WorldWideScience

Sample records for wing design philosophy

  1. Philosophy of Design: An Introduction

    DEFF Research Database (Denmark)

    Galle, Per

    2007-01-01

    The relatively young field of research known as ‘the philosophy of design’ is briefly presented, by asking on behalf of the reader what the philosophy of design is about, and what its use may be.......The relatively young field of research known as ‘the philosophy of design’ is briefly presented, by asking on behalf of the reader what the philosophy of design is about, and what its use may be....

  2. Winged design; Befluegeltes Design

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Tilman

    2013-10-15

    Today the wind rotor blades are about 80 meter long. To keep them light and transportable designers and material scientists come up with a number of ideas. Will the carbon fiber prevail against the glass fiber? [German] Ueber 80 Meter messen die laengsten Rotorblaetter heute. Um sie leicht und transportfaehig zu halten, lassen sich Designer und Materialforscher einiges einfallen. Wird sich die Kohlefaser gegen die Glasfaser durchsetzen?.

  3. The Design Philosophy for a Vertical Breakwater

    DEFF Research Database (Denmark)

    Vrijling, J. K.; Burcharth, H. F.; Voortman, H. G.

    2000-01-01

    A consistent risk-based design philosophy for vertical breakwaters is proposed. The design philosophy consists of a two-step approach. The first step is the definition of the main function of the breakwater, which leads to a definition of failure. The second step is the choice of the acceptable...

  4. Design philosophy of PFBR shutdown systems

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Vijayashree, R.; Govindarajan, S.; Vaidyanathan, G.; Muralikrishna, G.; Shanmugam, T.K.; Chetal, S.C.; Raghavan, K.; Bhoje, S.B.

    1996-01-01

    This paper presents the overall design philosophy of shutdown system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It discusses design criteria, parameters calling for safety action, different safety actions and the concepts conceived for shutdown systems. In tune with the philosophy of defence-in-depth, additional passive shutdown features, viz., Self Actuating Device (SADE) and Curie Point Magnetic (CPM) switch and protective feature like absorber rod Stroke Limiting Device (SLD) are contemplated. It also discusses about suitability of Gas Expansion Module (GEM) as one of the safety devices in PFBR. (author). 3 refs, 3 figs, 1 tab

  5. Safety design philosophy of Mitsubishi PWRs

    International Nuclear Information System (INIS)

    Hakata, T.; Kitamura, T.

    1993-01-01

    The basic safety design philosophy of Mitsubishi pressurized water reactors (PWRs) is discussed and compared with the British PWR. PWR plants are designed in accordance with the Japanese regulatory guidelines which are similar to American and International Atomic Energy Agency (IAEA) safety criteria and are based on defence-in-depth principles. The high reliability of nuclear power plants is especially emphasized in Mitsubishi PWRs, and this has been demonstrated by the good operating experience of PWR plants in Japan. The safety system designs of six key items, which were discussed in the recent review of overseas designs by British utilities, are addressed to show the difference in the design philosophy between the United Kingdom and Japan. (Author)

  6. CNG Fuelling Stations Design Philosophy

    International Nuclear Information System (INIS)

    Radwan, H.

    2004-01-01

    I. Overview (a) Compressed Natural Gas - CNG:- Natural Gas, as an alternative fuel for vehicles, is supplied from the Natural Gas Distribution Network to the CNG fuelling stations to be compressed to 250 bars. It is then dispensed, to be stored on board of the vehicle at about 200 bars in a cylinder installed in the rear, under carriage, or on top of the vehicle. When the Natural Gas is required by the engine, it leaves the cylinder traveling through a high pressure pipe to a high pressure regulator, where the pressure is reduced close to atmospheric pressure, through a specially designed mixer, where it is properly mixed with air. The mixture then flows into the engine's combustion chamber, and is ignited to create the power required to drive the vehicle. (b) CNG Fuelling Stations General Description: as Supply and Metering The incoming gas supply and metering installation primarily depend on the pressure and flow demands of the gas compressor. Natural Gas Compressor In general, gas compressors for natural gas filling stations have relatively low flow rates

  7. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  8. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  9. Digital libraries philosophies, technical design considerations, and example scenarios

    CERN Document Server

    Stern, David

    1999-01-01

    An unparalleled overview of current design considerations for your digital library! Digital Libraries: Philosophies, Technical Design Considerations, and Example Scenarios is a balanced overview of public services, collection development, administration, and systems support, for digital libraries, with advice on adopting the latest technologies that appear on the scene. As a professional in the library and information science field, you will benefit from this special issue that serves as an overview of selected directions, trends, possibilities, limitations, enhancements, design principals, an

  10. Engineering Antifragile Systems: A Change In Design Philosophy

    Science.gov (United States)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  11. A philosophy for CNS radiotracer design.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  12. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  13. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  14. Aeroelastic Modelling and Design of Aeroelastically Tailored and Morphing Wings

    NARCIS (Netherlands)

    Werter, N.P.M.

    2017-01-01

    In order to accommodate the growth in air traffic whilst reducing the impact on the environment, operational efficiency is becoming more and more important in the design of the aircraft of the future. A possible approach to increase the operational efficiency of aircraft wings is the use of

  15. Design matters, and so does philosophy of design : 2003 John Eggleston Memorial Lecture

    NARCIS (Netherlands)

    Vries, de M.J.

    2003-01-01

    Why bother about philosophy of design?The theme of the 2003 DATA International Research Conference is ‘Design Matters’. If there is one country in the world that has shown this to be true for design and technology education, it is the UK. Design has had a well established place in general technology

  16. Design, realization and structural testing of a compliant adaptable wing

    International Nuclear Information System (INIS)

    Molinari, G; Arrieta, A F; Ermanni, P; Quack, M; Morari, M

    2015-01-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing. (paper)

  17. Philosophy for seismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Teramae, Tetsuo

    1981-01-01

    In Japan, earthquakes occur frequently, therefore the basic philosophy in the aseismatic design of nuclear facilities is to design so as not to cause the accident which gives to the public in the surroundings and the employes radiation injuries in the case of large earthquakes. The ''Guideline for the aseismatic design techniques for nuclear power stations'' was drawn up in 1970 as the result of studies by related government offices and organizations. The guideline for determining the earthquakes used for design was published later, and the allowable stress for equipments and pipings has been adopted in accordance with ASME Code, Section 3. The buildings and structures, equipments and pipings in nuclear facilities are classified into three classes according to their importance in aseismatic design. The power of design earthquakes is determined corresponding to the degree of importance. The determination of the standard earthquake waves is explained. The proprieth of aseismatic design is evaluated on the basis of the basic concept of the combination of loads and the allowable limit. The static analysis in accordance with the Building Standards Act is applied to the B and C classes, while the dynamic analysis is required for the A class. The aseismatic analysis of buildings and structures, equipments and pipings is outlined. Many problems to be solved still remain though the concept of aseismatic design has been clarified. (Kako, I.)

  18. Contribution of a winged phlebotomy device design to blood splatter.

    Science.gov (United States)

    Haiduven, Donna J; McGuire-Wolfe, Christine; Applegarth, Shawn P

    2012-11-01

    Despite a proliferation of phlebotomy devices with engineered sharps injury protection (ESIP), the impact of various winged device designs on blood splatter occurring during venipuncture procedures has not been explored. To evaluate the potential for blood splatter of 6 designs of winged phlebotomy devices. A laboratory-based device evaluation without human subjects, using a simulated patient venous system. We evaluated 18 winged phlebotomy devices of 6 device designs by Terumo, BD Vacutainer (2 designs), Greiner, Smith Medical, and Kendall (designated A-F, respectively). Scientific filters were positioned around the devices and weighed before and after venipuncture was performed. Visible blood on filters, exam gloves, and devices and measurable blood splatter were the primary units of analysis. The percentages of devices and gloves with visible blood on them and filters with measurable blood splatter ranged from 0% to 20%. There was a statistically significant association between device design and visible blood on devices ([Formula: see text]) and between device design and filters with measurable blood splatter ([Formula: see text]), but not between device design and visible blood on gloves. A wide range of associations were demonstrated between device design and visible blood on gloves or devices and incidence of blood splatter. The results of this evaluation suggest that winged phlebotomy devices with ESIP may produce blood splatter during venipuncture. Reinforcing the importance of eye protection and developing a methodology to assess ocular exposure to blood splatter are major implications for healthcare personnel who use these devices. Future studies should focus on evaluating different designs of intravascular devices (intravenous catheters, other phlebotomy devices) for blood splatter.

  19. Conceptual design for a laminar-flying-wing aircraft

    Science.gov (United States)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  20. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  1. Wings: A New Paradigm in Human-Centered Design

    Science.gov (United States)

    Schutte, Paul C.

    1997-01-01

    Many aircraft accidents/incidents investigations cite crew error as a causal factor (Boeing Commercial Airplane Group 1996). Human factors experts suggest that crew error has many underlying causes and should be the start of an accident investigation and not the end. One of those causes, the flight deck design, is correctable. If a flight deck design does not accommodate the human's unique abilities and deficits, crew error may simply be the manifestation of this mismatch. Pilots repeatedly report that they are "behind the aircraft" , i.e., they do not know what the automated aircraft is doing or how the aircraft is doing it until after the fact. Billings (1991) promotes the concept of "human-centered automation"; calling on designers to allocate appropriate control and information to the human. However, there is much ambiguity regarding what it mean's to be human-centered. What often are labeled as "human-centered designs" are actually designs where a human factors expert has been involved in the design process or designs where tests have shown that humans can operate them. While such designs may be excellent, they do not represent designs that are systematically produced according to some set of prescribed methods and procedures. This paper describes a design concept, called Wings, that offers a clearer definition for human-centered design. This new design concept is radically different from current design processes in that the design begins with the human and uses the human body as a metaphor for designing the aircraft. This is not because the human is the most important part of the aircraft (certainly the aircraft would be useless without lift and thrust), but because he is the least understood, the least programmable, and one of the more critical elements. The Wings design concept has three properties: a reversal in the design process, from aerodynamics-, structures-, and propulsion-centered to truly human-centered; a design metaphor that guides function

  2. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  3. Basic philosophy of the safety design of the Toshiba boiling water reactor

    International Nuclear Information System (INIS)

    Sato, T.

    1992-01-01

    This paper discusses the safety design of the Toshiba Boiling Water Reactor (TOSBWR) which was created ∼8 years ago. The design concept is intermediate between conventional boiling water reactors (BWRs) and the advanced BWR (ABWR). It utilizes internal pumps and fine motion control rod drive, but the emergency core cooling system (ECCS) configuration is different from both conventional BWRs and the ABWR. The plant output is 1350 MW (electric). The design is based on two important philosophies: the positive cost reduction philosophy and the constant risk philosophy

  4. Design and Testing of a Morphing Wing for an Experimental UAV

    Science.gov (United States)

    2007-11-01

    line through the use of conformal flaps [6]. Variable cant angle winglets [7] and variable span wing [8] research has also been made. RTO-MP-AVT...design, construction and testing of a morphing wing with span and chord expansion capability. The morphing wing design is done using aerodynamic ...capabilities. Section 2 briefly presents the results of an optimization process followed by a coupled aerodynamic and structural analysis performed by

  5. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  6. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is much lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of a depressurization accident. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. (author)

  7. Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    Science.gov (United States)

    Wells, Douglas P.; Olson, Erik D.

    2011-01-01

    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.

  8. Design and construction of a remote piloted flying wing. B.S. Thesis

    Science.gov (United States)

    Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba

    1994-01-01

    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.

  9. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  10. Design process and philosophy of TVA's latest advance control room complex

    International Nuclear Information System (INIS)

    Owens, G.R.; Masters, D.W.

    1979-01-01

    TVA's latest nuclear power plant control room design includes a greater emphasis on human factors as compared to their earlier plant designs. This emphasis has resulted in changes in the overall design philosophy and design process. This paper discusses some of the prominent design features of both the control room and the surrounding control room complex. In addition, it also presents some of the important activities involved in the process of developing the advanced control room design

  11. Aerodynamic study, design and construction of a Blended Wing Body (BWB) Unmanned Aircraft (UA)

    OpenAIRE

    De Toro Diaz, Aleix

    2015-01-01

    During this project a Blended Wing Body (BWB) UA (Unmanned Aircraft) model is built. BWBs are a combination of a common airplane with tail control surfaces and a flying wing. BWBs lack tail control surfaces, which makes its design to be very different and more complex regarding stability. To first start the BWB design, some research has been done about the basic parameters of the BWB designs. Moreover, different airfoils are considered to improve the stability of the UA. Two designs are creat...

  12. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300 based on the experience of the High Temperature Engineering Test Reactor (HTTR) of JAERI which is the first High Temperature Gas-cooled Reactor (HTGR) in Japan. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident induced by a large pipe break is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of the depressurization accident. The safety design philosophies for passive cooling system, reactor shutdown system, and so on were determined. The methodology for the safety evaluation, such as safety criteria and selection of events to be evaluated by using estimation of probability of occurrence, were also discussed and determined. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. The present study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  13. Aerodynamic Performance and Particle Image Velocimetery of Piezo Actuated Biomimetic Manduca Sexta Engineered Wings Towards the Design and Application of a Flapping Wing Flight Vehicle

    Science.gov (United States)

    2013-12-01

    elucidated the complexity and convoluted interrelation between insect musculature, body composition, wing design, operating Reynolds number, wing flap geometry...Figure 2.23 shows the AFIT FWMAV components after the laminated carbon fiber sheets are cut on the laser and ready for assembly. (a) Structure (b...Linkage (c) Passive rotation joint (d) Rotation stop (e) Alignment clips (f) Wing Figure 2.23: AFIT FWMAV cut-out laminated carbon fiber assembly parts. The

  14. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  15. Self-Knowledge by Proxy: Parsons on Philosophy of Design and the Modernist Vision

    Directory of Open Access Journals (Sweden)

    Per Galle

    Full Text Available Glenn Parsons’s 2016 work, The Philosophy of Design, looks deeply at design in general, and at the Modernist approach to design in particular. The book would make an excellent textbook, but one could equally treat it as a research monograph. This article provides a detailed review of the book as a contribution to design research. The author’s efforts are original and commendable, although the work is not entirely immune to disagreement. The article highlights the main line of reasoning to guide future readers, and develops a number of considerations. These include a reflection on the feasibility of Modernist design thinking, some background on the nature and origins of the philosophy of design as a discipline, a defense of the notion of a stable essence of the concept of design, and a critical analysis of Parsons’s definition of design.

  16. Active wing design with integrated flight control using piezoelectric macro fiber composites

    International Nuclear Information System (INIS)

    Paradies, Rolf; Ciresa, Paolo

    2009-01-01

    Piezoelectric macro fiber composites (MFCs) have been implemented as actuators into an active composite wing. The goal of the project was the design of a wing for an unmanned aerial vehicle (UAV) with a thin profile and integrated roll control with piezoelectric elements. The design and its optimization were based on a fully coupled structural fluid dynamics model that implemented constraints from available materials and manufacturing. A scaled prototype wing was manufactured. The design model was validated with static and preliminary dynamic tests of the prototype wing. The qualitative agreement between the numerical model and experiments was good. Dynamic tests were also performed on a sandwich wing of the same size with conventional aileron control for comparison. Even though the roll moment generated by the active wing was lower, it proved sufficient for the intended roll control of the UAV. The active wing with piezoelectric flight control constitutes one of the first examples where such a design has been optimized and the numerical model has been validated in experiments

  17. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  18. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  19. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    Science.gov (United States)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  20. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  1. Design philosophy of LMFBR steam generator from the viewpoint of maintenance and repair in DeBeNe

    International Nuclear Information System (INIS)

    Westenbrugge, J.K. van; Dumm, K.

    2002-01-01

    In this paper we will describe the philosophy as applied in the design of the SNR-300 steam generators and make some remarks on the SNR-2 situation. Topics to be dealt with in design philosophy are: a. system lay-out and component accessibility b. component layout and accessibility to its internals

  2. Philosophy of design for low cost and high reliability

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    robust error rejection and fault recovery, as well as graceful radiation induced, false object and thermal load degradation. The instrument was developed from concept to flight model within 3 years. The instrument surpasses the initial specifications for all design parameters. For Precision...

  3. Wood lens design philosophy based on a binary additive manufacturing technique

    Science.gov (United States)

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  4. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  5. Verification of a smart wing design for a micro-air-vehicle through simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wickramasinghe, V.; Chen, Y.; Nejad-Ensan, M.; Martinez, M. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Aerospace Research; Wong, F. [Defence Research and Development Canada, Valcartier, PQ (Canada); Kraemer, K. [Department of National Defence, Ottawa, ON (Canada). Directorate of Technical Airworthiness and Engineering Support

    2008-07-01

    Micro-air-vehicles (MAV) are small, light-weight aircraft that perform a variety of missions. This paper described a smart wing structure consisting of a composite spar and ailerons with integrated piezoceramic fibre actuators that was designed for MAV use. This fixed-wing MAV can hover vertically like a rotary-wing vehicle through a flight manoeuvre known as prop-hanging. In order to maintain MAV orientation, the hover manoeuvre requires roll control of the fixed-wing aircraft through differential aileron deflection. Since conventional aileron control systems have components that add weight, it is necessary to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV with less power requirements. This paper proposed a smart wing structure that consists of a composite spar and ailerons that have bimorph active ribs consisting of piezoceramic fiber actuators with interdigitated electrodes. Actuation is enhanced by preloading the piezoceramic fiber actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electro active polymer (EAP) skin that wraps around the airfoil. The EAP skin enhances the actuation by providing a electrostatic effect of the dielectric polymer. Analytical modeling and finite element analysis showed that the proposed smart wing concept achieved a target deflection of 30 degrees in both the wind-off and wind-on flight conditions. The smart structure approach with active materials enabled the design of a lightweight, robust wing by reducing the number of components typically associated with conventional aileron control systems. 11 refs., 2 tabs., 5 figs.

  6. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  7. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla

    2006-01-01

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  8. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  9. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  10. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  11. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    International Nuclear Information System (INIS)

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs

  12. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  13. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  14. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  15. Integrated aerodynamic-structural design of a forward-swept transport wing

    Science.gov (United States)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  16. Modeling, design and optimization of flapping wings for efficient hovering flighth

    NARCIS (Netherlands)

    Wang, Q.

    2017-01-01

    Inspired by insect flights, flapping wing micro air vehicles (FWMAVs) keep attracting attention from the scientific community. One of the design objectives is to reproduce the high power efficiency of insect flight. However, there is no clear answer yet to the question of how to design flapping

  17. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  18. An Airplane Design having a Wing with Fuselage Attached to Each Tip

    Science.gov (United States)

    Spearman, Leroy M.

    2001-01-01

    This paper describes the conceptual design of an airplane having a low aspect ratio wing with fuselages that are attached to each wing tip. The concept is proposed for a high-capacity transport as an alternate to progressively increasing the size of a conventional transport design having a single fuselage with cantilevered wing panels attached to the sides and tail surfaces attached at the rear. Progressively increasing the size of conventional single body designs may lead to problems in some area's such as manufacturing, ground-handling and aerodynamic behavior. A limited review will be presented of some past work related to means of relieving some size constraints through the use of multiple bodies. Recent low-speed wind-tunnel tests have been made of models representative of the inboard-wing concept. These models have a low aspect ratio wing with a fuselage attached to each tip. Results from these tests, which included force measurements, surface pressure measurements, and wake surveys, will be presented herein.

  19. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    Science.gov (United States)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  20. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  1. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  2. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  3. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  4. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    Science.gov (United States)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  5. Design of a new VTOL UAV by combining cycloidal blades and FanWing propellers

    Science.gov (United States)

    Li, Daizong

    Though the propelling principles of Cycloidal Blades and FanWing propellers are totally different, their structures are similar. Therefore, it is possible to develop an aircraft which combines both types of the propulsion modes of Cyclogyro and FanWing aircrafts. For this kind of aircraft, Cycloidal Blades Mode provides capabilities of Vertical Take-Off and Landing, Instantly Alterable Vector Thrusting, and Low Noise. The FanWing Mode provides capabilities of High Efficiency, Energy-Saving, and Cannot-Stall Low-Speed Cruising. Besides, because both of these propellers are observably better than conventional screw propeller in terms of efficiency, so this type of VTOL UAV could fly with Long Endurance. Furthermore, the usage of flying-wing takes advantage of high structure utilization and high aerodynamic efficiency, eliminates the interference of fuselage and tail, and overcomes flying wing's shortcomings of pitching direction instability and difficulty of control. A new magnetic suspension track-type cycloidal propulsion system is also presented in the paper to solve problems of heavy structure, high mechanical resistance, and low reliability in the traditional cycloidal propellers. The further purpose of this design is to trying to make long-endurance VTOL aircraft and Practical Flying Cars possible in reality, and to bring a new era to the aviation industry.

  6. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  7. Design methodology for wing trailing edge device mechanisms

    OpenAIRE

    Martins Pires, Rui Miguel

    2007-01-01

    Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current f...

  8. Lightning protection design and testing of an all composite wet wing for the Egrett

    Science.gov (United States)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  9. Planning Beyond Tactics: Towards a Military Application of the Philosophy of Design in the Formulation of Strategy

    Science.gov (United States)

    2008-05-22

    more importantly are, therefore, a priori).63 61 Positivism : The school of philosophy that claims that the only authentic knowledge is that which... quantitative substance to the emerging qualitative ideas. Tactics without Strategy as the Noise Before Defeat. Design is a verb and producing a...interventions, in order to enable the desired potentials that lead to the desired system state. Positivism . The school of philosophy that claims that

  10. Polymer based flapping-wing robotic insect: Progress in design, fabrication, and characterization

    Science.gov (United States)

    Bontemps, A.; Vanneste, T.; Soyer, C.; Paquet, J. B.; Grondel, S.; Cattan, E.

    2014-03-01

    In the last decade, many researchers pursued the development of tiny flying robots inspired by natural flyers destined for the exploration of confined spaces, for example. Within this context, our main objective is to devise a flying robot bioinspired from insect in terms of size and wing kinematics using MEMS technologies. For this purpose, an original design has been developed around resonant thorax and wings by the way of an indirect actuation and a concise transmission whereas the all-polymer prototypes are obtained using a micromachining SU-8 photoresist process. This paper reports our recent progress on the design of a flapping-wing robotic insect as well as on the characterization of its performance. Prototypes with a wingspan of 3 cm and a mass of 22 mg are achieved. Due to the introduction of an innovative compliant link, large and symmetrical bending angles of 70° are obtained at a flapping frequency of 30 Hz along with passive wing torsion while minimizing its energy expenditure. Furthermore, it leads to a mean lift force representing up to 75 % of the prototype weight as measured by an in-house force sensor. Different improvements are currently underway to increase the power-to-weight ratio of the prototype and to obtain an airborne prototype.

  11. Development of multidisciplinary design optimization procedures for smart composite wings and turbomachinery blades

    Science.gov (United States)

    Jha, Ratneshwar

    Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the

  12. Damage-tolerant design and inspection philosophy for nuclear and other pressure vessels

    International Nuclear Information System (INIS)

    Adams, N.J.I.

    1980-01-01

    Statistical analyses of pressure vessel failure rates indicate that, to date, the record is very good. However, the public hazard and environmental consequences of failure in certain industrial processes now give cause for much greater concern. With the exception of an Appendix in ASME III, the current design codes and requirements for new vessels are all based on the assumption that they are free from cracklike defects, but engineers recognize tht such perfect vessels cannot be manufactured. Taking into account failure mechanisms, material properties, pre- and in-service inspection, proof testing, failure statistics and probabilistic methods, views are put forward on how a damage-tolerant design and inspection philosophy may be developed to reduce further the possibility of ''rogue'' vessel failure. 21 refs

  13. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  14. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  15. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    Science.gov (United States)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  16. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    Science.gov (United States)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  17. Fundamental philosophy on the safety design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-01-01

    Japan Atomic Energy Agency (JAEA) has been conducting an R and D work on the VHTR reactor system and IS hydrogen production system to realize hydrogen production using nuclear heat. As a part of this activity, JAEA is planning to connect an IS test system to the High Temperature Engineering Test Reactor (HTTR) to demonstrate its technical feasibility. This paper proposes a fundamental philosophy on the safety design of the HTTR-IS hydrogen production system including the methodology to select postulated abnormal events and its event sequences and to define safety functions of the IS system to ensure the reactor safety. Also the measure to clarify the IS system as non-reactor system is proposed. (author)

  18. Development of Experimental Icing Simulation Capability for Full-Scale Swept Wings: Hybrid Design Process, Years 1 and 2

    Science.gov (United States)

    Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete; hide

    2017-01-01

    This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.

  19. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    Science.gov (United States)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  20. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    Science.gov (United States)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  1. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...... level. Enhancement of the aeroelastic stability is selected as an objective in the upper-level optimization. This is achieved by seeking the optimal structural properties of a composite wing, including its mass, vertical, chordwise, and torsional stiffness. In the upper-level optimization, the response...... surface method (RSM), is selected. On the other hand, lower-level optimization seeks to determine the local detailed cross-sectional parameters, such as the ply orientation angles and ply thickness, which are relevant to the wing structural properties obtained at the upper-level. To avoid manufacturing...

  2. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  3. Design and fabrication of composite wing panels containing a production splice

    Science.gov (United States)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  4. Using the Design for Demise Philosophy to Reduce Casualty Risk Due to Reentering Spacecraft

    Science.gov (United States)

    Kelley, R. L.

    2012-01-01

    Recently the reentry of a number of vehicles has garnered public attention due to their risk of human casualty due to fragments surviving reentry. In order to minimize this risk for their vehicles, a number of NASA programs have actively sought to minimize the number of components likely to survive reentry at the end of their spacecraft's life in order to meet and/or exceed NASA safety standards for controlled and uncontrolled reentering vehicles. This philosophy, referred to as "Design for Demise" or D4D, has steadily been adopted, to at least some degree, by numerous programs. The result is that many programs are requesting evaluations of components at the early stages of vehicle design, as they strive to find ways to reduce the number surviving components while ensuring that the components meet the performance requirements of their mission. This paper will discuss some of the methods that have been employed to ensure that the consequences of the vehicle s end-of-life are considered at the beginning of the design process. In addition this paper will discuss the technical challenges overcome, as well as some of the more creative solutions which have been utilized to reduce casualty risk.

  5. Design and characterization of a multi-articulated robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2013-01-01

    There are many challenges to measuring power input and force output from a flapping vertebrate. Animals can vary a multitude of kinematic parameters simultaneously, and methods for measuring power and force are either not possible in a flying vertebrate or are very time and equipment intensive. To circumvent these challenges, we constructed a robotic, multi-articulated bat wing that allows us to measure power input and force output simultaneously, across a range of kinematic parameters. The robot is modeled after the lesser dog-faced fruit bat, Cynopterus brachyotis, and contains seven joints powered by three servo motors. Collectively, this joint and motor arrangement allows the robot to vary wingbeat frequency, wingbeat amplitude, stroke plane, downstroke ratio, and wing folding. We describe the design, construction, programing, instrumentation, characterization, and analysis of the robot. We show that the kinematics, inputs, and outputs demonstrate good repeatability both within and among trials. Finally, we describe lessons about the structure of living bats learned from trying to mimic their flight in a robotic wing. (paper)

  6. Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing

    Science.gov (United States)

    Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.

    2000-06-01

    The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.

  7. Developing a computer-based environment for the design of nuclear power plants: a perspective and philosophy

    International Nuclear Information System (INIS)

    Brey, H.; Kisner, R.A.

    1985-08-01

    This report surveys the usefulness and general design requirements for a large-scale database and database manager for design and analysis of nuclear power plant control systems. The control engineer's and systems integrator's need for timely, accurate, and searchable information for advanced control system design increases with competitive economics and stringent reliability demands. A philosophy is conveyed for the implementation of an integrated, comprehensive database system

  8. Ecological Design : a new post-modern design paradigm, One of holistic philosophy and evalutionary ethic

    NARCIS (Netherlands)

    Koh, J.

    2005-01-01

    This papaer will present ecological design as a new paradigm in design, explain its significance, and argue for ecological design as a better paradigmatic alternative to the modern movement led by the Bauhaus, and as a sounder and more socially relevant approach than the post-modernism

  9. Safety design philosophy of the ABWR for the next generation LWRs

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents safety design philosophy of the advanced boiling water reactor (ABWR) to be reflected in developing the next generation light water reactors (LWRs). The basic policy of the ABWR safety design was to improve safety and reduce cost simultaneously by reflecting lessons learned of precursors, incidents and accidents that were beyond the design basis such as the Three Mile Island Unit 2 (TMI 2) accident. The ABWR is a fully active safety plant. The ABWR enhanced redundancy and diversity of active safety systems using probabilistic safety assessment (PSA) insights. It adopted a complete three division active emergency core cooling system (ECCS) and attained a very low core damage frequency (CDF) value of less than 10 -7 /ry for internal events. Only very small residual risks, if any, rather exist in external events such as an extremely large earthquake beyond the design basis. This is because external events can constitute a common cause that disables all the redundant active safety systems. Therefore, it is useless to add one more ECCS train and make a four division active ECCS for external events. Nowadays, however, fully passive safety LWRs are already established. Incorporating some of these passive safety systems we can also establish the next generation LWRs that are truly strong against external events. We can establish a plant that can survive a giant earthquake at least three days without AC power source, SA proof safety design that enables no containment failure and no evacuation to eliminate the residual risks. The same basic policy as the ABWR to improve safety and reduce cost simultaneously is again effective for the next generation LWRs. (author)

  10. Design and optimization of wing tips for wind turbines. Final report; Design og optimering af vingetipper for vindmoeller. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Zhu, W.J.; Borbye, J.; Okulov, V.L.; Mikkelsen, R. (DTU Mekanik, Kgs. Lyngby (Denmark)); Gaunaa, M.; Rethore, P.-E.; Soerensen, N.N. (Danmarks Tekniske Univ. Risoe DTU, Afd. for Vindenergi, Roskilde (Denmark))

    2011-03-15

    The aim of the project was to suggest and analyse new shapes of wing tips for wind turbines to optimize their performance. Several simple wing tips and their flow topology were analysed, and the impact of different design variables was determined in order to establish which design has the best effect for the performance. For the numerical flow calculations, primarily the Navier-Stokes code EllipSys was used. As a supplement to the viscous Navier-Stokes calculations, in-viscous calculations were made using a lifting-line theory. This is a simple technique to determine the load distribution along the wing tip in those cases where viscous effects can be neglected. A large part of the project has focused on improving accuracy of the lifting-line method. Besides forming the basis for improved tip configurations, the calculations were also used to improve the so-called tip correction. Based on the numerical results from CFD calculations an improved tip correction was developed. (ln)

  11. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.

    Science.gov (United States)

    Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-02-06

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s -1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.

  12. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots

    Science.gov (United States)

    Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-01-01

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s−1. The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested. PMID:28163879

  13. Transitions between child and adult mental health services: service design, philosophy and meaning at uncertain times.

    Science.gov (United States)

    Murcott, W J

    2014-09-01

    A young person's transition of care from child and adolescent mental health services to adult mental health services can be an uncertain and distressing event that can have serious ramifications for their recovery. Recognition of this across many countries and recent UK media interest in the dangers of mental health services failing young people has led practitioners to question the existing processes. This paper reviews the current theories and research into potential failings of services and encourages exploration for a deeper understanding of when and how care should be managed in the transition process for young people. Mental health nurses can play a vital role in this process and, by adopting the assumptions of this paradigm, look at transition from this unique perspective. By reviewing the current ideas related to age boundaries, service thresholds, service philosophy and service design, it is argued that the importance of the therapeutic relationship, the understanding of the cultural context of the young person and the placing of the young person in a position of autonomy and control should be central to any decision and process of transfer between two mental health services. © 2014 John Wiley & Sons Ltd.

  14. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  15. Program for establishing long time flight service performance of composite materials in the central wing structure of C-130 aircraft. Phase 2: Detailed design

    Science.gov (United States)

    Harvill, W. E.; Duhig, J. J.; Spencer, B. R.

    1973-01-01

    The design, fabrication, and evaluation of boron-epoxy reinforced C-130 center wing boxes are discussed. Design drawings, static strength, fatigue endurance, flutter, and weight analyses required for the wing box fabrication are presented. Additional component testing to verify the design for panel buckling and to evaluate specific local design areas are reported.

  16. Control room philosophy: Principles of control room design and control room work; Kontrollrumsfilosofi: Principer foer kontrollrumsutformning och kontrollrumsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla [Scandpower Risk Management AB, Uppsala (Sweden)

    2006-01-15

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages.

  17. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  18. Thrust reverser design studies for an over-the-wing STOL transport

    Science.gov (United States)

    Ammer, R. C.; Sowers, H. D.

    1977-01-01

    Aerodynamic and acoustics analytical studies were conducted to evaluate three thrust reverser designs for potential use on commercial over-the-wing STOL transports. The concepts were: (1) integral D nozzle/target reverser, (2) integral D nozzle/top arc cascade reverser, and (3) post exit target reverser integral with wing. Aerodynamic flowpaths and kinematic arrangements for each concept were established to provide a 50% thrust reversal capability. Analytical aircraft stopping distance/noise trade studies conducted concurrently with flow path design showed that these high efficiency reverser concepts are employed at substantially reduced power settings to meet noise goals of 100 PNdB on a 152.4 m sideline and still meet 609.6 m landing runway length requirements. From an overall installation standpoint, only the integral D nozzle/target reverser concept was found to penalize nacelle cruise performance; for this concept a larger nacelle diameter was required to match engine cycle effective area demand in reverse thrust.

  19. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  20. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  1. Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method

    Science.gov (United States)

    Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.

  2. Implications of the philosophy of Ch.S. Peirce for interdisciplinary design: developments in domain theory

    NARCIS (Netherlands)

    Bax, M.F.T.; Trum, H.M.G.J.; Nauta jr., D.; Timmermans, H.J.P.; Vries de, de B.

    2000-01-01

    Subject of this paper is the establishment of a connection between categorical pragmatism, developed by Charles Sanders Peirce (1839-1914) through phenomenological analysis, and Domain Theory, developed by Thijs Bax and Henk Trum since 1977. The first is a phenomenological branch of philosophy, the

  3. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    Science.gov (United States)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  4. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  5. Measuring philosophy: a philosophy index

    OpenAIRE

    Biggs, Lesley; Mierau, Dale; Hay, David

    2002-01-01

    Chiropractic philosophy which has been debated since the founding of chiropractic in 1895 has taken on new vigour over the past ten years. Despite a growing body of literature examining chiropractic philosophy, the chiropractic profession continues to be divided over this issue. To date, there has been little research examining the meaning of chiropractic philosophy to rank-and-file practitioners.

  6. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    Science.gov (United States)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  7. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  8. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  9. Design, Development and Tests in Real Time of Control Methodologies for a Morphing Wing in Wind Tunnel =

    Science.gov (United States)

    Tchatchueng Kammegne, Michel Joel

    In order to leave a cleaner environmental space to future generations, the international community has been mobilized to find green solutions that are effective and feasible in all sectors. The CRIAQ MDO505 project was initiated to test the morphing wingtip (wing and aileron) technology as one of these possible solutions. The main objectives of this project are: the design and manufacturing of a morphing wing prototype, the extension and control of the laminar region over the extrados, and to compare the effects of morphing and rigid aileron in terms of lift, drag and pressure distributions. The advantage of the extension of the laminar region over a wing is the drag reduction that results by delaying the transition towards its trailing edge. The location of the transition region depends on the flight case and it is controlled, for a morphing wing, via the actuators positions and displacements. Therefore, this thesis work focuses on the control of the actuators positions and displacements. This thesis presents essentially the modeling, instrumentation and wind tunnel testing results. Three series of wind tunnel tests with different values of aileron deflection angle, angle of attack and Mach number have been performed in the subsonic wind tunnel of the IAR-NRC. The used wing airfoil consisted of stringers, ribs, spars and a flexible upper surface mad of composite materials (glass fiber carbon), a rigid aileron and flexible aileron. The aileron was able to move between +/-6 degrees. The demonstrator's span measures 1.5 m and its chord measures 1.5 m. Structural analyses have been performed to determine the plies orientation, and the number of fiberglass layers for the flexible skin. These analyses allowed also to determine the actuator's forces to push and pull the wing upper surface. The 2D XFoil and 3D solvers Fluent were used to find the optimized airfoil and the optimal location of the transition for each flight case. Based on the analyses done by the

  10. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Directory of Open Access Journals (Sweden)

    Tingkun Chen

    Full Text Available The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  11. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Science.gov (United States)

    Chen, Tingkun; Cong, Qian; Qi, Yingchun; Jin, Jingfu; Choy, Kwang-Leong

    2018-01-01

    The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  12. Optimization of geometrical parameters aerodynamic design aircraft articulated tandem with wings

    Directory of Open Access Journals (Sweden)

    О.В. Кузьменко

    2006-01-01

    Full Text Available  The features of a task of optimization of the plane with unmanned completely wing are considered the existing approaches the block diagram of mathematical model of the plane with unmanned completely wing is given in the decision of similar tasks.

  13. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    Science.gov (United States)

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  14. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  15. Development of MCAERO wing design panel method with interactive graphics module

    Science.gov (United States)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  16. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  17. A novel transanal tube designed to prevent anastomotic leakage after rectal cancer surgery: the WING DRAIN.

    Science.gov (United States)

    Nishigori, Hideaki; Ito, Masaaki; Nishizawa, Yuji

    2017-04-01

    We introduce a novel transanal tube (TAT), named the "WING DRAIN", designed to prevent anastomotic leakage after rectal cancer surgery, and report the fundamental experiments that led to its development. We performed the basic experiments to evaluate the effect of TATs on intestinal decompression, the changes they make in patterns of watery fluid drainage, the changes in their decompression effect when the extension tube connecting the TAT to the collection bag fills with watery drainage fluid, and the variations in intestinal contact and crushing pressure made by some types of TAT. Any type of TAT contributed to decompression in the intestinal tract. Watery drainage commenced from when the water level first rose to the hole in the tip of drain. The intestinal pressure increased with the length of the vertical twist in an extension tube. The crushing pressures of most types of TAT were high enough to cause injury to the intestine. We resolved the problems using an existing TAT for the purpose of intestinal decompression and by creating the first specialized TAT designed to prevent anastomotic leakage after rectal cancer surgery in Japan.

  18. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    Science.gov (United States)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  19. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing. Part 2: Appendices

    Science.gov (United States)

    Mcgehee, C. R.

    1986-01-01

    This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.

  20. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    Science.gov (United States)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  1. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  2. Experimental philosophy.

    Science.gov (United States)

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious?

  3. Interactions of Aircraft Design and Control: Actuators Sizing and Optimization for an Unstable Blended Wing-Body

    OpenAIRE

    Denieul , Yann; Alazard , Daniel; Bordeneuve-Guibé , Joël; Toussaint , Clément; Taquin , Gilles

    2015-01-01

    International audience; In this paper the problem of integrated design and control for a civil blended wing-body aircraft is addressed. Indeed this configuration faces remarkable challenges relatedto handling qualities: namely the aircraft configuration in this study features a strong longitudinal instability for some specific flight points. Moreover it may lack control efficiency despite large and redundant movables. Stabilizing such a configuration may then lead to high control surfaces rat...

  4. Pilot opinions on high level flight deck automation issues: Toward the development of a design philosophy

    Science.gov (United States)

    Tenney, Yvette J.; Rogers, William H.; Pew, Richard W.

    1995-01-01

    There has been much concern in recent years about the rapid increase in automation on commercial flight decks. The survey was composed of three major sections. The first section asked pilots to rate different automation components that exist on the latest commercial aircraft regarding their obtrusiveness and the attention and effort required in using them. The second section addressed general 'automation philosophy' issues. The third section focused on issues related to levels and amount of automation. The results indicate that pilots of advanced aircraft like their automation, use it, and would welcome more automation. However, they also believe that automation has many disadvantages, especially fully autonomous automation. They want their automation to be simple and reliable and to produce predictable results. The biggest needs for higher levels of automation were in pre-flight, communication, systems management, and task management functions, planning as well as response tasks, and high workload situations. There is an irony and a challenge in the implications of these findings. On the one hand pilots would like new automation to be simple and reliable, but they need it to support the most complex part of the job--managing and planning tasks in high workload situations.

  5. JPL Thermal Design Modeling Philosophy and NASA-STD-7009 Standard for Models and Simulations - A Case Study

    Science.gov (United States)

    Avila, Arturo

    2011-01-01

    The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.

  6. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  7. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    Science.gov (United States)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  8. Philosophy, Philosophy of Education, and Economic Realities

    Science.gov (United States)

    White, John

    2013-01-01

    In 2009 Harvey Siegel edited "The Oxford Handbook of Philosophy of Education." This article develops a theme, prompted by reflection on several essays in that volume, about the nature of philosophy of education and its relation to philosophy. Siegel's view that philosophy of education is a "branch" of philosophy is put to…

  9. An anthology of theories and models of design philosophy, approaches and empirical explorations

    CERN Document Server

    Blessing, Lucienne

    2014-01-01

    While investigations into both theories and models has remained a major strand of engineering design research, current literature sorely lacks a reference book that provides a comprehensive and up-to-date anthology of theories and models, and their philosophical and empirical underpinnings; An Anthology of Theories and Models of Design fills this gap. The text collects the expert views of an international authorship, covering: ·         significant theories in engineering design, including CK theory, domain theory, and the theory of technical systems; ·         current models of design, from a function behavior structure model to an integrated model; ·         important empirical research findings from studies into design; and ·         philosophical underpinnings of design itself. For educators and researchers in engineering design, An Anthology of Theories and Models of Design gives access to in-depth coverage of theoretical and empirical developments in this area; for pr...

  10. Control of occupational radiation exposures in TVA nuclear power plants - design and operating philosophy

    International Nuclear Information System (INIS)

    Belvin, E.A.; Lyon, M.; Beasley, E.G. Jr.; Zobel, W.; Stone, G.F.

    1976-01-01

    TVA has some 21,000 MWe of nuclear generation in various phases of design, construction, or operation. When Browns Ferry was designed in the late 1960's, there were no guidelines available regarding implant radiation control features, so TVA relied on good engineering and health physics judgement in developing its design and operating criteria for radiation protection. After two years of operation at Browns Ferry, the authors experience shows that their design criteria were in most cases adequate or more than adequate. However, several areas present continuing problems relative to radiation and contamination control. In view of the recent NRC ALARA guidelines, they have instituted a program to ensure that the ALARA concept is made an integral part of their design and operating plans. Administrative documents were issued giving management support to the ALARA concept. A 4-member management audit team consisting of representatives from their design, operating, and radiation protection groups was established to review the effectiveness of radiation protection design features and operating activities on a plant-by-plant basis. Reports and recommendations from these audits are sent to top-level management staff. Their goal is to maintain an audit-appraisal system consisting of in-plant awareness of radiation and contamination conditions, assessment of trends in occupational radiation exposures, and feedback to their designers regarding problems encountered during operation and maintenance activities

  11. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    Science.gov (United States)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  12. Philosophy of Interaction

    DEFF Research Database (Denmark)

    Svanæs, Dag

    2011-01-01

    This is an encyclopedia entry for the Interaction-Design.org free IxD encyclopedia. The topic of the entry is the application of the philosophy of Heidegger and Merleau-Ponty to a theory of interactivity. Comments by Don Norman and Eva Hornecker.......This is an encyclopedia entry for the Interaction-Design.org free IxD encyclopedia. The topic of the entry is the application of the philosophy of Heidegger and Merleau-Ponty to a theory of interactivity. Comments by Don Norman and Eva Hornecker....

  13. Mechanical design philosophy for the graphite components of the core structure of an HTGR

    International Nuclear Information System (INIS)

    Bodmann, E.

    1987-01-01

    Parallel to the layout and design of the graphite components for THTRs and the succeeding high temperature reactor projects, the design methods for graphite components have been improved over the years. The aim of this works is to develop the design methods which take into account both the particular properties of graphite and the particular functions of the components. Because of the close relation ship between materials and design codes, this development work has progressed with the development, testing and qualification of German reactor graphite. In this paper, the experience in this field of Hochtemperatur Reaktorbau GmbH and the results of the work and approach to the design problems are reported. The example of a HTR 500 design for a 550 MWe power station is taken up, and the core structure is explained. The graphite components are divided into three classes according to the stress limits. The loading of these components is reviewed. The aim of the design is not the complete avoidance of failure, but to avoid the failure of a single component from leading to a disadvantageous consequence which is not allowable. The classification of loading events, Weibull statistics and maximum allowable stress, the formation of the permissible stress, the assessment of stress due to multiaxial loading and so on are described. (Kako, I.)

  14. Anthropology & Philosophy

    DEFF Research Database (Denmark)

    The present book is no ordinary anthology, but rather a workroom in which anthropologists and philosophers initiate a dialogue on trust and hope, two important topics for both fields of study. The book combines work between scholars from different universities in the U.S. and Denmark. Thus, besid......, therefore, also inspire others to work in the productive intersection between anthropology and philosophy....

  15. Experiencing-in-the-World : Using Pragmatist Philosophy to Design for Aesthetic Experience

    OpenAIRE

    Vyas, Dhaval; Heylen, Dirk K.J.; Eliens, A.P.W.; Eliëns, A.; Nijholt, Antinus; Kames, J.M.; Novotny, M.

    2007-01-01

    With the growing use of personal and ubiquitous computing technology, an increase is seen in utilizing aesthetic aspects for designing interactive systems. The use of aesthetic interpretations, however, has differed in different applications, often lacking a coherent and holistic meaning of aesthetics. In this paper we provide an account on aesthetics, utilizing the pragmatist perspective, which can be used as a framework to design for aesthetic experience in interactive systems. We discuss s...

  16. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  17. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  18. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  19. Experiencing-in-the-World : Using Pragmatist Philosophy to Design for Aesthetic Experience

    NARCIS (Netherlands)

    Vyas, Dhaval; Heylen, Dirk K.J.; Eliens, A.P.W.; Eliëns, A.; Nijholt, Antinus; Kames, J.M.; Novotny, M.

    2007-01-01

    With the growing use of personal and ubiquitous computing technology, an increase is seen in utilizing aesthetic aspects for designing interactive systems. The use of aesthetic interpretations, however, has differed in different applications, often lacking a coherent and holistic meaning of

  20. CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.

    Science.gov (United States)

    HANLEY, T.D.; STEER, M.D.

    THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…

  1. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  2. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  3. Philosophy, design and testing of a uniform applied load flat plate testing machine

    International Nuclear Information System (INIS)

    Quirk, A.; Crook, C.

    1976-08-01

    The presence of a central crack, and its associated plastic zones may significantly affect distribution of the stress applied by a loading machine, to a test plate. As a result the fracture stress may be affected, usually optimistically. Examples of these effects are discussed. The design of a machine in which the load is uniformly applied to the test specimen is described and preliminary test data presented. (author)

  4. Design considerations and philosophy of a device-independent publications/graphics system

    International Nuclear Information System (INIS)

    Burt, J.S.

    1978-01-01

    Over a period of ten years the National Nuclear Data Center has implemented graphics systems to meet a broad range of user requirements in the areas of interactive graphics, publications, and, to a lesser extent, text-editing, graphical data interpretations, and on-line data evaluation. The systems have been designed to support varying levels of user sophistication with respect to programing ability and user knowledge of the hardware involved. An overview is presented of the NNDC's graphics system which is available to the user via a higher-level language, FORTRAN. The system was designed with layers of software between the user and the device-dependent code. One layer is dedicated to processing the incompatibilities and inconsistencies between such devices as paper plotter, interactive graphics, and FR-80 microfilm/microfiche hardware. Another handles the niceties necessary for finer-quality publications work, e.g., superscripting, subscripting, boldface, variable character/page sizing, rotation, the use of multiple character sets (e.g., mathematical, Greek, physics) as well as features to allow the user to design special characters. 12 figures

  5. My Teaching Learning Philosophy

    Science.gov (United States)

    Punjani, Neelam Saleem

    2014-01-01

    The heart of teaching learning philosophy is the concept of nurturing students and teaching them in a way that creates passion and enthusiasm in them for a lifelong learning. According to Duke (1990) education is a practice of artful action where teaching learning process is considered as design and knowledge is considered as colours. Teaching…

  6. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    Energy Technology Data Exchange (ETDEWEB)

    Scaller, K; Vrillon, B

    1980-02-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component.

  7. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    International Nuclear Information System (INIS)

    Scaller, K.; Vrillon, B.

    1980-01-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component

  8. Stephen Hawking, the Grand Design and the mass media communication: Philosophy, Science and Religion

    Directory of Open Access Journals (Sweden)

    Leandro Sequeiros

    2014-11-01

    Full Text Available The return of summer vacances 2010 coincide with the notice concerning the inminent publication of a provocative and scandalous book by the eminent Phisicist Stephen Hawking. The Grand Design came out on September 7 in EE.UU. and on 9 in United Kingdom. On November 15th, the Spanish edition have been issued. The Spanish newpapers have published some fragments, which apparently show Hawking intends to prove scientifically that God not exists. The communications media remark by different ways the scarce frangments of the text: «God is not necessary», «Hawking proves God not exists», «Creator God is a destroyed mith», «Hawking scientifically proves God not exists», «God expeled of the Universe»… We have tracked more than hundred web-pages in which the contents of Hawking book are comment. Rationalists and religious sectors have standed in the debate. But, what has Hawking really defended in The Grand Design?

  9. Design studies of Laminar Flow Control (LFC) wing concepts using superplastics forming and diffusion bonding (SPF/DB)

    Science.gov (United States)

    Wilson, V. E.

    1980-01-01

    Alternate concepts and design approaches were developed for suction panels and techniques were defined for integrating these panel designs into a complete LFC 200R wing. The design concepts and approaches were analyzed to assure that they would meet the strength, stability, and internal volume requirements. Cost and weight comparisions of the concepts were also made. Problems of integrating the concepts into a complete aircraft system were addressed. Methods for making splices both chordwise and spanwise, fuel light joints, and internal duct installations were developed. Manufacturing problems such as slot aligment, tapered slot spacing, production methods, and repair techniques were addressed. An assessment of the program was used to developed recommendations for additional research in the development of SPF/DB for LFC structure.

  10. Transonic Aerodynamic Loading Characteristics of a Wing-Body-Tail Combination Having a 52.5 deg. Sweptback Wing of Aspect Ratio 3 With Conical Wing Camber and Body Indentation for a Design Mach Number of Square Root of 2

    Science.gov (United States)

    Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.

    1961-01-01

    An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.

  11. Medical education: revolution, devolution and evolution in curriculum philosophy and design.

    Science.gov (United States)

    Wittert, Gary A; Nelson, Adam J

    2009-07-06

    Contemporary medical education must train skilled and compassionate health care professionals who are rigorous in their approach to patient care and their pursuit of knowledge and solutions. Problem-based learning has been widely introduced, but there is no evidence that it leads to better outcomes than more traditional programs, and fundamental gaps in conceptual knowledge may result. Recently, emphasis has been placed on a solid grounding in underlying concepts combined with a systems-based approach, and ability to transfer information and solve problems. Integrating traditional scientific and clinical disciplines with progressive and continuous assessment, may be a better means of achieving the combined aims of clinically relevant curriculum design, vertical integration of medical knowledge, and facilitation of the continuum of training. Being adaptable and flexible, cognisant of costs, and driven by evidence are key features of delivering medical education and contemporary medical practice. Educational research should lead to continuous improvement, but innovation without evaluation and attention to costs may create as many, or more, problems as are solved.

  12. The design philosophy for an automatic TLD system to meet current international specifications

    International Nuclear Information System (INIS)

    Haaslahti, J.

    1986-01-01

    The object of this paper is to describe the elements of a new automatic TLD system intended to meet draft IEC/ISO proposals and ANSI requirements in the USA. Dosemeter badge design is based on ICRU recommendations. The basic intent has been to produce a standard system that can measure and file raw data that can be adapted to specific user requirements with software. The system consists of a programmable automatic reader, an automatic irradiator, a computer, and dosemeters for environmental, whole body, extremity, and clinical applications. The reader uses hot nitrogen heating and photon counting, and measurement conditions may be chosen with complete freedom. The reader can produce a real-time glow curve to assist in checking performance. The irradiator has a 90 Sr- 90 Y source to permit programmed irradiation for calibration and material sensitivity checks. Cassettes are used to hold TLD cards during processing. Cassette coding both identifies samples and calls measurement parameters into use from memory. The system can be preprogrammed to measure all common materials and all common dosemeter elements (both square and round). (author)

  13. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    Science.gov (United States)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  14. Philosophy of Science and Philosophy of Chemistry

    OpenAIRE

    Jaap van Brakel

    2014-01-01

    In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philosophy of chemistry that may bring about major revisions or extensions of current philosophy of science. Three themes can claim to make a unique contribution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations betwe...

  15. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  16. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  17. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  18. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  19. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    Science.gov (United States)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  20. Application of the Lean Office philosophy and mapping of the value stream in the process of designing the banking units of a financial company

    Directory of Open Access Journals (Sweden)

    Nelson Antônio Calsavara

    2016-09-01

    Full Text Available The purpose of this study is to conduct a critical analysis of the effects of Lean Office on the design process of the banking units of a financial company and how the implementation of this philosophy may contribute to productivity, thus reducing implementation time. A literature review of the Toyota Production System was conducted, as well as studies on its methods, with advancement to lean thinking and consistent application of Lean philosophies in services and Office. A bibliographic and documentary survey of the Lean processes and procedures for opening bank branches was taken. A Current State Map was developed, modeling the current operating procedures. Soon after the identification and analysis of waste, proposals were presented for reducing deadlines and eliminating and grouping stages, with consequent development of the Future State Map, implementation and monitoring of stages, and the measurement of estimated time gains in operation, demonstrating an estimated 45% reduction, in days, from start to end of the process, concluding that the implementation of the Lean Office philosophy contributed to the process.

  1. Educational Non-Philosophy

    Science.gov (United States)

    Cole, David R.

    2015-01-01

    The final lines of Deleuze and Guattari's What is Philosophy? call for a non-philosophy to balance and act as a counterweight to the task of philosophy that had been described by them in terms of concept creation. In a footnote, Deleuze and Guattari mention François Laruelle's project of non-philosophy, but dispute its efficacy in terms of the…

  2. Philosophy Rediscovered: Exploring the Connections between Teaching Philosophies, Educational Philosophies, and Philosophy

    Science.gov (United States)

    Beatty, Joy E.; Leigh, Jennifer S. A.; Dean, Kathy Lund

    2009-01-01

    Teaching philosophy statements reflect our personal values, connect us to those with shared values in the larger teaching community, and inform our classroom practices. In this article, we explore the often-overlooked foundations of teaching philosophies, specifically philosophy and historical educational philosophies. We review three elements of…

  3. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  4. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  5. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    Houser, M.M.

    1993-01-01

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  6. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    Science.gov (United States)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  7. Design philosophy for the new harwell α,β/γ ILW facility and associated NDA instrumentation with regard to criticality safety

    International Nuclear Information System (INIS)

    Chard, P.M.J.; Cooper, T.J.; Croft, S.; Lambert, K.P.; Syme, D.B.; Wilkins, C.G.

    1995-01-01

    A new Alpha Beta/Gamma Waste Facility is currently being commissioned at Harwell. The facility provides for the assay and re-packing of existing Intermediate Level Waste (ILW) cans and future ILW arisings into 400 litre drums which are then stored in an integral vault prior to ultimate disposal. Paramount to the design philosophy for the plant was the safe retrieval and movement of radioactive material throughout the treatment process and the avoidance of criticality and other hazards. This required sound managerial controls underpinned by state-of-the-art non destructive assay (NDA) measurements. These consist primarily of a gamma spectrometer and a passive/active neutron interrogator. Their prime role is to confirm can identity against plant records and enable a fissile inventory to be developed for each can for criticality assessment. An expert system aids interpretation of assay results and the reconciliation of discrepancies. This paper describes the design philosophy with emphasis on the control measures used and the operation of the expert system. (author)

  8. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  9. French PWR safety philosophy

    International Nuclear Information System (INIS)

    Conte, M.

    1986-05-01

    Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents

  10. Masses of Formal Philosophy

    DEFF Research Database (Denmark)

    Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods i...... in philosophy. Including contributions from a wide range of philosophers, Masses of Formal Philosophy contains important new responses to the original five questions.......Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods...

  11. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  12. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  13. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  14. Philosophy, Neuroscience and Education

    Science.gov (United States)

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  15. Natural Philosophy

    OpenAIRE

    Blair, Ann M.

    2006-01-01

    “Natural philosophy” is often used by European historians as an umbrella term to designate the study of nature before it can easily be identified with what we call “science” today, to avoid the modern and potentially anachronistic connotations of that term. But “natural philosophy” (and its equivalents in different languages) was also an actor's category, a term commonly used throughout the early modern period and typically defined quite broadly as the study of natural bodies. As the central ...

  16. Teaching Philosophy Statements

    Science.gov (United States)

    Faryadi, Qais

    2015-01-01

    This article examines the rationale for my teaching philosophy. Using a personal perspective, I explain my objectives, mission, and vision in writing my philosophy of teaching statements. This article also creates a road map and reference points for educators who want to write their own teaching philosophy statements to help them make informed…

  17. Philosophy of Education Today

    Science.gov (United States)

    Chambliss, J. J.

    2009-01-01

    In this review essay J.J. Chambliss assesses the current state of the field of philosophy of education through analysis of four recent edited compilations: Randall Curren's "A Companion to Philosophy of Education"; Nigel Blake, Paul Smeyers, Richard Smith, and Paul Standish's "The Blackwell Guide to Philosophy of Education"; Wilfred Carr's "The…

  18. Philosophy for Democracy

    Science.gov (United States)

    Bartels, Rob; Onstenk, Jeroen; Veugelers, Wiel

    2016-01-01

    Philosophy for Democracy is a research project that aims to examine whether and how Philosophy with Children contributes to the development of democratic skills and attitudes. In the Netherlands, as in almost all Western countries, Philosophy with Children is linked with the movement for citizenship education. This article reports the research on…

  19. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  20. My Philosophy

    Science.gov (United States)

    Lodge, Oliver

    2012-08-01

    Foreword; Part I. An Elementary Survey of Physical Existence: 1. The constitution of things around us; 2. The progress of physical science; 3. Design and purpose in the universe; 4. Religion and science; 5. The organism and the control; 6. The property of inertia; 7. Summary of new knowledge; 8. Machinery of guidance; Part II. Evidence for and Controversies Concerning the Ether: 9. Matter, energy and the ether; 10. The ether and the forms of energy; 11. Faraday's conception of the ether; 12. Modern gibes at the ether; 13. The physical aspect of the universe; 14. Views of Thomas Young, Newton and Fresnel; 15. The ether and relativity; 16. Magnetism and the ether, with suggestions for experiment; 17. Summary of our present knowledge about the ether; Part III. Introduction of Life and Mind: 18. The interaction of the psychical with the physical; 19. Life and mechanism; 20. A psychical function suggested for the ether of space; 21. Ether and the soul; Part IV. The Evidence for Survival and its Mechanism: 22. Evidence for and mechanism of survival; 23. On the difficulty of proving individual survival; 24. On the reasons for the non-recognition of psychical research by the majority of the scientific world; 25. On the apparent element of caprice introduced by the spiritistic hypothesis; 26. The whole organically considered; 27. The spiritistic hypothesis; 28. The bearing of the theory upon religions; Index.

  1. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  2. Rotary balance data for a typical single-engine low-wing general aviation design for an angle-of-attack range of 30 deg to 90 deg

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.

    1978-01-01

    Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.

  3. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  4. Exploring a clinically friendly web-based approach to clinical decision support linked to the electronic health record: design philosophy, prototype implementation, and framework for assessment.

    Science.gov (United States)

    Miller, Perry; Phipps, Michael; Chatterjee, Sharmila; Rajeevan, Nallakkandi; Levin, Forrest; Frawley, Sandra; Tokuno, Hajime

    2014-07-01

    Computer-based clinical decision support (CDS) is an important component of the electronic health record (EHR). As an increasing amount of CDS is implemented, it will be important that this be accomplished in a fashion that assists in clinical decision making without imposing unacceptable demands and burdens upon the provider's practice. The objective of our study was to explore an approach that allows CDS to be clinician-friendly from a variety of perspectives, to build a prototype implementation that illustrates features of the approach, and to gain experience with a pilot framework for assessment. The paper first discusses the project's design philosophy and goals. It then describes a prototype implementation (Neuropath/CDS) that explores the approach in the domain of neuropathic pain and in the context of the US Veterans Administration EHR. Finally, the paper discusses a framework for assessing the approach, illustrated by a pilot assessment of Neuropath/CDS. The paper describes the operation and technical design of Neuropath/CDS, as well as the results of the pilot assessment, which emphasize the four areas of focus, scope, content, and presentation. The work to date has allowed us to explore various design and implementation issues relating to the approach illustrated in Neuropath/CDS, as well as the development and pilot application of a framework for assessment.

  5. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  6. Philosophy as Estrangement

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre

    interested in philosophy as a privileged object of investigation and investment ‐ an aim in itself. There are, however, moments and situations in my life where an interest in philosophy has appeared or is necessarily forced upon me; these are times when philosophy appears as a seemingly unavoidable...... and essential questioning of fundamentals,– as a ‘basic’ need. This being said, it can be annoying as well as cumbersome. Philosophy as a ‘basic’ need makes itself felt as an estrangement that has always already taken place. It takes the form of a “Schritt zurück” in which one pulls away from, problematizes...

  7. Transonic Aerodynamic Characteristics of a Wing-Body Combination having a 52.5 deg Sweptback Wing of Aspect Ratio 3 with Conical Camber and Designed for a Mach Number of the Square Root of 2

    Science.gov (United States)

    Igoe, William B.; Re, Richard J.; Cassetti, Marlowe

    1961-01-01

    An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.

  8. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  9. Physics Needs Philosophy. Philosophy Needs Physics

    Science.gov (United States)

    Rovelli, Carlo

    2018-05-01

    Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method.

  10. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  11. John White on Philosophy of Education and Philosophy

    Science.gov (United States)

    Siegel, Harvey

    2014-01-01

    John White offers a provocative characterization of philosophy of education. In this brief reaction, I evaluate the characterization and urge the maintenance of a strong connection between philosophy of education and philosophy.

  12. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  13. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  14. Truth in Philosophy

    Directory of Open Access Journals (Sweden)

    Tibor R. Machan

    2011-03-01

    Full Text Available Can there be truth in philosophy? A problem: it is philosophy, its various schools, that advances what counts as true versus false, how to go about making the distinction. This is what I wish to focus on here and see if some coherent, sensible position could be reached on the topic.

  15. Particle physics and philosophy

    International Nuclear Information System (INIS)

    Sakata, Shoichi.

    1984-01-01

    The philosophy of dialectical materialism is applied to the history of the discovery of building blocks of matter. Engels' theory was adapted by Taketani to describe the cognizance of different levels of material structures. This philosophy was used to construct the composite Sakata model of hadrons in the early sixties. (D.Gy.)

  16. Philosophy of Data: Why?

    Science.gov (United States)

    Furner, Jonathan

    2017-01-01

    Philosophy of data should not be dismissed as a cluster of scholastic puzzles whose solutions are of limited practical value. On the contrary, philosophy of data should be recognized as constituting the core of a field of data studies that is informed by, but far from equivalent to, statistics, computer science, and library and information studies.

  17. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  18. Why Philosophy Matters

    Science.gov (United States)

    Mason, Richard

    2005-01-01

    The motives of philosophers tend to be personal. Philosophy has mattered politically as part of continuing political debates. Its effects on politics, religion and the development of the sciences have been evident. Philosophy has been supposed to have special educational value, from its contents or from the benefits of its methods and arguments.…

  19. Particle physics and philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, S.

    1984-01-01

    The philosophy of dialectical materialism is applied to the history of the discovery of building blocks of matter. Engels' theory was adapted by Taketani to describe the cognizance of different levels of material structures. This philosophy was used to construct the composite Sakata model of hadrons in the early sixties.

  20. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  1. Trends in African philosophy

    African Journals Online (AJOL)

    JONATHAN

    In the contention of Oladipo (2006), the debate on the idea of. African philosophy which has been divided into trends or schools, dates back to the 1960's and 70's, which constitute the modern epoch of African philosophy, when some African thinkers began to question the perspective that traditional African beliefs and.

  2. Counseling and Transcendental Philosophy

    Science.gov (United States)

    Donceel, Joseph

    1971-01-01

    An acquaintance with the different philosophies of human nature is an invaluable asset for counseling. The author presents a modern Christian concept of man with emphasis on contributions of Aristotle and St. Thomas Aquinas and elements from modern philosophy. Its two main concerns are man's spirit and man's knowledge and will. (Author/CG)

  3. Legal Philosophy - Five Questions

    DEFF Research Database (Denmark)

    This collection gathers together a host of the most eminent contemporary legal philosophers, who writes about their take on legal philosophy, its fundamental questions and potential.......This collection gathers together a host of the most eminent contemporary legal philosophers, who writes about their take on legal philosophy, its fundamental questions and potential....

  4. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  5. Empirical philosophy of science

    DEFF Research Database (Denmark)

    Wagenknecht, Susann; Nersessian, Nancy J.; Andersen, Hanne

    2015-01-01

    A growing number of philosophers of science make use of qualitative empirical data, a development that may reconfigure the relations between philosophy and sociology of science and that is reminiscent of efforts to integrate history and philosophy of science. Therefore, the first part...... of this introduction to the volume Empirical Philosophy of Science outlines the history of relations between philosophy and sociology of science on the one hand, and philosophy and history of science on the other. The second part of this introduction offers an overview of the papers in the volume, each of which...... is giving its own answer to questions such as: Why does the use of qualitative empirical methods benefit philosophical accounts of science? And how should these methods be used by the philosopher?...

  6. Doctor of Philosophy Thesis in Military Informatics : Lethal Autonomy of Weapons is Designed and/or Recessive

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2016-01-01

    p { margin-bottom: 0.1in; line-height: 120%; } My original contribution to knowledge is : Any weapon that exhibits intended and/or untended lethal autonomy in targeting and interdiction – does so by way of design and/or recessive flaw(s) in its systems of control – any such weapon is capable of war-fighting and other battle-space interaction in a manner that its Human Commander does not anticipate. A lethal autonomous weapons is therefore independently capable of ex...

  7. Brief account of the design philosophy for third Qinshan NPP shutdown safety system based on practical application

    International Nuclear Information System (INIS)

    Xiong Weihua

    2005-01-01

    Qinshan CANDU power plant is uses the Canadian proven CANDU6 nuclear power technology. It has two characteristic: 1. heavy water-as moderator and coolant; 2. natural uranium as the fuel and change fuel during normal operating. CANDU6 include four special safety system: the No.1 shutdown system (SDS No.1), the No.2 shutdown system (SDS No.2), the containment system, the emergency core cooling system (ECCS). QinShan CANDU power plant is the first commercial PHWR nuclear power plant in China. And some aspect is not similar to everybody. The intention of the article is to introduce the basic design and functions. (authors)

  8. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  9. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  10. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  11. Postmodernism: Philosophy of Education

    Directory of Open Access Journals (Sweden)

    Oleg Bazaluk

    2015-07-01

    Full Text Available The subject of the research is the philosophy of education and its reflection on the educational process. Based on the analysis of predecessors’ works the author presented the new structure of the philosophy of education which enriches the understanding of its subject, targets and methods of research. The author presented the philosophy of education as a pyramid, the base of which are generalizing the situation of man as a subject andobject of research accumulated in the philosophical anthropology. The first level of the pyramid takes psychology as a science which studies the origin, development and functioning of the psyche. Pedagogy crowns the “pyramid”. The author used the dialectical, system-structural, structural-functional method, as well as methods of comparison, analysis and synthesis. The main conclusion of the study is to prove that the philosophy of education in their new understanding is not only a theoretical understanding of basics and demonstrations of the educational process, but also a practice, the direct embodiment of the theoretical developments in the education in the everyday life. Using historical and philosophical analysis, the author shows that the philosophy of education does not just depend on the state of social philosophy (and philosophy in general, but also through its methodological apparatus it realizes the established philosophical (ideological paradigm in the different pedagogical practices.

  12. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Daniele Miorandi

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an “open” philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  13. Opening Philosophy to the World: Derrida and Education in Philosophy

    Science.gov (United States)

    Burik, Steven

    2009-01-01

    In this essay, Steven Burik discusses Jacques Derrida's position with regard to the place of education in philosophy within the university system, and then relates these thoughts to comparative philosophy. Philosophers find themselves constantly having to defend philosophy and the importance of teaching philosophy against pressure from the powers…

  14. Philosophy of Money

    CERN Document Server

    Simmel, Georg; Frisby, David; Bottomore, Tom

    2011-01-01

    In The Philosophy of Money, Georg Simmel provides us with a now classic discussion of the social, psychological and philosophical aspects of the money economy, full of brilliant insights into the forms that social relationships take.

  15. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  16. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  17. The future of philosophy.

    Science.gov (United States)

    Searle, J R

    1999-12-29

    There is no sharp dividing line between science and philosophy, but philosophical problems tend to have three special features. First, they tend to concern large frameworks rather than specific questions within the framework. Second, they are questions for which there is no generally accepted method of solution. And third they tend to involve conceptual issues. For these reasons a philosophical problem such as the nature of life can become a scientific problem if it is put into a shape where it admits of scientific resolution. Philosophy in the 20th century was characterized by a concern with logic and language, which is markedly different from the concerns of earlier centuries of philosophy. However, it shared with the European philosophical tradition since the 17th century an excessive concern with issues in the theory of knowledge and with scepticism. As the century ends, we can see that scepticism no longer occupies centre stage, and this enables us to have a more constructive approach to philosophical problems than was possible for earlier generations. This situation is somewhat analogous to the shift from the sceptical concerns of Socrates and Plato to the constructive philosophical enterprise of Aristotle. With that in mind, we can discuss the prospects for the following six philosophical areas: (1) the traditional mind-body problem; (ii) the philosophy of mind and cognitive science; (iii) the philosophy of language; (iv) the philosophy of society; (v) ethics and practical reasons; (vi) the philosophy of science. The general theme of these investigations, I believe, is that the appraisal of the true significance of issues in the philosophy of knowledge enables us to have a more constructive account of various other philosophical problems than has typically been possible for the past three centuries.

  18. The future of philosophy.

    Science.gov (United States)

    Searle, J R

    1999-01-01

    There is no sharp dividing line between science and philosophy, but philosophical problems tend to have three special features. First, they tend to concern large frameworks rather than specific questions within the framework. Second, they are questions for which there is no generally accepted method of solution. And third they tend to involve conceptual issues. For these reasons a philosophical problem such as the nature of life can become a scientific problem if it is put into a shape where it admits of scientific resolution. Philosophy in the 20th century was characterized by a concern with logic and language, which is markedly different from the concerns of earlier centuries of philosophy. However, it shared with the European philosophical tradition since the 17th century an excessive concern with issues in the theory of knowledge and with scepticism. As the century ends, we can see that scepticism no longer occupies centre stage, and this enables us to have a more constructive approach to philosophical problems than was possible for earlier generations. This situation is somewhat analogous to the shift from the sceptical concerns of Socrates and Plato to the constructive philosophical enterprise of Aristotle. With that in mind, we can discuss the prospects for the following six philosophical areas: (1) the traditional mind-body problem; (ii) the philosophy of mind and cognitive science; (iii) the philosophy of language; (iv) the philosophy of society; (v) ethics and practical reasons; (vi) the philosophy of science. The general theme of these investigations, I believe, is that the appraisal of the true significance of issues in the philosophy of knowledge enables us to have a more constructive account of various other philosophical problems than has typically been possible for the past three centuries. PMID:10670025

  19. Jazz-Philosophy Fusion

    Directory of Open Access Journals (Sweden)

    James Tartaglia

    2016-07-01

    Full Text Available In this paper I describe and provide a justification for the fusion of jazz music and philosophy which I have developed; the justification is provided from the perspectives of both jazz and philosophy. I discuss two of my compositions, based on philosophical ideas presented by Schopenhauer and Derek Parfit respectively; links to sound files are provided. The justification emerging from this discussion is that philosophy produces ‘non-argumentative effects’ which provide suitable material for artistic expression and exploration. These effects – which are often emotional – are under-recognised in philosophy, but they do important philosophical work in demarcating the kinds of truths we want to discover, and in sustaining our search for them. Jazz-Philosophy Fusion can help to increase metaphilosophical self-consciousness about these effects, while also helping to counteract any undue persuasive force they may achieve. Jazz is a particularly suitable medium because it has independently developed a concern with philosophical ideas; because of strong parallels between jazz and philosophy which explain their mutual openness to fusions, and because improvisation very effectively facilitates the direct audience engagement essential to inducing these effects.

  20. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    OpenAIRE

    Sutthiphong Srigrarom; Woei-Leong Chan

    2015-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings a...

  1. Philosophy of the social sciences

    Directory of Open Access Journals (Sweden)

    J. A. Kimelyev

    2014-01-01

    Full Text Available Philosophy of social science is a branch of philosophy where relations between philosophy and social sciences are traced and investigated. The main functions of philosophy of social science are: to work out social ontology, methodology and metatheory of social science.

  2. Rotary balance data for a typical single-engine general aviation design for an angle of attack range of 8 deg to 90 deg. 1: Low wing model C. [wind tunnel tests

    Science.gov (United States)

    Mulcay, W. J.; Rose, R. A.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine, low wing, general aviation model (model C). The configurations tested included the basic airplane and control deflections, wing leading edge and fuselage modification devices, tail designs and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering an omega b/2v range from 0 to .9.

  3. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model C

    Science.gov (United States)

    Hultberg, R. S.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin g tunnel are presented in plotted form for a 1/6 scale, single engine, high wing, general aviation model. The configurations tested included the basic airplane and control deflections, wing leading edge devices, tail designs, and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering a spin coefficient range from 0 to 0.9.

  4. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  5. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: High-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.

  6. Developing an integrated design model incorporating technology philosophy for the design of healthcare environments : a case analysis of facilities for psychogeriatric and psychiatric care in The Netherlands

    NARCIS (Netherlands)

    van Hoof, J.; Verkerk, M.J.

    The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us

  7. Philosophy vs the common sense

    OpenAIRE

    V. V. Chernyshov

    2017-01-01

    The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself...

  8. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40

  9. The Left- and Right-Wing Political Power Design: The Dilemma of Welfare Policy with Low-Income Relief

    Directory of Open Access Journals (Sweden)

    Joseph E. Mullat

    2016-02-01

    Full Text Available Findings from this experiment contributed novel insights into the theoretical field of welfare policy, addressing fundamental questions about wealth redistribution rules and norms. The expenses of the redistribution pertaining to basic goods, as well as those associated with public (non-basic but vital goods, are separately estimated by transforming the expenses into functions of the poverty line. The findings reveal that, along the poverty line that treats all citizens equally, the politicians representing opposing ideologies decide how the redistribution of basic and vital goods should be financed. Politicians should come to an agreement, subject to an approval of their decisions by voters-citizens. However, in the absence of such approval, politicians have no alternative but to continue the negotiations. Based on this premise, we concluded that political decisions with an elevated poverty line as a parameter would give rise to inverse working incentives of benefits claimants. This may result in unbalanced books, due to the expenditure on the delivery of basic and non-basic goods to their respective destinations. By keeping the books in balance, we postulate that one half of median income μ, in accord with Fuchs point, may be used in the form of poverty line ½μ for just and fair wealth redistribution in resolving the ideological controversies between left- and right-wing politicians. Through the income exception rule equal to ½μ, as a result of a relief payments simulation, the wealth redistribution system, known since 1962 from as Friedman’s Negative Income Tax (NIT, diminished the Gini coefficient.

  10. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  11. Philosophy of Physics

    Science.gov (United States)

    Crease, Robert P.

    2017-10-01

    There are some physics controversies that no amount of physics research can answer. Why is doing string theory scientific despite its lack of empirical predictions? How should we interpret quantum mechanics? What is the nature of time and space? What constitutes fundamental physics? One can answer these questions dogmatically by appealing to textbooks or by making rough and ready pronouncements, but the issues behind them can often be significantly clarified by the sort of systematic, critical reflection that philosophy practices. Philosophy comes in several traditions. Three of these-known as 'analytic,' 'pragmatic' and 'continental'-have paid particular attention to physics. This ebook illustrates philosophy of physics in action, and how it can help physics, by using four examples from physics to exhibit the aims and value of these philosophical approaches.

  12. History, applications, and philosophy in mathematics education

    DEFF Research Database (Denmark)

    Jankvist, Uffe Thomas

    2013-01-01

    on the observation that a use of history, applications, and philosophy as a 'goal' is best realized through a modules approach, the article goes on to discuss how to actually design such teaching modules. It is argued that a use of primary original sources through a so-called guided reading along with a use......The article first investigates the basis for designing teaching activities dealing with aspects of history, applications, and philosophy of mathematics in unison by discussing and analyzing the different 'whys' and 'hows' of including these three dimensions in mathematics education. Based...... of student essay assignments, which are suitable for bringing out relevant meta-issues of mathematics, is a sensible way of realizing a design encompassing the three dimensions. Two concrete teaching modules on aspects of the history, applications, and philosophy of mathematics-HAPh-modules-are outlined...

  13. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    Science.gov (United States)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  14. The Philosophy of Forestry

    Directory of Open Access Journals (Sweden)

    Glenn W. Erickson

    2010-10-01

    Full Text Available Abstrac: In an extended discussion, within the context of a"philosophy offorestry", of the relationships of the concepts of truth and of tree some fundamental aspects of occidental metaphysics are examined from a Heideggerian perspective. But the paper tries to go beyond Heidegger's thematization of metaphysics in the context of pre-Socratic philosophy by establishing Indo-European etymology as a more inclusive horizon. In this manner, the transition from anti-metaphysics to post-metaphysics is anticipated.

  15. Safety philosophy in Plowshare

    International Nuclear Information System (INIS)

    Thalgott, R.H.

    1969-01-01

    A nuclear device can be detonated safely when it can ascertained that the detonation can be accomplished without injury to people, either directly or indirectly, and without unacceptable damage to the ecological system and natural or man made structures. This philosophy has its origin in the nuclear weapons testing program dating back to the first detonation in 1945 and applies without reservation to PIowshare projects. This paper therefore will outline the mechanics employed by government in implementing this safety philosophy. The talk will describe those type of actions taken by safety oriented organizations and committees to assure that necessary and desirable safety reviews are conducted. (author)

  16. Pragmatism and Existential Philosophy

    Directory of Open Access Journals (Sweden)

    Hans Lipps

    2010-01-01

    Full Text Available Hans Lipps compares pragmatism (William James and John Dewey existentialism (Friedrich Nietzsche, Soren Kierkegaard, and Martin Heidegger in this 1936 article translated from French.  He claims that they aim at the same goals, e.g., a return to lived experience and a rejection of the Cartesian legacy in philosophy.  While summarizing the commonalities of each, he engages in a polemic against philosophy then that remains relevant now into the next century.

  17. Berkeley's Philosophy of Mathematics

    CERN Document Server

    Jesseph, Douglas M

    1993-01-01

    In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

  18. Safety philosophy in Plowshare

    Energy Technology Data Exchange (ETDEWEB)

    Thalgott, R H [Nevada Operations Office, U.S. Atomic Energy Commission (United States)

    1969-07-01

    A nuclear device can be detonated safely when it can ascertained that the detonation can be accomplished without injury to people, either directly or indirectly, and without unacceptable damage to the ecological system and natural or man made structures. This philosophy has its origin in the nuclear weapons testing program dating back to the first detonation in 1945 and applies without reservation to PIowshare projects. This paper therefore will outline the mechanics employed by government in implementing this safety philosophy. The talk will describe those type of actions taken by safety oriented organizations and committees to assure that necessary and desirable safety reviews are conducted. (author)

  19. Philosophy and mathematics: interactions.

    Science.gov (United States)

    Rashed, Roshdi

    From Plato to the beginnings of the last century, mathematics provided philosophers with methods of exposition, procedures of demonstration, and instruments of analysis. The unprecedented development of mathematics on the one hand, and the mathematicians' appropriation of Logic from the philosophers on the other hand, have given rise to two problems with which the philosophers have to contend: (1) Is there still a place for the philosophy of mathematics? and (2) To what extent is a philosophy of mathematics still possible? This article offers some reflections on these questions, which have preoccupied a good many philosophers and continue to do so.

  20. Design and fabrication of a low cost Darrieus vertical axis wing turbine system. Phase I. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-06-22

    The contract has two phases, a design phase and a fabrication and installation phase. Presented is the work completed in Phase I, the design phase. The Sandia 17 m was used as the background machine from which design information was drawn. By concentrating the modifications on an existing design, emphasis was focused on component cost reduction rather than selection of optimal configuration or operating modes. The resulting design is a stretched version of the Sandia 17 m preserving the same rotor diameter and many other good features, but in the meantime lighter in weight, larger in capacity, and anticipated to be more cost effective.

  1. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  2. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    Science.gov (United States)

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  3. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  4. Technology and Teaching Philosophy

    Science.gov (United States)

    King, Paul C.

    2012-01-01

    This article discusses the challenges faced when integrating new technologies into the classroom. Viewing the experiences of teaching a first year learning community through the lens of the principles of the Reflective Teaching Portfolio, the author looks to answer the question: "How should Technology relate to our Teaching Philosophy?"…

  5. Operations and maintenance philosophy

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    1999-01-01

    This Operations and Maintenance (O and M) Philosophy document is intended to establish a future O and M vision, with an increased focus on minimizing worker exposure, ensuring uninterrupted retrieval operations, and minimizing operation life-cycle cost. It is intended that this document would incorporate O and M lessons learned into on-going and future project upgrades

  6. Retooling Peace Philosophy

    DEFF Research Database (Denmark)

    Schmidt, Johannes Dragsbæk; Hersh, Jacques; Petersen-Overton, Kristofer

    2010-01-01

    This book documents recent and historical events in the theoretically-based practice of peace development. Its diverse collection of essays describes different aspects of applied philosophy in peace action, commonly involving the contributors’ continual engagement in the field, while offering sup...

  7. Game theory in philosophy

    NARCIS (Netherlands)

    de Bruin, B.P.

    2005-01-01

    Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals

  8. Humor, Philosophy and Education

    Science.gov (United States)

    Morreall, John

    2014-01-01

    This article begins by examining the bad reputation humor traditionally had in philosophy and education. Two of the main charges against humor--that it is hostile and irresponsible--are linked to the Superiority Theory. That theory is critiqued and two other theories of laughter are presented--the Relief Theory and the Incongruity Theory. In the…

  9. Performance and Philosophy Now

    Directory of Open Access Journals (Sweden)

    Tasoula Kallenou

    2015-11-01

    Full Text Available Was Plato the first philosophical dramatist to explore philosophical ideas through dramatic content, introducing dramatic structures currently in line with contemporary theatre? If Plato was an influential figure for philosophers as well as theatre-makers, it can arguably be said that he was a silent pioneer in creating the newly defined discipline of Performance Philosophy. There is an obvious polarity between performance and philosophy since both disciplines are on the quest of exploring and presenting what life is. At least this can be said of ancient Greek and Roman philosophy. Conceived as “biou techne” the art of living, Greek and Roman philosophers, especially the Epicureans, Stoics and Skeptics, saw philosophy as a way of conceiving what a good life is (a life worth living and pursuing its practical realization for the attainment of eudemonia. Plato was arguably the first significant philosopher to explore philosophical ideas through dramatic content, introducing dramatic structures currently in line with contemporary theatre views. As such, he can be seen as an influential figure for theatre makers as well as for philosophers. Plato’s artistic intention was to uncover the artist that lacked substance and support the knowledgeable creative philosophical mind that besides instant emotional pleasure has to contribute in social development.

  10. Investigating Talent Management Philosophies

    Directory of Open Access Journals (Sweden)

    Urbancova Hana

    2015-09-01

    Full Text Available This study, motivated by the recognition that organizational performance and success always hinges on employee competencies and management’s skill in utilizing their potentials, focuses on one of the key factors in organizational efficiency: the possibilities of development of talented employees within Czech organizations. The data was collected via two quantitative studies. The first study involved 100 organizations from every economic sector with a main focus on the topic from the organization’s perspective. The second study explored the approach from employees’ perspective. Our analysis shows that different talent management philosophies are used in practice. Almost half of the sample use inclusive and stable philosophy, 11% inclusive and developable philosophy and almost 10% exclusive and developable philosophy. Employees are mostly developed in generally recommended areas without any consideration for the specific individual’s characteristics or related opportunities. It is a stable approach. Limitations of this study may be found in the focus on analysis outcomes - on practitioners in particular. The present findings provide a basis for future hypotheses and research in this area.

  11. 87 Philosophy and African Philosophy: A Conceptual Analysis ...

    African Journals Online (AJOL)

    Tracie1

    concepts of philosophy and then African philosophy. This is because the ... philosophy inter alia, as one's moral guide is only but the informal meaning ... reasons for all the assumptions entertained by any disciplines. .... quite unfortunate to state here that the earliest studies and .... functionality, rigour and coherence. And as ...

  12. Philosophy and Sociology Studies

    Directory of Open Access Journals (Sweden)

    S. A. Kravchenko

    2014-01-01

    Full Text Available Philosophy and Social science school of MGIMO has received both nationwide and international recognition. The traditions of the school were laid by two highly respected scientists and science managers, George P. Frantsev, who was the rector MGIMO during the crucial period of its early years, and Alexander F. Shishkin, who was the founder and head of the Department of Philosophy. The former belonged to one of the best schools of antic history studies of the Petersburg (Leningrad University. Frantsev made a great contribution to the restoration of Russian social and political science after World War II. After graduating from MGIMO, he worked at the Foreign Ministry of USSR, and then served as a rector of the Academy of Social Sciences and chief-editor of the journal "Problems of Peace and Socialism" in Prague. He consistently supported MGIMO scientists and recommended them as participants for international congresses and conferences. Shishkin was born in Vologda, and studied in Petrograd during 1920s. His research interests included history of education and morality. He was the author of the first textbook on ethics in the postwar USSR. Other works Shishkin, including monograph "XX century and the moral values of humanity", played a in reorienting national philosophy from class interests to universal moral principles. During thirty years of his leadership of the Department of Philosophy, Shishkin managed to prepare several generations of researchers and university professors. Scientists educated by Shishkin students consider themselves to be his "scientific grandchildren". The majority of MGIMO post-graduate students followed the footsteps of Frantsev in their research, but they also were guided by Shishkin's ideas on morality in human relations. Philosophy and Social science school of MGIMO played an important role in the revival of Soviet social and political science. Soviet Social Science Association (SSSA, established in 1958, elected Frantsev

  13. Kierkegaard's Philosophy: Implications for Counseling.

    Science.gov (United States)

    Dopson, Lorraine; Gade, Eldon

    1981-01-01

    Discusses how the philosophy of Soren Kierkegaard can provide useful guidelines for the study of the counseling process. Compares Kierkegaard's philosophy with selected contributions of Freud, Skinner, Rogers, and May and with four common themes of counseling and psychotherapy. (Author)

  14. The Design and Integration of a Distributed Fan Propulsion System within a Split-Wing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A baseline propulsion system has been designed as a starting point in a previous SBIR effort for this project which consists of two turboshaft engines, a generator...

  15. The Philosophy of University Housing

    Science.gov (United States)

    Wallace, James A.

    2012-01-01

    This article examines a stated philosophy of university housing and the philosophy's effect on the facilitation of the personal and intellectual growth of students residing in the residence halls and the development of a sense of community. This particular philosophy governs the housing operations at Southern Illinois University at Carbondale.…

  16. PHILOSOPHY IN CONTEMPORARY TIME: RELEVANCE VS ...

    African Journals Online (AJOL)

    JONATHAN

    This proper training of the human mind with the tool of philosophy translates ... students of philosophy do not understand what philosophy students do in their philosophy classes. ..... communication as well as the analysis and synthesis thereof.

  17. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  18. The death of Philosophy: A response to Stephen Hawking | Scott ...

    African Journals Online (AJOL)

    In his 2010 work, The Grand Design, Stephen Hawking, argues that '… philosophy is dead' (2010: 5). While not a Philosopher, Hawking provides strong argument for his thesis, principally that philosophers have not taken science sufficiently seriously and so Philosophy is no longer relevant to knowledge claims.

  19. Immanent philosophy of X.

    Science.gov (United States)

    Hendry, Robin Findlay

    2016-02-01

    In this paper I examine the relationship between historians, philosophers and sociologists of science, and indeed scientists themselves. I argue that (i) they co-habit a shared intellectual territory (science and its past); and (ii) they should be able to do so peacefully, and with mutual respect, even if they disagree radically about how to describe the methods and results of science. I then go on to explore some of the challenges to mutually respectful cohabitation between history, philosophy and sociology of science. I conclude by identifying a familiar kind of project in the philosophy of science which seeks to explore the worldview of a particular scientific discipline, and argue that it too has a right to explore the shared territory even though some historians and sociologists may find it methodologically suspect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Philosophy of Learning

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2015-10-01

    Full Text Available The survival of the homo sapiens sapiens species depends upon learning and passing on to future generations quality knowledge. Yet, we find to an increasing extent a corruption of the process, resulting in ignorance, environmental destruction, and breakdown of community. A fundamental shift in priorities is required to avert disaster. Articulating a solution depends upon a language, which, in turn, depends upon clarifying concepts. This paper identifies the dialectical (something existing because of what it is not interrelationship of episteme (theory and techné (practice within the framework of ethos, pathos, and logos. This structure and process as learning provides coherence in developing knowledge and can then be what in a generic sense is religion (to cohere, or bind. In a monk-like devotion to learning to generate quality knowledge humanity can appreciate its own meaning and make this world a better place in which to live. In this way religion becomes philosophy, and philosophy religion.

  1. A Philosophy of Learning

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2014-08-01

    Full Text Available The survival of the homo sapiens sapiens species depends upon learning and passing on to future generations quality knowledge. Yet, we find to an increasing extent a corruption of the process, resulting in ignorance, environmental destruction, and breakdown of community. A fundamental shift in priorities is required to avert disaster. Articulating a solution depends upon a language, which, in turn, depends upon clarifying concepts. This paper identifies the dialectical (something existing because of what it is not interrelationship of episteme (theory and techné (practice within the framework of ethos, pathos, and logos. This structure and process as learning provides coherence in developing knowledge and can then be what in a generic sense is religion (to cohere, or bind. In a monk-like devotion to learning to generate quality knowledge humanity can appreciate its own meaning and make this world a better place in which to live. In this way religion becomes philosophy, and philosophy religion.

  2. The philosophy of cosmology

    CERN Document Server

    Silk, Joseph; Barrow, John D; Saunders, Simon

    2017-01-01

    Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.

  3. Microbiology, philosophy and education.

    Science.gov (United States)

    O'Malley, Maureen A

    2016-09-01

    There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  5. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  6. Development of a nuclear ship safety philosophy

    International Nuclear Information System (INIS)

    Thompson, T.E.

    1978-01-01

    A unique safety philosophy must be recognized and accepted as an integral part of the design and operation of a nuclear ship. For the nuclear powered ship, the ultimate safety of the reactor and therefore the crew and the environment lies with the safety of the ship itself. The basis for ship safety is its ability to navigate and survive the conditions or the environment in which it may find itself. The subject of traditional ship safety is examined along with its implication for reactor protection and safety. Concepts of reactor safety are also examined. These two philosophies are combined in a manner so as to provide a sound philosophy for the safety of nuclear ships, their crews, and the environment

  7. Philosophy in Seminaries

    Directory of Open Access Journals (Sweden)

    Pawel Tarasiewicz

    2013-12-01

    Full Text Available The author attempts to answer the question concerning whether or not philosophy is needed in seminaries. In light of his analysis, it can be concluded that philosophical studies for future priests are a serious alternative to the fideistic positions often adopted by Catholics. The presence of philosophy in the seminary curriculum is supported by: (1 the need for building intellectual foundations of the religious faith professed by a cleric; the faith which cannot do without reason and abstain from justifying the rationale of its content; (2 the need for introducing the alumnus to the mysteries of the classical philosophy of being which can equip him with a better understanding of human nature and the surrounding reality. In this way, the seminarian: (1 acquires a reasonable belief that the human mind is able to know the objective and universal truth, including the truth about God as the Ultimate Cause of all that exists; (2 is able to enter into an intelligent dialogue about the truth with an increasingly globalized world.

  8. Physics, philosophy and environment

    International Nuclear Information System (INIS)

    Angel Maya, Augusto

    2001-01-01

    Physics and philosophy has join developments since the Jonios. The present article tries to analyze some of the philosophical problems that arise of the classic and contemporary physics and that affect the environmental vision. In general, it can be said that the discoveries of the physics has meant a progressive desplatonization of the western world, including the remaining of Platon that is included in Aristoteles philosophy. From the analysis some problems arise that is worthwhile to emphasize. Above all the relationship between determinism and random theory, from the environmental perspective it is necessary to wonder if it is licit to apply these concepts to man. With it the problem of freedom arise, attacked by Spinoza, but carefully protected by Kant's philosophy. Their acceptance supposes, however, the division between man and the cultural schizophrenia. Is it possible to explain freedom from the physics, such as was pretended by Epicuro or Prigonine? Has nature a wide field of freedom as it is assumed in some of the currents of contemporary physics? All of them are questions that the environmental thought has to confront, although it cannot solve them

  9. Newton and scholastic philosophy.

    Science.gov (United States)

    Levitin, Dmitri

    2016-03-01

    This article examines Isaac Newton's engagement with scholastic natural philosophy. In doing so, it makes two major historiographical interventions. First of all, the recent claim that Newton's use of the concepts of analysis and synthesis was derived from the Aristotelian regressus tradition is challenged on the basis of bibliographical, palaeographical and intellectual evidence. Consequently, a new, contextual explanation is offered for Newton's use of these concepts. Second, it will be shown that some of Newton's most famous pronouncements - from the General Scholium appended to the second edition of the Principia (1713) and from elsewhere - are simply incomprehensible without an understanding of specific scholastic terminology and its later reception, and that this impacts in quite significant ways on how we understand Newton's natural philosophy more generally. Contrary to the recent historiographical near-consensus, Newton did not hold an elaborate metaphysics, and his seemingly 'metaphysical' statements were in fact anti-scholastic polemical salvoes. The whole investigation will permit us a brief reconsideration of the relationship between the self-proclaimed 'new' natural philosophy and its scholastic predecessors.

  10. Safety philosophy of ICRP

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1995-01-01

    Measures are important as the means to realize philosophy. Accordingly, it is meaningful to take measures as the object when the philosophy of ICRP is considered. As to controllable risk factors, restraint shall be done so as to make the risk being brought about as small as possible. When it is not necessary to limit restraining means, risk-free is ideal. Ionizing radiation is one of risk factors. The risk that ICRP speaks is the loss of the probability of maintaining life. The object of radiation protection is limited to the exposure to controllable radiation, and the aim of protection is to minimize risk under the condition of as low as reasonably achievable. The philosophy of ICRP and the problems in the measures are discussed. ICRP and ICRU must reconfirm the allotment of roles. Radiation protection system is composed of system of radiation dosimetry and system of dose limitation. The mission of ICRP is to recommend political decision, and it may make the political declaration 'The radiation below a certain amount may be regarded as safe'. It is better only to recommend the conversion relation of radiation dose and risk. The desire and demand to ICRP are mentioned. (K.I.)

  11. The philosophy of modelling or does the philosophy of biology have any use?

    Science.gov (United States)

    Orzack, Steven Hecht

    2012-01-19

    Biologists in search of answers to real-world issues such as the ecological consequences of global warming, the design of species' conservation plans, understanding landscape dynamics and understanding gene expression make decisions constantly that are based on a 'philosophical' stance as to how to create and test explanations of an observed phenomenon. For better or for worse, some kind of philosophy is an integral part of the doing of biology. Given this, it is more important than ever to undertake a practical assessment of what philosophy does mean and should mean to biologists. Here, I address three questions: should biologists pay any attention to 'philosophy'; should biologists pay any attention to 'philosophy of biology'; and should biologists pay any attention to the philosophy of biology literature on modelling? I describe why the last question is easily answered affirmatively, with the proviso that the practical benefits to be gained by biologists from this literature will be directly proportional to the extent to which biologists understand 'philosophy' to be a part of biology, not apart from biology.

  12. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  13. Philosophy at Cambridge, Newsletter of the Faculty of Philosophy

    OpenAIRE

    Lecky-Thompson, Jenni

    2009-01-01

    Philosophy Newsletter. Articles by: Edward Craig - From the Chairman. Onora O'Neill - "It's the newspapers I can't stand. Serena Olsaretti - The 2004 Annual Royal Institute of Philosophy Conference. Mary Leng - Mathematical Knowledge Conference. Postgraduate Conference. Jane Heal - Facts, Fables and Funds. Hugh Mellor - Uses and Abuses of Probability. Amanda Boyle - Nobody Knows Anything: Philosophy, Film and Me. Jaime Whyte - Seven Years at Cambridge Alex Oliver...

  14. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods, namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.

  15. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  16. Shakespeare's Philosophy of Music

    Directory of Open Access Journals (Sweden)

    Emily A. Sulka

    2017-09-01

    Full Text Available Shakespeare is one of the most widely read figures in literature, but his use of music is not usually touched on in literary discussions of his works. In this paper, I discuss how Shakespeare portrays music within the context of his plays, through both dialogue and songs performed within each work. In Shakespeare’s time, Boethius’s philosophy of the Music of the Spheres was still highly popular. This was the idea that the arrangement of the cosmos mirrored musical proportions. As a result, every aspect of the universe was believed to be highly ordered, and this idea is prominent throughout Shakespeare’s works, from "Hamlet" to "A Midsummer Night’s Dream." To make this clear to the reader, I discuss dialogue symmetry weaved throughout "The Merchant of Venice," clear allusions to the music of the spheres in "Pericles," and the use of music as a signifier of the strange and mysterious – from madness to love – in numerous works, always relating these topics back to the philosophy of the music of the spheres. In order to compile this information and make it clear, I researched the philosophy of music during Shakespeare’s era. I also researched how he uses music thematically to emphasize different characters’ struggles as well as plot details. After examining his plays as well as the other sources available on the subject, it is clear that Shakespeare was highly influenced by the philosophical and practical ideas regarding music of his time, specifically the theory of the music of the spheres.

  17. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  18. A TQC philosophy

    Directory of Open Access Journals (Sweden)

    K. Sandrock

    2003-12-01

    Full Text Available There has been a recent upsurge in the quest for world class manufacturing. Tremendous amounts of effort are being exerted to attain Total quality Control (TQC - so as to be able to produce "the best". The EEC has stated categorically that it will only support accredited suppliers, and this has been partly responsible for the recent fixation on techniques for excellence. These techniques often fail to produce results. This paper presents a systems based philosophy for working towards world class levels of manufacturing.

  19. Modern philosophy of education

    Directory of Open Access Journals (Sweden)

    Kirillov N. P

    2016-01-01

    Full Text Available The authors suggest the concept of philosophy of education, which implies that education is focused on building the concept of a creative professional. The paper actualizes problems of methodology of scientific knowledge, ontological and gnoseological thinking alongside with their role in education. It is claimed that understanding of gnoseological thinking that captures the cognitive process as a whole, including methods, resources, procedures, approaches and ability to apply this method within the scope of science in any educational process, is a necessary condition in developing a creatively thinking professional. Thus, in order to implement this objective the paper covers the use of interdisciplinary and abovedisciplinary approaches in education.

  20. Poetry, philosophy, political

    Directory of Open Access Journals (Sweden)

    Alberto Pucheu

    2016-07-01

    Full Text Available Considering how persistently a certain amount of specialized critics work to diminish contemporary Brazilian poetry, this essay seeks to conceive an articulation among poetry, philosophy and politics. We atempt to do that, on the one hand, through the philosophical concepts of aporia and wonder (thaumazein, and, on the another hand, by considering what Giorgio Agamben refers to as “an insurmontable disjunction between whatever singularity and the State organization”. Among the many poets that could be approached in this context, we chose to close the text with an interpretation some of Tarso de Melo's remarkably and explicitly political poems.

  1. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  2. Philosophy of mathematics

    CERN Document Server

    Gabbay, Dov M; Woods, John

    2009-01-01

    One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

  3. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  4. Rorty, Pragmatism, and Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Cheryl Misak

    2013-07-01

    Full Text Available One of Richard Rorty's legacies is to have put a Jamesian version of pragmatism on the contemporary philosophical map. Part of his argument has been that pragmatism and analytic philosophy are set against each other, with pragmatism almost having been killed off by the reigning analytic philosophy. The argument of this paper is that there is a better and more interesting reading of both the history of pragmatism and the history of analytic philosophy.

  5. The philosophy of physics

    CERN Document Server

    Rickles, Dean

    2016-01-01

    Does the future exist already? What is space? Are time machines physically possible? What is quantum mechanical reality like? Are there many universes? Is there a 'true' geometry of the universe? Why does there appear to be an arrow of time? Do humans play a special role in the world? In this unique introductory book, Dean Rickles guides the reader through these and other core questions that keep philosophers of physics up at night. He discusses the three pillars of modern physics (quantum mechanics, statistical mechanics, and the theories of relativity), in addition to more cutting-edge themes such as econophysics, quantum gravity, quantum computers, and gauge theories. The book's approach is based on the idea that philosophy of physics is a kind of 'interpretation game' in which we try to map physical theories onto our world. But the rules of this game often lead to a multiplicity of possible victors: rarely do we encounter a simple answer. The Philosophy of Physics offers a highly accessible introduction...

  6. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  7. Philosophy, Moral Philosophy, and Counseling Ethics: Not an Abstraction.

    Science.gov (United States)

    Urofsky, Robert I.; Engels, Dennis W.

    2003-01-01

    Over the past several decades, increased attention has been given to ethics in the preparation of counselors and psychologists. With that increase comes a number of voices calling for exposure to and integration of not only moral philosophy but other areas of philosophy to enhance understanding and provide a foundation for counseling practice. The…

  8. Introduction: philosophy in and philosophy of cognitive science.

    Science.gov (United States)

    Brook, Andrew

    2009-04-01

    Despite being there from the beginning, philosophical approaches have never had a settled place in cognitive research and few cognitive researchers not trained in philosophy have a clear sense of what its role has been or should be. We distinguish philosophy in cognitive research and philosophy of cognitive research. Concerning philosophy in cognitive research, after exploring some standard reactions to this work by nonphilosophers, we will pay particular attention to the methods that philosophers use. Being neither experimental nor computational, they can leave others bewildered. Thought experiments are the most striking example but not the only one. Concerning philosophy of cognitive research, we will pay particular attention to its power to generate and test normative claims, claims about what should and should not be done. Copyright © 2009 Cognitive Science Society, Inc.

  9. Constructive philosophy of technology and responsible innovation

    NARCIS (Netherlands)

    Brey, Philip A.E.; Franssen, M.; Vermaas, P.E.; Kroes, P.; Meijers, A.W.M.

    2016-01-01

    This essay argues for a new turn after the empirical turn in the philosophy of technology: the societal turn, which is the turn from reflective philosophy of technology (academic philosophy concerned with analysis and understanding) to constructive philosophy of technology (philosophy that is

  10. Philosophy of phenomenology: how understanding aids research.

    Science.gov (United States)

    Converse, Mary

    2012-01-01

    To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.

  11. Physics and philosophy

    CERN Document Server

    Feyerabend, P K; Agassi, Joseph

    2015-01-01

    This collection of the writings of Paul Feyerabend is focused on his philosophy of quantum physics, the hotbed of the key issues of his most debated ideas. Written between 1948 and 1970, these writings come from his first and most productive period. These early works are important for two main reasons. First, they document Feyerabend's deep concern with the philosophical implications of quantum physics and its interpretations. These ideas were paid less attention in the following two decades. Second, the writings provide the crucial background for Feyerabend's critiques of Karl Popper and Thomas Kuhn. Although rarely considered by scholars, Feyerabend's early work culminated in the first version of Against Method. These writings guided him on all the key issues of his most well-known and debated theses, such as the incommensurability thesis, the principles of proliferation and tenacity, and his particular version of relativism, and more specifically on quantum mechanics.

  12. Philosophy of ecology

    CERN Document Server

    Brown, Bryson; Peacock, Kent A

    2011-01-01

    The most pressing problems facing humanity today - over-population, energy shortages, climate change, soil erosion, species extinctions, the risk of epidemic disease, the threat of warfare that could destroy all the hard-won gains of civilization, and even the recent fibrillations of the stock market - are all ecological or have a large ecological component. in this volume philosophers turn their attention to understanding the science of ecology and its huge implications for the human project. To get the application of ecology to policy or other practical concerns right, humanity needs a clear and disinterested philosophical understanding of ecology which can help identify the practical lessons of science. Conversely, the urgent practical demands humanity faces today cannot help but direct scientific and philosophical investigation toward the basis of those ecological challenges that threaten human survival. This book will help to fuel the timely renaissance of interest in philosophy of ecology that is now oc...

  13. Philosophie en islam

    OpenAIRE

    Jambet, Christian

    2013-01-01

    I. L’héritage d’Avicenne au xviie siècle : le Commentaire de la Métaphysique du Shifā’ par Mullā Ṣadrā Les philosophes de l’Iran safavide ont une dette envers l’œuvre d’Avicenne, Abū ʽAlī ibn Sīnā (m. 428/1037). L’ouvrage synthétique et allusif d’Avicenne, al-Ishārāt wa l-tanbīhāt fut méthodiquement étudié par les savants imamites quand Naṣīr al-Dīn al-Ṭūsī en eut achevé son commentaire vers 664/1246. Les philosophes instruits de la théologie rationnelle imamite et de la philosophie « illumin...

  14. Legitimizing Blacks in Philosophy

    Directory of Open Access Journals (Sweden)

    Jameliah Shorter-Bourhanou

    2017-12-01

    Full Text Available In its efforts toward improving diversity, the discipline of philosophy has tended to focus on increasing the number of black philosophers. One crucial issue that has received less attention is the extent to which black philosophers are delegitimized in the discipline because their philosophical contributions challenge the status quo. A systematic problem that bars black philosophers from equal and full participation, this delegitimization precludes the emergence of genuine diversity and reveals the importance of interrogating broader attitudes toward black philosophical contributions. In this essay, I argue for radical systematic changes to disciplinary hallmarks of professionalization such as pedagogy, mentoring, publishing, and hiring practices with the aim of legitimizing black philosophers and their contributions.

  15. Philosophy of statistics

    CERN Document Server

    Forster, Malcolm R

    2011-01-01

    Statisticians and philosophers of science have many common interests but restricted communication with each other. This volume aims to remedy these shortcomings. It provides state-of-the-art research in the area of philosophy of statistics by encouraging numerous experts to communicate with one another without feeling "restricted” by their disciplines or thinking "piecemeal” in their treatment of issues. A second goal of this book is to present work in the field without bias toward any particular statistical paradigm. Broadly speaking, the essays in this Handbook are concerned with problems of induction, statistics and probability. For centuries, foundational problems like induction have been among philosophers' favorite topics; recently, however, non-philosophers have increasingly taken a keen interest in these issues. This volume accordingly contains papers by both philosophers and non-philosophers, including scholars from nine academic disciplines.

  16. Reflections concerning radiation protection philosophy

    International Nuclear Information System (INIS)

    Seelentag, W.

    1981-01-01

    Critical philosophy also includes observations of the technical amplified senses make, i.e. the application of accessory instruments, measuring instruments and statistic methods. The application of this philosophy is, among other things, referred to when taking the linear dose response relationship for stochastic radiation effects as an example. (DG) [de

  17. Kaupapa Maori, Philosophy and Schools

    Science.gov (United States)

    Stewart, Georgina

    2014-01-01

    Goals for adding philosophy to the school curriculum centre on the perceived need to improve the general quality of critical thinking found in society. School philosophy also provides a means for asking questions of value and purpose about curriculum content across and between subjects, and, furthermore, it affirms the capability of children to…

  18. Odera Oruka's Contribution to Philosophy

    African Journals Online (AJOL)

    Commentators on the four trends in contemporary African philosophy as enunciated by H. Odera Oruka frequently focus on the merits and demerits of each trend. However, many of them are obblivious to the way in which sagacity emancipates African philosophy by putting reason in its rightful pivotal position. This article ...

  19. Present Day Philosophies of Education

    Science.gov (United States)

    Ediger, Marlow

    2006-01-01

    Presently, there are competing philosophies of education which need comparison. Two philosophies will be compared which are at opposite ends of the continuum. They are distinctly different. And yet, both schools of thought have their disciples. Each of the two will be discussed in terms of its essential features and then there will be selected…

  20. Elementary School Philosophy: A Response

    Science.gov (United States)

    Wartenberg, Thomas E.

    2012-01-01

    This article is a response to criticism of my book "Big Ideas for Little Kids." The main topics addressed are: Who is the audience for the book? Can people without formal philosophical training can be good facilitators of elementary school philosophy discussions? Is it important to assess attempts to teach philosophy in elementary school? Should…

  1. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  2. [Treatment goals in FACE philosophy].

    Science.gov (United States)

    Martin, Domingo; Maté, Amaia; Zabalegui, Paula; Valenzuela, Jaime

    2017-03-01

    The FACE philosophy is characterized by clearly defined treatment goals: facial esthetics, dental esthetics, periodontal health, functional occlusion, neuromuscular mechanism and joint function. The purpose is to establish ideal occlusion with good facial esthetics and an orthopedic stable joint position. The authors present all the concepts of FACE philosophy and illustrate them through one case report. Taking into account all the FACE philosophy concepts increases diagnostic ability and improves the quality and stability of treatment outcomes. The goal of this philosophy is to harmonize the facial profile, tooth alignment, periodontium, functional occlusion, neuromuscular mechanism and joint function. The evaluation and treatment approach to vertical problems are unique to the philosophy. © EDP Sciences, SFODF, 2017.

  3. The Concept "System of Philosophy"

    DEFF Research Database (Denmark)

    Catana, Leo

    2005-01-01

    of philosophy’ as a methodological tool in the history of philosophy. I shall argue that the interdisciplinary nature of much pre-modern philosophy makes Brucker’s methodological concept ‘system of philosophy’ inadequate, and that we may be better off leaving it behind in our future exploration of pre-modern......In this article I shall examine and discuss the concept ‘system of philosophy’ as a methodological tool in the history of philosophy. I shall do so in two moves. First I shall analyze the historical origin of the concept in the seventeenth and eighteenth centuries. Thereafter I shall undertake...... a discussion of its methodological weaknesses — a discussion, which is not only relevant to the writing of history of philosophy in the seventeenth and eighteenth centuries, but also to the writing of history of philosophy in our times, where the concept remains an important methodological tool. My first move...

  4. The Philosophy of Mathematics Education

    DEFF Research Database (Denmark)

    mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards......This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical...... research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also...

  5. Frauen in Philosophie und Wissenschaft

    Directory of Open Access Journals (Sweden)

    Regina Harzer

    2006-03-01

    Full Text Available Der von Brigitte Doetsch herausgegebene Band präsentiert die aktuelle Feministische Philosophie und sammelt Beiträge, die Einblick geben in den gegenwärtigen Forschungsstand, wie ihn „Philosophinnen im dritten Jahrtausend“ erreicht haben. Insgesamt neun, zum Teil interdisziplinär ausgerichtete Arbeiten werden vorgestellt. Das Themenspektrum ist weit: Geschichte der Philosophie; Politische Philosophie und Naturphilosophie; Epistemologie; Biopolitik und Bioethik als Bereiche praktischer Philosophie; Forschung über Geschlechterverhältnisse. Alle Beiträge gehen zurück auf eine Vortragsreihe des Braunschweiger Zentrums für Gender Studies (www.genderzentrum.de. Leser/-innen erhalten einen guten Überblick über die aktuelle Frauenforschung aus der Sicht theoretischer und praktischer Philosophie.

  6. Optimization of composite tiltrotor wings with extensions and winglets

    Science.gov (United States)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  7. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  8. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  9. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  10. Philosophy of Research in Applied Linguistics

    OpenAIRE

    Mohammad Ali Torabi

    2011-01-01

    The term  “ philosophy of research in applied linguistics” may be considered to cover a wide range of academically and philosophically important issues that have recently begun to capture the attention of scholars in research programs in their efforts, on the one hand, to reflect upon how they have traditionally approached their scientific practices and, on the other, to reconsider and redefine their research priorities in the light of new findings and revise their methodologies and designs i...

  11. Amerykańska filozofia polityczna. Niedokończona debata (AMERICAN POLITICAL PHILOSOPHY. AN UNFINISHED DEBATE

    Directory of Open Access Journals (Sweden)

    Piotr Bołtuć

    2007-06-01

    Full Text Available The author begins by drawing a distinction between an earlier stage of contemporary American political philosophy, informed by the Rawls-Nozick-Walzer debate, and a later stage geared towards social issues such as multiculturalism. His point is that the earlier debate was incomplete because an important group of views went underrepresented. This becomes clear when one use two variables to classify the main political theories: higher taxes and more social services versus lower taxes and fewer social services (economic left and right and the level of individualism versus collectivism (liberals and communitarians. This gives us four positions: left-wing liberalism, left-wing communitarianism, right-wing liberalism and right-wing communitarianism. The author claims that right-wing communitarianism is barely represented in the debate that grounded today's political philosophy. He sketches a version of conservatism, relying mostly on Nisbet and Kirk, to illustrate the missing position of right wing communitarianism. Although he does not endorse many aspects of conservatism as right-wing communitarianism, he argues that it is a theoretically viable option and suggest that sociological reasons may explain why it is underrepresented among professional philosophers. As a part of the argument he also outlines a position called equality without egalitarianism.

  12. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model A

    Science.gov (United States)

    Mulcay, W.; Rose, R.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5-scale, single-engine, high-wing, general aviation airplane model. The configurations tested included various tail designs and fuselage shapes. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations covering an Omega b/2 v range from 0 to 0.85.

  13. Qualitative tools and experimental philosophy

    Science.gov (United States)

    Andow, James

    2016-01-01

    Abstract Experimental philosophy brings empirical methods to philosophy. These methods are used to probe how people think about philosophically interesting things such as knowledge, morality, and freedom. This paper explores the contribution that qualitative methods have to make in this enterprise. I argue that qualitative methods have the potential to make a much greater contribution than they have so far. Along the way, I acknowledge a few types of resistance that proponents of qualitative methods in experimental philosophy might encounter, and provide reasons to think they are ill-founded. PMID:28392629

  14. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  15. Neuroaesthetics and Philosophy

    Directory of Open Access Journals (Sweden)

    Jason Holt

    2013-08-01

    Full Text Available Some philosophers even recently have been skeptical about whether science can reveal anything significant about art. Although some scientists’ ventures into art theory have seemed to warrant such suspicions, including early speculative forays into neuroaesthetics, against such skepticism, the argument here is that neuroaesthetics is crucial for understanding aesthetic experience and ultimately art itself. Because certain core proposals of early versions of neuroaesthetics (e.g., the art-as-caricature thesis seem to justify this skepticism and yet, at the same time, prove more defensible than they might initially seem, they are ideal illustrations of how neuroaesthetics at a more abstract level dovetails with the philosophy of art, and so provides a complementary, not competing perspective that can help complete, verify, and defend such philosophical theories. In particular, it is proposed that aesthetic experience involves a distinctive corticolimbic response, that such experience is therefore testable and may be found even with so-called anti-art, and that its value consists in resolution of conflict between the higher cortex and limbic system generated by the evolution of the former.

  16. Crisis and Environmental Philosophy

    Directory of Open Access Journals (Sweden)

    Peter Wolsing

    2014-06-01

    Full Text Available Environmental ethics began in the 1960s with a growing awareness of coming environmental problems such as pollution and the projected shortage of resources caused by an acceleration in human’s technically based exploitation of nature. In addition to becoming an issue in public debate and in politics since the 1970s, the environmental crisis, which can be laid at the door of industrialization, calls for a more basic consideration of man’s attitude to nature. In this paper I give a short presentation of the concept of crisis in a selection of the principal classical critical philosophies of history and suggest that they all connect crisis to the oppression of man’s inner nature. I go on to sketch the idea of environmental crisis as an oppression of outer nature (the natural environment suggesting that a new, more nuanced organic concept of nature is needed as a condition for ascribing value to life on earth as a whole, which is what most non-anthropocentric ethical theories to some extent do.

  17. Cosmology and philosophy

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1981-01-01

    The problem of establishing boundaries between cosmology and philosophy is discussed. It is stated that the theoretic knowledge and observation data do not contradict the selection of one of non-stationary homogenous and isotropic relativistic models, which are also called the Friedmann models. In this model (with a zero Λ - member) there is a critical value of the substance density which is 10 -29 g/cm 2 . The determination of the average density of the Universe substance relatively to this value enables to choose between a closed and an open Universe model. Nowadays, this problem is not yet solved. But some philosophic theses reject the closed cosmological model without any naturally scientific argumentation. Critical remarks about such an approach to the problem studied are presented. The conclusion is made that the problems of the Universe volume infinity of finity, laws of its evolution in time or the like are not philosophic and should be considered taking into account the data of astronomic observations and modern physics

  18. Philosophy vs the common sense

    Directory of Open Access Journals (Sweden)

    V. V. Chernyshov

    2017-01-01

    Full Text Available The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself from the common sense, which refers to the common or collective experience. Moreover, the study examines the role of emotions, conformity and conventionality which they play with respect to the common sense. Next the author focuses on the role of philosophical intuition, guided with principles of rationality, nonconformity and scepticism, which the author professes the foundation stones of any sound philosophy. The common sense, described as deeply routed in the world of human emotions, aims at empathy, as the purpose of philosophy is to provide the rational means of knowledge. Therefore, philosophy uses thinking, keeping the permanent efforts to check and recheck data of its own experience. Thus, the first task of philosophical thinking appears to overcome the suggestion of the common sense, which purposes the social empathy, as philosophical intuition aims at independent thinking, the analytics of subjective experience. The study describes the fundamental principles of the common sense, on the one hand, and those of philosophy, on the other. The author arrives to conclusion that the common sense is unable to exceed the limits of sensual experience. Even there, where it apparently rises to a form of any «spiritual unity», even there it cannot avoid referring to the data of commonly shared sensual experience; though, philosophy, meanwhile, goes beyond sensuality, creating a discourse that would be able to alienate from it, and to make its rational

  19. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  20. The Christian voice in philosophy

    Directory of Open Access Journals (Sweden)

    Stuart Fowler

    1982-03-01

    Full Text Available In this paper the Rev. Stuart Fowler outlines a Christian voice in Philosophy and urges the Christian philosopher to investigate his position and his stance with integrity and honesty.

  1. Why still philosophy?: Once again

    Directory of Open Access Journals (Sweden)

    Krstić Predrag

    2007-01-01

    Full Text Available The intention of this paper is to revisit, once again the question asked by Adorno and Habermas and other contemporary thinkers under different headings few decades ago. The author is suggesting that nowadays philosophy requires a final departure from the idea of having single and perennial face, and that this would not only allow, but also enable philosophy to test its various faces freely, that is, without norm or limit set in advance. At the same time, by creating such ′liberal′ climate philosophy would no longer be frightened by the possible answer, and hence would no longer dramatize the very question of ′why still?′. Even if philosophy turns out to be far less than the mission it once bestowed upon itself.

  2. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    Low Frequency LIGA Lithographie Galvanoformung Abformung (German) LPCVD Low Pressure Chemical Vapor Deposition LRC Inductor- Resistor -Capacitor MAV...record MAV endurance flexible wing design first ever battery power MAV integrated sensor package piezo - electric unimorph actuators...capable of hovering piezo - electric actuators *Theoretical Value Only 2.5 Flying MEMS-Based Robots In 1993, Kubo, et al published a study on

  3. [Neurosciences and philosophy of mind].

    Science.gov (United States)

    Saal, Aarón

    2005-01-01

    In this paper we argue that the interaction between neurosciences and philosophy of the mind is on the way to understand consciousness, and to solve the mind-body or mind-brain problem. Naturalism is the view that mental processes are just brain processes and that consciousness is a natural phenomenon. It is possible to construct a theory about its nature by blending insights from neuroscience, philosophy of the mind, phenomenology, psychology and evolutionary biology.

  4. HOBBES’ POLITICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    MHAI NOVAC

    2013-05-01

    Full Text Available This is basically an attempt at an original conceptual reconstruction of Hobbes’ philosophy as set in Lehiathan, namely one in the view of which Hobbes was neither an atheist nor an absolutist, as the standard interpretation holds, but rather what we could call an agnostical pragmatist (fact which, quite surprisingly, places Hobbes in the company of Burke. More to the point, my basic claim within this paper is that Hobbes was not such an ‘enemy of individual freedom’ as we traditionally hold him to be and that his thought was just as attached to the notion of individual freedom as the later contractualist views. The difference however, arises from the fact that Hobbes, unlike Locke, Rousseau or Kant, was what we could call a voluntaristic determinist and consequently viewed human freedom not so much as ‘unhindered action derived from reflective choice’, but rather as what we could call ‘reasonable fulfillment of the basic human inclinations’ (self-interest. As such, I will analyze the three main focal points of Hobbes’ thought, namely (i human nature, (ii the principle of association and (iii the principle of authority. More specifically I will try to offer a perspective on the link between his voluntaristic determinism, his notion of legitimate absolute coercion (sovereignity and his political theology (the view that any form of political authority rests on a religious legitimacy in trying to demonstrate how all these were Hobbes’ specific way of seeking to find individual freedom a place under the sun.

  5. Testing philosophy and simulation techniques

    International Nuclear Information System (INIS)

    Holtbecker, H.

    1977-01-01

    This paper reviews past and present testing philosophies and simulation techniques in the field of structure loading and response studies. The main objective of experimental programmes in the past was to simulate a hypothetical energy release with explosives and to deduce the potential damage to a reactor from the measured damage to the model. This approach was continuously refined by improving the instrumentation of the models, by reproducing the structures as faithful as possible and by developing new explosive charges. This paper presents an analysis of the factors which are expected to have an influence on the validity of the results e.g. strain rate effects and the use of water instead of sodium. More recently the discussion of a whole series of accidents in the probabilistic accident analysis and the intention to compare different reactor designs has revealed the need to develop and validate computer codes. Consequently experimental programmes have been started in which the primary aim is not to test a specific reactor but to validate codes. This paper shows the principal aspects of this approach and discusses first results. (Auth.)

  6. The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    Science.gov (United States)

    2012-09-13

    done by using a Trek Inc. Model PZD700 M/S high voltage piezo amplifier that is capable of generating ±700V at ± 200 mA. This amplifier is also...Actuator”. NASA ICASE Report, 8, 2000. 39. Karpelson, M., G.Y. Wei, and R.J. Wood. “A Review of Actuation and Power Electronics Options for Flapping-Wing...Mechanics of Laminated Composite Plates. NASA , 1994. Reference Publication 1351. 60. Nguyen, Q.V., H.C. Park, N.S. Goo, and D. Byun. “Aerodynamic force

  7. Science and philosophy in Deleuze

    Directory of Open Access Journals (Sweden)

    Krtolica Igor

    2015-01-01

    Full Text Available Deleuze will not wait until he had completed his works to frame and formulate a theory on the relation between philosophy and science. The first articulations of this question are already present as early as the 1950s and 1960s in the studies on Bergson and Nietzsche, and then in Difference and repetition as well as in The Logic of Sense. It is also true that this question will be specifically developed in 1991 in What Is Philosophy? But throughout his work, the main thrust would proceed. This issue, it seems, comprises three main aspects: in the first place, in a polemic against the neo-Kantian epistemological legacy, it primarily consists in denying the critical definition of philosophy as being a ‘reflection on scientific knowledge’ to replace it by a conception drawn from Bergson’s expressionist ontology that places science and philosophy on both sides of the being; secondly, in an attempt to restore the concept of dialectics, it consists in making the dialectics of ideas the communal sphere of both science and philosophy; thirdly, aiming to specify every form of thinking, it consists in shaping how each expresses its ideas or its problems with its own signs. These three aspects, it seems, can frame the overall conception Deleuze formed of the link between science and philosophy. We shall successively analyze them, exclusively considering the first period of Deleuze’s work, which is to say the pre-guattarian publications.

  8. The changing shape of U.S. licensing philosophy

    International Nuclear Information System (INIS)

    Remick, F.J.

    1992-01-01

    The shape of U.S. nuclear licensing and regulatory philosophy and process has already changed. The new process requires NRC review and approval of the vendor designs before a prospective utility license applicant purchases the design and begins construction. The new philosophy has resulted from the lessons learned from extensive operating experience accumulated in the United States. New criteria established for judging reactor designs include the capability of future designs to be more tolerant of accidents beyond the traditional design basis events. Qualitative and quantitative goals have been chosen as a guide for allocating resources for regulation of the currently operating plants. The changing shape of nuclear licensing and regulatory philosophy is also a result of economic circumstances in the United States. All will have a better opportunity to take part in the process which is most likely to encourage further development of safe nuclear energy in the United States. (author)

  9. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  10. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  11. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  12. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  13. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  14. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    Science.gov (United States)

    2007-07-01

    used and developed during recent wing / winglet / morphing design programmes (Refs.13-14). By exploiting this method, we have assessed the aerodynamics ...parameters, Propulsion Issues, Size Issues, Aero-elastic effects 15. SUBJECT TERMS EOARD, Control System, Aerodynamics 16...

  15. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  16. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  17. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  18. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  19. Caring to Care: Applying Noddings' Philosophy to Medical Education.

    Science.gov (United States)

    Balmer, Dorene F; Hirsh, David A; Monie, Daphne; Weil, Henry; Richards, Boyd F

    2016-12-01

    The authors argue that Nel Noddings' philosophy, "an ethic of caring," may illuminate how students learn to be caring physicians from their experience of being in a caring, reciprocal relationship with teaching faculty. In her philosophy, Noddings acknowledges two important contextual continuities: duration and space, which the authors speculate exist within longitudinal integrated clerkships. In this Perspective, the authors highlight core features of Noddings' philosophy and explore its applicability to medical education. They apply Noddings' philosophy to a subset of data from a previously published longitudinal case study to explore its "goodness of fit" with the experience of eight students in the 2012 cohort of the Columbia-Bassett longitudinal integrated clerkship. In line with Noddings' philosophy, the authors' supplementary analysis suggests that students (1) recognized caring when they talked about "being known" by teaching faculty who "cared for" and "trusted" them; (2) responded to caring by demonstrating enthusiasm, action, and responsibility toward patients; and (3) acknowledged that duration and space facilitated caring relations with teaching faculty. The authors discuss how Noddings' philosophy provides a useful conceptual framework to apply to medical education design and to future research on caring-oriented clinical training, such as longitudinal integrated clerkships.

  20. Transcendental Philosophy and its Transformations

    DEFF Research Database (Denmark)

    Ishihara, Yuko

    There is an interesting overlap between Heidegger and Nishida that has not gained attention in the literature. During the late 1920s, both philosophers looked to transcendental philosophy as a way to overcome the Western metaphysical tradition. Neither philosopher, however,simply accepted...... traditional forms of transcendental philosophy. Rather, both attempted to transform it from within. In this work, I aim to articulate the extent to which Heidegger and Nishidastill worked within a traditional transcendental framework and also the ways in which they attempt to transform transcendental...... philosophy. I argue that while Heidegger’s “hermeneutic” and Nishida’s “chorological” (I employ this term from Plato’s chōra) transformations have much in common, the latter is more radical than the former. Specifically, Nishida reveals the pre-reflective origin of transcendental reflection not in the pre...

  1. How student teachers understand African philosophy

    Directory of Open Access Journals (Sweden)

    Matsephe M. Letseka

    2012-10-01

    Full Text Available The question ‘What constitutes African philosophy?’ was first raised with the publication of Placide Tempels’s seminal work Bantu philosophy in 1959. Tempels’s book inevitably elicited considerable critical response from African philosophers, which culminated in a wide range of publications such as Wiredu’s (1980 Philosophy and an African culture, Hountondji’s (1983 African philosophy: Myth and reality, Oruka’s (1990 Sage philosophy: Indigenous thinkers and modern debate on African philosophy, Shutte’s (1993 Philosophy for Africa, Masolo’s (1994 African philosophy in search of identity and Gyekye’s (1995 An essay of African philosophical thought: The Akan conceptual scheme. It has been over 60 years since the publication of Temples’s book and there continues to be serious debate about African philosophy. This article sought to contribute to the debate on the various conceptions of African philosophy, but with a focus on the challenges of teaching African philosophy to Philosophy of Education students at an open distance learning institution in South Africa. This article discussed the tendency amongst undergraduate Philosophy of Education students to conflate and reduce African philosophy to African cultures and traditions, and to the notion of ubuntu, and sought to understand the reasons for students’ inclination to treat African philosophy in this way. It examined students’ background knowledge of African philosophy, their critical thinking skills and whether their official study materials are selected and packaged in a manner that, in fact, adds to the challenges they face. Finally, the article explored the ways in which Philosophy of Education lecturers can adapt their pedagogy to provide students with a better understanding of African philosophy.

  2. Flapping Wings of an Inclined Stroke Angle: Experiments and Reduced-Order Models in Dual Aerial/Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Triantafyllou, Michael

    2016-11-01

    Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.

  3. Research philosophy: towards an understanding.

    Science.gov (United States)

    Crossan, Frank

    2003-01-01

    In this paper, Frank Crossan argues that the distinction between quantitative and qualitative philosophies and research methods is sometimes overstated, and that triangulation of methods in contemporary research is common. It is, therefore, important to understand the strengths and weaknesses of each approach, and this paper aims to provide the novice researcher with a basis for developing that understanding. A descriptive analysis of the philosophies of positivism and post-positivist thinking in relation to research methodology is presented both as an introduction to the philosophical basis of research, and as a sound basis from which to discuss the 'quantitative-qualitative' debate.

  4. ENVIRONMENTAL PHILOSOPHY AND ECOLOGICAL CULTURE

    Directory of Open Access Journals (Sweden)

    Kalimat M. Alilova

    2017-01-01

    Full Text Available Aim. The aim of the research is to study environmental problems related to the decline of culture, the importance of philosophy in overcoming private and personal interests as well as the unilateral approach of man in his relationship to nature. The study shows how philosophy can participate in the formation of ecological culture, a new ecological consciousness in man, while ecological culture is called upon to resist technocratic stereotypes and the course of history was aimed at preventing the biosphere from becoming deserted. Discussion. On the basis of the analysis of literary sources, we used the method of socio-cultural and socio-natural approaches based on the possibility of philosophy to introduce a new life into culture, new ecological values and new ecological principles. To solve these problems, environmental philosophy develops new theories. Representatives of different cultures, ethnic groups, nations, religions must learn to coexist with each other. We consider philosophy as a means of teaching rapprochement between peoples and creating new opportunities for understanding and improving the environmental situation. Cultural development makes it possible to assess the level of a man’s knowledge of nature, himself and the world around him. Ecological culture is a way of connecting man with nature on the basis of deeper knowledge and understanding. Philosophy says that you cannot move away from nature and be lauded over it since this will destroy culture. Rational doctrines tend to put a person above other living beings so the synthesis of philosophy with culture can have a positive ecological meaning. Conclusion. The findings obtained can be recommended for practical use in schools, starting from primary school, as well as in secondary special educational institutions and universities. It is necessary to work on the motivation and values of people, develop a common and ecological culture. Only a cultured person can move from

  5. Logic and Philosophy of Time

    DEFF Research Database (Denmark)

    A.N. Prior (1914-69) in the course of the 1950s and 1960s founded a new and revolutionary paradigm in philosophy and logic. Its most central feature is the preoccupation with time and the development of the logic of time. However, this was inseparably interwoven with fundamental questions about h...... human freedom, ethics, and existence. This remarkable integration of themes also embodies an original and in fact revolutionary conception of logic. The book series, Logic and Philosophy of Time, is dedicated to a deep investigation and also the further development of Prior’s paradigm. ...

  6. Philosophy, policies, and procedures - The three P's of flight-deck operations

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Standard operating procedures are drafted and provided to flightcrews to dictate the manner in which tasks are carried out. Failure to conform to Standard Operating Procedures (SOP) is frequently listed as the cause of violations, incidents, and accidents. However, procedures are often designed piecemeal, rather than being based on a sound philosophy of operations and policies that follow from such a philosophy. A framework of philosophy, policies, and procedures is proposed.

  7. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  8. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available qualities constraints during the aerodynamic design process. NOMENCLATURE g2009g2868g3013 zero-lift angle of attack AoA α, angle of attack AR aspect ratio BWB blended-wing-body g1829g3005,g2868 zero-lift drag coefficient g1829g3005,g3036 induced drag... coefficient g1829g3005,g3047 total drag coefficient g1829g3040,g2868 zero-lift pitching moment coefficient CG centre of gravity F objective function to be minimised g1845actual actual wing area g1845 reference wing area, as projected into xy-plane 1...

  9. Statement of philosophy

    International Nuclear Information System (INIS)

    Flynn, T.A. Jr.

    1978-01-01

    A 15-point outline is given to demonstrate that Barnwell, SC, could be ready for spent fuel storage in 2-1/2 to 3 years after DOE approval of such a site. A storage facility of a design by Stone and Webster is briefly outlined

  10. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  11. Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    Science.gov (United States)

    Labovitz, M. L.; Masuoka, E. J.; Broderick, P. W.; Garman, T. R.; Ludwig, R. W.; Beltran, G. N.; Heyman, P. J.; Hooker, L. K.

    1983-01-01

    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted

  12. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  13. CONTEMPORARY AFRICAN PHILOSOPHY: EMERGENT ISSUES ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    another on meta-philosophical issues about African philosophy, their successors, in ... Key Words: African identity, hermeneutics and culture, ... Even the quest to overcome the hegemony of Western ..... African philosophers to rethink the principles, concepts, attitudes ... there is a certain openness to new possibilities at the.

  14. Carl Stumpf's philosophy of mathematics

    NARCIS (Netherlands)

    Ierna, Carlo

    2015-01-01

    Like most of Franz Brentano's students, Carl Stumpf showed an interest in the philosophy of mathematics. In particular, Stumpf wrote his habilitation thesis On the Foundations of Mathematics, used mathematical examples in central parts of his lectures, and later returned to the topic in the

  15. GREEN CHEMISTRY: NEW CHEMICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    F. A. Tykhomirova

    2015-11-01

    Full Text Available The review deals with the principles and guidelines of “Green chemistry” in comparison with the philosophy of nanotechnology. Modern philosophy and methodology of science research focus is on the process of the growth of scientific knowledge. Modern chemistry is complex, hierarchical, multilevel and multidimensional system. Philosophy of nanotechnology relies heavily on the value of scientism and the idea of domination of man over nature , there is an apology of human intervention in nature. “Green chemistry” is called “new thinking”of chemistry, philosophy of modern chemical research. The chemicals and processes in accordance with the principles of “Green chemistry” are considered not only in terms of production of substances and materials with desired properties, but also taking into account the consequences for the environment. In the “Green chemistry” created image of the “ideal customer” – he uses a minimum number of products understands the need to preserve the environment. Ideological landmark “Green chemistry” – co-evolution of man and nature, preservation of the biosphere. It emphasized the need to implement the ideology of “Green chemistry” in the training of future specialists.

  16. Biology, Philosophy, and Scientific Method.

    Science.gov (United States)

    Hill, L.

    1985-01-01

    The limits of falsification are discussed and the historically based models of science described by Lakatos and Kuhn are shown to offer greater insights into the practice of science. The theory of natural selection is used to relate biology to philosophy and scientific method. (Author/JN)

  17. Philosophy and Literature; Philosophy as Literature: Call for Papers

    Directory of Open Access Journals (Sweden)

    2013-11-01

    Full Text Available Plato wrote both stories and argument as a way of investigating philosophical problems. For Plato, the choice of literary form was essential to the quest for philosophical truth. Ever since, philosophical reflection has found expression in numerous literary forms, both creative and conventional. And so, we have Platonic and Humean dialogues, Cartesian meditations, Enlightenment fables, Kierkegaardian narratives, Nietzchean parables and aphorisms, Russellian mathematics, Wittgensteinian tractatuses and investigations, as well as all the standard literary forms of novels, novellas, poems, plays, and songs. Transnational Literature is seeking papers for a special edition of the journal which will be dedicated to the literary expression of philosophy. Rather than readings of philosophy in literature (of mapping particular philosophical frameworks onto works of literature, we invite explorations of philosophy as literature and we invite these explorations to also address the journal’s transnational focus by exploring the crossing of cultural, national and temporal boundaries. The following ideas are of particular interest: •\tPhilosophy and literature as ‘embattled adversaries’ (Calvino and the breaking down of boundaries between philosophy and literature. •\tPhilosophical fiction as an alternative mode of philosophical reflection and investigation and/or experimental method. (George Eliot’s novels, for example, as ‘a set of experiments in life… endeavour[s] to see what our thought and emotion may be capable of.’ •\tThe use of literary devices in philosophical writing to express philosophical facts / metaphysical truths. (Locke’s metaphorical ‘candle within us’ becomes the factual ‘intuition.’ •\tThe use of literary devices in creative fiction to do the work of philosophy. (Exposition as a way of interrupting narrative to keep reader attentive to the task of enquiry. Point-of-view as ethical device. Ellipsis as getting

  18. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  19. A unifying philosophy of governance

    Directory of Open Access Journals (Sweden)

    Sankarshan Acharya

    2012-09-01

    Full Text Available Bertrand Russell won Nobel Prize for arguing that science has triumphed over religion. Since religions are based on god, Russell’s argument implies that science has triumphed over both religion and god. But neither Russell nor anyone else has ever defined religion and god, rationally. The assertion about triumph of science (which is founded on rationality over concepts such as religion and god (which are not defined rationally or scientifically in the extant literature cannot be rational. This paper offers a novel rational philosophical foundation for the concepts of god, religion and science in which the claim that science triumphs over religion is redundant. This paper also presents substantial new insights about epistemic truths to help resolve current problems facing humanity like financial moral hazard and terrorism which have unnerved nations worldwide. The humanity now begs to answer a fundamental question of how we can govern ourselves. This paper offers a coherent set of credible answers. In particular, it offers a coherent unified philosophy about how humans have universally formed beliefs to govern themselves and how this philosophy could help resolve current problems. The universal rendering of beliefs articulated here subsumes the extant characterization of probability beliefs in mathematics, science, engineering, economics, religion and philosophy. The universal beliefs so articulated in this paper obviate the currently prevalent philosophical conflicts between religion and science or between theism and atheism and paves the way for optimal governance for prosperity amid stability. This philosophy also offers a rational characterization of the spiritual notion of Nirvana or salvation of the soul and the notion of epistemic truth. The unifying philosophy can help humanity achieve unity, stability and prosperity, sans financial moral hazard, antagonism, wars, nuclear proliferation, global warming and atmospheric pollution.

  20. Problem-oriented approach to Ancient philosophy

    Directory of Open Access Journals (Sweden)

    Berstov, Igor

    2007-06-01

    Full Text Available Igor Berestov and Marina Wolf of the Institute of philosophy and law, Novosibirsk, discuss various methodological difficulties typical of studies in the history of Ancient Greek philosophy and try to develop their own problem-oriented approach.

  1. Review of the Philosophy of Intelligence

    OpenAIRE

    Gladwin, Lee A.

    1993-01-01

    A review of "The Philosophy of Artificial Intelligence, by Margaret A. Boden, ed., Oxford Readings in Philosophy, Oxford University Press, New York, New York, 1990, 460 pp., $14.95, ISBN 0-19-824854-7 (paper).

  2. Features of formation of philosophy of Russia

    OpenAIRE

    Baranov G. V.

    2016-01-01

    in article the main content of problems and achievements of philosophy of Russia on initial stage of its history is researched; urgent achievements of the Russian philosophy in their value for modern humanitarian culture are characterized.

  3. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  4. CFD Analysis of a T-38 Wing Fence

    Science.gov (United States)

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...fences have been used to improve the aerodynamic performance of hundreds of aircraft. Flow control is commonly added after the final phase of design...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of

  5. Precision Position Control of the DelFly II Flapping-wing Micro Air Vehicle in a Wind-tunnel

    NARCIS (Netherlands)

    Cunis, T.; Karasek, M.; de Croon, G.C.H.E.

    2016-01-01

    Flapping-wing MAVs represent an attractive alternative to conventional designs with rotary wings, since they promise a much higher efficiency in forward flight. However, further insight into the flapping-wing aerodynamics is still needed to get closer to the flight performance observed in natural

  6. An introductory course in philosophy of medicine.

    Science.gov (United States)

    Rudnick, A

    2004-06-01

    Philosophy of medicine, narrowly defined as ontology and epistemology of medicine, is a well developed research field, yet education in this field is less well developed. The aim of this paper is to present an educational development in philosophy of medicine-an introductory course in philosophy of medicine. Central features of the course are described. Participants (medical undergraduate students) scored high on average. The conclusion is that further such educational ventures in philosophy of medicine should be developed and implemented.

  7. A Companion to the Philosophy of Technology

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg O.; Pedersen, Stig Andur; Hendricks, Vincent F.

    The aim of philosophy of technology is to help us understand technology's complex interrelationships with the environment, society, culture - and with our very existence. A Companion to the Philosophy of Technology is the first comprehensive, authoritative reference source for this burgeoning...... those of the humanities, social studies, natural science, sociology, psychology, and engineering sciences and reflect a diversity of philosophical traditions such as pragmatism, analytical philosophy, and phenomenology. Erudite and authoritative, A Companion to the Philosophy of Technology is a major...

  8. Contemporary African philosophy: emergent issues and challenges ...

    African Journals Online (AJOL)

    ... all philosophies remain context-dependent and cultureoriented. A contrary view ignores the proper nature of philosophy. A new phenomenon confronts currently confronts all comers to contemporary African philosophy: an expansive vision of African philosophical discourse. Contemporary African philosophers attempt to ...

  9. Philosophy and the Disciplines: The Borderlines | Minimah ...

    African Journals Online (AJOL)

    This work examines the borderlines of philosophy in relation to the central concern of other disciplines. As a preliminary step towards our examination, we attempt to uncover the specific nature of philosophy on the basis of its subject matter. We argue that while philosophy asks 'second order' questions about the totality of ...

  10. Freedom of Speech and Philosophy of Education

    Science.gov (United States)

    Harris, Roy

    2009-01-01

    Why is freedom of speech so seldom raised as an issue in philosophy of education? In assessing this question, it is important to distinguish (i) between a freedom and its exercise, and (ii) between different philosophies of education. Western philosophies of education may be broadly divided into classes derived from theories of knowledge first…

  11. Philosophy 323, Readings in Asian Thought. Syllabus.

    Science.gov (United States)

    Hurdle, Burton G., Jr.

    A survey course syllabus of Asian philosophy is presented. For each period of dates in the semester course, a reading assignment was made, discussion topics and questions proposed, and supplementary readings and sources suggested. The course focused on Indian philosophy, Buddhism and Hinduism, and Chinese philosophy, specifically Confucian…

  12. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  13. Is Philosophy of Education a Historical Mistake? Connecting Philosophy and Education Differently

    Science.gov (United States)

    Biesta, Gert

    2014-01-01

    In this article, I suggest that the question whether the proper place for philosophy of education is in the domain of philosophy or the domain of education cannot be resolved as long as we think of the connection between philosophy and education in terms of the idea of "philosophy of education". To substantiate this point, I look into…

  14. Philosophical Questions about Teaching Philosophy: What's at Stake in High School Philosophy Education?

    Science.gov (United States)

    Norris, Trevor

    2015-01-01

    What is at stake in high school philosophy education, and why? Why is it a good idea to teach philosophy at this level? This essay seeks to address some issues that arose in revising the Ontario grade 12 philosophy curriculum documents, significant insights from philosophy teacher education, and some early results of recent research funded by the…

  15. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  16. From philosophy to science (to natural philosophy): evolutionary developmental perspectives.

    Science.gov (United States)

    Love, Alan C

    2008-03-01

    This paper focuses on abstraction as a mode of reasoning that facilitates a productive relationship between philosophy and science. Using examples from evolutionary developmental biology, I argue that there are two areas where abstraction can be relevant to science: reasoning explication and problem clarification. The value of abstraction is characterized in terms of methodology (modeling or data gathering) and epistemology (explanatory evaluation or data interpretation).

  17. A decentralized design philosophy for satellites

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Larsen, Jesper Abildgaard

    2011-01-01

    For the last decade development and construction of student cubesat satellites has played an important part in the engineering Master Program within Electrical Engineering and Information Technology at Aalborg University, Denmark. As a result three cubesats AAU CUBESAT, AAUSAT-II and AAUSAT3 has ...

  18. Philosophy of biology. Is there still a need for philosophy?

    Science.gov (United States)

    Graziano, Mario

    2013-01-01

    In this paper we now focus on critically examining the theoretical and methodological conceptual foundations in the particular field of science of the living, namely the philosophy of biology. The latter seems to draw attention to two disparate disciplines in methods and scope of interest. On the one hand there seems to be a point of view that considers the cognitive phenomenon in question in a way so as to say "abstract", i.e. as something that seeks to determine the nature or essence, to use a term dear to many philosophers. On the other hand, there is a point of view that considers these phenomena in the actual place, the result of a process caused by the cognitive system of the subject, if the latter, of course, does not mean that they are human beings. We will argue that the two approaches do not represent two distinct planes of research: in fact philosophy takes on a main task, namely helping to lay the foundations for a philosophy of nature capable of meeting first a completeness, that is, to describe and explain what is special in all the different layers of the different natural systems.

  19. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  20. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  1. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  2. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  3. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  4. Later Wittgenstein and the Philosophy of Religion

    DEFF Research Database (Denmark)

    Hansen, Stig Børsen

    2010-01-01

    This article sets out by distinguishing Wittgenstein’s own views in the philosophy of religion from a school of thought in the philosophy of religion that relies on later Wittgenstein’s philosophy of language. After a survey of distinguishing features of Wittgenstein’s later philosophy, the third...... section explores Wittgenstein’s treatment of Frazer’s account of magic among primitive peoples. The following section offers an account of Wittgensteinian philosophy of religion, including the use of the notions of a language game and superstition. I conclude by criticizing a very influential argument...

  5. Chinese Traditional Philosophy and Indigenous Management Research

    DEFF Research Database (Denmark)

    Li, Xin

    2013-01-01

    This paper focuses on three key notions of Chinese traditional philosophy, i.e., Zhongyong, Yin Yang, and Wu, pointing out the possible mistakes in Prof. Peter Ping Li's arguments as well as some questions that are often neglected and taken for granted. The author posits, Chinese traditional...... philosophy is a system of thought distinct from the Western philosophy; while the Western philosophy is mainly concerned about the True, i.e., the objective knowledge of the world, the aim of Chinese traditional philosophy is the pursuit of the Good, i.e., the unification of heaven and human....

  6. Philosophy of physics quantum theory

    CERN Document Server

    Maudlin, Tim

    2019-01-01

    In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic ...

  7. A history of erotic philosophy.

    Science.gov (United States)

    Soble, Alan

    2009-01-01

    This essay historically explores philosophical views about the nature and significance of human sexuality, starting with the Ancient Greeks and ending with late 20th-century Western philosophy. Important figures from the history of philosophy (and theology) discussed include Sappho, Plato, Aristotle, St. Augustine, St. Jerome, the Pelagians, St. Thomas Aquinas, Michel de Montaigne, Rene Descartes, Thomas Hobbes, David Hume, Immanuel Kant, Søren Kierkegaard, Arthur Schopenhauer, Jeremy Bentham, John Stuart Mill, Karl Marx, Friedrich Engels, Sigmund Freud, Jean-Paul Sartre, Simone de Beauvoir, Wilhelm Reich, and Herbert Marcuse. Contemporary philosophers whose recent work is discussed include Michel Foucault, Thomas Nagel, Roger Scruton, Karol Wojtyla (Pope John Paul II), Catharine MacKinnon, Richard Posner, and John Finnis. To show the unity of the humanities, the writings of various literary figures are incorporated into this history, including Mark Twain, Arthur Miller, James Thurber, E. B. White, Iris Murdoch, and Philip Roth.

  8. Agrarian philosophy and ecological ethics.

    Science.gov (United States)

    Thompson, Paul B

    2008-12-01

    Mainstream environmental ethics grew out of an approach to value that was rooted in a particular conception of rationality and rational choice. As weaknesses in this approach have become more evident, environmental philosophers have experimented with both virtue ethics and with pragmatism as alternative starting points for developing a more truly ecological orientation to environmental philosophy. However, it is possible to see both virtue ethics and pragmatism as emerging from older philosophical traditions that are here characterized as "agrarian." Agrarian philosophy stresses the role of nature, soil and climate in the formation of moral character as well as social and political institutions. As such, reaching back to the agrarian tradition may provide a way to move forward with both virtue oriented themes as well as pragmatist themes in developing ecological ethics.

  9. Reading Bohr physics and philosophy

    CERN Document Server

    Plotnitsky, Arkady

    2006-01-01

    Reading Bohr: Physics and Philosophy offers a new perspective on Niels Bohr's interpretation of quantum mechanics as complementarity, and on the relationships between physics and philosophy in Bohr's work, which has had momentous significance for our understanding of quantum theory and of the nature of knowledge in general. Philosophically, the book reassesses Bohr's place in the Western philosophical tradition, from Kant and Hegel on. Physically, it reconsiders the main issues at stake in the Bohr-Einstein confrontation and in the ongoing debates concerning quantum physics. It also devotes greater attention than in most commentaries on Bohr to the key developments and transformations of his thinking concerning complementarity. Most significant among them were those that occurred, first, under the impact of Bohr's exchanges with Einstein and, second, under the impact of developments in quantum theory itself, both quantum mechanics and quantum field theory. The importance of quantum field theory for Bohr's thi...

  10. [Towards a philosophy of medication].

    Science.gov (United States)

    da Silva, Cléber Domingos Cunha

    2015-09-01

    Medicine and philosophy: where do these concepts intersect? From a biopolitical standpoint, the scope of this essay is to highlight the existence of new challenges for those who deal with the issue of pharmaceuticalization in contemporary society. The analyses revealed that essentially technical approaches are insufficient to confront issues such as: the exorbitant profits from the sale of medication; the disproportionate ratio of these amounts with the number of new innovative molecules; and the difficulty of access to the few new drugs. It would seem to be the opportune moment for adopting a more critical stance for drafting a philosophy of medication in the field of public health with the establishment of areas of resistance to the omnipresent pharmacotherapeutic onslaught. After all, medication is not a constitutive element that is isolated from human life; although, it has become a central component in the management of contemporary life, its adequate use requires the exercise of in-depth introspection.

  11. Cluster randomization and political philosophy.

    Science.gov (United States)

    Chwang, Eric

    2012-11-01

    In this paper, I will argue that, while the ethical issues raised by cluster randomization can be challenging, they are not new. My thesis divides neatly into two parts. In the first, easier part I argue that many of the ethical challenges posed by cluster randomized human subjects research are clearly present in other types of human subjects research, and so are not novel. In the second, more difficult part I discuss the thorniest ethical challenge for cluster randomized research--cases where consent is genuinely impractical to obtain. I argue that once again these cases require no new analytic insight; instead, we should look to political philosophy for guidance. In other words, the most serious ethical problem that arises in cluster randomized research also arises in political philosophy. © 2011 Blackwell Publishing Ltd.

  12. Towards a Philosophy of Blockchain

    OpenAIRE

    Swan , Melanie; De Filippi , Primavera

    2017-01-01

    International audience; This article introduces the symposium " Toward a Philosophy of Blockchain, " which provides a philosophical contemplation of blockchain technology, the digital ledger software underlying cryptocurrencies such as bitcoin, for the secure transfer of money, assets, and information via the Internet without needing a third-party intermediary. The symposium offers philosophical scholarship on a new topic, blockchain technology, from a variety of perspectives. The philosophic...

  13. Philosophy of education in Norway

    OpenAIRE

    Aakre, Bjørn Magne

    2009-01-01

    In Japan as well as Norway we experience growing interests and discussions about education. The main reason seems to be the fact that education has become more important than ever before. At the same time, most educational systems seem to face problems adapting to the rapid changes caused by globalization of values and cultures. Therefore, discussions about education not only involve new technology or alternative teaching methods, but also fundamental issues related to philosophy of education...

  14. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  15. Philosophy versus Student Need? A Reply to Smith and Hilton.

    Science.gov (United States)

    Rainforth, Beverly

    1994-01-01

    This response to Smith and Hilton (1994) suggests that those authors reject philosophical bases for decision making regarding program design for students with mental retardation while actually proposing their own philosophical base for such decision making. The importance of philosophy in guiding decisions and practice over the last several…

  16. Classroom Teacher's Adherence to Philosophy and Ethics of Home ...

    African Journals Online (AJOL)

    This study analyzed and discussed the philosophy and goals of education, evaluating them on how classroom teachers adhere to the ethics of home economics for sustainable development in Anambra state, Nigeria. A descriptive survey design was used and the sample, randomly selected, was made up of two hundred ...

  17. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  18. Russia needs the Subjective Philosophy

    Directory of Open Access Journals (Sweden)

    S. Z. Gontcharov

    2012-01-01

    Full Text Available Based on the comparative analysis of different kinds of philosophic thinking, the paper reveals the advantages of subjective philosophy – the most adequate universal essentiality of socialized human being, opening the prospects for Russia as the creative society of cultural spontaneous activity. Objective principle of thinking is limited by the logic of outward definition. According to the above logic, people are regarded as tiny parts of social mechanism, the objects of manipulation. Separating action from spontaneous activity, object changes from self-alteration of human subject, executive functions from norm-creating ones brings about alienated practices and such social situation that makes individuals perceive their own existence as alien non- existence, or opposing existence.Subjectivity is a form of social activity regarding individuals and groups according to their ability in self-definition, self-organizing, self-control, norm-creating, as well as their actual rights and duties in social spheres of needs and objectives, and their feasible power over forces of nature and society. Subjective philosophy perceives the material production as the means for cultivating wholesome and spontaneously active individuals due to educational fundamentality and cultural prosperity. Accordingly, accumulation of capital turns into accumulation of culture and personal creativity growth. The results of the undertaken analysis and its conclusions can be implemented in developing creative anthropological bases for philosophy, pedagogy, psychology, economics, political science, as well as the relating discipline teaching. 

  19. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  20. Application of slender wing benefits to military aircraft

    Science.gov (United States)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  1. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  2. Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

    OpenAIRE

    Altab Hossain; Ataur Rahman; A.K.M. P. Iqbal; M. Ariffin; M. Mazian

    2011-01-01

    This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. Th...

  3. Atelier de philosophie : la transmission de la philosophie

    OpenAIRE

    Tissier , Huguette

    2012-01-01

    Atelier 22 : Travail social et bénévolat; La fabrique de Philosophie, en atelier s'adresse à toute personne, en recherche de saisir le sens de ses actes confrontés à l'obligation d'éthique. En suivant un processus qui conduit à se mettre au travail de la pensée, l'atelier commence par la prise de parole pour dire ce qui étonne, à travers un événement vécu et apprendre à le lire philosophiquement. Ensuite, vouloir la connaissance philosophique, à travers quelques uns de ses concepts ou valeurs...

  4. Safety philosophy of the GTHTR300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji

    2003-01-01

    In parallel to successful operation of the Japan's first High Temperature Gas-cooed Reactor, HTTR (High Temperature Engineering Test Reactor), JAERI (Japan Atomic Energy Research Institute) started design and development of a high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300 (Gas Turbine High Temperature Reactor 300), in April 2001. The GTHTR300 is expected to be deployed in 2010s as a safe and economically competitive electric generation system in Japan. Unique safety philosophy is proposed for this system. Severe accidents are defined as any conditions beyond design base accidents, causing core damages with fission product releases to the environment, although all severe accident sequences are very low in probability. The new safety philosophy is to avoid most accidents, and to achieve a probability of severe accidents of 10 -8 /ry that is at least two orders lower than current reactors. Even in the worst event such as double guillotine break of a primary concentric duct, fuel temperature exceeding its failure limit and excessive fuel oxidation by air ingress can be avoided because of inherent safety features and the passive decay heat removal system. Furthermore, double confinement buildings are enough to keep reactor safety in such accidents. Elimination of a leak-tight steel containment vessel is a big economical advantage for this system. Another unique feature is that nearly full-scale worst accident simulation tests can be carried out to obtain licensing before commercial operations because safety assessment by analysis is not usually enough to convince the public and the regulators of trusting this safety concept. In current reactors no accident simulation tests are carried out before commercial operations although inspection and performance tests in normal condition are conducted. This paper describes the safety philosophy together with the outline of the design features of the GTHTR300, and the results of

  5. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    , and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the

  6. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  7. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  8. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  9. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  10. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  11. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  12. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  13. Environmental philosophy: response to critics.

    Science.gov (United States)

    Sarkar, Sahotra

    2014-03-01

    The following piece is a response to the critiques from Frank, Garson, and Odenbaugh. The issues at stake are: the definition of biodiversity and its normativity, historical fidelity in ecological restoration, naturalism in environmental ethics, and the role of decision theory. The normativity of the concept of biodiversity in conservation biology is defended. Historical fidelity is criticized as an operative goal for ecological restoration. It is pointed out that the analysis requires only minimal assumptions about ethics. Decision theory is presented as a tool, not a domain-limiting necessary requirement for environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Philosophy of technology: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F.

    1985-06-01

    The continuous technological progress since the beginning of the Industrial Revolution seemed to confirm the Rationalists and the optimism of the Age of Enlightenment. This is no longer so. In this review new lines of inquiry into this change are discussed, and various philosophical features and traditions are explored. It proves difficult to define technology; the philosophy of science and its methodology are considered, mind and machines are contrasted, and the review concludes with a consideration of the arguments put forward for metaphysical interpretations of technology.

  15. 1. Editorial: Philosophy and Geography

    Directory of Open Access Journals (Sweden)

    Manuela Albertone

    2017-01-01

    Full Text Available After “Erasmian Science” and “Gastronomy and Revolution”, the Journal of Interdisciplinary History of Ideas has again issued a Call for Paper, for a special issue dedicated to the historical relations of Philosophy and Geography. It will be guest-edited by Ernesto Sferrazza Papa and Simone Mammola, and appear end 2017. In the Editorial we present the contents of the Call, that can also be found, together with practical information for submission, in the News of the JIHI.

  16. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  17. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  18. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  20. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  1. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  2. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  3. Philosophy and Post-Totalitarian Practices

    Directory of Open Access Journals (Sweden)

    Serhii Yosypenko

    2018-04-01

    Full Text Available This writing aims to outline the principles of researches on philosophy in Central and Eastern European countries, preferably USSR, in the latest soviet and post-soviet periods. In author’s opinion, the crucial points for such kind of research are: a to discover a correlation between philosophy and the phenomenon of totalitarianism; b to correlate a soviet philosophy with totalitarian experience. The article considers methodological and axiological problems in research of post-totalitarian practices in general as such as in philosophy. In author’s opinion the main problem in development of the post-soviet philosophy is interiorisation of intellectual, cultural and social practices, which were formed concerning to totalitarian experience. This became a reason of “cynicism” and “nihilism” of post-soviet philosophy. It’s impossible to cast mentioned phenomena off without consideration of totalitarian phenomenon and critical reconsideration of the own totalitarian experience.

  4. Philosophy and the front line of science.

    Science.gov (United States)

    Pernu, Tuomas K

    2008-03-01

    According to one traditional view, empirical science is necessarily preceded by philosophical analysis. Yet the relevance of philosophy is often doubted by those engaged in empirical sciences. I argue that these doubts can be substantiated by two theoretical problems that the traditional conception of philosophy is bound to face. First, there is a strong normative etiology to philosophical problems, theories, and notions that is dfficult to reconcile with descriptive empirical study. Second, conceptual analysis (a role that is typically assigned to philosophy) seems to lose its object of study if it is granted that terms do not have purely conceptual meanings detached from their actual use in empirical sciences. These problems are particularly acute to the current naturalistic philosophy of science. I suggest a more concrete integration of philosophy and the sciences as a possible way of making philosophy of science have more impact.

  5. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  6. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  7. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    Science.gov (United States)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  8. Continental Contributions to Philosophy of Science

    OpenAIRE

    REGINE KATHER

    2006-01-01

    The author reviews the book Continental Philosophy of Science, edited by Gary Gutting. Introductory remarks about the historical relationship between philosophy and science are followed by a presentation and discussion of different philosophies of science and commentaries on the eleven German and French authors whose texts are found in this volume. In addition to her assessment of Guttings’s collection, the author’s overall conclusion is that one characteristic trait of the Continental philos...

  9. Some Trends in the Philosophy of Physics

    Directory of Open Access Journals (Sweden)

    Henrik Zinkernagel

    2011-07-01

    Full Text Available A short review of some recent developments in the philosophy of physics is presented. I focus on themes which illustrate relations and points of common interest between philosophy of physics and three of its `neighboring' elds: Physics, metaphysics and general philosophy of science. The main examples discussed in these three `border areas' are (i decoherence and the interpretation of quantum mechanics; (ii time in physics and metaphysics; and (iiimethodological issues surrounding the multiverse idea in modern cosmology.

  10. Philosophy of medicine 2017: reviewing the situation.

    Science.gov (United States)

    Daly, Patrick

    2017-12-01

    In this introduction to a special subsection of Theoretical Medicine and Bioethics comprising separate reviews of the Springer Handbook of the Philosophy of Medicine, The Routledge Companion to Philosophy of Medicine, and The Bloomsbury Companion to Contemporary Philosophy of Medicine, I compare the three texts with respect to their overall organization and their approach to the relation between the science and the art of medicine. I then indicate two areas that merit more explicit attention in developing a comprehensive philosophy of medicine going forward: health economics and systematic relations within the field as a whole. The reviews that follow speak for themselves.

  11. Philosophy of biology: naturalistic or transcendental?

    Science.gov (United States)

    Kolen, Filip; Van de Vijver, Gertrudis

    2007-01-01

    The aim of this article is to clarify the meaning of a naturalistic position within philosophy of biology, against the background of an alternative view, founded on the basic insights of transcendental philosophy. It is argued that the apparently minimal and neutral constraints naturalism imposes on philosophy of science turn out to involve a quite heavily constraining metaphysics, due to the naturalism's fundamental neglect of its own perspective. Because of its intrinsic sensitivity to perspectivity and historicity, transcendental philosophy can avoid this type of hidden metaphysics.

  12. Modern Basics Philosophy of Education

    Directory of Open Access Journals (Sweden)

    Oleg Bazaluk

    2015-07-01

    Full Text Available In thisarticle the authors examine the current understanding ofthe foundations ofthe philosophy of education. Lately when it is spoken about human development and education and concretized that it is the perfection of its mind. And if at the end of the twentieth century the subject of educational impact was human being, consisting of social and biological entities, at the beginning of the XXI century the situation has changed. Advances in neuroscience (Risto Nааtаnеn, James Olds, Donald Hebb, Elkhonon Goldberg and others allowed specifying the subject of the educational impact and identifying in a person the material organization that really makes him standing out from the world of living organisms. We are talking about the neural structures that are formed and developed in the human brain and which are not observed (and if they are observed, then in a different format and with different functional manifestations in the brain of higher animals. We are talking about consistently evolving neural networks and subconscious consciousness which perform the corresponding functions: subliminal (unconscious and conscious. If the consistent development of the structure of the human brain sees neuroscience, the development of the functions of this structure, considering psychology. Methods, ways and means of transmission of socio-cultural heritage from one generation to another explores pedagogy. Therefore, the philosophy of education that considers the impact of educational technology, global educational model should be based on the integration of research in neuroscience, psychology and pedagogy.

  13. Buddha philosophy and western psychology.

    Science.gov (United States)

    Aich, Tapas Kumar

    2013-01-01

    Four noble truths as preached by Buddha are that the life is full of suffering (Duhkha), that there is a cause of this suffering (Duhkha-samudaya), it is possible to stop suffering (Duhkha-nirodha), and there is a way to extinguish suffering (Duhkha-nirodha-marga). Eight fold Path (astangika-marga) as advocated by Buddha as a way to extinguish the sufferings are right views, right resolve/aspiration, right speech, right action/conduct, right livelihood, right effort right mindfulness and right concentration. Mid-twentieth century saw the collaborations between many psychoanalysts and Buddhist scholars as a meeting between "two of the most powerful forces" operating in the Western mind. Buddhism and Western Psychology overlap in theory and in practice. Over the last century, experts have written on many commonalities between Buddhism and various branches of modern western psychology like phenomenological psychology, psychoanalytical psychotherapy, humanistic psychology, cognitive psychology and existential psychology. Orientalist Alan Watts wrote 'if we look deeply into such ways of life as Buddhism, we do not find either philosophy or religion as these are understood in the West. We find something more nearly resembling psychotherapy'. Buddha was a unique psychotherapist. His therapeutic methods helped millions of people throughout the centuries. This essay is just an expression of what little the current author has understood on Buddha philosophy and an opportunity to offer his deep tribute to one of the greatest psychotherapists the world has ever produced!

  14. Buddha philosophy and western psychology

    Science.gov (United States)

    Aich, Tapas Kumar

    2013-01-01

    Four noble truths as preached by Buddha are that the life is full of suffering (Duhkha), that there is a cause of this suffering (Duhkha-samudaya), it is possible to stop suffering (Duhkha-nirodha), and there is a way to extinguish suffering (Duhkha-nirodha-marga). Eight fold Path (astangika-marga) as advocated by Buddha as a way to extinguish the sufferings are right views, right resolve/aspiration, right speech, right action/conduct, right livelihood, right effort right mindfulness and right concentration. Mid-twentieth century saw the collaborations between many psychoanalysts and Buddhist scholars as a meeting between “two of the most powerful forces” operating in the Western mind. Buddhism and Western Psychology overlap in theory and in practice. Over the last century, experts have written on many commonalities between Buddhism and various branches of modern western psychology like phenomenological psychology, psychoanalytical psychotherapy, humanistic psychology, cognitive psychology and existential psychology. Orientalist Alan Watts wrote ‘if we look deeply into such ways of life as Buddhism, we do not find either philosophy or religion as these are understood in the West. We find something more nearly resembling psychotherapy’. Buddha was a unique psychotherapist. His therapeutic methods helped millions of people throughout the centuries. This essay is just an expression of what little the current author has understood on Buddha philosophy and an opportunity to offer his deep tribute to one of the greatest psychotherapists the world has ever produced! PMID:23858249

  15. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  16. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  17. A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing

    NARCIS (Netherlands)

    Ferreira, J.P.; De Breuker, R.

    2016-01-01

    This study describes the development of a morphing wing concept for a Portuguese Air Force Unmanned Air Vehicle (UAV), the UAS-30. Nowadays, optimized fuel efficiency is a primary requirement in the aerospace industry, and it can be significantly improved by designing adaptive wings which can change

  18. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  19. Shape matters: improved flight in tapered auto-rotating wings

    Science.gov (United States)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  20. [Sustainable process improvement with application of 'lean philosophy'].

    Science.gov (United States)

    Rouppe van der Voort, Marc B V; van Merode, G G Frits; Veraart, Henricus G N

    2013-01-01

    Process improvement is increasingly being implemented, particularly with the aid of 'lean philosophy'. This management philosophy aims to improve quality by reducing 'wastage'. Local improvements can produce negative effects elsewhere due to interdependence of processes. An 'integrated system approach' is required to prevent this. Some hospitals claim that this has been successful. Research into process improvement with the application of lean philosophy has reported many positive effects, defined as improved safety, quality and efficiency. Due to methodological shortcomings and lack of rigorous evaluations it is, however, not yet possible to determine the impact of this approach. It is, however, obvious that the investigated applications are fragmentary, with a dominant focus on the instrumental aspect of the philosophy and a lack of integration in a total system, and with insufficient attention to human aspects. Process improvement is required to achieve better and more goal-oriented healthcare. To achieve this, hospitals must develop integrated system approaches that combine methods for process design with continuous improvement of processes and with personnel management. It is crucial that doctors take the initiative to guide and improve processes in an integral manner.

  1. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  2. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  3. Technology in Muslim Moral Philosophy.

    Science.gov (United States)

    Moosa, Ebrahim

    2016-04-01

    The article explores the place, role and status of technology in Muslim moral philosophy. Invoking early Muslim encounters with technology the author makes the case why technology is already deeply embedded in contemporary Muslim bioethical thinking. Due to an absence of the philosophical grounding there remains some ambivalence as to why technology is essential to Muslim ethical thinking. Countering the techno-pessimists, the author makes a case in favor of compositional thinking, namely that our thinking itself is altered by our tools and our environment. Compositional thinking opposes the representational mode of thinking that creates a dichotomy between nature versus culture, and technology versus nature. One should, however, anticipate an environment in which technology would be beneficial and not be viewed as potentially harmful.

  4. Redpath on the Nature of Philosophy

    Directory of Open Access Journals (Sweden)

    Robert A. Delfino

    2016-03-01

    Full Text Available In this article the author discusses Peter A. Redpath’s understanding of the nature of philosophy and his account of how erroneous understandings of philosophy have led to the decline of the West and to the separation of philosophy from modern science and modern science from wisdom. Following Aristotle and St. Thomas Aquinas, Redpath argues that philosophy is a sense realism because it begins in wonder about real things known through the senses. Philosophy presupposes pre-philosophical knowledge, common sense, which consists of principles rooted in sensation that make human experience, sense wonder, and philosophy possible. Philosophy is certain knowledge demonstrated through causes and thus philosophy is the same as science. Redpath understands science as a habit that we acquire through repeated practice. More precisely, a scientific habit is a simple quality of the intellect that enables us to demonstrate (prove the necessary properties of a genus through their causes or principles. In this way, science is the study of the one and the many. Redpath argues that metaphysics is the final cause of the arts and sciences, providing the foundation for all of the arts and sciences and justifying their principles. Finally, he argues that with modernity’s loss of belief in God and its rejection of metaphysics as a science, utopian socialism has become an historical/political substitute for metaphysics.

  5. Philosophy in Schools: A Catholic School Perspective

    Science.gov (United States)

    Whittle, Sean

    2015-01-01

    This article builds on the recent Special Interest issue of this journal on "Philosophy for Children in Transition" (2011) and the way that the debate about philosophy in schools has now shifted to whether or not it ought to be a compulsory part of the curriculum. This article puts the spotlight on Catholic schools in order to present a…

  6. On the emergence of American analytic philosophy

    NARCIS (Netherlands)

    Katzav, J.; Vaesen, K.

    2017-01-01

    This paper is concerned with the reasons for the emergence and dominance of analytic philosophy in America. It closely examines the contents of, and changing editors at, The Philosophical Review, and provides a perspective on the contents of other leading philosophy journals. It suggests that

  7. "Open" Philosophy or Down the Rabbit Hole?

    Science.gov (United States)

    Bowman, Wayne

    2017-01-01

    In this essay, I challenge the open-closed dualism at the heart of Allsup's project and question the very possibility of an "open" philosophy. I propose an account of music, musical instruction, and philosophy as ethically guided practices, discussing a number of practical and philosophical consequences that follow from such a view.

  8. School and the Limits of Philosophy

    Science.gov (United States)

    Fitzsimons, Peter

    2014-01-01

    Philosophy and schools, children and dynamite, elephants and postage stamps: each has a place, but not necessarily in any natural combination with the other. Whether schools and philosophy belong together depends largely on what we mean by both. To the extent that schools are instruments of government regulation and a mechanism for production of…

  9. Immanuel Kant, his philosophy and medicine.

    Science.gov (United States)

    Wiesing, Urban

    2008-06-01

    The article examines the statements made by Immanuel Kant with reference to medicine as well as the impact of his philosophy on medicine. It describes the initial reaction of Kantian philosophy on medicine in the late 18th and early 19th century and its influence in the late 20th century.

  10. Information Retrieval and the Philosophy of Language.

    Science.gov (United States)

    Blair, David C.

    2003-01-01

    Provides an overview of some of the main ideas in the philosophy of language that have relevance to the issues of information retrieval, focusing on the description of the intellectual content. Highlights include retrieval problems; recall and precision; words and meanings; context; externalism and the philosophy of language; and scaffolding and…

  11. Philosophy of Education and the Deweyan Legacy.

    Science.gov (United States)

    Siegel, Harvey

    2002-01-01

    Responds to Rene Arcilla's article, "Why Aren't Philosophers and Educators Speaking to One Another?" suggesting that Deweyan philosophy of education is not the whole of philosophy of education, noting difficulties with the Deweyan view with which Arcilla is concerned, discussing problems with Arcilla's analysis of both the Deweyan view…

  12. Practice and Malpractice in Philosophy of Education.

    Science.gov (United States)

    Popp, Jerome A.

    1978-01-01

    Examines educational philosophy as an area of inquiry in light of several points of view from other areas of philosophic inquiry. Topics discussed include activities engaged in by philosophers, analogues in science, theoretical vs practical inquiry, epistemic utilities in philosophy, and the scientific context of educational philosophizing. (DB)

  13. African Tradition, Philosophy, and Modernization | Ikuenobe ...

    African Journals Online (AJOL)

    I examine Wiredu's views that (1) ethnophilosophy cannot be considered a legitimate philosophy because it has the feature of authoritarianism, and that (2) this feature of African tradition will not allow modern philosophy to flourish because it prevents individuals from rationally and critically examining beliefs. The ability to ...

  14. Radiation protection philosophy: time for changes?

    International Nuclear Information System (INIS)

    Jovanovich, J.V.

    1994-01-01

    Radiation protection philosophy, or paradigm, has evolved over a number of decades and it is still evolving. Traditionally, it has dealt only with man-made, planned, in principle avoidable, radiation exposures of workers and general public. This philosophy, as presently accepted around the world, has some deficiencies. The object of this paper is to discuss these deficiencies and propose some changes. (author)

  15. A social philosophy of housing

    OpenAIRE

    King, Peter

    2003-01-01

    This book presents an original perspective by opening up housing to a philosophical approach. It fully integrates discussions on contemporary housing policy and social philosophy in a manner not previously attempted in the housing literature. Professor Jim Kemeny (Uppsala University) described it as ‘the first systematic application of social philosophy from an individual choice perspective’.

  16. Moral Philosophy and Social Work Policy.

    Science.gov (United States)

    Reiman, Amanda

    2009-10-01

    Policies in the United States regarding personal responsibility and deviant behavior often follow an underlying moral philosophy. This paper examines the philosophies in American social policy, and how beliefs about personal responsibility, definitions of deviance and the role of the social welfare system shape current policies.

  17. Moral Philosophy and Social Work Policy

    OpenAIRE

    Reiman, Amanda

    2009-01-01

    Policies in the United States regarding personal responsibility and deviant behavior often follow an underlying moral philosophy. This paper examines the philosophies in American social policy, and how beliefs about personal responsibility, definitions of deviance and the role of the social welfare system shape current policies.

  18. CONTEMPORARY AFRICAN PHILOSOPHY, IDENTITY AND THE ...

    African Journals Online (AJOL)

    mycl

    histories of African philosophy taking full consideration of Ancient. Egyptian philosophy ... philosophers there were thinkers who made deep philosophical reflections. ... for his conviction that independent critical sages existed in Africa who were .... against the African cannot but leave a strong negative impact on his psyche.

  19. The Relationship between Philosophy and Culture | Agbanusi ...

    African Journals Online (AJOL)

    Over the years, there has been this controversy over the relationship between philosophy and culture. It is an issue that has always polarized scholars including philosophers. On one side, a group of philosophers and scholars hold the view that philosophy is distinct from culture, whereas an opposing group is of the opinion ...

  20. Innate ideas in Islamic philosophy

    Directory of Open Access Journals (Sweden)

    Halilović Tehran

    2017-01-01

    Full Text Available The human soul is the subject of debates in numerous scientific disciplines. Philosophical considerations encompass a special dimension of the human soul that is related to ontological truths. Among different philosophical questions raised regarding the human soul, the issue of innate ideas particularly stands out. Well-known points of disagreement between Plato and Aristotle regarding this question are usually focused on whether a person possesses knowledge and thoughts from their creation, i.e. birth, or they acquire them through time and experience. With the appearance of Cartesian scepticism and following the solutions Descartes offered for the problem of certain knowledge, the issue of innate ideas has remained the focal question for many prominent philosophers. In the Islamic philosophy, the rational explanation of the nature of innate ideas originates from the more comprehensive theory of the human soul and it states that a person, according to their nature, possesses already existent cognitive abilities they were born with. Innate cognitive abilities discussed in the Islamic philosophy do not refer just to theoretical, but to practical knowledge, as well. Therefore, the analysis of innate ideas in the works of Muslim philosophers is connected to a larger number of scientific disciplines than when it comes to most Western philosophers. The difference between the practical and theoretic intellect will serve as a cognitive basis for defining another aspect of innate ideas. The products of a practical intellect, the human will and his actions, are personal and particular and, therefore, can be connected to the everyday life of a person. Owing to the general presence of the practical intellect in all life spheres, the influence of innate ideas, which are determined in a human being, is recognizable in all most detailed moments of their life.

  1. Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn

    Science.gov (United States)

    Zeyghami, Samane; Bode-Oke, Ayodeji T.; Dong, HaiBo

    2017-01-01

    This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn flights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's).

  2. An introduction to the philosophy of science

    CERN Document Server

    Staley, Kent W

    2014-01-01

    This book guides readers by gradual steps through the central concepts and debates in the philosophy of science. Using concrete examples from the history of science, Kent W. Staley shows how seemingly abstract philosophical issues are relevant to important aspects of scientific practice. Structured in two parts, the book first tackles the central concepts of the philosophy of science, such as the problem of induction, falsificationism, and underdetermination, and important figures and movements, such as the logical empiricists, Thomas Kuhn, and Paul Feyerabend. The second part turns to contemporary debates in the philosophy of science, such as scientific realism, explanation, the role of values in science, the different views of scientific inference, and probability. This broad yet detailed overview will give readers a strong grounding whilst also providing opportunities for further exploration. It will be of particular interest to students of philosophy, the philosophy of science, and science. Read more at h...

  3. [Jena philosophies of nature around 1800].

    Science.gov (United States)

    Breidbach, O

    2000-01-01

    This paper describes the situation and the outline of positions in philosophy of nature in Jena about 1800, in focusing on research other than the key figures Schelling and Hegel. In 1789, Schelling introduced philosophy of nature into the course program of Jena University. Already in 1800, two young scientists--a mathematician (Fischer) and a physiologist--reacted, announcing lectures on Schellingian topics. But only in late 1802, younger philosophers offered courses on those topics. From 1802 onwards, lectures were announced by Schad, Krause, Henrici, Hegel, Oken and the botanist Schelver. Apart from the Fisher lecture from 1800, the program of these presentations was based on Schellingian principles. Analyses of the ideas of Schad, Krause and Schelver show that, about 1800, philosophy of nature in Jena conserved basic ideas of the early philosophy of nature of Schelling. Thus, philosophy of nature in this period of Jena University seemed to follow just one line of reasoning.

  4. [The discourse of psychosis in contemporary philosophy].

    Science.gov (United States)

    Stompe, Thomas; Ritter, Kristina

    2009-01-01

    The preoccupation of philosophy with madness can be traced back till the Greek antiquity. For many philosophers like Descartes psychotic phenomena were symbols for the fragility of human mental powers, while others like Plato or Nietzsche saw madness as a way to escape the constraints of rationality. After 1960 three direction of contemporary philosophy dealt with the topics madness--schizophrenia--psychosis: Following Nietzsche and Bataille, Foucault as well as Deleuze and Guattari considered schizophrenia as the societal oppressed reverse of modern rationality, a notion which had a strong influence on the anti-psychiatric movement. Philosophical phenomenology primarily focussed on ontological problems of the psychotic existence. Finally Philosophy of Mind, the modern Anglo-American version of analytical philosophy, analyzed the logical coherence of psychotic inferences and experiences. Especially the insights of analytical philosophy may be important for a more sophisticated interpretation of psychopathological research as well as of the new findings of neuroscience.

  5. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  6. Three views of logic mathematics, philosophy, and computer science

    CERN Document Server

    Loveland, Donald W; Sterrett, S G

    2014-01-01

    Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-orde

  7. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting

  8. Microscopic modulation of mechanical properties in transparent insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin; Singh, Kamal P., E-mail: kpsingh@iisermohali.ac.in; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 (India)

    2014-02-10

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodic organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.

  9. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  10. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    Science.gov (United States)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  11. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  12. Topology optimization of compliant adaptive wing leading edge with composite materials

    Directory of Open Access Journals (Sweden)

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  13. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  14. Butterfly effects: novel functional materials inspired from the wings scales.

    Science.gov (United States)

    Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Fan, Tongxiang; Zhang, Di

    2014-10-07

    Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.

  15. AERODYNAMIC LOAD OF AN AIRCRAFT WITH A HIGHLY ELASTIC WING

    Directory of Open Access Journals (Sweden)

    Pavel Schoř

    2017-09-01

    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  16. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  17. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  18. An adaptive wing for a small-aircraft application with a configuration of fibre Bragg grating sensors

    International Nuclear Information System (INIS)

    Mieloszyk, M; Krawczuk, M; Zak, A; Ostachowicz, W

    2010-01-01

    In this paper a concept of an adaptive wing for small-aircraft applications with an array of fibre Bragg grating (FBG) sensors has been presented and discussed. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The concept has been tested numerically by the use of the finite element method. For numerical calculations the commercial finite element package ABAQUS ® has been employed. A finite element model of the wing has been prepared in order to estimate the values of the wing twisting angles and distributions of the twist for various activation scenarios. Based on the results of numerical analysis the locations and numbers of the FBG sensors have also been determined. The results of numerical calculations obtained by the authors confirmed the usefulness of the assumed wing control strategy. Based on them and the concept developed of the adaptive wing, a wing demonstration stand has been designed and built. The stand has been used to verify experimentally the performance of the adaptive wing and the usefulness of the FBG sensors for evaluation of the wing condition

  19. Philosophy for the rest of cognitive science.

    Science.gov (United States)

    Stepp, Nigel; Chemero, Anthony; Turvey, Michael T

    2011-04-01

    Cognitive science has always included multiple methodologies and theoretical commitments. The philosophy of cognitive science should embrace, or at least acknowledge, this diversity. Bechtel's (2009a) proposed philosophy of cognitive science, however, applies only to representationalist and mechanist cognitive science, ignoring the substantial minority of dynamically oriented cognitive scientists. As an example of nonrepresentational, dynamical cognitive science, we describe strong anticipation as a model for circadian systems (Stepp & Turvey, 2009). We then propose a philosophy of science appropriate to nonrepresentational, dynamical cognitive science. Copyright © 2011 Cognitive Science Society, Inc.

  20. Wherefore Art Thou Philosophy? Badiou without Badiou

    Directory of Open Access Journals (Sweden)

    Jason Barker

    2012-05-01

    Full Text Available Given the encroaching, seemingly pernicious backlash against Alain Badiou’s thinking, which appears partly motivated by the bad faith of “philosophical” rivalries, this essay aims to argue in favour of the ongoing and authentically philosophical stakes of Badiou’s ontology. At the same time the essay attempts to highlight the methodological difficulties Badiou encounters in attempting to reconcile an intrinsic ontology as the dominant condition of philosophy, with a philosophy of the event. The essay concludes by speculating on the “unbound”, “unconditioned” potential of this two-headed philosophy.

  1. The Philosophy of Self or Truth

    OpenAIRE

    Özgen, Mehmet Kasım

    2015-01-01

    What is meant by the ‘I’ is the philosophy that places the ‘I’ in the center and has a reflectional view on the ‘I’. This article deals with the differences between the philosophy of the ‘I’ in the West and the philosophy of the ‘Truth’ in the East. The person who approaches to the ‘I’ will also approaches to the ‘Truth’ or vice versa. In the modern point of view, modern ‘I’ is not innate. It is something man made, a result of human intention and decision and something invented. Individuals b...

  2. Environmental philosophy: from theory to practice.

    Science.gov (United States)

    Sarkar, Sahotra

    2014-03-01

    Environmental philosophy is a hybrid discipline drawing extensively from epistemology, ethics, and philosophy of science and analyzing disciplines such as conservation biology, restoration ecology, sustainability studies, and political ecology. The book being discussed both provides an overview of environmental philosophy and develops an anthropocentric framework for it. That framework treats natural values as deep cultural values. Tradeoffs between natural values are analyzed using decision theory to the extent possible, leaving many interesting question for philosophical deliberation. This framework is supposed to be applicable in practical contexts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Hylomorphism in Modern Analytical Philosophy

    Directory of Open Access Journals (Sweden)

    Karpov Kirill

    2016-12-01

    Full Text Available Analytical metaphysics in the 20th century was marked by the predominance of scientifi c reductionism. As a result metaphysics was considered dependent on the natural sciences in its topics and methodology. Conversely, the last two decades introduced new trends, defending the autonomy of metaphysical knowledge, while keeping such an important distinguishing feature of analytical philosophy as orientation on achievements of natural sciences. Hylomorphism is one of these new trends, which might be characterized as 'neo-Aristotelian’. Contemporary Hylomorphism is heterogeneous, has a number of branches, which are united by the idea that all material objects are composed of two basic elements — matter and form. The latter is often understood as a form in the strict sense, as a structure, a constitution or a power. The author considers the main issue faced by all hylomorphic ontologies: if matter and form are independent principles, what then unites them into a single composite? The article pays particular attention to the application of hylomorphic ontologies in solving such important philosophical and theological problems as the problem of the material constitution, mind-body problem, the Trinity. The last aspect deserves special attention. The author analyzes advantages and disadvantages of the proposed hylomorphic solutions. The main advantage is the amazing fl exibility of hylomorphic ontologies — they allow philosophers to introduce easily new principles, thus adopting to various problems solving. The disadvantages come directly from the main advantage and consist in weak reconcilement of those new principles with each other.

  4. On the philosophy of cosmology

    Science.gov (United States)

    Ellis, George Francis Rayner

    2014-05-01

    This paper gives an overview of significant issues in the philosophy of cosmology, starting off by emphasizing the uniqueness of the universe and the way models are used in description and explanation. It then considers, basic limits on observations; the need to test alternatives; ways to test consistency; and implications of the uniqueness of the universe as regards distinguishing laws of physics from contingent conditions. It goes on to look at the idea of a multiverse as a scientific explanation of facts about fine-tuning, in particular considering criteria for a scientific theory and for justifying unseen entities. It considers the relation between physical laws and the natures of existence, and emphasizes limits on our knowledge of the physics relevant to the early universe (the physics horizon), and the non-physical nature of some claimed infinities. The final section looks briefly at deeper issues, commenting on the scope of enquiry of cosmological theory and the limits of science in relation to the creation of the universe.

  5. The LHC taken with philosophy

    CERN Multimedia

    2009-01-01

    "Whether or not scientists at the LHC will find the Higgs boson, they will learn something about the secrets of Nature that will greatly advance human understanding". These are the words of Anthony Grayling, Professor of Philosophy at Birkbeck College, University of London, and presenter of the forthcoming BBC series "Exchanges at the Frontier". He visited CERN to prepare for his next interview with Jim Virdee, CMS Spokesperson.Grayling’s interview with Virdee is part of a series of events at Welcome Trust Collection in London: five of the biggest names in the world of science will discuss the social impact of their discoveries. These events will be broadcast to over 40 million people worldwide in December 2009 by the BBC World Service in the framework of the Exchanges at the Frontier series. Grayling has been following the LHC via the media but his tour of the CMS experiment increased his philosophical awareness of the international cooperation that has enabled it be bu...

  6. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    Science.gov (United States)

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  7. A lifting line model to investigate the influence of tip feathers on wing performance

    International Nuclear Information System (INIS)

    Fluck, M; Crawford, C

    2014-01-01

    Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles. (paper)

  8. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances.

  9. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  10. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  11. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance

    Science.gov (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  12. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    Science.gov (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  13. The Method of Hypothesis in Plato's Philosophy

    Directory of Open Access Journals (Sweden)

    Malihe Aboie Mehrizi

    2016-09-01

    Full Text Available The article deals with the examination of method of hypothesis in Plato's philosophy. This method, respectively, will be examined in three dialogues of Meno, Phaedon and Republic in which it is explicitly indicated. It will be shown the process of change of Plato’s attitude towards the position and usage of the method of hypothesis in his realm of philosophy. In Meno, considering the geometry, Plato attempts to introduce a method that can be used in the realm of philosophy. But, ultimately in Republic, Plato’s special attention to the method and its importance in the philosophical investigations, leads him to revise it. Here, finally Plato introduces the particular method of philosophy, i.e., the dialectic

  14. Mario Bunge's Philosophy of Mathematics: An Appraisal

    Science.gov (United States)

    Marquis, Jean-Pierre

    2012-01-01

    In this paper, I present and discuss critically the main elements of Mario Bunge's philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge's systemic emergent materialism.

  15. 67 Philosophy and Human Development: Nigerian Context ...

    African Journals Online (AJOL)

    Philosophy and Human Development: Nigerian Context. Purissima Egbekpalu ... confronting man and his existence and the environment in which he lives. ... mind it is a very powerful medium through which necessary skills can be acquired to ...

  16. Games unifying logic, language, and philosophy

    CERN Document Server

    Majer, Ondrej; Tulenheimo, Tero

    2008-01-01

    This unique volume presents mathematical game theory as an interface between logic and philosophy. It provides a discussion of various aspects of this interaction, covers new technical results and examines the philosophical insights that these have yielded.

  17. Philosophy as the Wisdom of Love

    Directory of Open Access Journals (Sweden)

    Cicovacki Predrag

    2017-06-01

    Full Text Available The author argues that love should play a central role in philosophy (and ethics. In the past, philosophical practice has been too narrowly defined by theory and explanation. Although unquestionably important, they do not belong to the very core of our philosophizing. Philosophy is primarily a way of life, centered on the soul and the development of our humanity – in its most diverse aspects and to its utmost potential. For such a life to be possible, love must play a central role in philosophy and philosophy should be understood not in the traditional sense as “the love of wisdom,” but in a new way – as the wisdom of love.

  18. PHILOSOPHY OF EDUCATION AS AN ACCIDENTAL TRICKLE

    African Journals Online (AJOL)

    Terryl Cyber

    lecturer at of Philosophy of Education and History of Education at CUEA and. Spanish lecturer at .... linguistic analysis as their foundation, and yet we thought all along that ...... refer to the world of production and marketing goods and services.

  19. Towards an African Philosophy of Education.

    Science.gov (United States)

    Ocaya-Lakidi, Dent

    1980-01-01

    Compares and contrasts contemporary philosophies of education in Africa with two philosophical doctrines (naturalism and idealism). Topics discussed include value selectors, westernization, the role of missionaries in African education, critical consciousness, relevance, and African education today. (DB)

  20. Has Richard Rorty a moral philosophy?

    Directory of Open Access Journals (Sweden)

    Mohammad Asghari

    2015-06-01

    Full Text Available I try to show that Richard Rorty, although is not a moral philosopher like Kant, nerveless, has moral philosophy that must be taken seriously. Rorty was not engaged with moral philosophy in the systematic manner common among leading modern and contemporary moral philosophers. This paper has two parts: first part, in brief, is concerned with principles of his philosophy such as anti-essentialism, Darwinism, Freudism, and historicism. Second part which be long and detailed, considers many moral themes in Rorty's thought such as critique of Kantian morality, solidarity, moral progress, cruelty and concept of other, etc. Subsequently, I will try to answer the research question of the article namely, has Rorty a moral philosophy?