, the authors used a scanning electron microscope. Based upon the knowledge of working principles of beetle flight apparatus a wing joint mechanism kinematics model has been developed.

  11. Pneumatic artificial muscle and its application on driving variable trailing-edge camber wing

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Liu, Yanju; Leng, Jinsong

    2010-04-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, the experimental setup to measure the static output force of pneumatic artificial muscle was designed and the relationship between the static output force and the air pressure was investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. A variable camber wing based on the pneumatic artificial muscle was developed and the variable camber wing model was manufactured to validate the variable camber concept. Wind tunnel tests were conducted in the low speed wind tunnel. Experimental result shows that the wing camber increases with increasing air pressure.

  12. Development of improved molecular methods for the detection of deformed wing virus (DWV) in honeybees (Apis mellifera L.) and mites ( Varroa destructor Oud.).

    Science.gov (United States)

    Parrella, G; Caprio, E; Mazzone, P

    2006-01-01

    A simple and rapid method for the extraction of total nucleic acid from honeybee and mite, useful either as template for RT-PCR or in nucleic acids hybridization, was developed. Sensitivity of the methods were evaluated up to 10(9) and 10(6) dilution of TNAs extracted from a single honeybee, for reverse transcriptase polymerase chain reaction and molecular hybridization respectively. The two diagnostic methods developed could be useful for the study of the molecular biology and the pathology of DWV. For practical applications dot-blot hybridization could be used in order to study the incidence of DWV in honeybees populations. The method is enough sensitive, rapid and less affected by contamination problems compared to RT-PCR and thus it could be applied to the sanitary certification of honeybees and their products.

  13. Use NASA GES DISC Data in ArcGIS

    Science.gov (United States)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  14. Minimum weight design of inhomogeneous rotating discs

    International Nuclear Information System (INIS)

    Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal

    2005-01-01

    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far

  15. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  16. Long-term bearing wear tests of conventional journal bearings and development of hydrostatic bearings for the LOFT drag-disc turbine transducer

    International Nuclear Information System (INIS)

    Fincke, J.R.

    1979-01-01

    The details of a two-year development program concerning materials for use as turbine bearings in a pressurized water reactor environment are reported. Two types of bearings have been examined, both conventional journal bearings and hydrostatic bearings. The results of long-term bearing wear tests conducted at 590 K and 15.1 MPa in water are presented. The feasibility of using hydrostatic bearings for the same transducer is demonstrated

  17. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  18. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  19. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  20. Variable wing venation in Agathiphaga (Lepidoptera: Agathiphagidae) is key to understanding the evolution of basal moths

    Science.gov (United States)

    Gibbs, George W.

    2016-01-01

    Details of the ancestral groundplan of wing venation in moths remain uncertain, despite approximately a century of study. Here, we describe a 3-branched subcostal vein, a 5-branched medial vein and a 2-branched cubitus posterior vein on the forewing of Agathiphaga vitiensis Dumbleton 1952 from Vanuatu. Such veins had not previously been described in any Lepidoptera. Because wing veins are typically lost during lepidopteran evolutionary history, rarely—if ever—to be regained, the venation of A. vitiensis probably represents the ancestral character state for moths. Wing venation is often used to identify fossil insects as moths, because wing scales are not always preserved; the presence of a supposedly trichopteran 3-branched subcostal vein in crown Lepidoptera may decrease the certainty with which certain amphiesmenopteran fossils from the Mesozoic can be classified. And because plesiomorphic veins can influence the development of lepidopteran wing patterns even if not expressed in the adult wing, the veins described here may determine the location of wing pattern elements in many lepidopteran taxa. PMID:27853559

  1. Changes in disc herniation after CT-guided Percutaneous Laser Disc Decompression (PLDD): MR findings

    Science.gov (United States)

    Brat, Hugues G.; Bouziane, Tarik; Lambert, Jean; Divano, Luisa

    2004-09-01

    The aim of Percutaneous Laser Disc Decompression (PLDD) is to vaporize a small portion of the nucleus pulposus. Clinical efficacy of this technique is largely proven. However, time-evolution of intervertebral disc and its hernia after PLDD is not known. This study analyses changes in disc herniation and its native intervertebral disc at a mean follow-up of 7.5 months after PLDD in asymptomatic patients. Main observations at MRI are appearance of a high signal on T2WI in the hernia in 59%, shrinking of the hernia in 66% and overall stability of disc height.

  2. Effects of Mistuning on the Forced Response of Bladed Discs with Friction Dampers

    National Research Council Canada - National Science Library

    Petrov, E. P; Ewins, D. J

    2005-01-01

    A method recently developed by the authors allows efficient calculation of the periodic forced response to be performed for bladed discs with arbitrary nonlinearities, including friction contacts and gaps...

  3. Polypoidal Choroidal Vasculopathy Associated with Optic Disc Coloboma

    Directory of Open Access Journals (Sweden)

    Yumiko Nakano

    2018-01-01

    Full Text Available Purpose: To report a case of polypoidal choroidal vasculopathy associated with optic disc coloboma. Methods: Case report. Results: A 50-year-old woman presented with optic disc coloboma and retinochoroidal coloboma associated with subretinal hemorrhage and serous retinal detachment (SRD in her left eye. Optical coherence tomography (OCT confirmed SRD at the macula and showed a sharply elevated retinal epithelial detachment at the choroidal excavation. OCT also revealed choroidal cavitation along the temporal side of the optic coloboma. Fluorescein angiography showed hyperfluorescent dye leakage and indocyanine green angiography revealed polypoidal lesions. We diagnosed polypoidal choroidal vasculopathy (PCV. PCV was located at the end of the choroidal cavitation. Her left eye was treated with an intraocular injection of the anti-vascular endothelial growth factor aflibercept (2 mg. Photodynamic therapy was performed using the standard protocol 1 week after the intravitreal application of aflibercept. One month after the combined treatment, OCT showed completely resolved SRD and her symptoms disappeared. Her best-corrected visual acuity remained stable and no recurrence was found during a 12-month follow-up period. Conclusion: PCV associated with optic disc coloboma has not been previously reported. The morphological abnormality of choroidal cavitation and choroidal excavation connecting with optic disc coloboma may contribute to the development of PCV in this case.

  4. Imatinib mesylate (Gleevec) induced unilateral optic disc edema.

    Science.gov (United States)

    DeLuca, Crystal; Shenouda-Awad, Nancy; Haskes, Charles; Wrzesinski, Stephen

    2012-10-01

    Imatinib mesylate (Gleevec) is a chemotherapy medication developed to treat chronic myelogenous leukemia as well as gastrointestinal stromal tumors (Savage, N Engl J Med 2002;346:683-93). Ocular side effects are commonly reported with the use of imatinib mesylate, such as periorbital edema and epiphora. More serious ocular side effects, such as optic disc edema, are rarely reported. This case is of a patient who presented with monocular painless loss of vision in the left eye from a previously documented 20/20 to 20/70 shortly after starting treatment with imatinib mesylate. Every aspect of the ocular presentation and clinical history were addressed to unveil the cause of the disc edema. After ruling out all other causes, the patient was later diagnosed with unilateral optic disc edema as a related side effect of the toxicity from imatinib mesylate. The properties of imatinib mesylate and the possible etiology of secondary optic disc edema are discussed. This study aims to highlight the importance of systemic medications review for possible etiology of ocular disease as well as the multidisciplinary approach to managing oncology patients with ocular side effects.

  5. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  6. Shelf life of factitious hosts and effect of stored preys on the development of the green lace wing predator, Chrysoperla carnea (Stephens)

    International Nuclear Information System (INIS)

    Viji, C.P.; Gautam, R.D.; Garg, A.K.

    2005-01-01

    Mass production of the green laceweing, Chrysoperla carnea (Stephens) in the laboratory is directly dependent on the mass production of its factitious host i.e., the eggs of Corcyra cephalonica. Production of host insects is often seasonal which, in turn, affects the mass rearing of chrysopids hence necessitates the storage of prey for mass production. Studies were carried out to determine the shelf life of the prey (viz., Tribolium castaneum larvae and papae, Trogoderma granarium larvae, Drosophila melanogaster larvae, Cadra cautella eggs and Corcyra cephalonica eggs) while storing it in freezer at 10-12 o C by exposing to UV and gamma radiations. T. castaneum larva and pupa could be stored in freezer chest for 6 and 8 months respectively, whereas C. cephalonica eggs could only be stored for a period of 30 days. The impact of storage on the biological attributes of the predator was studied. Effectiveness of stored food represented the order as uv irradiated + Frozen > γ-irradiated + Frozen > Frozen > UV irradiated > γ-irradiated. Even though, variations were observed on the development of predator larva on stored foods, they supported the development of the predator to a reasonable degree. (author)

  7. Thoracic disc herniation: Surgical treatment.

    Science.gov (United States)

    Court, C; Mansour, E; Bouthors, C

    2018-02-01

    Thoracic disc herniation is rare and mainly occurs between T8 and L1. The herniation is calcified in 40% of cases and is labeled as giant when it occupies more than 40% of the spinal canal. A surgical procedure is indicated when the patient has severe back pain, stubborn intercostal neuralgia or neurological deficits. Selection of the surgical approach is essential. Mid-line calcified hernias are approached from a transthoracic incision, while lateralized soft hernias can be approached from a posterolateral incision. The complication rate for transthoracic approaches is higher than that of posterolateral approaches; however, the former are performed in more complex herniation cases. The thoracoscopic approach is less invasive but has a lengthy learning curve. Retropleural mini-thoracotomy is a potential compromise solution. Fusion is recommended in cases of multilevel herniation, herniation in the context of Scheuermann's disease, when more than 50% bone is resected from the vertebral body, in patients with preoperative back pain or herniation at the thoracolumbar junction. Along with complications specific to the surgical approach, the surgical risks are neurological worsening, dural breach and subarachnoid-pleural fistulas. Giant calcified herniated discs are the largest contributor to myelopathy, intradural extension and postoperative complications. Some of the technical means that can be used to prevent complications are explored, along with how to address these complications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Optic Disc Drusen in Children

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Li, Xiao Qiang; Eckmann, Christina L

    2017-01-01

    diameter and fetal birth and pubertal parameters are associated with the presence of ODD. METHODS: This observational, longitudinal population-based birth cohort study, with a nested case-control, included 1,406 children. Eye examinations were performed when the children were between 11 and 12 years of age....... Assessment was performed of optical coherence tomography (OCT) scans from 1,304 children with gradable enhanced depth imaging scans of the optic disc. RESULTS: ODD in one or both eyes were found in 13 (1.0%) of all children. All but one of the cases were found in children with scleral canal diameter...... in the lowest quartile (1,182-1,399 μm) in the nested case-control study. Children with ODD had a mean disc diameter of 1,339 μm (interquartile range, 30 μm), whereas it was 1,508 μm (interquartile range, 196 μm) in the 130 controls without ODD (P

  9. Minimally Invasive Anterior Cervical Discectomy Without Fusion to Treat Cervical Disc Herniations in Patients with Previous Cervical Fusions

    Science.gov (United States)

    Granville, Michelle; Berti, Aldo

    2017-01-01

    Adjacent level cervical disc disease and secondarily progressive disc space degeneration that develops years after previously successful anterior cervical fusion at one or more levels is a common, but potentially complex problem to manage. The patient is faced with the option of further open surgery which involves adding another level of disc removal with fusion, posterior decompression, and stabilization, or possibly replacing the degenerated disc with an artificial disc construct. These three cases demonstrate that some patients, especially after minor trauma, may have small herniated discs as the cause for their new symptoms rather than progressive segmental degeneration. Each patient became symptomatic after minor trauma three to six years after the original fusion and had no or minimal radiologic changes of narrowing of the disc or spur formation commonly seen in adjacent level disease, but rather had magnetic resonance imaging (MRI) findings typical of small herniated discs. After failing multiple months of conservative treatment they were offered surgery as an option. Subsequently, all three were successfully treated with minimal anterior discectomy without fusion. There are no reports in the literature of using minimal anterior cervical discectomy without fusion in previous fused patients. This report reviews the background of adjacent level cervical disease, the various biomechanical explanations for developing a new disc herniation rather than progressive segmental degeneration, and how anterior cervical discectomy without fusion can be an option in these patients. PMID:28473949

  10. Cervical disc hernia operations through posterior laminoforaminotomy

    OpenAIRE

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients ...

  11. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In order to improve Compact Disc Players playability regarding playing Compact Discs with surface faults, like scratches and fingerprints etc, the attention has been put on fault tolerant control schemes. Almost every of those methods are based on fault detection. The standard approach is to use...

  12. Genetic association studies in lumbar disc degeneration

    DEFF Research Database (Denmark)

    Eskola, Pasi J; Lemmelä, Susanna; Kjaer, Per

    2012-01-01

    Low back pain is associated with lumbar disc degeneration, which is mainly due to genetic predisposition. The objective of this study was to perform a systematic review to evaluate genetic association studies in lumbar disc degeneration as defined on magnetic resonance imaging (MRI) in humans....

  13. The Actual Level of Symptomatic Soft Disc Herniation in Patients with Cervical Disc Herniation.

    Science.gov (United States)

    Choi, Su Yong; Lee, Sang Gu; Kim, Woo Kyung; Son, Seong; Jeong, Tae Seok

    2015-09-01

    The aim of this study was to predict the relationship between the symptomatic disc herniation level and the osteophyte level or decreased disc height in patients with cervical disc herniation. Between January 2011 and December 2012, 69 patients with an osteophyte of the cervical spine underwent surgery at a single center due to soft cervical disc herniation. Data including soft disc herniation level, osteophyte level in the posterior vertebral margin, Cobb's angle, and symptom duration were retrospectively assessed. The patients were divided into three groups according to the relationship between the degenerative change level and the level of reported symptoms. Among the 69 patients, 48 (69.6%) showed a match between osteophyte level and soft disc herniation level. Disc herniation occurred at the adjacent segment to degenerative osteophyte level in 12 patients (17.4%) and at both the adjacent and the osteophyte level in nine (13.0%). There was no significant difference in Cobb's angle or duration among the three groups. Osteophyte type was not significant. The mean disc height of the prominent degenerative change level group was lower than the adjacent segment level, but this was not significant. Soft cervical disc herniation usually occurs at the level an osteophyte forms. However, it may also occur at segments adjacent to that of the osteophyte level. Therefore, in patients with cervical disc herniation, although a prominent osteophyte alone may appear on plain radiography, we must suspect the presence of soft disc herniation at other levels.

  14. Regression of a symptomatic thoracic disc herniation with a calcified intervertebral disc component

    Directory of Open Access Journals (Sweden)

    Hidayet Sari

    2016-12-01

    Full Text Available There were only a few cases describing spontaneous regression of calcified thoracic disc herniation in the literature. We present a 38-year-old male office worker who had left paramedian-foraminal extruded disc at T7–T8 with calcifications of the T7–T8 and T8–T9 intervertebral discs. This case was unique in that the non-calcified extruded disc material regressed almost completely in 5 months while the calcified intervertebral discs remained the same during the process of regression. This report stresses that regression of the herniated material of the thoracic discs with subsidence of the symptoms is still possible even if the disc material is calcified.

  15. Lumbar disc cyst with contralateral radiculopathy

    Directory of Open Access Journals (Sweden)

    Kishore Tourani

    2012-08-01

    Full Text Available Disc cysts are uncommon intraspinal cystic lesions located in the ventrolateral epidural space. They communicate with the nucleus pulposus of the intervertebral disc and cause symptoms by radicular compression. We report a unique case of lumbar disc cyst that was associated with disc herniation and contralateral radiculopathy. A 22 year old male presented with one month history of back-ache radiating to the left leg. Magnetic Resonance Imaging (MRI showed L3-L4 disc herniation with annular tear and cystic lesion in the extradural space anterior to the thecal sac on right side, which increased in size over a period of 3 weeks. L3 laminectomy and bilateral discectomy and cyst excision was done with partial improvement of patients symptoms.

  16. Spontaneous Regression of Lumbar Herniated Disc

    Directory of Open Access Journals (Sweden)

    Chun-Wei Chang

    2009-12-01

    Full Text Available Intervertebral disc herniation of the lumbar spine is a common disease presenting with low back pain and involving nerve root radiculopathy. Some neurological symptoms in the majority of patients frequently improve after a period of conservative treatment. This has been regarded as the result of a decrease of pressure exerted from the herniated disc on neighboring neurostructures and a gradual regression of inflammation. Recently, with advances in magnetic resonance imaging, many reports have demonstrated that the herniated disc has the potential for spontaneous regression. Regression coincided with the improvement of associated symptoms. However, the exact regression mechanism remains unclear. Here, we present 2 cases of lumbar intervertebral disc herniation with spontaneous regression. We review the literature and discuss the possible mechanisms, the precipitating factors of spontaneous disc regression and the proper timing of surgical intervention.

  17. Magnetic resonance imaging of intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.

    1993-01-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)

  18. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  19. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  20. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández

    2016-05-01

    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  1. Winged scapula incidence and upper limb morbidity after surgery for breast cancer with axillary dissection.

    Science.gov (United States)

    Rizzi, Samantha Karlla Lopes de Almeida; Haddad, Cinira Assad Simão; Giron, Patricia Santolia; Pinheiro, Thaís Lúcia; Nazário, Afonso Celso Pinto; Facina, Gil

    2016-06-01

    The aim of this study was to determine the incidence of winged scapula after breast cancer surgery, its impact on shoulder morbidity and difference in incidence according to surgery type. Patients with breast cancer and surgical indication for axillary dissection were included. A total of 112 patients were surveyed with one physical evaluation before the surgery and others 15, 30, 90, and 180 days after. Winged scapula was assessed with test proposed by Hoppenfeld. Shoulder range of motion (ROM) was assessed with goniometer for flexion, extension, adduction, abduction, internal rotation, and external rotation. A verbal scale from 0 to 10 was used to assess pain. Winged scapula incidence was 8.0 % 15 days after surgery. Two patients recovered from winged scapula 90 days after surgery and four more 180 days after surgery, while three patients still had winged scapula at this time. The incidence after 15 days from surgery was 20.9 and 22.6 % among patients submitted to sentinel node biopsy or axillary lymphadenectomy (AL), respectively (p < 0.01). There was no statistical difference of incidence according to breast surgery type. Operated side shoulder flexion, adduction, and abduction ROM changes were statistically different in patients with or without winged scapula. The mean reduction was higher in patients with winged scapula. Both groups showed the same pattern over time in pain. Winged scapula incidence was 8.0 % and was higher in AL, and prevalence decreased during 6 months after surgery. Patients who developed winged scapula had more shoulder flexion, adduction, and abduction limitation.

  2. Wing kinematics and flexibility for optimal manoeuvring and escape

    Science.gov (United States)

    Wong, Jaime Gustav

    Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.

  3. Solar neighbourhood and Galactic disc(s: New constraints

    Directory of Open Access Journals (Sweden)

    Schönrich R.

    2012-02-01

    Full Text Available We present a re-analysis of the Geneva-Copenhagen survey, based on improved effective temperature and metallicity scales, which also provide a better match to theoretical isochrones. The latter are used for a Bayesian investigation on stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shifts the peak of the metallicity distribution function around the solar value. From Strömgren photometry we are able to derive for the first time a proxy for alpha elements, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our analysis suggests a strong interplay among ages, abundances and kinematics of stars.

  4. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  5. Normalized resistance interpretation, the NRI method: Review of NRI disc test applications and guide to calculations.

    Science.gov (United States)

    Kronvall, Göran; Smith, Peter

    2016-12-01

    The normalized resistance interpretation (NRI) method was developed in response to a call for a method to calibrate disc diffusion test results making inter-laboratory comparisons possible. The main use of NRI so far has been in individual laboratories, in medical and veterinary medicine and in the field of marine microbiology. The applications of NRI for disc diffusion tests are reviewed and, in addition, a detailed description of the calculation procedure is presented. NRI provides a fully objective method for ECOFF calculations of disc diffusion antimicrobial susceptibility test results. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  6. Conus medullaris syndrome due to an intradural disc herniation: A case report

    Directory of Open Access Journals (Sweden)

    Chaudhary Kshitij

    2008-01-01

    Full Text Available A 70-year-old male patient developed acute paraplegia due to conus medullaris compression secondary to extrusion of D12-L1 disc. After negative epidural examination intraoperatively, a durotomy was performed and an intradural disc fragment was excised. Patient did not regain ambulatory status at two-year follow-up. Intraoperative finding of negative extradural compression, tense swollen dura and CSF leak from ventral dura should alert the surgeon for the possibility of intradural disc herniation. A routine preoperative MRI is misleading and a high index of suspicion helps to avoid a missed diagnosis.

  7. Numerical Analysis of Temperature Field in a Disc Brake at Different Cover Angle of the Pad

    Directory of Open Access Journals (Sweden)

    Grześ Piotr

    2014-12-01

    Full Text Available In the paper an influence of the cover angle of the pad on temperature fields of the components of the disc brake is studied. A three-dimensional finite element (FE model of the pad-disc system was developed at the condition of equal temperatures on the contacting surfaces. Calculations were carried out for a single braking process at constant deceleration assuming that the contact pressure corresponds with the cover angle of the pad so that the moment of friction is equal in each case analysed. Evolutions and distributions of temperature both for the contact surface of the pad and the disc were computed and shown.

  8. Patterning of wound-induced intercellular Ca2+ flashes in a developing epithelium

    Science.gov (United States)

    Narciso, Cody; Wu, Qinfeng; Brodskiy, Pavel; Garston, George; Baker, Ruth; Fletcher, Alexander; Zartman, Jeremiah

    2015-10-01

    Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ’s final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca2+) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca2+ transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca2+ transients induced by laser ablation. The resulting intercellular Ca2+ flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca2+ transients show spatially non-uniform characteristics across the proximal-distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca2+ transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca2+ flashes. The relative Ca2+ flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca2+ velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca2+ propagation. Thus, intercellular Ca2+ transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue.

  9. Adolescent lumbar disc herniation: Impact, diagnosis, and treatment.

    Science.gov (United States)

    Karademir, Mustafa; Eser, Olcay; Karavelioglu, Ergün

    2017-01-01

    -year examination, VAS was 2.17 ± 0.76. The ODS was indexed before treatment 42.03 ± 3.75, at 6 months being 25.01 ± 2.75 and at the first year 9.92 ± 2.67. VAS and the OSD were both significantly decreased after treatment (p disc herniations. We proposed surgical treatment for patients with incapacitating persistent low back pain or radicular pain that lasted more than 6 weeks, despite rest and medication. We also pursued the development of neurological deficits, including recurrent pain that disturbed routine life activities.

  10. Temperature increase beneath etched dentin discs during composite polymerization.

    Science.gov (United States)

    Karaarslan, Emine Sirin; Secilmis, Asli; Bulbul, Mehmet; Yildirim, Cihan; Usumez, Aslihan

    2011-01-01

    The purpose of this in vitro study was to measure the temperature increase during the polymerization of a composite resin beneath acid-etched or laser-etched dentin discs. The irradiation of dentin with an Er:YAG laser may have a positive effect on the thermal conductivity of dentin. This technique has not been studied extensively. Forty dentin discs (5 mm in diameter and 0.5 or 1 mm in height) were prepared from extracted permanent third molars. These dentin discs were etched with 20% orthophosphoric acid or an Er:YAG laser, and were then placed on an apparatus developed to measure temperature increases. The composite resin was polymerized with a high-intensity quartz tungsten halogen (HQTH) or light-emitting diode unit (LED). The temperature increase was measured under the dentin disc with a J-type thermocouple wire that was connected to a data logger. Five measurements were made for each dentin disc, curing unit, and etching system combination. Differences between the initial and the highest temperature readings were taken, and the five calculated temperature changes were averaged to determine the value of the temperature increase. Statistical analysis was performed with a three-way ANOVA and Tukey HSD tests at a 0.05 level of significance. Further SEM examinations were performed. The temperature increase values varied significantly, depending on etching systems (p < 0.05), dentin thicknesses (p < 0.05), and curing units (p < 0.05). Temperature increases measured beneath laser-etched discs were significantly higher than those for acid-etched dentin discs (p < 0.05). The HQTH unit induced significantly higher temperature increases than the LED unit (p < 0.05). The LED unit induced the lowest temperature change (5.2°C) in the 1-mm, acid-etched dentin group. The HQTH unit induced the highest temperature change (10.4°C) for the 0.5-mm, laser-etched dentin group. The risk of heat-induced pulpal damage should be taken into consideration

  11. Novel method for measuring a dense 3D strain map of robotic flapping wings

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  12. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    Science.gov (United States)

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  13. Do Turkish patients with lumbar disc herniation know body mechanics?

    Science.gov (United States)

    Topcu, Sacide Yildizeli

    2017-01-01

    Most common and important cause of the low back pain is lumbar disc herniation. Patients with lumbar disc herniation face with difficulties during daily activities due to the reduction of physical functions. In order to maintain daily activities without pain and discomfort, the patients should be informed about proper positions and body mechanics. The aim of the study was to determine the knowledge and the applications of the patients with lumbar disc herniation about body mechanics. This descriptive study was conducted with 75 patients with lumbar disc herniation in Edirne, Turkey. The population consisted of 75 patients who accepted to participate in the study. In the collection of data the questionnaire, which was developed according to literature by the researcher, was used. Descriptive statistics, student t-test, variance and correlation analysis were used for assessment of the data. The significance level was accepted at 0.05. It was found that 53.3% of the patients experienced awful/very severe pain. and there were some points that the patients have enough information about; mobilisation, standing, carrying the goods, leaning back while sitting, leaning somewhere while standing, getting support from the chair when standing up, avoiding sudden position changes, changing feet frequently while standing. It was detected that a statistical relation between educational level and knowledge about body mechanics exists. This study shows that individuals with lumbar disc herniation have not enough information about body mechanics and they experienced long-term severe pain. Nurses and other health care workers have important role in explaining the importance of body mechanics to the patients and should encourage them to use that in daily life.

  14. DISC: Deep Image Saliency Computing via Progressive Representation Learning.

    Science.gov (United States)

    Chen, Tianshui; Lin, Liang; Liu, Lingbo; Luo, Xiaonan; Li, Xuelong

    2016-06-01

    Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel deep image saliency computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse-and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. In particular, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects of interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across data sets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC.

  15. Transition of a herniated lumbar disc to lumbar discal cyst: A case report.

    Science.gov (United States)

    Bansil, Rohit; Hirano, Yoshitaka; Sakuma, Hideo; Watanabe, Kazuo

    2016-01-01

    Another rare cause of lower back pain with radiculopathy is the discal cyst. It is believed to arise from degeneration of a herniated disc, although many other theories of its origin have been proposed. Here, we report a patient with lower back pain/radiculopathy attributed originally to a herniated lumbar disc, which transformed within 6 months into a discal cyst. A 42-year-old male had a magnetic resonance (MR) documented herniated lumbar disc at the L4-5 level. It was managed conservatively for 6 months, after which symptoms recurred and progressed. The follow-up MR study revealed a discal cyst at the L4-5 without residual herniated disc. Of interest, the cyst communicated with the L4-5 intervertebral disc, which was herniated under the posterior longitudinal ligament and the disc space. During surgery, the cyst was completely removed, and his symptoms/signs resolved. A discal cyst develops as pathological sequelae of a degenerated herniated disc. Although rare, these lesions must be considered among the differential diagnoses in young patients with radicular back pain. MR study clearly documents these lesions, and surgical excision of the cyst is the treatment of choice.

  16. Enhanced MRI in lumbar disc herniation. Study on the types of herniation and histological findings

    International Nuclear Information System (INIS)

    Koh, Sadao; Okamura, Yuji; Honda, Eiichiro; Takazawa, Shunji; Ohno, Ryuichi; Yasuma, Tsuguo

    1999-01-01

    In the cases which had surgery after enhanced MRI, prolapsed form of hernia and the usefulness of enhanced MRI were examined. The patients were 13 males (14 intervertebral discs) and 5 females (6 intervertebral discs) with lumber disc herniation. The lumber disc herniation was classified into 3 types reference to Macnab's classification; SE (protrusion and subligamentous extrusion), TE (transligamentous extrusion) and SEQ (sequestration). Prolapsed forms were identified in 20 intervertebral discs. Enhanced MRI showed positive in 9 intervertebral discs (SE 1, TE 4 and SEQ 4) and showed negative in 11 discs (SE 10 and TE 1). As for the period from development to enhanced MRI, the significant difference wasn't recognized between positive group and negative group. The diagnostic rate of enhanced MRI was 88.9% (8/9) in sensitivity, 90.9% (10/11) in specificity and 90.0% (18/20) in accuracy. In enhanced MRI, engorged epidural venous plexus was also imaged, and minute change as only annular tear couldn't be detected. Looking from 2 directions crossing at right angles, the effect of contrast enhancement should be judged. (K.H.)

  17. Enhanced MRI in lumbar disc herniation. Study on the types of herniation and histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Sadao; Okamura, Yuji; Honda, Eiichiro; Takazawa, Shunji [Misato Junshin Hospital, Saitama (Japan); Ohno, Ryuichi; Yasuma, Tsuguo

    1999-06-01

    In the cases which had surgery after enhanced MRI, prolapsed form of hernia and the usefulness of enhanced MRI were examined. The patients were 13 males (14 intervertebral discs) and 5 females (6 intervertebral discs) with lumber disc herniation. The lumber disc herniation was classified into 3 types reference to Macnab's classification; SE (protrusion and subligamentous extrusion), TE (transligamentous extrusion) and SEQ (sequestration). Prolapsed forms were identified in 20 intervertebral discs. Enhanced MRI showed positive in 9 intervertebral discs (SE 1, TE 4 and SEQ 4) and showed negative in 11 discs (SE 10 and TE 1). As for the period from development to enhanced MRI, the significant difference wasn't recognized between positive group and negative group. The diagnostic rate of enhanced MRI was 88.9% (8/9) in sensitivity, 90.9% (10/11) in specificity and 90.0% (18/20) in accuracy. In enhanced MRI, engorged epidural venous plexus was also imaged, and minute change as only annular tear couldn't be detected. Looking from 2 directions crossing at right angles, the effect of contrast enhancement should be judged. (K.H.)

  18. Effects of cryogenic treatment on the wear properties of brake discs

    Science.gov (United States)

    Nadig, D. S.; Shivakumar, P.; Anoop, S.; Chinmay, Kulkarni; Divine, P. V.; Harsha, H. P.

    2017-02-01

    Disc brakes are invariably used in all the automobiles either to reduce the rotational speed of the wheel or to hold the vehicle stationary. During the braking action, the kinetic energy is converted into heat which can result in high temperatures resulting in fading of brake effects. Brake discs produced out of martensite stainless steel (SS410) are expected to exhibit high wear resistance properties with low value of coefficient of friction. These factors increase the useful life of the brake discs with minimal possibilities of brake fade. To study the effects of cryogenic treatment on the wear behaviour, two types of brake discs were cryotreated at 98K for 8 and 24 hours in a specially developed cryotreatment system using liquid nitrogen. Wear properties of the untreated and cryotreated test specimens were experimentally determined using the pin on disc type tribometer (ASTM G99-95). Similarly, the Rockwell hardness (HRC) of the specimens were tested in a hardness tester in accordance with ASTM E18. In this paper, the effects of cryotreatment on the wear and hardness properties of untreated and cryotreated brake discs are presented. Results indicate enhancement of wear properties and hardness after cryogenic treatment compared with the normal brakes discs.

  19. Gust Load Alleviation with Robust Control for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2016-01-01

    Full Text Available Traditional methods for gust alleviation of aircraft are mostly proposed based on a specific flight condition. In this paper, robust control laws are designed for a large flexible wing with uncertainty in Mach number and dynamic pressure. To accurately describe the aeroelastic model over a large flight envelope, a nonlinear parameter-varying model is developed which is a function of both Mach number and dynamic pressure. Then a linear fractional transformation is established accordingly and a modified model order reduction technique is applied to reduce the size of the uncertainty block. The developed model, in which the statistic nature of the gust is considered by using the Dryden power spectral density function, enables the use of μ-synthesis procedures for controller design. The simulations show that the μ controller can always effectively reduce the wing root shear force and bending moment at a given range of Mach number and dynamic pressure.

  20. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  1. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  2. Genotoxic evaluation of two oral antidiabetic agents in the Drosophila wing spot test.

    Science.gov (United States)

    Gürbüzel, Mehmet; Çapoğlu, Ilyas; Kızılet, Halit; Halıcı, Zekai; Özçiçek, Fatih; Demirtaş, Levent

    2014-05-01

    In this study, two sulfonylureas--glimepiride and glipizide--commonly used in type 2 diabetes mellitus were investigated for genotoxicity in the Drosophila wing spot test. For this purpose, three-day-old transheterozygous larvae were treated with three mutagenic compounds, and the results obtained were compared with the control group. Mutational or recombinogenic changes were recorded in two recessive genes--multiple wing hairs (mwh) and flare (flr (3)). Two recessive markers were located on the left arm of chromosome 3, mwh in map position 0.3, and flare-3 (flr3) at 38.8, while the centromere was located in position 47.7. Wing spot tests are targeted on the loss of heterozygosity, which may be grounded in different genetic mechanisms such as mutation, mitotic recombination, deletion, half-translocation, chromosome loss, or nondisjunction. Genetic changes formatting in somatic cells of the imaginal discs cause nascence different mutant cloning in different body parts of adult flies. Our in vivo experiments demonstrated that glimepiride and glipizide show the genotoxicity, which is especially dependent on homologous somatic recombination.

  3. Histological analysis of surgical lumbar intervertebral disc tissue provides evidence for an association between disc degeneration and increased body mass index

    Directory of Open Access Journals (Sweden)

    Weiler Christoph

    2011-11-01

    Full Text Available Abstract Background Although histopathological grading systems for disc degeneration are frequently used in research, they are not yet integrated into daily care routine pathology of surgical samples. Therefore, data on histopathological changes in surgically excised disc material and their correlation to clinical parameters such as age, gender or body mass index (BMI is limited to date. The current study was designed to correlate major physico-clinical parameters from a population of orthopaedic spine center patients (gender, age and BMI with a quantitative histologic degeneration score (HDS. Methods Excised lumbar disc material from 854 patients (529 men/325 women/mean age 56 (15-96 yrs. was graded based on a previously validated histologic degeneration score (HDS in a cohort of surgical disc samples that had been obtained for the treatment of either disc herniation or discogenic back pain. Cases with obvious inflammation, tumor formation or congenital disc pathology were excluded. The degree of histological changes was correlated with sex, age and BMI. Results The HDS (0-15 points showed significantly higher values in the nucleus pulposus (NP than in the annulus fibrosus (AF (Mean: NP 11.45/AF 7.87, with a significantly higher frequency of histomorphological alterations in men in comparison to women. Furthermore, the HDS revealed a positive significant correlation between the BMI and the extent of histological changes. No statistical age relation of the degenerative lesions was seen. Conclusions This study demonstrated that histological disc alterations in surgical specimens can be graded in a reliable manner based on a quantitative histologic degeneration score (HDS. Increased BMI was identified as a positive risk factor for the development of symptomatic, clinically significant disc degeneration.

  4. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  5. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  6. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  7. A program for scheduling a Patrol Air Wing training plan.

    OpenAIRE

    Hutson, David V.

    1988-01-01

    Approved for public release; distribution in unlimited. This research examined the feasibility of a computerized scheduling system to assist the development of an annual training plan for a Patrol Air Wing. A prototype is proposed incorporating a modified A* search control structure to handle the combinatorial part of the problem. The system uses a pre-existing file for its database and is implemented on an ISI workstation using the Prolog computer language. Comparisons with...

  8. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  9. Psychosocial stress factors among patients with lumbar disc herniation, scheduled for disc surgery in comparison with patients scheduled for arthroscopic knee surgery

    Science.gov (United States)

    Cornefjord, Michael; Bergkvist, Leif; Öhrvik, John; Linton, Steven J.

    2007-01-01

    Returning to work after disc surgery appears to be more heavily influenced by psychological aspects of work than by MR-identified morphological alterations. It is still not known whether psychosocial factors of importance for outcome after disc surgery are present preoperatively or develop in the postoperative phase. The aim of this study was to investigate the presence of work-related stress, life satisfaction and demanding life events, among patients undergoing first-time surgery for lumbar disc herniation in comparison with patients scheduled for arthroscopic knee surgery. Sixty-nine patients with disc herniation and 162 patients awaiting arthroscopy were included in the study, during the time period March 2003 to May 2005. Sixty-two percent of the disc patients had been on sick leave for an average of 7.8 months and 14 percent of the knee patients had been on sick leave for an average of 4.2 months. The psychosocial factors were investigated preoperatively using a questionnaire, which was a combination of the questionnaire of quality of work competence (QWC), life satisfaction (LiSat9) and life events as a modification of the social readjustment scale. There were no significant differences between the two groups in terms of work-related stress or the occurrence of demanding life events. The disc patients were significantly less satisfied with functions highly inter-related to pain and discomfort, such as present work situation, leisure-time, activities of daily living (ADL) function and sleep. Patients with disc herniation on sick leave were significantly less satisfied with their present work situation than knee patients on sick leave; this sub-group of patients with disc herniation also reported significantly higher expectations in relation to future job satisfaction than knee patients. The results indicate that psychosocial stress is not more pronounced preoperatively in this selected group of disc patients, without co-morbidity waiting for first-time disc

  10. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  11. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level.

    Science.gov (United States)

    Hakan, Tayfun; Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome.

  12. Lumbar herniated disc: spontaneous regression.

    Science.gov (United States)

    Altun, Idiris; Yüksel, Kasım Zafer

    2017-01-01

    Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3-L4, L4-L5 or L5-S1 were enrolled. The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3-L4, L4-L5, and L5-S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5-22). It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery.

  13. Minimizing cryopreservation-induced loss of disc cell activity for storage of whole intervertebral discs

    Directory of Open Access Journals (Sweden)

    SCW Chan

    2010-06-01

    Full Text Available Severe intervertebral disc (IVD degeneration often requires disc excision and spinal fusion, which leads to loss of spinal segment mobility. Implantation of an allograft disc or tissue engineered disc construct emerges as an alternative to artificial disc replacement for preserving the motion of the degenerated level. Establishment of a bank of cadaveric or engineered cryopreserved discs enables size matching, and facilitates clinical management. However, there is a lack of understanding of the behaviour of disc cells during cryopreservation, as well as how to maximize their survival, such that disc graft properties can be preserved. Here, we report on the effect of alterations in cooling rates, cryoprotective agents (CPAs, and duration of pre-cryopreservation incubation in CPA on cellular activity in whole porcine lumbar discs. Our results indicated that cooling rates of -0.3°C/min and -0.5°C /min resulted in the least loss of metabolic activity in nucleus pulposus (NP and annulus fibrosus (AF respectively, while metabolic activity is best maintained by using a combination of 10% dimethylsulphoxide (DMSO and 10% propylene-glycol (PG as CPA. By the use of such parameters, metabolic activity of the NP and the AF cells could be maintained at 70% and 45%, respectively, of that of the fresh tissue. Mechanical testing and histological evaluation showed no significant differences in mechanical properties or alterations in disc structure compared to fresh discs. Despite the limitations of the animal model, our findings provide a framework for establishing an applicable cryopreservation protocol for human disc allografts or tissue-engineered disc constructs.

  14. Intervertebral Disc Characteristic on Progressive Neurological Deficit

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2017-09-01

    Full Text Available Objective: To examine the intervertebral disc characteristic on magnetic resonance imaging (MRI in lumbar herniated disc (LHD patients with progressive neurological deficit. Methods: Patients were collected retrospectively from Dr. Hasan Sadikin General Hospital Database from 2011–2013 with LHD, had neurological deficit such as radiculopathy and cauda equine syndrome for less than four weeks with a positive sign confirmed by neurological examination and confirmatory with MRI examination. Results: A total of 14 patients with lumbar herniated disc disease (10 males, 4 females suffered from progressive neurological deficit with an average age of (52.07±10.9 years old. Early disc height was 9.38±0.5 mm and progressive neurological deficit state disc height was 4.03±0.53 mm, which were significantly different statisticaly (p<0.01. Symptoms of radiculopathy were seen in 11 patients and cauda equine syndrome in three patients. Modic changes grade 1 was found in five patients, grade 2 in eight patients,grade 3 in one patient, Pfirmman grade 2 in eleven patients and grade 3 in three patients. Thecal sac compression 1/3 compression was seen in four patients and 2/3 compression in ten patients. Conclusions: Neurosurgeon should raise concerns on the characteristic changes of intervertebral disc in magnetic resonance imaging examination to avoid further neural injury in lumbar herniated disc patients.

  15. The slaved disc model for SS 433

    International Nuclear Information System (INIS)

    Whitmire, D.P.; Matese, J.J.

    1980-01-01

    A slaved disc model for SS 433 is investigated in which the beams originate normal to the surface of an accretion disc around a compact object in a binary system. The 13-day period in the 'stationary' system of lines is assumed to be associated with binary orbital motion and the 164-day periodicity in the moving line system is identified with disc precession. As in the slaved disc model for Her X-1, it is assumed that material is processed through the disc rapidly (relative to 164 days) so that the disc precesses at the same rate as the spin axis of the secondary which is driven by the gravitational torque applied by the compact object. If the secondary star does not underfill its critical lobe then the apparent absence of X-ray or optical eclipsing and beam interruption by the secondary places severe constraints on the model. It is shown that the viability of the basic model requires that the mass of the compact object be approximately > 10 times the mass of the secondary. Thus if the slaved disc model is applicable to SS 433 and if the mass of the secondary is approximately > 1 solar mass it follows that the compact object is a massive black hole. (author)

  16. Finite element modeling of the radiative properties of Morpho butterfly wing scales.

    Science.gov (United States)

    Mejdoubi, A; Andraud, C; Berthier, S; Lafait, J; Boulenguez, J; Richalot, E

    2013-02-01

    With the aim of furthering the explanation of iridescence in Morpho butterflies, we developed an optical model based on the finite-element (FE) method, taking more accurately into account the exact morphology of the wing, origin of iridescence. We modeled the photonic structure of a basal scale of the Morpho rhetenor wing as a three-dimensional object, infinite in one direction, with a shape copied from a TEM image, and made out of a slightly absorbing dielectric material. Periodic boundary conditions were used in the FE method to model the wing periodic structure and perfectly matched layers permitted the free-space scattering computation. Our results are twofold: first, we verified on a simpler structure, that our model yields the same result as the rigorous coupled wave analysis (RCWA), and second, we demonstrated that it is necessary to assume an absorption gradient in the true structure, to account for experimental reflectivity measured on a real wing.

  17. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2016-02-01

    Full Text Available A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisciplinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter boundary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quantitative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flexible wings.

  18. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    Science.gov (United States)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  19. Válvula mecânica em carbono, de disco basculante, com revestimento de material biológico: princípios e desenvolvimento Pivoting disc carbon mechanical valve covered with biological material: principles and development

    Directory of Open Access Journals (Sweden)

    Hélio Pereira de Magalhães

    1995-12-01

    . RESULTADOS INICIAIS: como o número de pacientes é pequeno, destacam-se apenas algumas observações iniciais: ausência de tromboembolismo, ausência de disfunção mecânica primária, ocorrência de dois acidentes hemorrágicos maiores e um episódio de trombose em paciente com dois meses de evolução, por anticoagulação inadequada, com reoperação e mantendo a mesma prótese com achado de depósito difuso de fibrina e boa evolução após dez meses. CONCLUSÕES: os resultados dos testes mecânicos do material e da válvula e os aspectos clínicos iniciais são favoráveis, devendo-se ampliar a casuística, com proteção anticoagulante mais efetiva e uniforme nos três primeiros meses. Após três meses, a presença do material biológico e as baixas doses de anticoagulante parecem ser eficientes no controle das complicações pós-operatórias da válvula mecânica, contra a trombose, o tromboembolismo e os acidentes hemorrágicos.INTRODUCTION: a hybrid valve was developed for improving a durable mechanic disc valve with good biocompatibility, by promoting easy healing around the ring valve and making the maximum isolation of the synthetic material in the blood stream. Lining the mechanical valve with porcine biologic tissue (pericardium and vein is a tentative to reduce the morbidity and mortality on respect of thrombosis, thromboembolism, reoperations and minor use of anticoagulants to reduce the hemorrhagic events. Some principles were established on hybrid valve: durable mechanical system, points of contact without biologic material, use of biological material with minor organic reaction, movable parts without biologic material outside its perimeter, preferential closing system with superposition on a track seat and loose joints for accept biologic material limited growth. MATERIAL AND METHOD: the valve is the type of perforated tilting disc and all made of Carbolite (hardened polymeric carbon. The prosthesis is all covered except the central pivot, the disc

  20. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  1. Percutaneous endoscopic lumbar discectomy for L5-S1 disc herniation: transforaminal versus interlaminar approach.

    Science.gov (United States)

    Choi, Kyung Chul; Kim, Jin-Sung; Ryu, Kyeong-Sik; Kang, Byung Uk; Ahn, Yong; Lee, Sang-Ho

    2013-01-01

    Percutaneous endoscopic lumbar discectomy (PELD) is a minimally invasive spinal technique. The unique anatomic features of the L5-S1 space include a large facet joint, narrow foramen, small disc space, and a wide interlaminar space. PELD can be performed via 2 routes, transforaminal (TF-PELD) or interlaminar (IL-PELD). However, it is questionable that the decision of the endoscopic route for L5-S1 discs only depends on the surgeon's preference and anatomic relation between iliac bone and disc space. Thus far, no study has compared TF-PELD with IL-PELD for L5-S1 disc herniation. The goal of this study was to compare the radiologic features and results of TF-PELD and IL-PELD. We have clarified the patient selection for the PELD route for L5-S1 disc herniation. Retrospective evaluation. Thirty consecutive patients each were treated with TF-PELD and IL-PELD for L5-S1 disc herniation in 2 institutes, respectively. Radiological assessments were performed pre- and postoperatively. The disc type, disc size, location, migration, disc height, foraminal height, iliolumbar angle, iliac height, and interlaminar space were analyzed. Clinical data were compared with a 2-year follow-up period. Pre- and postoperative pain was measured using a visual analog scale (VAS; 0 - 10) and functional status was assessed using the Oswestry Disability Index (ODI; 0 - 100%) and the time to return to work. In the 2 groups, the mean VAS scores for back and leg pain, as well as the ODI, were significantly improved. The mean time to return to work was 4.9 weeks with TF-PELD and 4.4 weeks with IL-PELD. Incomplete removal, resulting in the need for subsequent open surgery, occurred in one case (3.3%) of TF-PELD and in 2 cases (6.6%) of IL-PELD. Postoperative dysesthesia developed in 2 patients (6.7%) after IL-PELD; however, there was no dysesthesia after TF-PELD. Recurrence occurred in 3.3% with TF-PELD and in 6.7% with IL-PELD during the 2-year follow-up. A significant difference between groups was

  2. Development of an Optical Disc Recorder

    Science.gov (United States)

    1977-07-01

    linear electric drive motor and a l in e a r velocity trans- ducer from Collins Corp. Recording tests with the new fixture are planned for the next...quarter. FOCUS MOTOR D I SC — - — — S L E D T U R NT A B L E F’ iq ~1 r - 2 : PC~c o rd 4 . 2 Focus Moto r An improved f o c u s moto r ....ss crm s

  3. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  4. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  5. Intradural disc herniation: how I do it.

    Science.gov (United States)

    Rodrigo, Víctor; Claramonte, Marta; Martín, Mónica; Calatayud, Juan B

    2018-03-12

    Intradural disc herniation is a rare phenomenon in spine surgery. Diagnosis is difficult despite current neuroradiologic imaging techniques. We present a case of a 59-year-old man with lumbar and radicular pain and a recurrent lumbar herniation. A laminectomy was performed after no clear disc herniation in the epidural space was found and an intradural mass was palpable. A durotomy showed an intradural disc fragment that was removed, followed by an arthrodesis. Only intraoperative findings lead to a definitive diagnosis for intradural herniation. A durotomy needs to be performed. In this case, an arthrodesis was necessary to avoid complications of segmental instability.

  6. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  7. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    Science.gov (United States)

    Zhang, Sichao; Chen, Yifang

    2015-01-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings. PMID:26577813

  8. Outperforming hummingbirds' load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism.

    Science.gov (United States)

    Leys, Frederik; Reynaerts, Dominiek; Vandepitte, Dirk

    2016-08-15

    The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. © 2016. Published by The Company of Biologists Ltd.

  9. Outperforming hummingbirds’ load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism

    Directory of Open Access Journals (Sweden)

    Frederik Leys

    2016-08-01

    Full Text Available The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work.

  10. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  11. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  12. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  13. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  14. Analysis of adjacent segment reoperation after lumbar total disc replacement

    OpenAIRE

    Rainey, Scott; Blumenthal, Scott L.; Zigler, Jack E.; Guyer, Richard D.; Ohnmeiss, Donna D.

    2012-01-01

    Background Fusion has long been used for treating chronic back pain unresponsive to nonoperative care. However, potential development of adjacent segment degeneration resulting in reoperation is a concern. Total disc replacement (TDR) has been proposed as a method for addressing back pain and preventing or reducing adjacent segment degeneration. The purpose of the study was to determine the reoperation rate at the segment adjacent to a level implanted with a lumbar TDR and to analyze the pre-...

  15. Locally prepared antibiotic sensitivity discs: a substitute for imported ...

    African Journals Online (AJOL)

    Zones of inhibition were compared with those obtained from commercial antibiotic discs. Results obtained showed that discs prepared locally from antibiotic tablets, performed comparably with commercially obtained discs. There was no significant statistical difference between the two tested discs. We therefore recommend ...

  16. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  17. Squeeze Film Behaviour in Rotating Porous Annular Discs ...

    African Journals Online (AJOL)

    The squeeze film behaviour between rotating annular discs, when the upper disc with a porous facing approached the parallel lower disc, was theoretically analysed. The lubricant was a magnetic fluid and the external magnetic field was oblique to the lower disc. Expressions were obtained for pressure, load capacity and ...

  18. Investigation of the coatings applied onto brake discs on disc-brake pad pair

    Directory of Open Access Journals (Sweden)

    I. Kiliçaslan

    2009-07-01

    Full Text Available While braking, according to the severity of it, thermal, metallurgical, constructive and tribological occurrences emerge on the brake disc-pad interface. In this study, NiCr was sprayed as bonding layer onto the discs, one ofwhich was coated with Al2O3-TiO2 by plasma spray and the other was coated with NiCr-Cr3C2 by High Velocity Oxygen Fuel (HVOF. In addition, the discs were tested with inertia dynamometer according to SAE’s J2522 testing procedure. The measurements showed that although the pads of the coated discs were exposed to higher braking temperatures, friction coefficient of the disc coated with NiCr- Cr3C2 was obtained 6 % higher compared to the original disc.

  19. Is that lumbar disc symptomatic? Herniated lumbar disc associated with contralateral radiculopathy.

    Science.gov (United States)

    Abdul Jalil, Muhammad Fahmi; Lam, Miu Fei; Wang, Yi Yuen

    2014-05-07

    Herniated lumbar disc may be asymptomatic or associated with lower limb radiculopathy. Most spinal surgeons would offer surgery following a period of conservative measures if the radiological and clinical findings correlate. However, the existing dictum that lumbar radiculopathy should correlate with ipsilateral lumbar disc herniation may not be accurate as it can rarely present with contralateral sciatica. Literature regarding this phenomenon is scarce. Therefore, we report a patient with herniated lumbar disc presenting with predominantly contralateral motor weakness radiculopathy, which resolved after discectomy.

  20. Protoplanetary disc `isochrones' and the evolution of discs in the M˙-Md plane

    Science.gov (United States)

    Lodato, Giuseppe; Scardoni, Chiara E.; Manara, Carlo F.; Testi, Leonardo

    2017-12-01

    In this paper, we compare simple viscous diffusion models for the disc evolution with the results of recent surveys of the properties of young protoplanetary discs. We introduce the useful concept of 'disc isochrones' in the accretion rate-disc mass plane and explore a set of Monte Carlo realization of disc initial conditions. We find that such simple viscous models can provide a remarkable agreement with the available data in the Lupus star forming region, with the key requirement that the average viscous evolutionary time-scale of the discs is comparable to the cluster age. Our models produce naturally a correlation between mass accretion rate and disc mass that is shallower than linear, contrary to previous results and in agreement with observations. We also predict that a linear correlation, with a tighter scatter, should be found for more evolved disc populations. Finally, we find that such viscous models can reproduce the observations in the Lupus region only in the assumption that the efficiency of angular momentum transport is a growing function of radius, thus putting interesting constraints on the nature of the microscopic processes that lead to disc accretion.

  1. Transradicular lumbar disc herniation: An extreme variant of intraradicular disc herniation.

    Science.gov (United States)

    Kasliwal, Manish K; Shimer, Adam L

    2015-01-01

    Intradural or intraradicular lumbar disc herniation (IDH) is a relatively rare condition often diagnosed intraoperatively. We encountered an extreme variant of IDH - a transradicular herniation as the disc material extruded through the lumbar nerve root through a split essentially transecting the nerve root. While failure to recognize intradural and intraradicular disc herniation can lead to failed back surgery, the variant described in the present case could lead to iatrogenic injury and complication if not recognized. A unique case of transradicular lumbar disc herniation in a 25-year-old patient is presented with the depiction of intraoperative images supplementing the text.

  2. Treatment of lumbar disc herniation by percutaneous laser disc decompression (PLDD) and modified PLDD

    Science.gov (United States)

    Chi, Xiao fei; Li, Hong zhi; Wu, Ru zhou; Sui, Yun xian

    2005-07-01

    Objective: To study the micro-invasive operative method and to compare the effect of treatment of PLDD and modified PLDD for Lumbar Disc Herniation. Method: Vaporized part of the nucleus pulposus in single or multiple point after acupuncture into lumbar disc, to reach the purpose of the decompression of the lumbar disc. Result: Among the 19 cases of the regular PLDD group, the excellent and good rate was 63.2%, and among the 40 cases of the modified PLDD group, the excellent and good rate was 82.5%. Conclusion: The modified PLDD has good effect on the treatment for lumbar disc herniation.

  3. Transradicular lumbar disc herniation: An extreme variant of intraradicular disc herniation

    Directory of Open Access Journals (Sweden)

    Manish K Kasliwal

    2015-01-01

    Full Text Available Intradural or intraradicular lumbar disc herniation (IDH is a relatively rare condition often diagnosed intraoperatively. We encountered an extreme variant of IDH - a transradicular herniation as the disc material extruded through the lumbar nerve root through a split essentially transecting the nerve root. While failure to recognize intradural and intraradicular disc herniation can lead to failed back surgery, the variant described in the present case could lead to iatrogenic injury and complication if not recognized. A unique case of transradicular lumbar disc herniation in a 25-year-old patient is presented with the depiction of intraoperative images supplementing the text.

  4. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sven; Quirbach, Sebastian; Krause, Fabian G.; Benneker, Lorin M. [Inselspital, Berne University Hospital, Department of Orthopaedic Surgery, Berne (Switzerland); Mamisch, Tallal C. [Inselspital, Berne University Hospital, Department of Radiology, Berne (Switzerland); Werlen, Stefan [Clinic Sonnenhof, Department of Radiology, Berne (Switzerland)

    2012-09-15

    To demonstrate the potential benefits of biochemical axial T2* mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting. Ninety-three patients suffering from lumbar spine problems were examined using standard MRI protocols including an axial T2* mapping protocol. All discs were classified morphologically and grouped as ''healthy'' or ''abnormal''. Differences between groups were analysed regarding to the specific T2* pattern at different regions of interest (ROIs). Healthy intervertebral discs revealed a distinct cross-sectional T2* value profile: T2* values were significantly lower in the annulus fibrosus compared with the nucleus pulposus (P = 0.01). In abnormal IVDs, T2* values were significantly lower, especially towards the centre of the disc representing the expected decreased water content of the nucleus (P = 0.01). In herniated discs, ROIs within the nucleus pulposus and ROIs covering the annulus fibrosus showed decreased T2* values. Axial T2* mapping is effective to detect early stages of degenerative disc disease. There is a potential benefit of axial T2* mapping as a diagnostic tool, allowing the quantitative assessment of intervertebral disc degeneration. circle Axial T2* mapping effective in detecting early degenerative disc disease. (orig.)

  5. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  6. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    Science.gov (United States)

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  7. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle

    International Nuclear Information System (INIS)

    Nakata, T; Liu, H; Nishihashi, N; Wang, X; Sato, A; Tanaka, Y

    2011-01-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s −1 , operate in a Reynolds number regime of 10 5 or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4–3.0 g and a wingspan of 10–12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  8. Low back pain and degenerative disc disease

    OpenAIRE

    Jandrić Slavica; Antić Branislav

    2006-01-01

    Introduction. Various clinical conditions can cause low back pain, and in most cases it is of a degenerative origin. Degenerative disc disease is a common condition which affects young to middle-aged men and women equally. Changes in the mechanical properties of the disc lead to degenerative arthritis in the intervertebral joints, osteophytes, and narrowing the intervertebral foramen or the spinal canal. Pathophysiology. Degenerative cascade, described by Kirkaldy-Willis, is the widely accept...

  9. Myxomatous degeneration of the lumbar intervertebral disc.

    Science.gov (United States)

    Beatty, R A

    1985-08-01

    Sixteen patients were operated on for lumbar pain and pain radiating into the sciatic nerve distribution. In all 16, when the anulus fibrosus was incised, soft, gray disc material extruded under pressure like toothpaste being squeezed from a tube. This syndrome of myxomatous degeneration is a distinct entity, different from classical fibrotic disc degeneration or herniated nucleus pulposus. Surgical removal associated with partial facetectomy produced excellent results. The concept of incompetence of the anulus fibrosis is discussed.

  10. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  11. Hygroviscoelasticity of the Human Intervertebral Disc.

    Science.gov (United States)

    1980-07-01

    occurs most frequently in the posterior portion of the disc and results often in pain - ful pressure on the spinal nerves. When high mechanical loads...nodes. This type of damage does not generally, per se, lead to pain symptoms, but because the phenomenon can change the overall stiffness of the disc...are fused with each other to form two bones, the sacrum and the coccyx . Figure 1 shows a lateral view of the vertebral column in the erect position

  12. Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin(Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    María-José Sanzana

    2013-12-01

    Full Text Available Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin (Lepidoptera, Nymphalidae. When the environmental conditions change locally, the organisms and populations may also change in response to the selection pressure, so that the development of individuals may become affected in different degrees. There have been only a few studies in which the patterns of wing morphology variation have been looked into along a latitudinal gradient by means of geometric morphometrics. The aim of this work was to assess the morphologic differentiation of wing among butterfly populations of the species Auca coctei. For this purpose, 9 sampling locations were used which are representative of the distribution range of the butterfly and cover a wide latitudinal range in Chile. The wing morphology was studied in a total of 202 specimens of A. coctei (150 males and 52 females, based on digitization of 17 morphologic landmarks. The results show variation of wing shape in both sexes; however, for the centroid size there was significant variation only in females. Females show smaller centroid size at higher latitudes, therefore in this study the Bergmann reverse rule is confirmed for females of A. coctei. Our study extends morphologic projections with latitude, suggesting that wing variation is an environmental response from diverse origins and may influence different characteristics of the life history of a butterfly.

  13. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

    Directory of Open Access Journals (Sweden)

    Muhammad Yasar Javaid

    2017-07-01

    Full Text Available We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

  14. Optical, Nanomechanical and Electrochemical Sensing on a DVD Disc

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    Our vision is to create a platform where optical, nanomecanical and electrochemical sensors can be integrated and read-out using the mechanics and the optics from DVDs and Blu-Rays. Integrating sensors on a disc allows us to use centrifugal microfluidis which has been developed for more than 50...... years and which has proven to be a simple and powerful way to manipulate liquid samples without the need of external pumps [1]. As an example, serum can be separated from a whole blood sample in a few minutes by simply spinning the disc and allowing the cellular components to sediment. Cantilever...... time as having the benefit of the centrifugal liquid handling. As an example it is simple to measure in flow conditions and to perform continuous cyclic voltammograms in different concentrations of electrolytes using built-in valves. In conclusion, the merger of sensors and centrifugal microfluidcs...

  15. Surgical management for lumbar disc herniation in pregnancy.

    Science.gov (United States)

    Kapetanakis, S; Giovannopoulou, E; Blontzos, N; Kazakos, G; Givissis, P

    2017-12-01

    Lumbar disc herniation is a common surgical spine pathology that may be presented during pregnancy. The state of pregnancy complicates the diagnosis and therapeutical management of this entity. Specific considerations rule the decision for surgical intervention, the optimal timing of it and the type of selected procedure in a pregnant patient, due to the potential risks for the fetus. In the last 30 years, evolution in the field of spine surgery has provided options other than open standard discectomy. The well-established concept of "minimal intervention" has led to the development of microdiscectomy and other innovative, full-endoscopic techniques for lumbar discectomy. The aim of the present study is to review the surgical management of lumbar disc herniation in pregnancy and investigate the potential role of minimally invasive spine surgery in this specific population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  17. CT findings of calcified herniated lumbar disc

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyo Kun; Lee, Jun Hyung [Chang Dong Armed Forces Evacuation Hospital, Seoul (Korea, Republic of)

    1987-12-15

    Computed tomography (CT) of 10 calcified herniated lumber discs among 46 operated cases were analysed at the aspects of incidence, location, shape, etc. The results are as follows: 1. The incidence of calcification is 22% (10/46). 2. Among 10 cases, 3 cases are at the level of L4-5 disc space and 7 cases are at the level of L5-S1 disc space. 3. Central herniation (8 cases) are more common than posterolateral herniation (2 cases). 4. Linear or band-like calcifications in the periphery of herniated disc (annulus fibrosus type) are 6 cases and dense patchy calcification in the central portion of herniated disc (nucleus pulposus type) are 4 cases. 5. Two cases (50%) of 4 cases with nucleus pulposus type calcification were found to be ruptured at operation, but none of 6 annulus fibrous calcification types showed rupture. 6. Because more wide operation field and invasive exploration were required in calcified cases than non-calcified cases, it is suggested to evaluate the presence, location, and type of calcification in herniated disc in detail.

  18. Dipole-exchange spin waves in perpendicularly magnetized discs: Role of the Oersted field

    Science.gov (United States)

    Arias, R. E.; Mills, D. L.

    2007-06-01

    We develop the theory of the exchange dipole spin waves in thin circular discs for the case where the magnetization is nominally perpendicular to the plane. Our interest is in the circumstance where a transport current is injected into the disc, with current also perpendicular to the plane of the disc. Such a current creates an azimuthal magnetic field, referred to often as the Oersted field. We develop the theory of the influence of the Oersted field on the spin-wave spectrum of the disc. This field produces a vortex state. We suggest that this vortex state is stable down to zero applied field. If the external applied field H0 is in the +z direction, perpendicular to the plane of the disc, the vortex state has magnetization at the center of the disc also parallel to +z always. This is the case even when H0<4πMS , where the magnetization at the center of the disc is antiparallel to the local field H0-4πMS there. We present calculations of the current dependence of spin-wave frequencies of several modes as a function of applied magnetic field. We also address an issue overlooked in previous studies of spin waves in thin discs. This is that for quantitative purposes, it is not sufficient to describe internal dipole fields generated by the spin motions simply by adding an effective internal field -4πmzẑ to the equations of motion, with mz the component of dynamic magnetization normal to the surface. For samples of present interest, we derive terms we call gradient corrections, and these play a role quantitatively comparable to exchange itself in the analysis of the spin-wave frequencies. Quantitative studies of spin dynamics in such samples thus must include the gradient corrections.

  19. Contribution of a winged phlebotomy device design to blood splatter.

    Science.gov (United States)

    Haiduven, Donna J; McGuire-Wolfe, Christine; Applegarth, Shawn P

    2012-11-01

    Despite a proliferation of phlebotomy devices with engineered sharps injury protection (ESIP), the impact of various winged device designs on blood splatter occurring during venipuncture procedures has not been explored. To evaluate the potential for blood splatter of 6 designs of winged phlebotomy devices. A laboratory-based device evaluation without human subjects, using a simulated patient venous system. We evaluated 18 winged phlebotomy devices of 6 device designs by Terumo, BD Vacutainer (2 designs), Greiner, Smith Medical, and Kendall (designated A-F, respectively). Scientific filters were positioned around the devices and weighed before and after venipuncture was performed. Visible blood on filters, exam gloves, and devices and measurable blood splatter were the primary units of analysis. The percentages of devices and gloves with visible blood on them and filters with measurable blood splatter ranged from 0% to 20%. There was a statistically significant association between device design and visible blood on devices ([Formula: see text]) and between device design and filters with measurable blood splatter ([Formula: see text]), but not between device design and visible blood on gloves. A wide range of associations were demonstrated between device design and visible blood on gloves or devices and incidence of blood splatter. The results of this evaluation suggest that winged phlebotomy devices with ESIP may produce blood splatter during venipuncture. Reinforcing the importance of eye protection and developing a methodology to assess ocular exposure to blood splatter are major implications for healthcare personnel who use these devices. Future studies should focus on evaluating different designs of intravascular devices (intravenous catheters, other phlebotomy devices) for blood splatter.

  20. GES DISC Data Recipes in Jupyter Notebooks

    Science.gov (United States)

    Li, A.; Banavige, B.; Garimella, K.; Rice, J.; Shen, S.; Liu, Z.

    2017-12-01

    The Earth Science Data and Information System (ESDIS) Project manages twelve Distributed Active Archive Centers (DAACs) which are geographically dispersed across the United States. The DAACs are responsible for ingesting, processing, archiving, and distributing Earth science data produced from various sources (satellites, aircraft, field measurements, etc.). In response to projections of an exponential increase in data production, there has been a recent effort to prototype various DAAC activities in the cloud computing environment. This, in turn, led to the creation of an initiative, called the Cloud Analysis Toolkit to Enable Earth Science (CATEES), to develop a Python software package in order to transition Earth science data processing to the cloud. This project, in particular, supports CATEES and has two primary goals. One, transition data recipes created by the Goddard Earth Science Data and Information Service Center (GES DISC) DAAC into an interactive and educational environment using Jupyter Notebooks. Two, acclimate Earth scientists to cloud computing. To accomplish these goals, we create Jupyter Notebooks to compartmentalize the different steps of data analysis and help users obtain and parse data from the command line. We also develop a Docker container, comprised of Jupyter Notebooks, Python library dependencies, and command line tools, and configure it into an easy to deploy package. The end result is an end-to-end product that simulates the use case of end users working in the cloud computing environment.

  1. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  2. The effect of X-ray irradiation on the time-dependent behaviour of accretion discs with stochastic perturbations

    Science.gov (United States)

    Maqbool, Bari; Misra, Ranjeev; Iqbal, Naseer; Ahmad, Naveel

    2015-04-01

    The UV emission from X-ray binaries, is more likely to be produced by reprocessing of X-rays by the outer regions of an accretion disc. The structure of the outer disc may be altered due to the presence of X-ray irradiation and we discuss the physical regimes where this may occur and point out certain X-ray binaries where this effect may be important. The long-term X-ray variability of these sources is believed to be due to stochastic fluctuations in the outer disc, which propagate inwards giving rise to accretion rate variation in the X-ray-producing inner regions. The X-ray variability will induce structural variations in the outer disc which in turn may affect the inner accretion rate. To understand the qualitative behaviour of the disc in such a scenario, we adopt simplistic assumptions that the disc is fully ionized and is not warped. We develop and use a time-dependent global hydrodynamical code to study the effect of a sinusoidal accretion rate perturbation introduced at a specific radius. The response of the disc, especially the inner accretion rate, to such perturbations at different radii and with different time periods is shown. While we did not find any oscillatory or limit cycle behaviour, our results show that irradiation enhances the X-ray variability at time-scales corresponding to the viscous time-scales of the irradiated disc.

  3. Simple discs with flat roatation curves

    Science.gov (United States)

    Evans, N. W.; Collett, J. L.

    1993-09-01

    The aim of this paper is to understand why the squared axial ratio of the velocity ellipse, σphi_^2^/σ_R_^2^, of old disc stars in the Galaxy is less than 1/2. To this end, two infinitesimally thin steady-state axisymmetric discs with asymptotically flat circular velocity curves are presented. The first model - which we designate the Rybicki disc has surface density decaying inversely with radius. The second model is Freeman's exponential disc, which is immersed in the gravity field of the halo simulated by Mestel's potential. For both discs, we provide an infinite family of simple distribution functions, which form a sequence of increasing pressure support. In the Rybicki disc, the stellar streaming velocity increases outwards with radius, which typically causes σphi_^2^/σ_R_^2^ to be greater than 1/2. For our exponential disc distribution functions, the stellar streaming velocity declines outwards with radius, which typically causes σphi^2^/σ_R_^2^ to be less than 1/2. Our exponential disc distribution functions have the property that σ_R_^2^ decays only inversely with galactocentric radius R. If the diminution is faster, the ratio σphi_^2^/σ_R_^2^ rises above 1/2 at the Sun as the mean streaming velocity declines only in the inner disk. To investigate this, exponential discs with exponentially falling radial velocity dispersion are built. These are in conflict with the observations on the axial ratio, even allowing for a mismatch in the photometric and kinematic scalelengths. There are a number of possible resolutions of the contradiction: (1) the galactic disc is not in a steady state or is non-axisymmetric; (2) the circular velocity curve is locally declining; (3) the description of all stellar populations by a single distribution function is invalid; (4) the radial velocity dispersion does not drop off exponentially fast, but much more slowly; (5) the sampling of moving clusters and transient associations of stars creates a biased data set.

  4. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  5. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration

    Science.gov (United States)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  6. Induced mutations of winged bean in Ghana

    International Nuclear Information System (INIS)

    Klu, G.Y.P.; Quaynor-Addy, M.; Dinku, E.; Dikumwin, E.

    1989-01-01

    Winged bean (Psophocarpus tetragonolobus (L.) D.C.) was introduced into Ghana about two decades ago and not long after a high quality baby food was compounded from it. Germplasm collections are established at the Kade Agricultural Research Station of the University of Ghana and the University of Cape Coast. In 1980 a mutation breeding project was initiated at the University of Cape Coast under FAO/IAEA research contract and among various mutants a single erect stem mutant, a multiple branched bush type and a mutant with extra long pods were obtained. A similar programme was started at the National Nuclear Research Centre Kwabenya in 1982. Seeds of accessions UPS 122 and Kade 6/16 were gamma irradiated (100-400 Gy). In M 2 a mutant was obtained that did not flower throughout a growing period of five months. This mutant had very few leaves but developed an underground tuber weighing ca. 100 g. The parent, UPS 122, although normally tuber producing did not form tubers at Kwabenya within the period studied. In M 3 , mutants with variations in seed size and seed coat colour have been detected

  7. TRMM Precipitation Application Examples Using Data Services at NASA GES DISC

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.; Greene, M.

    2012-01-01

    Data services to support precipitation applications are important for maximizing the NASA TRMM (Tropical Rainfall Measuring Mission) and the future GPM (Global Precipitation Mission) mission's societal benefits. TRMM Application examples using data services at the NASA GES DISC, including samples from users around the world will be presented in this poster. Precipitation applications often require near-real-time support. The GES DISC provides such support through: 1) Providing near-real-time precipitation products through TOVAS; 2) Maps of current conditions for monitoring precipitation and its anomaly around the world; 3) A user friendly tool (TOVAS) to analyze and visualize near-real-time and historical precipitation products; and 4) The GES DISC Hurricane Portal that provides near-real-time monitoring services for the Atlantic basin. Since the launch of TRMM, the GES DISC has developed data services to support precipitation applications around the world. In addition to the near-real-time services, other services include: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC. Mirador is designed to be fast and easy to learn; 3) Data via OPeNDAP (http://disc.sci.gsfc.nasa.gov/services/opendap/). The OPeNDAP provides remote access to individual variables within datasets in a form usable by many tools, such as IDV, McIDAS-V, Panoply, Ferret and GrADS; and 4) The Open Geospatial Consortium (OGC) Web Map Service (WMS) (http://disc.sci.gsfc.nasa.gov/services/wxs_ogc.shtml). The WMS is an interface that allows the use of data and enables clients to build customized maps with data coming from a different network.

  8. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc.

    Science.gov (United States)

    Brown, Joanna R; Schwartz, Cindi L; Heumann, John M; Dawson, Scott C; Hoenger, Andreas

    2016-04-01

    Giardia lamblia is a protistan parasite that infects and colonizes the small intestine of mammals. It is widespread and particularly endemic in the developing world. Here we present a detailed structural study by 3-D negative staining and cryo-electron tomography of a unique Giardia organelle, the ventral disc. The disc is composed of a regular array of microtubules and associated sheets, called microribbons that form a large spiral, held together by a myriad of mostly unknown associated proteins. In a previous study we analyzed by cryo-electron tomography the central microtubule portion (here called disc body) of the ventral disc and found a large portion of microtubule associated inner (MIPs) and outer proteins (MAPs) that render these microtubules hyper-stable. With this follow-up study we expanded our 3-D analysis to different parts of the disc such as the ventral and dorsal areas of the overlap zone, as well as the outer disc margin. There are intrinsic location-specific characteristics in the composition of microtubule-associated proteins between these regions, as well as large differences between the overall architecture of microtubules and microribbons. The lateral packing of microtubule-microribbon complexes varies substantially, and closer packing often comes with contracted lateral tethers that seem to hold the disc together. It appears that the marginal microtubule-microribbon complexes function as outer, laterally contractible lids that may help the cell to clamp onto the intestinal microvilli. Furthermore, we analyzed length, quantity, curvature and distribution between different zones of the disc, which we found to differ from previous publications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    Science.gov (United States)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-02-01

    We perform high resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc onto the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3% of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7% of the mass and 5% of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  10. Residual herniated disc material following hemilaminectomy in chondrodystrophic dogs with thoracolumbar intervertebral disc disease.

    Science.gov (United States)

    Roach, W J; Thomas, M; Weh, J M; Bleedorn, J; Wells, K

    2012-01-01

    To evaluate the presence of residual disc material within the vertebral canal following hemilaminectomy in chondrodystrophic dogs with thoracolumbar intervertebral disc disease. Forty dogs were treated by hemilaminectomy. Computed tomography was performed preoperatively and immediately postoperatively. The vertebral canal height, width, area, and herniated disc material area were measured. Maximum filling percentage (MFP), residual disc percentage (RDP), maximum residual filling percentage (MRFP), and residual filling percentage (RFP) were calculated. Clinical outcome was determined by telephone interviews. Residual disc material was present in 100% of the dogs. Mean MFP = 55.4% (range 25.9-82.3%; median 56.9%). Mean RDP = 50.3% (range 2.6-155.8%; median 47.9%). Mean MRFP = 30.8% (range 4.9-60%; median 30.1%). Mean RFP = 19.8% (range 4.8-45%; median 19.0%). All dogs were ambulatory with voluntary urination at the long-term follow-up (range: 88-735 days). Residual disc was present in all dogs following hemilaminectomy for intervertebral disc disease. Residual disc was not associated with failure to achieve functional recovery in these cases.

  11. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...

  12. Value of a new pathological classification of lumbar intervertebral disc herniation based on transforaminal endoscopic observations.

    Science.gov (United States)

    Yang, Lin; Lu, Hong-Hui

    2017-05-01

    Removal of herniated disc materials based on an imaging only method may not relieve symptoms in many patients. Therefore, the aim of the present study was to develop a transforaminal endoscopic method of classifying the pathological type of lumber intervertebral disc herniation and to compare the outcomes of surgery based on the pathological type with those of conventional endoscopic disc removal. The records of patients who received endoscopic transforaminal nucleotomy with foraminoplasty for symptomatic lumbar disc herniation between 2009 and 2013 were retrospectively reviewed. Patients were then divided into two groups: Group A, which consisted of 275 patients who received conventional endoscopic transforaminal nucleotomy with foraminoplasty between 2009 and 2011 and group B, which consisted of 316 patients who received 'targeted' endoscopic transforaminal nucleotomy with foraminoplasty between 2011 and 2013 (based on the pathological type of disc herniation identified at surgery, including fresh, calcified and scar type based on intraoperative observations). The results showed that there were no significant differences in age, gender, body mass index, symptom duration, operated segments or previous invasive therapies between the two groups. Moreover, evaluation of visual analogue scale pain scores and Oswestry disability index scores revealed that the patients in group B had a greater improvement in symptoms than those in group A (P40 years and a longer symptom duration were associated with the calcified type, and previous invasive therapy was associated with the scar type. Therefore, specific surgical treatment based on the transforaminal endoscopic pathological type can result in better outcomes for patients with lumbar disc herniation.

  13. [Platelet-rich plasma (PRP) and disc lesions: A review of the literature].

    Science.gov (United States)

    Charneux, L; Demoulin, C; Vanderthomment, M; Tomasella, M; Ferrara, M-A; Grosdent, S; Bethlen, S; Fontaine, R; Gillet, P; Racaru, T; Kaux, J-F

    2017-12-01

    The spine has been the subject of extensive clinical research since it is the source of many painful complaints. However, there is little scientific evidence concerning the therapeutic proposals. During the course of life, the intervertebral disc degenerates, which over time diminishes its damping capacity and facilitates the expulsion of the nucleus pulposus through the annulus fibrosus. The degeneration of the intervertebral disc (DDI) is the origin of some back pain and various specific treatments have been developed. These include the infiltration at the center of the intervertebral disc of plasma rich platelet (PRP), composed of multiple growth factors which act on the disc degeneration. This treatment is recent and less invasive than surgery. Preliminary results seem promising. However, many gray areas and several parameters remained to be clarified. In an attempt to do this, a literature review was conducted based on bibliographic databases Pubmed, Medline and Scopus ® using the following Mesh terms : PRP, platelet-rich plasma, intradiscal disc degeneration, disc, intradiscal, discogenic. This analysis reveals that at the present time, no reported study has a sufficient perspective to judge the effectiveness of the infiltration of PRP. Early harvest results will be used to set the limits of this treatment. Accordingly, it is therefore currently recommended to introduce PRP injection as a complementary solution to comprehensive care of the spine. Future research will need to generate randomized controlled studies including comparing the results with conservative treatment and measure the cost-benefit relationship. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Protoplanetary disc response to distant tidal encounters in stellar clusters

    Science.gov (United States)

    Winter, A. J.; Clarke, C. J.; Rosotti, G.; Booth, R. A.

    2018-04-01

    The majority of stars form in a clustered environment. This has an impact on the evolution of surrounding protoplanetary discs (PPDs) due to either photoevaporation or tidal truncation. Consequently, the development of planets depends on formation environment. Here, we present the first thorough investigation of tidally induced angular momentum loss in PPDs in the distant regime, partly motivated by claims in the literature for the importance of distant encounters in disc evolution. We employ both theoretical predictions and dynamical/hydrodynamical simulations in 2D and 3D. Our theoretical analysis is based on that of Ostriker (1994) and leads us to conclude that in the limit that the closest approach distance xmin ≫ r, the radius of a particle ring, the fractional change in angular momentum scales as (xmin/r)-5. This asymptotic limit ensures that the cumulative effect of distant encounters is minor in terms of its influence on disc evolution. The angular momentum transfer is dominated by the m = 2 Lindblad resonance for closer encounters and by the m = 1, ω = 0 Lindblad resonance at large xmin/r. We contextualize these results by comparing expected angular momentum loss for the outer edge of a PPD due to distant and close encounters. Contrary to the suggestions of previous works, we do not find that distant encounters contribute significantly to angular momentum loss in PPDs. We define an upper limit for closest approach distance where interactions are significant as a function of arbitrary host to perturber mass ratio M2/M1.

  15. [Imaging study of lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation].

    Science.gov (United States)

    Yu, Qing-yang; Yang, Cun-rui; Yu, Lang-tao

    2009-04-01

    Using regional assignment to forked method to study lumbar intervertebral disc hemiation (bugle, hernia, prolapse) dependablity and reason of lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation. From March 2005 to October 2006, 120 patients of match condition from orthopaedics dept and rehabilitative dept of the Boai hospital of Longyan were studied. All patients were equally divided into two groups according to whether or not accompany with symptom of lumbar intervertebral disc herniation. There was not statistical difference in sex, age, course of disease, segment of intervertebral disc between two groups. Sixty patients of symptomatic lumbar intervertebral disc herniation were equally divided into three groups according to (bugle, hernia, prolapse) image on CT. Sixty patients of asymptomatic lumbar intervertebral disc herniation were equally divided into three groups according to (bugle, hernia, prolapse) image on CT. The age was 20-59 years old with an average of 38.5 years. Using regional assignment to give a mark respectively for every group. The sagittal diameter index (SI), anterior diastema of flaval ligaments, the width of superior outlet of latero-crypt, anteroposterior diameter of dura sac were respectively measured by sliding caliper. CT value and protrusible areas were respectively evaluated by computer tomography. Adopting mean value to measure three times. (1) There were not statistical difference in SI, CT value, hernia areas, anteroposterior diameter of dura sac between two groups (symptomatic lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation). There were statistical difference in the width of superior outlet of latero-crypt, anterior diastema of flaval ligaments between two groups (symptomatic lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation). (2) There were statistical difference in protrusible type,protrusible segment

  16. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  17. Cervical disc hernia operations through posterior laminoforaminotomy

    Directory of Open Access Journals (Sweden)

    Coskun Yolas

    2016-01-01

    Full Text Available Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. Results: The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years. Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%. On control examinations, there was no finding of instability or cervical kyphosis. Conclusion: Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis.

  18. Only marginal alignment of disc galaxies

    Science.gov (United States)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  19. Cervical disc hernia operations through posterior laminoforaminotomy.

    Science.gov (United States)

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis.

  20. Percutaneous laser disc decompression for lumbar disc hernia: indications based on Lasegue's Sign.

    Science.gov (United States)

    Iwatsuki, Koichi; Yoshimine, Toshiki; Awazu, Kunio

    2007-02-01

    The present study was conducted to establish reasonable indications of patient neurological manifestations for use of percutaneous laser disc decompression (PLDD). PLDD is a less invasive surgical procedure for lumbar disc hernia, whose indications have been described on the basis of radiographical findings. Sixty-five consecutive patients (45 men and 20 women) with lumbar disc hernia were treated with PLDD by applying a diode laser (wavelength 805 nm). A total of 450-1,205 joules (average, 805.5 joules) were delivered per disc. All patients suffered from radicular pain. They were divided based on the presence of Lasegue's sign. The post-procedure results at 1 week and 1 year were compared between the groups. PLDD was effective for patients with Lasegue's sign (80.0%), but ineffective for those without the sign. The present study suggests that Lasegue's sign in patients is an indication of PLDD for lumbar disc hernia.