WorldWideScience

Sample records for wing design philosophy

  1. Philosophy of Design: An Introduction

    DEFF Research Database (Denmark)

    Galle, Per

    2007-01-01

    The relatively young field of research known as ‘the philosophy of design’ is briefly presented, by asking on behalf of the reader what the philosophy of design is about, and what its use may be.......The relatively young field of research known as ‘the philosophy of design’ is briefly presented, by asking on behalf of the reader what the philosophy of design is about, and what its use may be....

  2. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  3. Douglas flight deck design philosophy

    Science.gov (United States)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system

  4. Design philosophy of PFBR shutdown systems

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Vijayashree, R.; Govindarajan, S.; Vaidyanathan, G.; Muralikrishna, G.; Shanmugam, T.K.; Chetal, S.C.; Raghavan, K.; Bhoje, S.B.

    1996-01-01

    This paper presents the overall design philosophy of shutdown system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It discusses design criteria, parameters calling for safety action, different safety actions and the concepts conceived for shutdown systems. In tune with the philosophy of defence-in-depth, additional passive shutdown features, viz., Self Actuating Device (SADE) and Curie Point Magnetic (CPM) switch and protective feature like absorber rod Stroke Limiting Device (SLD) are contemplated. It also discusses about suitability of Gas Expansion Module (GEM) as one of the safety devices in PFBR. (author). 3 refs, 3 figs, 1 tab

  5. Safety design philosophy of Mitsubishi PWRs

    International Nuclear Information System (INIS)

    Hakata, T.; Kitamura, T.

    1993-01-01

    The basic safety design philosophy of Mitsubishi pressurized water reactors (PWRs) is discussed and compared with the British PWR. PWR plants are designed in accordance with the Japanese regulatory guidelines which are similar to American and International Atomic Energy Agency (IAEA) safety criteria and are based on defence-in-depth principles. The high reliability of nuclear power plants is especially emphasized in Mitsubishi PWRs, and this has been demonstrated by the good operating experience of PWR plants in Japan. The safety system designs of six key items, which were discussed in the recent review of overseas designs by British utilities, are addressed to show the difference in the design philosophy between the United Kingdom and Japan. (Author)

  6. CNG Fuelling Stations Design Philosophy

    International Nuclear Information System (INIS)

    Radwan, H.

    2004-01-01

    I. Overview (a) Compressed Natural Gas - CNG:- Natural Gas, as an alternative fuel for vehicles, is supplied from the Natural Gas Distribution Network to the CNG fuelling stations to be compressed to 250 bars. It is then dispensed, to be stored on board of the vehicle at about 200 bars in a cylinder installed in the rear, under carriage, or on top of the vehicle. When the Natural Gas is required by the engine, it leaves the cylinder traveling through a high pressure pipe to a high pressure regulator, where the pressure is reduced close to atmospheric pressure, through a specially designed mixer, where it is properly mixed with air. The mixture then flows into the engine's combustion chamber, and is ignited to create the power required to drive the vehicle. (b) CNG Fuelling Stations General Description: as Supply and Metering The incoming gas supply and metering installation primarily depend on the pressure and flow demands of the gas compressor. Natural Gas Compressor In general, gas compressors for natural gas filling stations have relatively low flow rates

  7. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  8. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  9. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  10. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  11. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  12. Philosophy

    African Journals Online (AJOL)

    The mind~body problem, in its most radical formulation, occurs only in Western philosophy and thinking. In many ways, this formulated problematic is the impetus for and foundation of psychology. The mind-body problem has its philosophical roots in Greek philosophy, especially in the thinking of Socrates and Plato, and ...

  13. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  14. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  15. Design and Testing of Aeroelastically Tailored Wings Under Maneuver Loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.

    2016-01-01

    The goal of the present paper is to provide experimental validation data for the aeroelastic analysis of composite aeroelastically tailored wings with a closed-cell cross-sectional structure. Several rectangular wings with differ- ent skin thicknesses and composite layups are designed in order to

  16. Philosophy of parametric design in interactive architecture framework

    OpenAIRE

    Boychenko K.

    2017-01-01

    This article describes the parametric design as a new trend not only in the design of technology but as a new approach to development philosophy of architectural elements from the point of view of interactive design. With the entry into the era of modern information technology available to architects, new design tools to create unique objects and to minimise the effort and time that the task, the process from design to determine the behaviour and characteristics of the existing buildings has ...

  17. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  18. Toward Wing Aerostructural Optimization Using Simultaneous Analysis and Design Strategy

    NARCIS (Netherlands)

    Elham, A.; van Tooren, M.J.L.

    2017-01-01

    The application and computational efficiency of wing aerostructural optimization us- ing simultaneous analysis and design (SAND) strategy is investigated. A coupled adjoint aerostructural analysis method based on quasi-three-dimensional aerodynamic analysis is used for this research. Two different

  19. Wing design for light transport aircraft with improved fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, D.; Birrenbach, R.; Haberland, W.

    An advanced technology wing has been designed for a light utility and commuter service aircraft with the requirements for economy, safety and flexibility. Trade-off studies give optimum area and aspect-ratio of the wing. A new airfoil was developed to fulfill the performance requirements. Wing planform and twist were chosen to give high maximum lift, low drag and good stall characteristics. Preset ailerons were optimized for wheel forces and lateral control. The applied aerodynamic methods, including two- and three-dimensional wind tunnel tests are shown. Various structural configurations of the wing and various flap systems are evaluated. The cantilever tapered wing and a Fowler-flap with a two-lever mechanism were found to be the most economic ones. The wing was constructed and flight-tested with a modified Dornier Do 28 Skyservant as a test bed. The new wing is being applied to a family of light transport aircraft. Finally, aircraft with the new wing are compared performancewise with contemporary aircraft.

  20. A parametric wing design study for a modern laminar flow wing

    Science.gov (United States)

    Koegler, J. A., Jr.

    1979-01-01

    The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used.

  1. Engineering Antifragile Systems: A Change In Design Philosophy

    Science.gov (United States)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  2. A philosophy for CNS radiotracer design.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  3. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  4. Application of SMP composite in designing a morphing wing

    Science.gov (United States)

    Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2008-11-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.

  5. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  6. Philosophy of design for low cost and high reliability

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    The Ørsted Star Imager or Advanced Stellar Compass (ASC), includes the full functionallity of a traditional star tracker plus autonomy, i.e. it is able to quickly and autonomously solve "the lost in space" attitude problem, and determine its attitude with high precision. The design also provides......, Computational speed and Fault detection and recovery substantially. The high performance and low cost design was realized by the use of advanced high level integrated chips, along with a design philosophy of maximum autonomy at all levels. This approach necessitated the use of a prototyping facility which could...... and process are described, starting with the system specifications and its derived design drivers, through the design process and its iterations, including the specification, design and capability of the prototyping facility, and ending with the final system design. The rationale for IC-level selection...

  7. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  8. An overview of two nonlinear supersonic wing design studies

    Science.gov (United States)

    Miller, D. S.; Pittman, J. L.; Wood, R. M.

    1983-01-01

    The progress of two studies which apply nonlinear aerodynamics to supersonic wing design is reviewed. The first study employed a nonlinear potential flow code to design wings for high lift and low drag due to lift by employing a controlled leading-edge expansion in which the crossflow accelerates to supercritical conditions and decelerates through a weak shock. The second study utilized a modified linearized theory code to explore the concept of using 'attainable' leading-edge thrust as a guide for selecting a wing leading-edge shape (planform and radius) for maintaining attached flow and maximizing leading-edge thrust. Experimental and theoretical results obtained during the course of these two studies are discussed.

  9. Cabin-fuselage-wing structural design concept with engine installation

    Science.gov (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  10. Aeroelastic Modelling and Design of Aeroelastically Tailored and Morphing Wings

    NARCIS (Netherlands)

    Werter, N.P.M.

    2017-01-01

    In order to accommodate the growth in air traffic whilst reducing the impact on the environment, operational efficiency is becoming more and more important in the design of the aircraft of the future. A possible approach to increase the operational efficiency of aircraft wings is the use of

  11. Design, realization and structural testing of a compliant adaptable wing

    International Nuclear Information System (INIS)

    Molinari, G; Arrieta, A F; Ermanni, P; Quack, M; Morari, M

    2015-01-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing. (paper)

  12. Contribution of a winged phlebotomy device design to blood splatter.

    Science.gov (United States)

    Haiduven, Donna J; McGuire-Wolfe, Christine; Applegarth, Shawn P

    2012-11-01

    Despite a proliferation of phlebotomy devices with engineered sharps injury protection (ESIP), the impact of various winged device designs on blood splatter occurring during venipuncture procedures has not been explored. To evaluate the potential for blood splatter of 6 designs of winged phlebotomy devices. A laboratory-based device evaluation without human subjects, using a simulated patient venous system. We evaluated 18 winged phlebotomy devices of 6 device designs by Terumo, BD Vacutainer (2 designs), Greiner, Smith Medical, and Kendall (designated A-F, respectively). Scientific filters were positioned around the devices and weighed before and after venipuncture was performed. Visible blood on filters, exam gloves, and devices and measurable blood splatter were the primary units of analysis. The percentages of devices and gloves with visible blood on them and filters with measurable blood splatter ranged from 0% to 20%. There was a statistically significant association between device design and visible blood on devices ([Formula: see text]) and between device design and filters with measurable blood splatter ([Formula: see text]), but not between device design and visible blood on gloves. A wide range of associations were demonstrated between device design and visible blood on gloves or devices and incidence of blood splatter. The results of this evaluation suggest that winged phlebotomy devices with ESIP may produce blood splatter during venipuncture. Reinforcing the importance of eye protection and developing a methodology to assess ocular exposure to blood splatter are major implications for healthcare personnel who use these devices. Future studies should focus on evaluating different designs of intravascular devices (intravenous catheters, other phlebotomy devices) for blood splatter.

  13. Philosophy for seismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Teramae, Tetsuo

    1981-01-01

    In Japan, earthquakes occur frequently, therefore the basic philosophy in the aseismatic design of nuclear facilities is to design so as not to cause the accident which gives to the public in the surroundings and the employes radiation injuries in the case of large earthquakes. The ''Guideline for the aseismatic design techniques for nuclear power stations'' was drawn up in 1970 as the result of studies by related government offices and organizations. The guideline for determining the earthquakes used for design was published later, and the allowable stress for equipments and pipings has been adopted in accordance with ASME Code, Section 3. The buildings and structures, equipments and pipings in nuclear facilities are classified into three classes according to their importance in aseismatic design. The power of design earthquakes is determined corresponding to the degree of importance. The determination of the standard earthquake waves is explained. The proprieth of aseismatic design is evaluated on the basis of the basic concept of the combination of loads and the allowable limit. The static analysis in accordance with the Building Standards Act is applied to the B and C classes, while the dynamic analysis is required for the A class. The aseismatic analysis of buildings and structures, equipments and pipings is outlined. Many problems to be solved still remain though the concept of aseismatic design has been clarified. (Kako, I.)

  14. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  15. Structural design studies of a supersonic cruise arrow wing configuration

    Science.gov (United States)

    Sobieszczanski, J.; Mccullers, L. A.; Ricketts, R. H.; Santoro, N. J.; Beskenis, S. D.; Kurtze, W. L.

    1976-01-01

    Structural member cross sections were sized with a system of integrated computer programs to satisfy strength and flutter design requirements for several variants of the arrow wing supersonic cruise vehicle. The resulting structural weights provide a measure of the structural efficiency of the planform geometry, structural layout, type of construction, and type of material including composites. The material distribution was determined for a baseline metallic structure and the results indicate that an approximate fatigue constraint has an important effect on the structural weight required for strength but, in all cases, additional material had to be added to satisfy flutter requirements with lighter mass engines with minimum fuel onboard. The use of composite materials on the baseline configuration was explored and indicated increased structural efficiency. In the strength sizing, the all-composite construction provided a lower weight design than the hybrid construction which contained composites only in the wing cover skins. Subsequent flutter analyses indicated a corresponding lower flutter speed.

  16. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  17. Wings: A New Paradigm in Human-Centered Design

    Science.gov (United States)

    Schutte, Paul C.

    1997-01-01

    Many aircraft accidents/incidents investigations cite crew error as a causal factor (Boeing Commercial Airplane Group 1996). Human factors experts suggest that crew error has many underlying causes and should be the start of an accident investigation and not the end. One of those causes, the flight deck design, is correctable. If a flight deck design does not accommodate the human's unique abilities and deficits, crew error may simply be the manifestation of this mismatch. Pilots repeatedly report that they are "behind the aircraft" , i.e., they do not know what the automated aircraft is doing or how the aircraft is doing it until after the fact. Billings (1991) promotes the concept of "human-centered automation"; calling on designers to allocate appropriate control and information to the human. However, there is much ambiguity regarding what it mean's to be human-centered. What often are labeled as "human-centered designs" are actually designs where a human factors expert has been involved in the design process or designs where tests have shown that humans can operate them. While such designs may be excellent, they do not represent designs that are systematically produced according to some set of prescribed methods and procedures. This paper describes a design concept, called Wings, that offers a clearer definition for human-centered design. This new design concept is radically different from current design processes in that the design begins with the human and uses the human body as a metaphor for designing the aircraft. This is not because the human is the most important part of the aircraft (certainly the aircraft would be useless without lift and thrust), but because he is the least understood, the least programmable, and one of the more critical elements. The Wings design concept has three properties: a reversal in the design process, from aerodynamics-, structures-, and propulsion-centered to truly human-centered; a design metaphor that guides function

  18. Aerodynamic Design of Wing based on Humpback Whale Flipper

    Science.gov (United States)

    Akram, Saif; Baig, Faisal

    2013-11-01

    The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Wind tunnel tests at low speeds of model humpback flippers with leading-edge tubercles have demonstrated improvements tubercles make, such as a staggering 32% reduction in drag, 8% improvement in lift, and a 40% increase in angle of attack over smooth flippers before stalling. The tubercles on the leading edge act as a passive-flow control device that improves the performance and maneuverability of the flipper. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. In the present work, numerical investigation of a 3D wing with scalloped leading edge inspired by the humpback whale flipper is carried out at high subsonic speeds with variation in angle of attack from 0 to 25 degrees. The effect of using different turbulence models is also investigated in order to attain a better understanding of mechanism(s) responsible for improved aerodynamic performance. This new understanding of humpback whale flipper aerodynamics has strong implications for wing design.

  19. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  20. Flapping wing actuation using resonant compliant mechanisms : An insect-inspired design

    NARCIS (Netherlands)

    Bolsman, C.T.

    2010-01-01

    The realization of a wing actuation mechanism for a flapping wing micro air vehicle requires a move away from traditional designs based on gears and links. An approach inspired by nature’s flyers is better suited. For flapping flight two wing motions are important: the sweeping and the pitching

  1. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing

    2017-01-01

    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  2. A fast acting electrical servo for the actuation of full span, Fowler-type wing flaps in DLC applications: A detail design study

    Science.gov (United States)

    Smetana, F. O.; Montoya, R. J.; Carden, R. K.

    1972-01-01

    The philosophy and detail design of an electro-mechanical actuator for Fowler-type wing flaps which have a response time constant of 0.025 seconds are described. A conventional electrical servomotor with a power rating twice the maximum power delivered to the load is employed along with adaptive, gain-scheduled feedback and various logic circuits, including one to remove electrical excitation from the motor during extended periods when no motion of the flap is desired.

  3. Basic philosophy of the safety design of the Toshiba boiling water reactor

    International Nuclear Information System (INIS)

    Sato, T.

    1992-01-01

    This paper discusses the safety design of the Toshiba Boiling Water Reactor (TOSBWR) which was created ∼8 years ago. The design concept is intermediate between conventional boiling water reactors (BWRs) and the advanced BWR (ABWR). It utilizes internal pumps and fine motion control rod drive, but the emergency core cooling system (ECCS) configuration is different from both conventional BWRs and the ABWR. The plant output is 1350 MW (electric). The design is based on two important philosophies: the positive cost reduction philosophy and the constant risk philosophy

  4. Design considerations and experiences in the use of composite material for an aeroelastic research wing

    Science.gov (United States)

    Eckstrom, C. V.; Spain, C. V.

    1982-01-01

    Experiences in using composite skin material on an aeroelastic research wing used in flight flutter testing are described. Significant variations in skin shear modulus due to stress and temperature were encountered with the original fiberglass laminate skin designed to minimize wing torsional stiffness. These variations along with the sensitivity of wing torsional stiffness to the skin-to-frame attachment method complicated the structural model vibration mode predictions. A wing skin redesign with different fiber orientation and a reduction in the amount of skin-to-frame bonding resulted in more predictable modal characteristics without sacrificing design objectives. Design and modeling considerations for future applications are discussed.

  5. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  6. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  7. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  8. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    Science.gov (United States)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  9. Design and testing of an aeroelastically tailored wing under manoeuvre loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.

    2015-01-01

    The design methodology and testing of an aeroelastically tailored wing subjected to manoeuvre loads is presented in this paper. The wing is designed using an aeroelastic analysis tool that is composed of a closely coupled nonlinear beam model and a vortex lattice aerodynamic model. The globally

  10. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is much lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of a depressurization accident. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. (author)

  11. Design and construction of a remote piloted flying wing. B.S. Thesis

    Science.gov (United States)

    Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba

    1994-01-01

    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.

  12. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  13. Adaptive Wing/Aerofoil Design Optimisation Using MOEA Coupled to Uncertainty Design Method

    OpenAIRE

    Lee, D.S.; Periaux, J.; Gonzalez, L.F.; Onate, E.; Qin, N.

    2011-01-01

    The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The...

  14. Design and flight performance of hybrid underwater glider with controllable wings

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2017-05-01

    Full Text Available Hybrid underwater glider combines motion modes of traditional autonomous underwater glider and those of autonomous underwater vehicles. Different motion modes need different flight performance, including flight efficiency, static stability, and maneuverability. Conventional hybrid underwater glider with fixed wings can’t achieve optimal flight performance in one flight mission demanding various motion modes. In this article, controllable wings for hybrid underwater glider Petrel II are designed. Angle of attack, sweep angle, and aspect ratio of controllable wings can be changed to adapt to different motion modes. Kinematics and dynamics models of Petrel II are established based on multibody theory. Motion simulations of Petrel II with different wing configurations are conducted in three motion modes, including glide motion, spiral motion, and horizontal turning motion. The simulation results show the impact of wing parameters on flight performance. Field trials demonstrate that the controllable wings can improve the flight performance.

  15. A wing design methodology for low-boom low-drag supersonic business jet

    Science.gov (United States)

    Le, Daniel B.

    2009-12-01

    The arguably most critical hindrance to the successful development of a commercial supersonic aircraft is the impact of the sonic boom signature. The sonic boom signature of a supersonic aircraft is predicted using sonic boom theory, which formulates a relationship between the complex three-dimensional geometry of the aircraft to the pressure distribution and decomposes the geometry in terms of simple geometrical components. The supersonic aircraft design process is typically based on boom minimization theory. This theory provides a theoretical equivalent area distribution which should be matched by the conceptual design in order to achieve the pre-determined sonic boom signature. The difference between the target equivalent area distribution and the actual equivalent area distribution is referred to here as the gap distribution. The primary intent of this dissertation is to provide the designer with a systematic and structured approach to designing the aircraft wings with limited changes to the baseline concept while achieving critical design goals. The design process can be easily overwhelmed and may be difficult to evaluate their effectiveness. The wing design is decoupled into two separate processes, one focused on the planform design and the other on the camber design. Moreover, this design methodology supplements the designer by allowing trade studies to be conducted between important design parameters and objectives. The wing planform design methodology incorporates a continuous gradient-based optimization scheme to supplement the design process. This is not meant to substitute the vast amount of knowledge and design decisions that are needed for a successful design. Instead, the numerical optimization helps the designer to refine creative concepts. Last, this dissertation integrates a risk mitigation scheme throughout the wing design process. The design methodology implements minimal design changes to the wing geometry white achieving the target design goal

  16. The design and testing of subscale smart aircraft wing bolts

    International Nuclear Information System (INIS)

    Vugampore, J M V; Bemont, C

    2012-01-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers. (paper)

  17. Design process and philosophy of TVA's latest advance control room complex

    International Nuclear Information System (INIS)

    Owens, G.R.; Masters, D.W.

    1979-01-01

    TVA's latest nuclear power plant control room design includes a greater emphasis on human factors as compared to their earlier plant designs. This emphasis has resulted in changes in the overall design philosophy and design process. This paper discusses some of the prominent design features of both the control room and the surrounding control room complex. In addition, it also presents some of the important activities involved in the process of developing the advanced control room design

  18. Development and design of flexible Fowler flaps for an adaptive wing

    Science.gov (United States)

    Monner, Hans P.; Hanselka, Holger; Breitbach, Elmar J.

    1998-06-01

    Civil transport airplanes fly with fixed geometry wings optimized only for one design point described by altitude, Mach number and airplane weight. These parameters vary continuously during flight, to which means the wing geometry seldom is optimal. According to aerodynamic investigations a chordwide variation of the wing camber leads to improvements in operational flexibility, buffet boundaries and performance resulting in reduction of fuel consumption. A spanwise differential camber variation allows to gain control over spanwise lift distributions reducing wing root bending moments. This paper describes the design of flexible Fowler flaps for an adaptive wing to be used in civil transport aircraft that allows both a chordwise as well as spanwise differential camber variation during flight. Since both lower and upper skins are flexed by active ribs, the camber variation is achieved with a smooth contour and without any additional gaps.

  19. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  20. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300 based on the experience of the High Temperature Engineering Test Reactor (HTTR) of JAERI which is the first High Temperature Gas-cooled Reactor (HTGR) in Japan. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident induced by a large pipe break is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of the depressurization accident. The safety design philosophies for passive cooling system, reactor shutdown system, and so on were determined. The methodology for the safety evaluation, such as safety criteria and selection of events to be evaluated by using estimation of probability of occurrence, were also discussed and determined. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. The present study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  1. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  2. Self-Knowledge by Proxy: Parsons on Philosophy of Design and the Modernist Vision

    Directory of Open Access Journals (Sweden)

    Per Galle

    Full Text Available Glenn Parsons’s 2016 work, The Philosophy of Design, looks deeply at design in general, and at the Modernist approach to design in particular. The book would make an excellent textbook, but one could equally treat it as a research monograph. This article provides a detailed review of the book as a contribution to design research. The author’s efforts are original and commendable, although the work is not entirely immune to disagreement. The article highlights the main line of reasoning to guide future readers, and develops a number of considerations. These include a reflection on the feasibility of Modernist design thinking, some background on the nature and origins of the philosophy of design as a discipline, a defense of the notion of a stable essence of the concept of design, and a critical analysis of Parsons’s definition of design.

  3. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  4. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  5. Review of the Most Important Design Optimization Technique of Composite Wing

    Directory of Open Access Journals (Sweden)

    Bogdan-Alexandru BELEGA

    2016-12-01

    Full Text Available The scope of wing optimization is to design a structure that meets all the airworthiness demands while minimizing its weight. This paper introduces a review for the most important optimization design tools of composite wings with multiple load cases and large scale design variables. Each discipline resorts to accurate design to ensure better performance. Accurate design and multidisciplinary optimization design for wings need large scale design variables. The structural design of an airframe is determined by multidisciplinary criteria (stress, fatigue, buckling, control surface effectiveness, flutter and weight etc.. Several thousands of structural sizes of stringers, panels, ribs etc. have to be determined considering hundreds of thousands of requirements to find an optimum solution, i.e. a design fulfilling all requirements with a minimum weight or minimum cost respectively.

  6. Aeroelastic two-level optimization for preliminary design of wing structures considering robust constraints

    Directory of Open Access Journals (Sweden)

    Wan Zhiqiang

    2014-04-01

    Full Text Available An aeroelastic two-level optimization methodology for preliminary design of wing structures is presented, in which the parameters for structural layout and sizes are taken as design variables in the first-level optimization, and robust constraints in conjunction with conventional aeroelastic constraints are considered in the second-level optimization. A low-order panel method is used for aerodynamic analysis in the first-level optimization, and a high-order panel method is employed in the second-level optimization. It is concluded that the design of the abovementioned structural parameters of a wing can be improved using the present method with high efficiency. An improvement is seen in aeroelastic performance of the wing obtained with the present method when compared to the initial wing. Since these optimized structures are obtained after consideration of aerodynamic and structural uncertainties, they are well suited to encounter these uncertainties when they occur in reality.

  7. Philosophy of design for low cost and high reliability

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    The Ørsted Star Imager or Advanced Stellar Compass (ASC), includes the full functionallity of a traditional star tracker plus autonomy, i.e. it is able to quickly and autonomously solve "the lost in space" attitude problem, and determine its attitude with high precision. The design also provides...... robust error rejection and fault recovery, as well as graceful radiation induced, false object and thermal load degradation. The instrument was developed from concept to flight model within 3 years. The instrument surpasses the initial specifications for all design parameters. For Precision...... and process are described, starting with the system specifications and its derived design drivers, through the design process and its iterations, including the specification, design and capability of the prototyping facility, and ending with the final system design. The rationale for IC-level selection...

  8. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Science.gov (United States)

    Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien

    2015-01-01

    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.

  9. A novel substructure-based topology optimization method for the design of wing structure

    Directory of Open Access Journals (Sweden)

    Zhao Yu-bo

    2017-01-01

    Full Text Available The purpose of this paper is to demonstrate a substructure-based method dealing with the optimal material layout of the aircraft wing structure system. In this method, the topology optimization design domain of the aircraft wing is divided into multiple subordinate topological units which are called substructure. The material layout of each subordinate topology design unit is found for maximizing the total stiffness under a prescribed material usage constraint by using the Solid Isotropic Microstructures with Penalization (SIMP method. Firstly, the proposed method is implemented to find the optimal material layouts of a high aspect-ratio I-beam. Different division ways and material constraints of the substructure have proven important influence on the total stiffness. The design formulation is applied to the optimization of an aircraft wing. Compared with the traditional one, the proposed method can find a reasonable and clearer material layout of the wing, especially material piled up near the fixed end is pushed toward the tip or the middle of the wing. The optimized design indicates the proposed method can enhance the guidance of topology optimization in finding reasonable stiffener layouts of wing structure.

  10. Optimization on a Network-based Parallel Computer System for Supersonic Laminar Wing Design

    Science.gov (United States)

    Garcia, Joseph A.; Cheung, Samson; Holst, Terry L. (Technical Monitor)

    1995-01-01

    A set of Computational Fluid Dynamics (CFD) routines and flow transition prediction tools are integrated into a network based parallel numerical optimization routine. Through this optimization routine, the design of a 2-D airfoil and an infinitely swept wing will be studied in order to advance the design cycle capability of supersonic laminar flow wings. The goal of advancing supersonic laminar flow wing design is achieved by wisely choosing the design variables used in the optimization routine. The design variables are represented by the theory of Fourier series and potential theory. These theories, combined with the parallel CFD flow routines and flow transition prediction tools, provide a design space for a global optimal point to be searched. Finally, the parallel optimization routine enables gradient evaluations to be performed in a fast and parallel fashion.

  11. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  12. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  13. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  14. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla

    2006-01-01

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  15. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  16. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  17. Modeling, design and optimization of flapping wings for efficient hovering flighth

    NARCIS (Netherlands)

    Wang, Q.

    2017-01-01

    Inspired by insect flights, flapping wing micro air vehicles (FWMAVs) keep attracting attention from the scientific community. One of the design objectives is to reproduce the high power efficiency of insect flight. However, there is no clear answer yet to the question of how to design flapping

  18. Multi-disciplinary design optimization of subsonic fixed-wing unmanned aerial vehicles projected through 2025

    Science.gov (United States)

    Gundlach, John Frederick, IV

    Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: (1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, (2) UAV systems mass properties definition, (3) wing structural weight methods, (4) self-optimizing flight performance model, (5) automated geometry algorithms, and (6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. All three UAV families show significant design gross weight reductions as technology improves. The overall technology synergy experienced 10--11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and

  19. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  20. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    Science.gov (United States)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  1. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  2. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  3. Results of design studies and wind tunnel tests of high-aspect-ratio supercritical wings for an energy efficient transport

    Science.gov (United States)

    Steckel, D. K.; Dahlin, J. A.; Henne, P. A.

    1980-01-01

    These basic characteristics of critical wings included wing area, aspect ratio, average thickness, and sweep as well as practical constraints on the planform and thickness near the wing root to allow for the landing gear. Within these constraints, a large matrix of wing designs was studied with spanwise variations in the types of airfoils and distribution of lift as well as some small planform changes. The criteria by which the five candidate wings were chosen for testing were the cruise and buffet characteristics in the transonic regime and the compatibility of the design with low speed (high-lift) requirements. Five wing-wide-body configurations were tested in the NASA Ames 11-foot transonic wind tunnel. Nacelles and pylons, flap support fairings, tail surfaces, and an outboard aileron were also tested on selected configurations.

  4. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  5. Design of a new VTOL UAV by combining cycloidal blades and FanWing propellers

    Science.gov (United States)

    Li, Daizong

    Though the propelling principles of Cycloidal Blades and FanWing propellers are totally different, their structures are similar. Therefore, it is possible to develop an aircraft which combines both types of the propulsion modes of Cyclogyro and FanWing aircrafts. For this kind of aircraft, Cycloidal Blades Mode provides capabilities of Vertical Take-Off and Landing, Instantly Alterable Vector Thrusting, and Low Noise. The FanWing Mode provides capabilities of High Efficiency, Energy-Saving, and Cannot-Stall Low-Speed Cruising. Besides, because both of these propellers are observably better than conventional screw propeller in terms of efficiency, so this type of VTOL UAV could fly with Long Endurance. Furthermore, the usage of flying-wing takes advantage of high structure utilization and high aerodynamic efficiency, eliminates the interference of fuselage and tail, and overcomes flying wing's shortcomings of pitching direction instability and difficulty of control. A new magnetic suspension track-type cycloidal propulsion system is also presented in the paper to solve problems of heavy structure, high mechanical resistance, and low reliability in the traditional cycloidal propellers. The further purpose of this design is to trying to make long-endurance VTOL aircraft and Practical Flying Cars possible in reality, and to bring a new era to the aviation industry.

  6. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  7. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    Science.gov (United States)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  8. Design conceptuel d'un avion blended wing body de 200 passagers

    Science.gov (United States)

    Ammar, Sami

    The Blended Wing Body is built based on the flying wing concept and performance improvements compared to conventional aircraft. Contrariwise, most studies have focused on large aircraft and it is not sure whether the gains are the same for smaller aircraft. The main of objective is to perform the conceptual design of a BWB of 200 passengers and compare the performance obtained with a conventional aircraft equivalent in terms of payload and range. The design of the Blended Wing Body was carried out under the CEASIOM environment. This platform design suitable for conventional aircraft design has been modified and additional tools have been integrated in order to achieve the aerodynamic analysis, performance and stability of the aircraft fuselage built. A plane model is obtained in the geometric module AcBuilder CEASIOM from the design variables of a wing. Estimates of mass are made from semi- empirical formulas adapted to the geometry of the BWB and calculations centering and inertia are possible through BWB model developed in CATIA. Low fidelity methods, such as TORNADO and semi- empirical formulas are used to analyze the aerodynamic performance and stability of the aircraft. The aerodynamic results are validated using a high-fidelity analysis using FLUENT CFD software. An optimization process is implemented in order to obtain improved while maintaining a feasible design performance. It is an optimization of the plan form of the aircraft fuselage integrated with a number of passengers and equivalent to that of a A320.Les performance wing aircraft merged optimized maximum range are compared to A320 also optimized. Significant gains were observed. An analysis of the dynamics of longitudinal and lateral flight is carried out on the aircraft optimized BWB finesse and mass. This study identified the stable and unstable modes of the aircraft. Thus, this analysis has highlighted the stability problems associated with the oscillation of incidence and the Dutch roll for the

  9. Lightning protection design and testing of an all composite wet wing for the Egrett

    Science.gov (United States)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  10. Aeroelastic Optimization Design for High-Aspect-Ratio Wings with Large Deformation

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-01-01

    Full Text Available This paper presents a framework of aeroelastic optimization design for high-aspect-ratio wing with large deformation. A highly flexible wing model for wind tunnel test is optimized subjected to multiple aeroelastic constraints. Static aeroelastic analysis is carried out for the beamlike wing model, using a geometrically nonlinear beam formulation coupled with the nonplanar vortex lattice method. The flutter solutions are obtained using the P-K method based on the static equilibrium configuration. The corresponding unsteady aerodynamic forces are calculated by nonplanar doublet-lattice method. This paper obtains linear and nonlinear aeroelastic optimum results, respectively, by the ISIGHT optimization platform. In this optimization problem, parameters of beam cross section are chosen as the design variables to satisfy the displacement, flutter, and strength requirements, while minimizing wing weight. The results indicate that it is necessary to consider geometrical nonlinearity in aeroelastic optimization design. In addition, optimization strategies are explored to simplify the complex optimization process and reduce the computing time. Different criterion values are selected and studied for judging the effects of the simplified method on the computing time and the accuracy of results. In this way, the computing time is reduced by more than 30% on the premise of ensuring the accuracy.

  11. Polymer based flapping-wing robotic insect: Progress in design, fabrication, and characterization

    Science.gov (United States)

    Bontemps, A.; Vanneste, T.; Soyer, C.; Paquet, J. B.; Grondel, S.; Cattan, E.

    2014-03-01

    In the last decade, many researchers pursued the development of tiny flying robots inspired by natural flyers destined for the exploration of confined spaces, for example. Within this context, our main objective is to devise a flying robot bioinspired from insect in terms of size and wing kinematics using MEMS technologies. For this purpose, an original design has been developed around resonant thorax and wings by the way of an indirect actuation and a concise transmission whereas the all-polymer prototypes are obtained using a micromachining SU-8 photoresist process. This paper reports our recent progress on the design of a flapping-wing robotic insect as well as on the characterization of its performance. Prototypes with a wingspan of 3 cm and a mass of 22 mg are achieved. Due to the introduction of an innovative compliant link, large and symmetrical bending angles of 70° are obtained at a flapping frequency of 30 Hz along with passive wing torsion while minimizing its energy expenditure. Furthermore, it leads to a mean lift force representing up to 75 % of the prototype weight as measured by an in-house force sensor. Different improvements are currently underway to increase the power-to-weight ratio of the prototype and to obtain an airborne prototype.

  12. Roll plus maneuver load alleviation control system designs for the active flexible wing wind-tunnel model

    Science.gov (United States)

    Moore, Douglas B.; Miller, Gerald D.; Klepl, Martin J.

    1991-01-01

    Three designs for controlling loads while rolling for the Active Flexible Wing (AFW) are discussed. The goal is to provide good roll control while simultaneously limiting the torsion and bending loads experienced by the wing. The first design uses Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) modern control methods to control roll rate and torsional loads at four different wing locations. The second design uses a nonlinear surface command function to produce surface position commands as a function of current roll rate and commanded roll rate. The final design is a flutter suppression control system. This system stabilizes both symmetric and axisymmetric flutter modes of the AFW.

  13. Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic design

    Science.gov (United States)

    Sowers, H. D.; Coward, W. E.

    1978-01-01

    The acoustic considerations involved in the low source noise basic engine design and the design procedures followed in the development of the under-the-wing (UTW) engine boilerplate and composite nacelle acoustic treatment designs are presented. Laboratory experiments, component tests, and scale model and engine tests supporting the UTW engine acoustic design are referenced. Acoustic design features include a near-sonic inlet, low fan and core pressure ratios, low fan tip speed, high and low frequency stacked core treatment, multiple thickness treatment, and fan frame and stator vane treatment.

  14. Quiet, Clean, Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) engine acoustic design

    Science.gov (United States)

    Sowers, H. D.; Coward, W. E.

    1978-01-01

    The acoustic considerations involved in the low source noise basic engine design and the design procedures followed in the development of the over-the-wing (OTW) nacelle acoustic treatment design are presented. Laboratory experiments, component tests, and scale model and engine tests supporting the OTW engine acoustic design are referenced. Acoustic design features include a near-sonic inlet, low fan and core pressure ratios, low fan tip speed, high and low frequency stacked core treatment, multiple thickness treatment, and fan frame and stator vane treatment.

  15. Multidisciplinary Integrated Framework for the Optimal Design of a Jet Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Laura Mainini

    2012-01-01

    Full Text Available The preliminary design of a jet aircraft wing, through the use of an integrated multidisciplinary design environment, is presented in this paper. A framework for parametric studies of wing structures has been developed on the basis of a multilevel distributed analysis architecture with a “hybrid strategy” process that is able to perform deterministic optimizations and tradeoff studies simultaneously. The particular feature of the proposed multilevel optimization architecture is that it can use different set of variables, defined expressly for each level, in a multi-level scheme using “low fidelity” and “high fidelity” models, as well as surrogate models. The prototype of the design environment has been developed using both commercial codes and in-house tools and it can be implemented in a geographically distributed and heterogeneous IT context.

  16. SpaRibs Geometry Parameterization for Wings with Multiple Sections using Single Design

    Science.gov (United States)

    De, Shuvodeep; Jrad, Mohamed; Locatelli, Davide; Kapania, Rakesh K.; Baker, Myles; Pak, Chan-Gi

    2017-01-01

    The SpaRibs topology of an aircraft wing has a significant effect on its structural behavior and stability as well as the flutter performance. The development of additive manufacturing techniques like Electron Beam Free Form Fabrication (EBF3) has made it feasible to manufacture aircraft wings with curvilinear spars, ribs (SpaRibs) and stiffeners. In this article a new global-local optimization framework for wing with multiple sections using curvilinear SpaRibs is described. A single design space is used to parameterize the SpaRibs geometry. This method has been implemented using MSC-PATRAN to create a broad range of SpaRibs topologies using limited number of parameters. It ensures C0 and C1 continuities in SpaRibs geometry at the junction of two wing sections with airfoil thickness gradient discontinuity as well as mesh continuity between all structural components. This method is advantageous in complex multi-disciplinary optimization due to its potential to reduce the number of design variables. For the global-local optimization the local panels are generated by an algorithm which is totally based on a set algebra on the connectivity matrix data. The great advantage of this method is that it is completely independent of the coordinates of the nodes of the finite element model. It is also independent of the order in which the elements are distributed in the FEM. The code is verified by optimizing of the CRM Baseline model at trim condition at Mach number equal to 0.85 for five different angle of attack (-2deg, 0deg,2deg,4deg and 6deg). The final weight of the wing is 19,090.61 lb. This value is comparable to that obtained by Qiang et al. 6 (19,269 lb).

  17. Design of vibratory energy harvesters under stochastic parametric uncertainty: a new optimization philosophy

    International Nuclear Information System (INIS)

    Hosseinloo, Ashkan Haji; Turitsyn, Konstantin

    2016-01-01

    Vibratory energy harvesters as potential replacements for conventional batteries are not as robust as batteries. Their performance can drastically deteriorate in the presence of uncertainty in their parameters. Parametric uncertainty is inevitable with any physical device mainly due to manufacturing tolerances, defects, and environmental effects such as temperature and humidity. Hence, uncertainty propagation analysis and optimization under uncertainty seem indispensable with any energy harvester design. Here we propose a new modeling philosophy for optimization under uncertainty; optimization for the worst-case scenario (minimum power) rather than for the ensemble expectation of the power. The proposed optimization philosophy is practically very useful when there is a minimum requirement on the harvested power. We formulate the problems of uncertainty propagation and optimization under uncertainty in a generic and architecture-independent fashion, and then apply them to a single-degree-of-freedom linear piezoelectric energy harvester with uncertainty in its different parameters. The simulation results show that there is a significant improvement in the worst-case power of the designed harvester compared to that of a naively optimized (deterministically optimized) harvester. For instance, for a 10% uncertainty in the natural frequency of the harvester (in terms of its standard deviation) this improvement is about 570%. (paper)

  18. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  19. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    Science.gov (United States)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  20. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    Science.gov (United States)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  1. Damage-tolerant design and inspection philosophy for nuclear and other pressure vessels

    International Nuclear Information System (INIS)

    Adams, N.J.I.

    1980-01-01

    Statistical analyses of pressure vessel failure rates indicate that, to date, the record is very good. However, the public hazard and environmental consequences of failure in certain industrial processes now give cause for much greater concern. With the exception of an Appendix in ASME III, the current design codes and requirements for new vessels are all based on the assumption that they are free from cracklike defects, but engineers recognize tht such perfect vessels cannot be manufactured. Taking into account failure mechanisms, material properties, pre- and in-service inspection, proof testing, failure statistics and probabilistic methods, views are put forward on how a damage-tolerant design and inspection philosophy may be developed to reduce further the possibility of ''rogue'' vessel failure. 21 refs

  2. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  3. Morphing Wing Design with an Innovative Three-Dimensional Warping Actuation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced wing configurations where traditional control surfaces are replaced by dynamically controlled distribution of wing twist and/or camber can provide...

  4. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    Science.gov (United States)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  5. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...... level. Enhancement of the aeroelastic stability is selected as an objective in the upper-level optimization. This is achieved by seeking the optimal structural properties of a composite wing, including its mass, vertical, chordwise, and torsional stiffness. In the upper-level optimization, the response...... surface method (RSM), is selected. On the other hand, lower-level optimization seeks to determine the local detailed cross-sectional parameters, such as the ply orientation angles and ply thickness, which are relevant to the wing structural properties obtained at the upper-level. To avoid manufacturing...

  6. Fundamental philosophy on the safety design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-01-01

    Japan Atomic Energy Agency (JAEA) has been conducting an R and D work on the VHTR reactor system and IS hydrogen production system to realize hydrogen production using nuclear heat. As a part of this activity, JAEA is planning to connect an IS test system to the High Temperature Engineering Test Reactor (HTTR) to demonstrate its technical feasibility. This paper proposes a fundamental philosophy on the safety design of the HTTR-IS hydrogen production system including the methodology to select postulated abnormal events and its event sequences and to define safety functions of the IS system to ensure the reactor safety. Also the measure to clarify the IS system as non-reactor system is proposed. (author)

  7. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  8. Design and characterization of a multi-articulated robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2013-01-01

    There are many challenges to measuring power input and force output from a flapping vertebrate. Animals can vary a multitude of kinematic parameters simultaneously, and methods for measuring power and force are either not possible in a flying vertebrate or are very time and equipment intensive. To circumvent these challenges, we constructed a robotic, multi-articulated bat wing that allows us to measure power input and force output simultaneously, across a range of kinematic parameters. The robot is modeled after the lesser dog-faced fruit bat, Cynopterus brachyotis, and contains seven joints powered by three servo motors. Collectively, this joint and motor arrangement allows the robot to vary wingbeat frequency, wingbeat amplitude, stroke plane, downstroke ratio, and wing folding. We describe the design, construction, programing, instrumentation, characterization, and analysis of the robot. We show that the kinematics, inputs, and outputs demonstrate good repeatability both within and among trials. Finally, we describe lessons about the structure of living bats learned from trying to mimic their flight in a robotic wing. (paper)

  9. On the Importance of Nonlinear Aeroelasticity and Energy Efficiency in Design of Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2015-01-01

    Full Text Available Energy efficiency plays important role in aeroelastic design of flying wing aircraft and may be attained by use of lightweight structures as well as solar energy. NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft is a newly developed computer program which uses a nonlinear composite beam theory that eliminates the difficulties in aeroelastic simulations of flexible high-aspect-ratio wings which undergoes large deformation, as well as the singularities due to finite rotations. NATASHA has shown that proper engine placement could significantly increase the aeroelastic flight envelope which typically leads to more flexible and lighter aircraft. The areas of minimum kinetic energy for the lower frequency modes are in accordance with the zones with maximum flutter speed and have the potential to save computational effort. Another aspect of energy efficiency for High Altitude, Long Endurance (HALE drones stems from needing to minimize energy consumption because of limitations on the source of energy, that is, solar power. NATASHA is capable of simulating the aeroelastic passive morphing maneuver (i.e., morphing without relying on actuators and at as near zero energy cost as possible of the aircraft so as the solar panels installed on the wing are in maximum exposure to sun during different time of the day.

  10. Using the Design for Demise Philosophy to Reduce Casualty Risk Due to Reentering Spacecraft

    Science.gov (United States)

    Kelley, R. L.

    2012-01-01

    Recently the reentry of a number of vehicles has garnered public attention due to their risk of human casualty due to fragments surviving reentry. In order to minimize this risk for their vehicles, a number of NASA programs have actively sought to minimize the number of components likely to survive reentry at the end of their spacecraft's life in order to meet and/or exceed NASA safety standards for controlled and uncontrolled reentering vehicles. This philosophy, referred to as "Design for Demise" or D4D, has steadily been adopted, to at least some degree, by numerous programs. The result is that many programs are requesting evaluations of components at the early stages of vehicle design, as they strive to find ways to reduce the number surviving components while ensuring that the components meet the performance requirements of their mission. This paper will discuss some of the methods that have been employed to ensure that the consequences of the vehicle s end-of-life are considered at the beginning of the design process. In addition this paper will discuss the technical challenges overcome, as well as some of the more creative solutions which have been utilized to reduce casualty risk.

  11. Problem-Centered Design and Personal Teaching Style: An Exploratory Study of Youguang Tu's Course on Philosophy of Education

    Science.gov (United States)

    Lei, Hongde

    2016-01-01

    Youguang Tu is a contemporary Chinese philosopher of education. His course on philosophy of education had a significant impact on his students. This exploratory study examines how Tu designed and taught this course. Ultimately, there are two reasons why Tu's course had such a significant influence on his students. The first is that Tu used…

  12. Developing a computer-based environment for the design of nuclear power plants: a perspective and philosophy

    International Nuclear Information System (INIS)

    Brey, H.; Kisner, R.A.

    1985-08-01

    This report surveys the usefulness and general design requirements for a large-scale database and database manager for design and analysis of nuclear power plant control systems. The control engineer's and systems integrator's need for timely, accurate, and searchable information for advanced control system design increases with competitive economics and stringent reliability demands. A philosophy is conveyed for the implementation of an integrated, comprehensive database system

  13. Safety design philosophy of the ABWR for the next generation LWRs

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents safety design philosophy of the advanced boiling water reactor (ABWR) to be reflected in developing the next generation light water reactors (LWRs). The basic policy of the ABWR safety design was to improve safety and reduce cost simultaneously by reflecting lessons learned of precursors, incidents and accidents that were beyond the design basis such as the Three Mile Island Unit 2 (TMI 2) accident. The ABWR is a fully active safety plant. The ABWR enhanced redundancy and diversity of active safety systems using probabilistic safety assessment (PSA) insights. It adopted a complete three division active emergency core cooling system (ECCS) and attained a very low core damage frequency (CDF) value of less than 10 -7 /ry for internal events. Only very small residual risks, if any, rather exist in external events such as an extremely large earthquake beyond the design basis. This is because external events can constitute a common cause that disables all the redundant active safety systems. Therefore, it is useless to add one more ECCS train and make a four division active ECCS for external events. Nowadays, however, fully passive safety LWRs are already established. Incorporating some of these passive safety systems we can also establish the next generation LWRs that are truly strong against external events. We can establish a plant that can survive a giant earthquake at least three days without AC power source, SA proof safety design that enables no containment failure and no evacuation to eliminate the residual risks. The same basic policy as the ABWR to improve safety and reduce cost simultaneously is again effective for the next generation LWRs. (author)

  14. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  15. Aerodynamic Analysis of Low Speed Wing Design using Taguchi L9 Orthogonal Array

    Directory of Open Access Journals (Sweden)

    Witcher Kenneth

    2018-01-01

    Full Text Available The study of aerodynamics has been preoccupied with understanding flight at increasing speeds and ultimately supersonic. Today, this pursuit has advanced the science for both Hypersonic and Transonic flight to near Mach 1 supporting economical commercial flight operations. This research presents the data from a Taguchi array on low speed with twin wing designs to establish the design parameters for their use in low speed and high altitude. Also presented is how aerodynamic advantages can be achieved through understanding the interactions of parameters and their use. This is compared to operational effectiveness when applied to remotely piloted aircraft that are not constrained by direct requirements. The research concludes with suggestions for improved designs and further work that may enable higher altitudes with low speeds.

  16. Control system design of flying-wing UAV based on nonlinear methodology

    Directory of Open Access Journals (Sweden)

    Ji-guang LI

    2017-12-01

    Full Text Available In this paper, A fluid vector rudder flying-wing UAV is employed as the design object, so as to study the nonlinear design method and flight validation. For the maneuvering flight control, this paper presents a control structure. This control structure included the inner loop linearization decoupling methods to eliminate the known negative coupling and the outer loop backstepping methods for trajectory tracking control. The stability of the control structure has been proved in this paper. Compared with the traditional backstepping control method, this controller increases the inner loop decoupling structure and retains the aerodynamic damping term which makes the linearized system a weak nonlinear system. This structure can not only reduce the conservatism of the outer loop controller design, but also is convenient for engineering implementation. Simulation and flight validation results show that the proposed control scheme is effective.

  17. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  18. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  19. Developing an Integrated Design Model Incorporating Technology Philosophy for the Design of Healthcare Environments: A Case Analysis of Facilities for Psychogeriatric and Psychiatric Care in The Netherlands

    NARCIS (Netherlands)

    J. van Hoof; M.J. Verkerk

    2013-01-01

    van Hoof, J., Verkerk, M.J. (2013) Developing an Integrated Design Model Incorporating Technology Philosophy for the Design of Healthcare Environments: A Case Analysis of Facilities for Psychogeriatric and Psychiatric Care in The Netherlands. Technology in Society 35(1):1-13

  20. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration

    Science.gov (United States)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.

    1999-01-01

    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  1. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  2. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    Science.gov (United States)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  3. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    Science.gov (United States)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  4. Combined, nonlinear aerodynamic and structural method for the aeroelastic design of a three-dimensional wing in supersonic flow

    Science.gov (United States)

    Pittman, J. L.; Giles, G. L.

    1986-01-01

    An iterative procedure for the static aeroelastic design of a flexible wing at supersonic speeds has been developed. The procedure combines a nonlinear, full-potential solver (NCOREL) with an equivalent plate structural analysis method. The NCOREL method yields significantly improved aerodynamic estimates compared to linear theory. The equivalent plate structural analysis method demonstrates an order of magnitude reduction in computer memory and execution time compared to finite-element methods. A highly swept wing is analyzed at high lift using this aeroelastic procedure. The results indicate that the wing deforms favorably due to aerodynamic loading and, consequently, that the inviscid drag levels do not vary at the required lift coefficient although the angle of attack varies significantly. A sensitivity analysis of the type required for optimization studies was also performed with the aeroelastic design procedure.

  5. Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    Science.gov (United States)

    Carlson, Harry W.; Mann, Michael J.

    1992-01-01

    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed.

  6. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  7. A Structural Design Concept for a Multi-Shell Blended Wing Body with Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Majeed Bishara

    2018-02-01

    Full Text Available Static and fatigue analyses are presented for a new blended wing body (BWB fuselage concept considering laminar flow control (LFC by boundary layer suction in order to reduce the aerodynamic drag. BWB aircraft design concepts profit from a structurally beneficial distribution of lift and weight and allow a better utilization of interior space over conventional layouts. A structurally efficient design concept for the pressurized BWB cabin is a vaulted layout that is, however, aerodynamically disadvantageous. A suitable remedy is a multi-shell design concept with a separate outer skin. The synergetic combination of such a multi-shell BWB fuselage with a LFC via perforation of the outer skin to attain a drag reduction appears promising. In this work, two relevant structural design aspects are considered. First, a numerical model for a ribbed double-shell design of a fuselage segment is analyzed. Second, fatigue aspects of the perforation in the outer skin are investigated. A design making use of controlled fiber orientation is proposed for the perforated skin. The fatigue behavior is compared to perforation methods with conventional fiber topologies and to configurations without perforations.

  8. An efficient fluid-structure interaction method for conceptual design of flexible micro air vehicle wings: Development, comparison, and application

    Science.gov (United States)

    Combes, Thomas P.

    This thesis summarizes the development, comparison, and applications of an efficient fluid-structure interaction method capable of simulating the effects that wing flexibility has on micro air vehicle (MAV) performance. Micro air vehicles wing designs often incorporate flexible wing structures that mimic the skeleton / membrane designs found in natural flyers such as bats and insects. However, accurate performance prediction for these wings requires the coupling of the simulation of the fluid physics around the wing and the simulation of the structural deformation. These fluid-structure interaction (FSI) simulations are often accomplished using high fidelity, computationally expensive techniques such as computational fluid dynamics (CFD) for the fluid physics and nonlinear finite element analysis (FEA) for the structural simulation. The main drawback of these methods, especially for use simulating vehicles that are able to be manufactured relatively quickly, is that the computational cost required to perform relevant trade studies on the design is prohibitively large and time-consuming. The main goal of this research is the development of a coupled fluid-structure interaction method computationally efficient and accurate enough to be used for conceptual design of micro air vehicles. An advanced potential flow model is used to calculate aerodynamic performance and loading, while a simplified finite element structural model using frame and shell elements calculates the wing deflection due to aerodynamic loading. The contents of this thesis include a literature survey of current approaches, an introduction to the efficient FSI formulation, comparison of the presented FSI method with higher-fidelity simulation methods, demonstrations of the method's capability for tradeoff and optimization studies, and an overview of contributions to a nonlinear dynamic algorithm for the simulation of flapping flight.

  9. INITIAL ASSESSMENT OF SURFACE PRESSURE CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    Science.gov (United States)

    Jones, Henry E.; Wong, Oliver D.; Watkins, A. Neal; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.; Ingram, Joanne L.

    2006-01-01

    This paper presents results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of fixed system pressure coefficient response to changes in configuration attitude and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect the magnitude of the response. Pressure coefficients were measured using both conventional pressure taps and via pressure sensitive paint. Comparisons between the two methods are presented and demonstrate that the pressure sensitive paint is a promising method; however, further work on the technique is required.

  10. Design, Development and Tests in Real Time of Control Methodologies for a Morphing Wing in Wind Tunnel =

    Science.gov (United States)

    Tchatchueng Kammegne, Michel Joel

    In order to leave a cleaner environmental space to future generations, the international community has been mobilized to find green solutions that are effective and feasible in all sectors. The CRIAQ MDO505 project was initiated to test the morphing wingtip (wing and aileron) technology as one of these possible solutions. The main objectives of this project are: the design and manufacturing of a morphing wing prototype, the extension and control of the laminar region over the extrados, and to compare the effects of morphing and rigid aileron in terms of lift, drag and pressure distributions. The advantage of the extension of the laminar region over a wing is the drag reduction that results by delaying the transition towards its trailing edge. The location of the transition region depends on the flight case and it is controlled, for a morphing wing, via the actuators positions and displacements. Therefore, this thesis work focuses on the control of the actuators positions and displacements. This thesis presents essentially the modeling, instrumentation and wind tunnel testing results. Three series of wind tunnel tests with different values of aileron deflection angle, angle of attack and Mach number have been performed in the subsonic wind tunnel of the IAR-NRC. The used wing airfoil consisted of stringers, ribs, spars and a flexible upper surface mad of composite materials (glass fiber carbon), a rigid aileron and flexible aileron. The aileron was able to move between +/-6 degrees. The demonstrator's span measures 1.5 m and its chord measures 1.5 m. Structural analyses have been performed to determine the plies orientation, and the number of fiberglass layers for the flexible skin. These analyses allowed also to determine the actuator's forces to push and pull the wing upper surface. The 2D XFoil and 3D solvers Fluent were used to find the optimized airfoil and the optimal location of the transition for each flight case. Based on the analyses done by the

  11. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  12. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  13. Optimization of geometrical parameters aerodynamic design aircraft articulated tandem with wings

    Directory of Open Access Journals (Sweden)

    О.В. Кузьменко

    2006-01-01

    Full Text Available  The features of a task of optimization of the plane with unmanned completely wing are considered the existing approaches the block diagram of mathematical model of the plane with unmanned completely wing is given in the decision of similar tasks.

  14. Lay-up Optimisation of Fibre Metal Laminates : Development of a Design Methodology for Wing Structures

    NARCIS (Netherlands)

    ?en, I.

    2015-01-01

    The lower wing skin is one of the primary structures of an aircraft. To further improve the fatigue and damage tolerance (F&DT) performance of the lower wing, fibre metal laminates (FML) are proposed as a new material solution. FML consist of thin metal layers bonded with layers of fibre composites.

  15. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  16. Development of MCAERO wing design panel method with interactive graphics module

    Science.gov (United States)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  17. Aerodynamic Design of the Hybrid Wing Body Propulsion-Airframe Integration

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, ByungJoon; Liou, Meng-Sing

    2017-01-01

    A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient.

  18. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    Science.gov (United States)

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  19. Design and Implementation of an Optimal Energy Control System for Fixed-Wing Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lai

    2016-11-01

    Full Text Available In conventional flight control design, the autopilot and the autothrottle systems are usually considered separately, resulting in a complex system and inefficient integration of functions. Therefore, the concept of aircraft energy control is brought up to solve the problem of coordinated control using elevator and throttle. The goal of this study is to develop an optimal energy control system (OECS, based on the concept of optimal energy for fixed-wing unmanned aerial vehicles (UAVs. The energy of an aircraft is characterized by two parameters, which are specific energy distribution rate, driven by elevator, and total specific energy rate, driven by throttle. In this study, a system identification method was employed to obtain the energy model of a small UAV. The proposed approach consists of energy distribution loop and total energy loop. Energy distribution loop is designed based on linear-quadratic-Gaussian (LQG regulator and is responsible for regulating specific energy distribution rate to zero. On the other hand, the total energy loop, based on simple gain scheduling method, is responsible for driving the error of total specific energy rate to zero. The implementation of OECS was successfully validated in the hard-in-the-loop (HIL simulation of the applied UAV.

  20. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  1. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    Science.gov (United States)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  2. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  3. Flexible Wing Designs with Sensor Control Feedback for Demonstration on the X-56A (MUTT)

    Science.gov (United States)

    Ginn, Starr

    2012-01-01

    Presenting an overview of the research DFRC is planning within the Subsonic Fixed Wing (SFW) Light Weight Airframes and Propulsion. Describ ing our TRL maturation and new research going forward using the X-56A as a validation testbed.

  4. Mechanical design and manufacturing of an insect-scale flapping-wing robot

    OpenAIRE

    Ma, Kevin Yuan

    2015-01-01

    Despite the prevalence of insect flight as a form of locomotion in nature, manmade aerial systems have yet to match the aerial prowess of flying insects. Within a tiny body volume, flying insects embody the capabilities to flap seemingly insubstantial wings at very high frequencies and sustain beyond their own body weight in flight. A precise authority over their wing motions enables them to respond to obstacles and threats in flight with unrivaled speed and grace. Motivated by a desire ...

  5. Wing bone stresses in free flying bats and the evolution of skeletal design for flight.

    Science.gov (United States)

    Swartz, S M; Bennett, M B; Carrier, D R

    1992-10-22

    The primary mechanical functions of limb bones are to resist deformation, and hence provide stiff levers against which muscles can act, and to be sufficiently strong to prevent breaking under static or dynamic loads which arise from normal and accidental activities. If bones perform these functions with a minimum amount of material, the energetic costs associated with building, maintaining and transporting the skeleton will be minimized. Appropriate skeletal architecture for minimizing mass while maximizing strength depends on forces imposed on structural elements. In the evolutionary acquisition of flight in the bat lineage, the forelimb skeleton must have come to experience locomotor-forces that differed from those engendered by the terrestrial locomotion of non-flying bat relatives. Here we successfully measure in vivo strain on the wing bones of flying mammals. Our data demonstrate that torsion and shear are unique and crucial features of skeletal biomechanics during flight, and suggest that the evolution of skeletal design in bats and other flying vertebrates may be driven by the need to resist these loads.

  6. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  7. An analysis of the takeoff and landing performance of a jet-powered STOL augmentor wing design

    Science.gov (United States)

    Post, S. E.; Gambucci, B. J.; Holzhauser, C. A.

    1972-01-01

    A preliminary study of the takeoff and landing performance characteristics of a swept wing airplane with augmented jet flap, designed for STOL operation and low noise is presented. The study is based on aerodynamic data from wind tunnel tests of a large-scale swept augmentor wing model, scaled up to a 48,000 pound airplane. Engine characteristics are based on a turbo fan with a fan pressure ratio of 2.5 delivering the major portion of the thrust to the augmentor flap. A description of the overall airplane configuration, the propulsion system, and the use of the aerodynamics is presented. To assess the STOL performance of the airplane, takeoff and landing distances and flight path capabilities were computed at various flap deflections and thrust levels. After evaluating these results in terms of desired STOL performance with required margins, basic takeoff and landing configurations were chosen.

  8. Experimental philosophy.

    Science.gov (United States)

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious?

  9. Pilot opinions on high level flight deck automation issues: Toward the development of a design philosophy

    Science.gov (United States)

    Tenney, Yvette J.; Rogers, William H.; Pew, Richard W.

    1995-01-01

    There has been much concern in recent years about the rapid increase in automation on commercial flight decks. The survey was composed of three major sections. The first section asked pilots to rate different automation components that exist on the latest commercial aircraft regarding their obtrusiveness and the attention and effort required in using them. The second section addressed general 'automation philosophy' issues. The third section focused on issues related to levels and amount of automation. The results indicate that pilots of advanced aircraft like their automation, use it, and would welcome more automation. However, they also believe that automation has many disadvantages, especially fully autonomous automation. They want their automation to be simple and reliable and to produce predictable results. The biggest needs for higher levels of automation were in pre-flight, communication, systems management, and task management functions, planning as well as response tasks, and high workload situations. There is an irony and a challenge in the implications of these findings. On the one hand pilots would like new automation to be simple and reliable, but they need it to support the most complex part of the job--managing and planning tasks in high workload situations.

  10. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    Science.gov (United States)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  11. Design, characterization, and testing of macro-fiber composite actuators for integration on a fixed-wing UAV

    Science.gov (United States)

    Prazenica, Richard J.; Kim, Daewon; Moncayo, Hever; Azizi, Boutros; Chan, May

    2014-04-01

    Smart materials offer several potential advantages for UAV flight control applications compared to traditional servo actuators. One important benefit is that smart materials are lightweight and can be embedded directly into the structure of a wing or control surface. Therefore, they can reduce the overall weight of the vehicle and eliminate the need for mechanical appendages that may compromise the form factor of the wing, benefits that become more significant as the size of the vehicle decreases. In addition, smart materials can be used to realize continuous camber change of aerodynamic surfaces. Such designs offer improved aerodynamic efficiency compared to the discontinuous deflections of traditional hinged control surfaces driven by servo actuators. In the research discussed in this paper, macro-fiber composite (MFC) aileron actuators are designed for implementation on a medium-scale, fixed-wing UAV in order to achieve roll control. Macro-fiber composites, which consist of piezoceramic fibers and electrodes embedded in an epoxy matrix, are an attractive choice for UAV actuation because they are manufactured as lightweight, thin sheets and, when implemented as bending actuators, can provide both large structural deflections and high bandwidth. In this study, several MFC aileron actuator designs were evaluated through a combination of theoretical and experimental analysis. The current design consists of glass fiber composite ailerons with two unimorph MFC actuators embedded in each aileron to produce upward deflection. Wind tunnel test results are presented to assess the changes in lift and drag coefficients for different levels of MFC aileron actuation. Preparations for open-loop flight testing using a Skywalker UAV with MFC ailerons are also discussed. In addition, the development of a closed-loop, autonomous flight control system for the Skywalker is overviewed in preparation for conducting simulations and flight testing of an autonomous Skywalker with MFC

  12. JPL Thermal Design Modeling Philosophy and NASA-STD-7009 Standard for Models and Simulations - A Case Study

    Science.gov (United States)

    Avila, Arturo

    2011-01-01

    The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.

  13. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  14. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  15. Interrogating the Learning Sciences as a Design Science: Leveraging Insights from Chinese Philosophy and Chinese Medicine

    Science.gov (United States)

    Chee, Yam San

    2014-01-01

    Design research has been positioned as an important methodological contribution of the learning sciences. Despite the publication of a handbook on the subject, the practice of design research in education remains an eclectic collection of specific approaches implemented by different researchers and research groups. In this paper, I examine the…

  16. An anthology of theories and models of design philosophy, approaches and empirical explorations

    CERN Document Server

    Blessing, Lucienne

    2014-01-01

    While investigations into both theories and models has remained a major strand of engineering design research, current literature sorely lacks a reference book that provides a comprehensive and up-to-date anthology of theories and models, and their philosophical and empirical underpinnings; An Anthology of Theories and Models of Design fills this gap. The text collects the expert views of an international authorship, covering: ·         significant theories in engineering design, including CK theory, domain theory, and the theory of technical systems; ·         current models of design, from a function behavior structure model to an integrated model; ·         important empirical research findings from studies into design; and ·         philosophical underpinnings of design itself. For educators and researchers in engineering design, An Anthology of Theories and Models of Design gives access to in-depth coverage of theoretical and empirical developments in this area; for pr...

  17. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    Science.gov (United States)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  18. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  19. Philosophy of Interaction

    DEFF Research Database (Denmark)

    Svanæs, Dag

    2011-01-01

    This is an encyclopedia entry for the Interaction-Design.org free IxD encyclopedia. The topic of the entry is the application of the philosophy of Heidegger and Merleau-Ponty to a theory of interactivity. Comments by Don Norman and Eva Hornecker.......This is an encyclopedia entry for the Interaction-Design.org free IxD encyclopedia. The topic of the entry is the application of the philosophy of Heidegger and Merleau-Ponty to a theory of interactivity. Comments by Don Norman and Eva Hornecker....

  20. Philosophy, Philosophy of Education, and Economic Realities

    Science.gov (United States)

    White, John

    2013-01-01

    In 2009 Harvey Siegel edited "The Oxford Handbook of Philosophy of Education." This article develops a theme, prompted by reflection on several essays in that volume, about the nature of philosophy of education and its relation to philosophy. Siegel's view that philosophy of education is a "branch" of philosophy is put to…

  1. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  2. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  3. Experiencing-in-the-World : Using Pragmatist Philosophy to Design for Aesthetic Experience

    NARCIS (Netherlands)

    Vyas, Dhaval; Heylen, Dirk K.J.; Eliens, A.P.W.; Eliëns, A.; Nijholt, Antinus; Kames, J.M.; Novotny, M.

    2007-01-01

    With the growing use of personal and ubiquitous computing technology, an increase is seen in utilizing aesthetic aspects for designing interactive systems. The use of aesthetic interpretations, however, has differed in different applications, often lacking a coherent and holistic meaning of

  4. CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.

    Science.gov (United States)

    HANLEY, T.D.; STEER, M.D.

    THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…

  5. Design studies of Laminar Flow Control (LFC) wing concepts using superplastics forming and diffusion bonding (SPF/DB)

    Science.gov (United States)

    Wilson, V. E.

    1980-01-01

    Alternate concepts and design approaches were developed for suction panels and techniques were defined for integrating these panel designs into a complete LFC 200R wing. The design concepts and approaches were analyzed to assure that they would meet the strength, stability, and internal volume requirements. Cost and weight comparisions of the concepts were also made. Problems of integrating the concepts into a complete aircraft system were addressed. Methods for making splices both chordwise and spanwise, fuel light joints, and internal duct installations were developed. Manufacturing problems such as slot aligment, tapered slot spacing, production methods, and repair techniques were addressed. An assessment of the program was used to developed recommendations for additional research in the development of SPF/DB for LFC structure.

  6. Anthropology & Philosophy

    DEFF Research Database (Denmark)

    The present book is no ordinary anthology, but rather a workroom in which anthropologists and philosophers initiate a dialogue on trust and hope, two important topics for both fields of study. The book combines work between scholars from different universities in the U.S. and Denmark. Thus, besid......, therefore, also inspire others to work in the productive intersection between anthropology and philosophy....

  7. Noohumanistic philosophy

    Directory of Open Access Journals (Sweden)

    R. B. Shindaulova

    2016-06-01

    Full Text Available In the article, the author found that noohumanistic philosophy emerged as a natural reflection of social consciousness on topical issues of the day: a systematic, global, ecological and economic, spiritual crisis; conflicts on religious and ethnic grounds, aggression, and terror. Having imbibed the ideas cosmism, kosmotsentrichnost antiques, the results of modern scientific research, noohumanistic philosophy its ultimate educational product is the formation of the human future ­ the personality with planetary­cosmic type of consciousness, which is inherent in the planetary mind­set responsible for the impact on the environment, understanding of the development of its own strategy human activity, not harming, but on the contrary, consistent and harmonized with the biological, technological and socio processes. In the study of the problem was found that integrating a socio­economic, environmental, spiritual and moral aspects noohumanistic philosophy focused on a conscious harmonization of socio­natural systems, the need for the formation of planetary worldview, activation of vital position of the subject in this direction and raise responsibility, tolerance, moral standards, expansion of ideological horizon. The analysis revealed that noohumanizm it is a new paradigmatic tendency to form noohumanistic philosophy and ideology, which is in the process of its formation, productive, promising and meets the challenges of modern civilization.

  8. Theoretical methods and design studies for NLF and HLFC swept wings at subsonic and supersonic speeds

    Science.gov (United States)

    Goradia, Suresh H.; Morgan, Harry L., Jr.

    1987-01-01

    Laminarization of the boundary layer on the surface of aircraft wings can be accomplished by the use of concepts such as Natural Laminar Flow (NLF), Laminar-Flow Control (LFC), and Hybrid Laminar-Flow Control (HLFC). Several integral boundary-layer methods were developed for the prediction of laminar, transition, and separating turbulent boundary layers. These methods were developed for use at either subsonic or supersonic speeds, have small computer execution times, and are simple to use. The theoretical equations and assumptions which form the basis of the boundary-layer method, are briefly outlined and the results of several correlation cases with exciting experimental data are presented.

  9. Design considerations and philosophy of a device-independent publications/graphics system

    International Nuclear Information System (INIS)

    Burt, J.S.

    1978-01-01

    Over a period of ten years the National Nuclear Data Center has implemented graphics systems to meet a broad range of user requirements in the areas of interactive graphics, publications, and, to a lesser extent, text-editing, graphical data interpretations, and on-line data evaluation. The systems have been designed to support varying levels of user sophistication with respect to programing ability and user knowledge of the hardware involved. An overview is presented of the NNDC's graphics system which is available to the user via a higher-level language, FORTRAN. The system was designed with layers of software between the user and the device-dependent code. One layer is dedicated to processing the incompatibilities and inconsistencies between such devices as paper plotter, interactive graphics, and FR-80 microfilm/microfiche hardware. Another handles the niceties necessary for finer-quality publications work, e.g., superscripting, subscripting, boldface, variable character/page sizing, rotation, the use of multiple character sets (e.g., mathematical, Greek, physics) as well as features to allow the user to design special characters. 12 figures

  10. Significance of analog instrumentation - design philosophy of replacement dump arrest unit at Pickering Station Candu Reactor

    International Nuclear Information System (INIS)

    Miller, J.F.; McDowell, R.W.

    1996-01-01

    This paper discusses the differences of opinion concerning power plant instrumentation, including safety systems. One popular view point is that modem instrumentation must be microprocessor-based to be acceptable. An alternative view point is that properly designed analog instrumentation is recommended in some applications and has proven to be viable based upon performance and experience. A practical example is discussed in detail, explaining how a combination of discrete analog circuitry, combined with discrete digital circuitry provides a robust solution to a complex instrumentation replacement problem. In this application, a microprocessor-based instrument was designed as a replacement for an obsolete analog instrument. Due to severe licensing difficulties, the instrument was redesigned as a combination of discrete analog and digital circuitry. In the implementation of this circuitry, all complex testing functions of the improved microprocessor-based instrument were accommodated and system accuracy and performance were not compromised over the micro-processor-based instrument. The instrument has met all requirements for reliability and EMI/RFI susceptibility, as well as isolation of analog outputs and the ability to withstand severe transient noise on inputs and outputs without adversely affecting performance

  11. Stephen Hawking, the Grand Design and the mass media communication: Philosophy, Science and Religion

    Directory of Open Access Journals (Sweden)

    Leandro Sequeiros

    2014-11-01

    Full Text Available The return of summer vacances 2010 coincide with the notice concerning the inminent publication of a provocative and scandalous book by the eminent Phisicist Stephen Hawking. The Grand Design came out on September 7 in EE.UU. and on 9 in United Kingdom. On November 15th, the Spanish edition have been issued. The Spanish newpapers have published some fragments, which apparently show Hawking intends to prove scientifically that God not exists. The communications media remark by different ways the scarce frangments of the text: «God is not necessary», «Hawking proves God not exists», «Creator God is a destroyed mith», «Hawking scientifically proves God not exists», «God expeled of the Universe»… We have tracked more than hundred web-pages in which the contents of Hawking book are comment. Rationalists and religious sectors have standed in the debate. But, what has Hawking really defended in The Grand Design?

  12. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    International Nuclear Information System (INIS)

    Scaller, K.; Vrillon, B.

    1980-01-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component

  13. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    Science.gov (United States)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  14. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  15. My Teaching Learning Philosophy

    Science.gov (United States)

    Punjani, Neelam Saleem

    2014-01-01

    The heart of teaching learning philosophy is the concept of nurturing students and teaching them in a way that creates passion and enthusiasm in them for a lifelong learning. According to Duke (1990) education is a practice of artful action where teaching learning process is considered as design and knowledge is considered as colours. Teaching…

  16. Medical education: revolution, devolution and evolution in curriculum philosophy and design.

    Science.gov (United States)

    Wittert, Gary A; Nelson, Adam J

    2009-07-06

    Contemporary medical education must train skilled and compassionate health care professionals who are rigorous in their approach to patient care and their pursuit of knowledge and solutions. Problem-based learning has been widely introduced, but there is no evidence that it leads to better outcomes than more traditional programs, and fundamental gaps in conceptual knowledge may result. Recently, emphasis has been placed on a solid grounding in underlying concepts combined with a systems-based approach, and ability to transfer information and solve problems. Integrating traditional scientific and clinical disciplines with progressive and continuous assessment, may be a better means of achieving the combined aims of clinically relevant curriculum design, vertical integration of medical knowledge, and facilitation of the continuum of training. Being adaptable and flexible, cognisant of costs, and driven by evidence are key features of delivering medical education and contemporary medical practice. Educational research should lead to continuous improvement, but innovation without evaluation and attention to costs may create as many, or more, problems as are solved.

  17. The design philosophy for an automatic TLD system to meet current international specifications

    International Nuclear Information System (INIS)

    Haaslahti, J.

    1986-01-01

    The object of this paper is to describe the elements of a new automatic TLD system intended to meet draft IEC/ISO proposals and ANSI requirements in the USA. Dosemeter badge design is based on ICRU recommendations. The basic intent has been to produce a standard system that can measure and file raw data that can be adapted to specific user requirements with software. The system consists of a programmable automatic reader, an automatic irradiator, a computer, and dosemeters for environmental, whole body, extremity, and clinical applications. The reader uses hot nitrogen heating and photon counting, and measurement conditions may be chosen with complete freedom. The reader can produce a real-time glow curve to assist in checking performance. The irradiator has a 90 Sr- 90 Y source to permit programmed irradiation for calibration and material sensitivity checks. Cassettes are used to hold TLD cards during processing. Cassette coding both identifies samples and calls measurement parameters into use from memory. The system can be preprogrammed to measure all common materials and all common dosemeter elements (both square and round). (author)

  18. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  19. Philosophy of Science and Philosophy of Chemistry

    OpenAIRE

    Van Brakel, Jaap

    2014-01-01

    In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philosophy of chemistry that may bring about major revisions or extensions of current philosophy of science. Three themes can claim to make a unique contribution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations betwe...

  20. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    Science.gov (United States)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  1. Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations

    Science.gov (United States)

    Carlson, H. W.; Walkley, K. B.

    1984-01-01

    This paper describes methodology and an associated computer program for the design of wing lifting surfaces with attainable thrust taken into consideration. The approach is based on the determination of an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. Special leading-edge surfaces are selected to provide distributed leading-edge thrust forces which compensate for any failure to achieve the full theoretical leading-edge thrust, and a second series of general candidate surfaces is selected to minimize drag subject to constraints on the lift coefficient and, if desired, on the pitching moment coefficient. A primary purpose of the design approach is the introduction of attainable leading-edge thrust considerations so that relatively mild camber surfaces may be employed in the achievement of aerodynamic efficiencies comparable to those attainable if full theoretical leading-edge thrust could be achieved. The program provides an analysis as well as a design capability and is applicable to both subsonic and supersonic flow.

  2. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  3. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  4. Design of a Five-Axis Load Cell for Submerged Wing Testing in an Oil Tank

    Science.gov (United States)

    2011-12-01

    resulting in a change in their resistance. Voltage is then measured through the output of a Wheatstone bridge circuit and sensed using an amplifier...imposed on the structure of the load cell to measurable electrical signals. The common technique of using a wheatstone bridge with strain-varying...conceptual design. The electrical circuit design is described in detail, including the design of the bridge circuits used, gauge placement, and

  5. Application of the Lean Office philosophy and mapping of the value stream in the process of designing the banking units of a financial company

    Directory of Open Access Journals (Sweden)

    Nelson Antônio Calsavara

    2016-09-01

    Full Text Available The purpose of this study is to conduct a critical analysis of the effects of Lean Office on the design process of the banking units of a financial company and how the implementation of this philosophy may contribute to productivity, thus reducing implementation time. A literature review of the Toyota Production System was conducted, as well as studies on its methods, with advancement to lean thinking and consistent application of Lean philosophies in services and Office. A bibliographic and documentary survey of the Lean processes and procedures for opening bank branches was taken. A Current State Map was developed, modeling the current operating procedures. Soon after the identification and analysis of waste, proposals were presented for reducing deadlines and eliminating and grouping stages, with consequent development of the Future State Map, implementation and monitoring of stages, and the measurement of estimated time gains in operation, demonstrating an estimated 45% reduction, in days, from start to end of the process, concluding that the implementation of the Lean Office philosophy contributed to the process.

  6. Development of a Methodology to Support Design of Complex Aircraft Wings

    NARCIS (Netherlands)

    Cooper, C.A.

    2011-01-01

    The design of complex systems in today’s aerospace domain requires a balance between the ever-increasing complexity of the supporting technology and the drive to develop those systems in a compressed timeframe. The performance knowledge of a preliminary design must shift backwards in the lifecycle

  7. Aero-Structural Wing Design Optimization Using High-Fidelity Sensitivity Analysis

    National Research Council Canada - National Science Library

    Martins, Joaquim R; Alonso, Juan J; Reuther, James

    2001-01-01

    This paper develops and implements a framework for the computation of coupled aero-structural sensitivities which are required for the design of aircraft where aeroelastic interactions are significant...

  8. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  9. Gaming with Teaching Philosophies

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Christiansen, Birgitte Lund; Hansen, Claus Thorp

    teaching philosophies in a collective process. The perspectives of introducing such methods are to support a team-oriented approach to teaching and to strengthen communities of practice (Wenger 2008)/ communities of learning among teachers. So how can we do this? The authors have conceived and designed......, among directors of Bachelor of Engineering programmes, and at an international conference. Based on our experiences, we have identified a number of possible scenarios where the game can be used: • Participants in a teachers’ training course. Purpose: to clarify and articulate own teaching philosophy......-on session, which is a revised version of a previous workshop, we will introduce the ideas and intentions of the game and guide the participants in playing the game. Ample time will be given for individual reflection and collective discussion of identified values and approaches to teaching and the general...

  10. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    Science.gov (United States)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  11. Structural development of laminar flow control aircraft chordwise wing joint designs

    Science.gov (United States)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  12. Philosophy Rediscovered: Exploring the Connections between Teaching Philosophies, Educational Philosophies, and Philosophy

    Science.gov (United States)

    Beatty, Joy E.; Leigh, Jennifer S. A.; Dean, Kathy Lund

    2009-01-01

    Teaching philosophy statements reflect our personal values, connect us to those with shared values in the larger teaching community, and inform our classroom practices. In this article, we explore the often-overlooked foundations of teaching philosophies, specifically philosophy and historical educational philosophies. We review three elements of…

  13. Educational Non-Philosophy

    Science.gov (United States)

    Cole, David R.

    2015-01-01

    The final lines of Deleuze and Guattari's What is Philosophy? call for a non-philosophy to balance and act as a counterweight to the task of philosophy that had been described by them in terms of concept creation. In a footnote, Deleuze and Guattari mention François Laruelle's project of non-philosophy, but dispute its efficacy in terms of the…

  14. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    Science.gov (United States)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  15. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    Houser, M.M.

    1993-01-01

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  16. Design philosophy for the new harwell α,β/γ ILW facility and associated NDA instrumentation with regard to criticality safety

    International Nuclear Information System (INIS)

    Chard, P.M.J.; Cooper, T.J.; Croft, S.; Lambert, K.P.; Syme, D.B.; Wilkins, C.G.

    1995-01-01

    A new Alpha Beta/Gamma Waste Facility is currently being commissioned at Harwell. The facility provides for the assay and re-packing of existing Intermediate Level Waste (ILW) cans and future ILW arisings into 400 litre drums which are then stored in an integral vault prior to ultimate disposal. Paramount to the design philosophy for the plant was the safe retrieval and movement of radioactive material throughout the treatment process and the avoidance of criticality and other hazards. This required sound managerial controls underpinned by state-of-the-art non destructive assay (NDA) measurements. These consist primarily of a gamma spectrometer and a passive/active neutron interrogator. Their prime role is to confirm can identity against plant records and enable a fissile inventory to be developed for each can for criticality assessment. An expert system aids interpretation of assay results and the reconciliation of discrepancies. This paper describes the design philosophy with emphasis on the control measures used and the operation of the expert system. (author)

  17. 87 Philosophy and African Philosophy: A Conceptual Analysis ...

    African Journals Online (AJOL)

    Tracie1

    method in an attempt to conceptualize philosophy and then. African .... philosophy than this Wonder;xand Aristotle puts it thus, “it is through ... “science of all sciences”. That is why there is philosophy of education, political philosophy, philosophy of law philosophy of science, etc. Indeed, one can say that philosophy gives.

  18. Integration of Propulsion-Airframe-Aeroacoustic Technologies and Design Concepts for a Quiet Blended-Wing-Body Transport

    Science.gov (United States)

    Hill, G. A.; Brown, S. A.; Geiselhart, K. A.

    2004-01-01

    This paper summarizes the results of studies undertaken to investigate revolutionary propulsion-airframe configurations that have the potential to achieve significant noise reductions over present-day commercial transport aircraft. Using a 300 passenger Blended-Wing-Body (BWB) as a baseline, several alternative low-noise propulsion-airframe-aeroacoustic (PAA) technologies and design concepts were investigated both for their potential to reduce the overall BWB noise levels, and for their impact on the weight, performance, and cost of the vehicle. Two evaluation frameworks were implemented for the assessments. The first was a Multi-Attribute Decision Making (MADM) process that used a Pugh Evaluation Matrix coupled with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This process provided a qualitative evaluation of the PAA technologies and design concepts and ranked them based on how well they satisfied chosen design requirements. From the results of the evaluation, it was observed that almost all of the PAA concepts gave the BWB a noise benefit, but degraded its performance. The second evaluation framework involved both deterministic and probabilistic systems analyses that were performed on a down-selected number of BWB propulsion configurations incorporating the PAA technologies and design concepts. These configurations included embedded engines with Boundary Layer Ingesting Inlets, Distributed Exhaust Nozzles installed on podded engines, a High Aspect Ratio Rectangular Nozzle, Distributed Propulsion, and a fixed and retractable aft airframe extension. The systems analyses focused on the BWB performance impacts of each concept using the mission range as a measure of merit. Noise effects were also investigated when enough information was available for a tractable analysis. Some tentative conclusions were drawn from the results. One was that the Boundary Layer Ingesting Inlets provided improvements to the BWB's mission range, by

  19. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  20. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  1. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  2. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  3. Philosophy, Critical Thinking and Philosophy for Children

    Science.gov (United States)

    Daniel, Marie-France; Auriac, Emmanuelle

    2011-01-01

    For centuries, philosophy has been considered as an intellectual activity requiring complex cognitive skills and predispositions related to complex (or critical) thinking. The Philosophy for Children (P4C) approach aims at the development of critical thinking in pupils through philosophical dialogue. Some contest the introduction of P4C in the…

  4. Philosophy, Neuroscience and Education

    Science.gov (United States)

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  5. Philosophy of social science

    Directory of Open Access Journals (Sweden)

    Charles Vergeer

    2015-12-01

    Full Text Available Mark Risjord. Philosophy of Social Science. A Contemporary Introduction. Serie: Routledge Contemporary Introductions to Philosophy. New York and London: Routledge, 2014, 288 p., €42,75. ISBN 978 0 415 89825 6

  6. Aerodynamic Performance and Particle Image Velocimetery of Piezo Actuated Biomimetic Manduca Sexta Engineered Wings Towards the Design and Application of a Flapping Wing Flight Vehicle

    Science.gov (United States)

    2013-12-01

    proximity to the target necessitates a natural camouflage and concealment to enable the NAV to hide in plain sight, leading inexorably to bio- mimicry ...biologist or zoologist. The primary motivation for studying animal flight is to explain the physics for a creature that is known to fly. That is, the fact...from animal -flight studies. For a designer with an aerospace engineering background, publi- cations from the animal -flight community can be fairly

  7. Natural Philosophy

    OpenAIRE

    Blair, Ann M.

    2006-01-01

    “Natural philosophy” is often used by European historians as an umbrella term to designate the study of nature before it can easily be identified with what we call “science” today, to avoid the modern and potentially anachronistic connotations of that term. But “natural philosophy” (and its equivalents in different languages) was also an actor's category, a term commonly used throughout the early modern period and typically defined quite broadly as the study of natural bodies. As the central ...

  8. Masses of Formal Philosophy

    DEFF Research Database (Denmark)

    Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods...... in philosophy. Including contributions from a wide range of philosophers, Masses of Formal Philosophy contains important new responses to the original five questions....

  9. Philosophy in Primary Schools?

    Science.gov (United States)

    White, John

    2012-01-01

    The article is a critical discussion of the aims behind the teaching of philosophy in British primary schools. It begins by reviewing the recent Special Issue of the "Journal of Philosophy of Education" Vol 45 Issue 2 2011 on "Philosophy for Children in Transition", so as to see what light this might throw on the topic just…

  10. Teaching Philosophy Statements

    Science.gov (United States)

    Faryadi, Qais

    2015-01-01

    This article examines the rationale for my teaching philosophy. Using a personal perspective, I explain my objectives, mission, and vision in writing my philosophy of teaching statements. This article also creates a road map and reference points for educators who want to write their own teaching philosophy statements to help them make informed…

  11. Philosophy for Democracy

    Science.gov (United States)

    Bartels, Rob; Onstenk, Jeroen; Veugelers, Wiel

    2016-01-01

    Philosophy for Democracy is a research project that aims to examine whether and how Philosophy with Children contributes to the development of democratic skills and attitudes. In the Netherlands, as in almost all Western countries, Philosophy with Children is linked with the movement for citizenship education. This article reports the research on…

  12. Philosophy of Education Today

    Science.gov (United States)

    Chambliss, J. J.

    2009-01-01

    In this review essay J.J. Chambliss assesses the current state of the field of philosophy of education through analysis of four recent edited compilations: Randall Curren's "A Companion to Philosophy of Education"; Nigel Blake, Paul Smeyers, Richard Smith, and Paul Standish's "The Blackwell Guide to Philosophy of Education"; Wilfred Carr's "The…

  13. My Philosophy

    Science.gov (United States)

    Lodge, Oliver

    2012-08-01

    Foreword; Part I. An Elementary Survey of Physical Existence: 1. The constitution of things around us; 2. The progress of physical science; 3. Design and purpose in the universe; 4. Religion and science; 5. The organism and the control; 6. The property of inertia; 7. Summary of new knowledge; 8. Machinery of guidance; Part II. Evidence for and Controversies Concerning the Ether: 9. Matter, energy and the ether; 10. The ether and the forms of energy; 11. Faraday's conception of the ether; 12. Modern gibes at the ether; 13. The physical aspect of the universe; 14. Views of Thomas Young, Newton and Fresnel; 15. The ether and relativity; 16. Magnetism and the ether, with suggestions for experiment; 17. Summary of our present knowledge about the ether; Part III. Introduction of Life and Mind: 18. The interaction of the psychical with the physical; 19. Life and mechanism; 20. A psychical function suggested for the ether of space; 21. Ether and the soul; Part IV. The Evidence for Survival and its Mechanism: 22. Evidence for and mechanism of survival; 23. On the difficulty of proving individual survival; 24. On the reasons for the non-recognition of psychical research by the majority of the scientific world; 25. On the apparent element of caprice introduced by the spiritistic hypothesis; 26. The whole organically considered; 27. The spiritistic hypothesis; 28. The bearing of the theory upon religions; Index.

  14. Michael Polanyi's Philosophy of Science

    Indian Academy of Sciences (India)

    Michael Polanyi's Philosophy of Science. Positivism may be said to be the outcome of the changing contours of modern science that relies solely on observation, experimentation, and measurement. Experiments in modern science are designed solely to elicit 'yes' or 'no' for an answer. The resultant facts can be fitted into.

  15. Empirical philosophy of science

    DEFF Research Database (Denmark)

    Wagenknecht, Susann; Nersessian, Nancy J.; Andersen, Hanne

    2015-01-01

    A growing number of philosophers of science make use of qualitative empirical data, a development that may reconfigure the relations between philosophy and sociology of science and that is reminiscent of efforts to integrate history and philosophy of science. Therefore, the first part...... of this introduction to the volume Empirical Philosophy of Science outlines the history of relations between philosophy and sociology of science on the one hand, and philosophy and history of science on the other. The second part of this introduction offers an overview of the papers in the volume, each of which...

  16. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  17. Exploring a clinically friendly web-based approach to clinical decision support linked to the electronic health record: design philosophy, prototype implementation, and framework for assessment.

    Science.gov (United States)

    Miller, Perry; Phipps, Michael; Chatterjee, Sharmila; Rajeevan, Nallakkandi; Levin, Forrest; Frawley, Sandra; Tokuno, Hajime

    2014-07-01

    Computer-based clinical decision support (CDS) is an important component of the electronic health record (EHR). As an increasing amount of CDS is implemented, it will be important that this be accomplished in a fashion that assists in clinical decision making without imposing unacceptable demands and burdens upon the provider's practice. The objective of our study was to explore an approach that allows CDS to be clinician-friendly from a variety of perspectives, to build a prototype implementation that illustrates features of the approach, and to gain experience with a pilot framework for assessment. The paper first discusses the project's design philosophy and goals. It then describes a prototype implementation (Neuropath/CDS) that explores the approach in the domain of neuropathic pain and in the context of the US Veterans Administration EHR. Finally, the paper discusses a framework for assessing the approach, illustrated by a pilot assessment of Neuropath/CDS. The paper describes the operation and technical design of Neuropath/CDS, as well as the results of the pilot assessment, which emphasize the four areas of focus, scope, content, and presentation. The work to date has allowed us to explore various design and implementation issues relating to the approach illustrated in Neuropath/CDS, as well as the development and pilot application of a framework for assessment.

  18. Philosophy of medical education

    Directory of Open Access Journals (Sweden)

    HOSSAIN RONAGHY

    2013-04-01

    Full Text Available Introduction: Education is defined as an art with scientific principle. It is described as a form of learning by which knowledge, skills and attitudes of an age group are transferred from one generation to the next through teaching, training, research and practice. Method: This is a historical review about the philosophy of medical education and its changes during the time. Results: It is unfortunate that many developing countries follow the US system rather than those with public financing pattern. Indeed, these systems are “disease care” and not “healthcare” and are mainly motivated by profit. Conclusion: The educational planners in medical schools must design a curricula for students and residents to acquire a crucial set of professional values and qualities, by which the willingness to put the needs of the patient and society first.

  19. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  20. Philosophy of technology and engineering sciences

    CERN Document Server

    2009-01-01

    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology as mere applied science and focused on physics, biology, mathematics and the social sciences.

  1. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  2. Philosophy as Estrangement

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre

    interested in philosophy as a privileged object of investigation and investment ‐ an aim in itself. There are, however, moments and situations in my life where an interest in philosophy has appeared or is necessarily forced upon me; these are times when philosophy appears as a seemingly unavoidable...... and essential questioning of fundamentals,– as a ‘basic’ need. This being said, it can be annoying as well as cumbersome. Philosophy as a ‘basic’ need makes itself felt as an estrangement that has always already taken place. It takes the form of a “Schritt zurück” in which one pulls away from, problematizes...

  3. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  4. Maintenance and repair of LMFBR steam generators. II. Design philosophy of maintenance and repair for Super Phenix 1 steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    2002-01-01

    The Creys Malville steam generators have been the subject of a number of papers presented at this congress. However, the general design of the components are outlined, and the in-service monitoring systems and protective devices they are equipped with are briefly described. The methods used in the event of leakage, are described for: leak location, steam generator inspection, steam generator repair, and putting the affected loop back into service

  5. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  6. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  7. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  8. Brief account of the design philosophy for third Qinshan NPP shutdown safety system based on practical application

    International Nuclear Information System (INIS)

    Xiong Weihua

    2005-01-01

    Qinshan CANDU power plant is uses the Canadian proven CANDU6 nuclear power technology. It has two characteristic: 1. heavy water-as moderator and coolant; 2. natural uranium as the fuel and change fuel during normal operating. CANDU6 include four special safety system: the No.1 shutdown system (SDS No.1), the No.2 shutdown system (SDS No.2), the containment system, the emergency core cooling system (ECCS). QinShan CANDU power plant is the first commercial PHWR nuclear power plant in China. And some aspect is not similar to everybody. The intention of the article is to introduce the basic design and functions. (authors)

  9. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Riggio Roberto

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an "open" philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  10. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Daniele Miorandi

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an “open” philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  11. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  12. John White on Philosophy of Education and Philosophy

    Science.gov (United States)

    Siegel, Harvey

    2014-01-01

    John White offers a provocative characterization of philosophy of education. In this brief reaction, I evaluate the characterization and urge the maintenance of a strong connection between philosophy of education and philosophy.

  13. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  14. Legal Philosophy - Five Questions

    DEFF Research Database (Denmark)

    This collection gathers together a host of the most eminent contemporary legal philosophers, who writes about their take on legal philosophy, its fundamental questions and potential.......This collection gathers together a host of the most eminent contemporary legal philosophers, who writes about their take on legal philosophy, its fundamental questions and potential....

  15. Philosophy of Data: Why?

    Science.gov (United States)

    Furner, Jonathan

    2017-01-01

    Philosophy of data should not be dismissed as a cluster of scholastic puzzles whose solutions are of limited practical value. On the contrary, philosophy of data should be recognized as constituting the core of a field of data studies that is informed by, but far from equivalent to, statistics, computer science, and library and information studies.

  16. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  17. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  18. Trends in African philosophy

    African Journals Online (AJOL)

    JONATHAN

    In the contention of Oladipo (2006), the debate on the idea of. African philosophy which has been divided into trends or schools, dates back to the 1960's and 70's, which constitute the modern epoch of African philosophy, when some African thinkers began to question the perspective that traditional African beliefs and.

  19. Particle physics and philosophy

    International Nuclear Information System (INIS)

    Sakata, Shoichi.

    1984-01-01

    The philosophy of dialectical materialism is applied to the history of the discovery of building blocks of matter. Engels' theory was adapted by Taketani to describe the cognizance of different levels of material structures. This philosophy was used to construct the composite Sakata model of hadrons in the early sixties. (D.Gy.)

  20. African Journals Online: Philosophy

    African Journals Online (AJOL)

    Items 1 - 7 of 7 ... The Journal of Philosophy and Culture is devoted to the promotion of scholarship in philosophy, culture and allied disciplines. ... of capacity among black and women educationists in South Africa, and to broaden contributions to include writers from other African, Latin American, and Asian countries.

  1. Particle physics and philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, S.

    1984-01-01

    The philosophy of dialectical materialism is applied to the history of the discovery of building blocks of matter. Engels' theory was adapted by Taketani to describe the cognizance of different levels of material structures. This philosophy was used to construct the composite Sakata model of hadrons in the early sixties.

  2. Why Philosophy Matters

    Science.gov (United States)

    Mason, Richard

    2005-01-01

    The motives of philosophers tend to be personal. Philosophy has mattered politically as part of continuing political debates. Its effects on politics, religion and the development of the sciences have been evident. Philosophy has been supposed to have special educational value, from its contents or from the benefits of its methods and arguments.…

  3. Empirical philosophy of science

    DEFF Research Database (Denmark)

    Wagenknecht, Susann; Nersessian, Nancy J.; Andersen, Hanne

    2015-01-01

    A growing number of philosophers of science make use of qualitative empirical data, a development that may reconfigure the relations between philosophy and sociology of science and that is reminiscent of efforts to integrate history and philosophy of science. Therefore, the first part...... of this introduction to the volume Empirical Philosophy of Science outlines the history of relations between philosophy and sociology of science on the one hand, and philosophy and history of science on the other. The second part of this introduction offers an overview of the papers in the volume, each of which...... is giving its own answer to questions such as: Why does the use of qualitative empirical methods benefit philosophical accounts of science? And how should these methods be used by the philosopher?...

  4. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.

  5. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  6. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  7. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    The book examines the emerging approach of using qualitative methods, such as interviews and field observations, in the philosophy of science. Qualitative methods are gaining popularity among philosophers of science as more and more scholars are resorting to empirical work in their study...... of scientific practices. At the same time, the results produced through empirical work are quite different from those gained through the kind of introspective conceptual analysis more typical of philosophy. This volume explores the benefits and challenges of an empirical philosophy of science and addresses...

  8. The Leadership Philosophy Model

    Science.gov (United States)

    1989-03-31

    34 leadership philosophy"? One writer states that it is a "distillation of experience and theory , arrived at through a long and somewhat tenuous process of... LEADERSHIP PHILOSOPHY MfODEL .11.9BY .IELJTEN 1NT CO)LONEL CLAYTON E. MELTO.; DIST-. jUTION STATEMIS.T A’ Approved for publiC relea~se; distributicrn...CATALOG NUMBER 4 TITLE (-d Subtitle) T YPE OF REPORT & PERIOD COvERE3 The Leadership Philosophy Model Study Project 6. PERFORMING ORG. REPORT N,.MBER 7

  9. Opening Philosophy to the World: Derrida and Education in Philosophy

    Science.gov (United States)

    Burik, Steven

    2009-01-01

    In this essay, Steven Burik discusses Jacques Derrida's position with regard to the place of education in philosophy within the university system, and then relates these thoughts to comparative philosophy. Philosophers find themselves constantly having to defend philosophy and the importance of teaching philosophy against pressure from the powers…

  10. Philosophy of Education as Philosophy: A Metaphilosophical Inquiry

    Science.gov (United States)

    Pollack, George

    2007-01-01

    What is the philosophical status of the philosophy of education? Is it philosophy, no different from the philosophy of science and the philosophy of mind? Much depends on where these latter derive their philosophical bona fides from. There are two ways of viewing the matter. On one account, they are subdivisions of the veritable philosophy…

  11. Philosophy of Money

    CERN Document Server

    Simmel, Georg; Frisby, David; Bottomore, Tom

    2011-01-01

    In The Philosophy of Money, Georg Simmel provides us with a now classic discussion of the social, psychological and philosophical aspects of the money economy, full of brilliant insights into the forms that social relationships take.

  12. The future of philosophy.

    Science.gov (United States)

    Searle, J R

    1999-12-29

    There is no sharp dividing line between science and philosophy, but philosophical problems tend to have three special features. First, they tend to concern large frameworks rather than specific questions within the framework. Second, they are questions for which there is no generally accepted method of solution. And third they tend to involve conceptual issues. For these reasons a philosophical problem such as the nature of life can become a scientific problem if it is put into a shape where it admits of scientific resolution. Philosophy in the 20th century was characterized by a concern with logic and language, which is markedly different from the concerns of earlier centuries of philosophy. However, it shared with the European philosophical tradition since the 17th century an excessive concern with issues in the theory of knowledge and with scepticism. As the century ends, we can see that scepticism no longer occupies centre stage, and this enables us to have a more constructive approach to philosophical problems than was possible for earlier generations. This situation is somewhat analogous to the shift from the sceptical concerns of Socrates and Plato to the constructive philosophical enterprise of Aristotle. With that in mind, we can discuss the prospects for the following six philosophical areas: (1) the traditional mind-body problem; (ii) the philosophy of mind and cognitive science; (iii) the philosophy of language; (iv) the philosophy of society; (v) ethics and practical reasons; (vi) the philosophy of science. The general theme of these investigations, I believe, is that the appraisal of the true significance of issues in the philosophy of knowledge enables us to have a more constructive account of various other philosophical problems than has typically been possible for the past three centuries.

  13. The future of philosophy.

    Science.gov (United States)

    Searle, J R

    1999-01-01

    There is no sharp dividing line between science and philosophy, but philosophical problems tend to have three special features. First, they tend to concern large frameworks rather than specific questions within the framework. Second, they are questions for which there is no generally accepted method of solution. And third they tend to involve conceptual issues. For these reasons a philosophical problem such as the nature of life can become a scientific problem if it is put into a shape where it admits of scientific resolution. Philosophy in the 20th century was characterized by a concern with logic and language, which is markedly different from the concerns of earlier centuries of philosophy. However, it shared with the European philosophical tradition since the 17th century an excessive concern with issues in the theory of knowledge and with scepticism. As the century ends, we can see that scepticism no longer occupies centre stage, and this enables us to have a more constructive approach to philosophical problems than was possible for earlier generations. This situation is somewhat analogous to the shift from the sceptical concerns of Socrates and Plato to the constructive philosophical enterprise of Aristotle. With that in mind, we can discuss the prospects for the following six philosophical areas: (1) the traditional mind-body problem; (ii) the philosophy of mind and cognitive science; (iii) the philosophy of language; (iv) the philosophy of society; (v) ethics and practical reasons; (vi) the philosophy of science. The general theme of these investigations, I believe, is that the appraisal of the true significance of issues in the philosophy of knowledge enables us to have a more constructive account of various other philosophical problems than has typically been possible for the past three centuries. PMID:10670025

  14. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40

  15. The Left- and Right-Wing Political Power Design: The Dilemma of Welfare Policy with Low-Income Relief

    Directory of Open Access Journals (Sweden)

    Joseph E. Mullat

    2016-02-01

    Full Text Available Findings from this experiment contributed novel insights into the theoretical field of welfare policy, addressing fundamental questions about wealth redistribution rules and norms. The expenses of the redistribution pertaining to basic goods, as well as those associated with public (non-basic but vital goods, are separately estimated by transforming the expenses into functions of the poverty line. The findings reveal that, along the poverty line that treats all citizens equally, the politicians representing opposing ideologies decide how the redistribution of basic and vital goods should be financed. Politicians should come to an agreement, subject to an approval of their decisions by voters-citizens. However, in the absence of such approval, politicians have no alternative but to continue the negotiations. Based on this premise, we concluded that political decisions with an elevated poverty line as a parameter would give rise to inverse working incentives of benefits claimants. This may result in unbalanced books, due to the expenditure on the delivery of basic and non-basic goods to their respective destinations. By keeping the books in balance, we postulate that one half of median income μ, in accord with Fuchs point, may be used in the form of poverty line ½μ for just and fair wealth redistribution in resolving the ideological controversies between left- and right-wing politicians. Through the income exception rule equal to ½μ, as a result of a relief payments simulation, the wealth redistribution system, known since 1962 from as Friedman’s Negative Income Tax (NIT, diminished the Gini coefficient.

  16. Design and fabrication of a low cost Darrieus vertical axis wing turbine system. Phase I. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-06-22

    The contract has two phases, a design phase and a fabrication and installation phase. Presented is the work completed in Phase I, the design phase. The Sandia 17 m was used as the background machine from which design information was drawn. By concentrating the modifications on an existing design, emphasis was focused on component cost reduction rather than selection of optimal configuration or operating modes. The resulting design is a stretched version of the Sandia 17 m preserving the same rotor diameter and many other good features, but in the meantime lighter in weight, larger in capacity, and anticipated to be more cost effective.

  17. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  18. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  19. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    Science.gov (United States)

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  20. Philosophy as Estrangement

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre

    I never became interested in philosophy primordially or originally. There is no source event or transformation that I can recall as being the defining moment. Stating ‘It began here!’ would be misleading… I am not even certain that I originally attained an interest, or even that I still am...... interested in philosophy as a privileged object of investigation and investment ‐ an aim in itself. There are, however, moments and situations in my life where an interest in philosophy has appeared or is necessarily forced upon me; these are times when philosophy appears as a seemingly unavoidable...... and essential questioning of fundamentals,– as a ‘basic’ need. This being said, it can be annoying as well as cumbersome. Philosophy as a ‘basic’ need makes itself felt as an estrangement that has always already taken place. It takes the form of a “Schritt zurück” in which one pulls away from, problematizes...

  1. Leadership philosophy of care home managers.

    Science.gov (United States)

    Rippon, Daniel; James, Ian Andrew

    Care home managers have a significant influence on staff morale and care delivery. Training methods underpinned by transformational leadership theory (TLT) have been used successfully to develop leaders in healthcare services. The aim of this preliminary study was to establish which aspects of TLT were apparent in care home managers' philosophies of leadership. A qualitative research design was used and 25 care home managers in the north-east of England took part. Participants were asked to provide their philosophies of leadership by completing a questionnaire; a thematic analysis of the responses was then conducted. Development of philosophy, enablement and interpersonal impact emerged as key themes. The findings suggested that elements of TLT were apparent in the participants' philosophies of leadership. However, the importance of gaining the support of senior management when attempting to apply a philosophy of eadership in practice was lacking. Aspects of TLT, such as supporting frontline employees to engage in education and establishing trust, were embedded in care home managers' philosophies. To develop leadership skills, managers may benefit from training programmes that involve both structured teaching and guided learning through experience.

  2. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  3. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  4. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  5. The Design and Integration of a Distributed Fan Propulsion System within a Split-Wing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A baseline propulsion system has been designed as a starting point in a previous SBIR effort for this project which consists of two turboshaft engines, a generator...

  6. Pragmatism and Existential Philosophy

    Directory of Open Access Journals (Sweden)

    Hans Lipps

    2010-01-01

    Full Text Available Hans Lipps compares pragmatism (William James and John Dewey existentialism (Friedrich Nietzsche, Soren Kierkegaard, and Martin Heidegger in this 1936 article translated from French.  He claims that they aim at the same goals, e.g., a return to lived experience and a rejection of the Cartesian legacy in philosophy.  While summarizing the commonalities of each, he engages in a polemic against philosophy then that remains relevant now into the next century.

  7. Philosophy and mathematics: interactions.

    Science.gov (United States)

    Rashed, Roshdi

    From Plato to the beginnings of the last century, mathematics provided philosophers with methods of exposition, procedures of demonstration, and instruments of analysis. The unprecedented development of mathematics on the one hand, and the mathematicians' appropriation of Logic from the philosophers on the other hand, have given rise to two problems with which the philosophers have to contend: (1) Is there still a place for the philosophy of mathematics? and (2) To what extent is a philosophy of mathematics still possible? This article offers some reflections on these questions, which have preoccupied a good many philosophers and continue to do so.

  8. Safety philosophy in Plowshare

    International Nuclear Information System (INIS)

    Thalgott, R.H.

    1969-01-01

    A nuclear device can be detonated safely when it can ascertained that the detonation can be accomplished without injury to people, either directly or indirectly, and without unacceptable damage to the ecological system and natural or man made structures. This philosophy has its origin in the nuclear weapons testing program dating back to the first detonation in 1945 and applies without reservation to PIowshare projects. This paper therefore will outline the mechanics employed by government in implementing this safety philosophy. The talk will describe those type of actions taken by safety oriented organizations and committees to assure that necessary and desirable safety reviews are conducted. (author)

  9. The Application of Pareto Frontier Methods in the Multidisciplinary Wing Design of a Generic Modern Military Delta Aircraft

    Science.gov (United States)

    2000-06-01

    acdem range o nesearig rate (STR), of the aircraft. These conflicting performance establishments, and covered a wide range of engineering requirements...December 1998 12 Knill, D.L. et al; Response surface models combining linear and Euler aerodynamics for supersonic transport design. Journal of

  10. Technology and Teaching Philosophy

    Science.gov (United States)

    King, Paul C.

    2012-01-01

    This article discusses the challenges faced when integrating new technologies into the classroom. Viewing the experiences of teaching a first year learning community through the lens of the principles of the Reflective Teaching Portfolio, the author looks to answer the question: "How should Technology relate to our Teaching Philosophy?"…

  11. Game theory in philosophy

    NARCIS (Netherlands)

    de Bruin, B.P.

    2005-01-01

    Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals

  12. Investigating Talent Management Philosophies

    Directory of Open Access Journals (Sweden)

    Urbancova Hana

    2015-09-01

    Full Text Available This study, motivated by the recognition that organizational performance and success always hinges on employee competencies and management’s skill in utilizing their potentials, focuses on one of the key factors in organizational efficiency: the possibilities of development of talented employees within Czech organizations. The data was collected via two quantitative studies. The first study involved 100 organizations from every economic sector with a main focus on the topic from the organization’s perspective. The second study explored the approach from employees’ perspective. Our analysis shows that different talent management philosophies are used in practice. Almost half of the sample use inclusive and stable philosophy, 11% inclusive and developable philosophy and almost 10% exclusive and developable philosophy. Employees are mostly developed in generally recommended areas without any consideration for the specific individual’s characteristics or related opportunities. It is a stable approach. Limitations of this study may be found in the focus on analysis outcomes - on practitioners in particular. The present findings provide a basis for future hypotheses and research in this area.

  13. Performance and Philosophy Now

    Directory of Open Access Journals (Sweden)

    Tasoula Kallenou

    2015-11-01

    Full Text Available Was Plato the first philosophical dramatist to explore philosophical ideas through dramatic content, introducing dramatic structures currently in line with contemporary theatre? If Plato was an influential figure for philosophers as well as theatre-makers, it can arguably be said that he was a silent pioneer in creating the newly defined discipline of Performance Philosophy. There is an obvious polarity between performance and philosophy since both disciplines are on the quest of exploring and presenting what life is. At least this can be said of ancient Greek and Roman philosophy. Conceived as “biou techne” the art of living, Greek and Roman philosophers, especially the Epicureans, Stoics and Skeptics, saw philosophy as a way of conceiving what a good life is (a life worth living and pursuing its practical realization for the attainment of eudemonia. Plato was arguably the first significant philosopher to explore philosophical ideas through dramatic content, introducing dramatic structures currently in line with contemporary theatre views. As such, he can be seen as an influential figure for theatre makers as well as for philosophers. Plato’s artistic intention was to uncover the artist that lacked substance and support the knowledgeable creative philosophical mind that besides instant emotional pleasure has to contribute in social development.

  14. Retooling Peace Philosophy

    DEFF Research Database (Denmark)

    Schmidt, Johannes Dragsbæk; Hersh, Jacques; Petersen-Overton, Kristofer

    2010-01-01

    This book documents recent and historical events in the theoretically-based practice of peace development. Its diverse collection of essays describes different aspects of applied philosophy in peace action, commonly involving the contributors’ continual engagement in the field, while offering sup...

  15. Humor, Philosophy and Education

    Science.gov (United States)

    Morreall, John

    2014-01-01

    This article begins by examining the bad reputation humor traditionally had in philosophy and education. Two of the main charges against humor--that it is hostile and irresponsible--are linked to the Superiority Theory. That theory is critiqued and two other theories of laughter are presented--the Relief Theory and the Incongruity Theory. In the…

  16. Operations and maintenance philosophy

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    1999-01-01

    This Operations and Maintenance (O and M) Philosophy document is intended to establish a future O and M vision, with an increased focus on minimizing worker exposure, ensuring uninterrupted retrieval operations, and minimizing operation life-cycle cost. It is intended that this document would incorporate O and M lessons learned into on-going and future project upgrades

  17. The mechanization of natural philosophy

    CERN Document Server

    Garber, Daniel

    2014-01-01

    This book reviews the transformation of natural philosophy in the 16th and 17th centuries: description of nature in mathematical terms; comparison of natural phenomena to existing or imaginary machines and the use of mechanical analogies in natural philosophy.

  18. Philosophy and Sociology Studies

    Directory of Open Access Journals (Sweden)

    S. A. Kravchenko

    2014-01-01

    Full Text Available Philosophy and Social science school of MGIMO has received both nationwide and international recognition. The traditions of the school were laid by two highly respected scientists and science managers, George P. Frantsev, who was the rector MGIMO during the crucial period of its early years, and Alexander F. Shishkin, who was the founder and head of the Department of Philosophy. The former belonged to one of the best schools of antic history studies of the Petersburg (Leningrad University. Frantsev made a great contribution to the restoration of Russian social and political science after World War II. After graduating from MGIMO, he worked at the Foreign Ministry of USSR, and then served as a rector of the Academy of Social Sciences and chief-editor of the journal "Problems of Peace and Socialism" in Prague. He consistently supported MGIMO scientists and recommended them as participants for international congresses and conferences. Shishkin was born in Vologda, and studied in Petrograd during 1920s. His research interests included history of education and morality. He was the author of the first textbook on ethics in the postwar USSR. Other works Shishkin, including monograph "XX century and the moral values of humanity", played a in reorienting national philosophy from class interests to universal moral principles. During thirty years of his leadership of the Department of Philosophy, Shishkin managed to prepare several generations of researchers and university professors. Scientists educated by Shishkin students consider themselves to be his "scientific grandchildren". The majority of MGIMO post-graduate students followed the footsteps of Frantsev in their research, but they also were guided by Shishkin's ideas on morality in human relations. Philosophy and Social science school of MGIMO played an important role in the revival of Soviet social and political science. Soviet Social Science Association (SSSA, established in 1958, elected Frantsev

  19. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  20. The Philosophy of University Housing

    Science.gov (United States)

    Wallace, James A.

    2012-01-01

    This article examines a stated philosophy of university housing and the philosophy's effect on the facilitation of the personal and intellectual growth of students residing in the residence halls and the development of a sense of community. This particular philosophy governs the housing operations at Southern Illinois University at Carbondale.…

  1. South African Journal of Philosophy

    African Journals Online (AJOL)

    The South African Journal of Philosophy publishes original contributions (articles, discussions of articles previously published, review articles and book reviews) within any field of philosophy. The South African Journal of Philosophy is indexed in The Philosopher's Index, Current Contents/Arts & Humanities, IBZ & IBR, Bio ...

  2. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  3. The death of Philosophy: A response to Stephen Hawking | Scott ...

    African Journals Online (AJOL)

    In his 2010 work, The Grand Design, Stephen Hawking, argues that '… philosophy is dead' (2010: 5). While not a Philosopher, Hawking provides strong argument for his thesis, principally that philosophers have not taken science sufficiently seriously and so Philosophy is no longer relevant to knowledge claims.

  4. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  5. Development of a nuclear ship safety philosophy

    International Nuclear Information System (INIS)

    Thompson, T.E.

    1978-01-01

    A unique safety philosophy must be recognized and accepted as an integral part of the design and operation of a nuclear ship. For the nuclear powered ship, the ultimate safety of the reactor and therefore the crew and the environment lies with the safety of the ship itself. The basis for ship safety is its ability to navigate and survive the conditions or the environment in which it may find itself. The subject of traditional ship safety is examined along with its implication for reactor protection and safety. Concepts of reactor safety are also examined. These two philosophies are combined in a manner so as to provide a sound philosophy for the safety of nuclear ships, their crews, and the environment

  6. A Philosophy of Learning

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2014-08-01

    Full Text Available The survival of the homo sapiens sapiens species depends upon learning and passing on to future generations quality knowledge. Yet, we find to an increasing extent a corruption of the process, resulting in ignorance, environmental destruction, and breakdown of community. A fundamental shift in priorities is required to avert disaster. Articulating a solution depends upon a language, which, in turn, depends upon clarifying concepts. This paper identifies the dialectical (something existing because of what it is not interrelationship of episteme (theory and techné (practice within the framework of ethos, pathos, and logos. This structure and process as learning provides coherence in developing knowledge and can then be what in a generic sense is religion (to cohere, or bind. In a monk-like devotion to learning to generate quality knowledge humanity can appreciate its own meaning and make this world a better place in which to live. In this way religion becomes philosophy, and philosophy religion.

  7. A Philosophy of Learning

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2015-10-01

    Full Text Available The survival of the homo sapiens sapiens species depends upon learning and passing on to future generations quality knowledge. Yet, we find to an increasing extent a corruption of the process, resulting in ignorance, environmental destruction, and breakdown of community. A fundamental shift in priorities is required to avert disaster. Articulating a solution depends upon a language, which, in turn, depends upon clarifying concepts. This paper identifies the dialectical (something existing because of what it is not interrelationship of episteme (theory and techné (practice within the framework of ethos, pathos, and logos. This structure and process as learning provides coherence in developing knowledge and can then be what in a generic sense is religion (to cohere, or bind. In a monk-like devotion to learning to generate quality knowledge humanity can appreciate its own meaning and make this world a better place in which to live. In this way religion becomes philosophy, and philosophy religion.

  8. Immanent philosophy of X.

    Science.gov (United States)

    Hendry, Robin Findlay

    2016-02-01

    In this paper I examine the relationship between historians, philosophers and sociologists of science, and indeed scientists themselves. I argue that (i) they co-habit a shared intellectual territory (science and its past); and (ii) they should be able to do so peacefully, and with mutual respect, even if they disagree radically about how to describe the methods and results of science. I then go on to explore some of the challenges to mutually respectful cohabitation between history, philosophy and sociology of science. I conclude by identifying a familiar kind of project in the philosophy of science which seeks to explore the worldview of a particular scientific discipline, and argue that it too has a right to explore the shared territory even though some historians and sociologists may find it methodologically suspect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The philosophy of cosmology

    CERN Document Server

    Silk, Joseph; Barrow, John D; Saunders, Simon

    2017-01-01

    Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.

  10. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  11. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  12. Microbiology, philosophy and education.

    Science.gov (United States)

    O'Malley, Maureen A

    2016-09-01

    There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods, namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.

  14. Safety philosophy of ICRP

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1995-01-01

    Measures are important as the means to realize philosophy. Accordingly, it is meaningful to take measures as the object when the philosophy of ICRP is considered. As to controllable risk factors, restraint shall be done so as to make the risk being brought about as small as possible. When it is not necessary to limit restraining means, risk-free is ideal. Ionizing radiation is one of risk factors. The risk that ICRP speaks is the loss of the probability of maintaining life. The object of radiation protection is limited to the exposure to controllable radiation, and the aim of protection is to minimize risk under the condition of as low as reasonably achievable. The philosophy of ICRP and the problems in the measures are discussed. ICRP and ICRU must reconfirm the allotment of roles. Radiation protection system is composed of system of radiation dosimetry and system of dose limitation. The mission of ICRP is to recommend political decision, and it may make the political declaration 'The radiation below a certain amount may be regarded as safe'. It is better only to recommend the conversion relation of radiation dose and risk. The desire and demand to ICRP are mentioned. (K.I.)

  15. Philosophy in Seminaries

    Directory of Open Access Journals (Sweden)

    Pawel Tarasiewicz

    2013-12-01

    Full Text Available The author attempts to answer the question concerning whether or not philosophy is needed in seminaries. In light of his analysis, it can be concluded that philosophical studies for future priests are a serious alternative to the fideistic positions often adopted by Catholics. The presence of philosophy in the seminary curriculum is supported by: (1 the need for building intellectual foundations of the religious faith professed by a cleric; the faith which cannot do without reason and abstain from justifying the rationale of its content; (2 the need for introducing the alumnus to the mysteries of the classical philosophy of being which can equip him with a better understanding of human nature and the surrounding reality. In this way, the seminarian: (1 acquires a reasonable belief that the human mind is able to know the objective and universal truth, including the truth about God as the Ultimate Cause of all that exists; (2 is able to enter into an intelligent dialogue about the truth with an increasingly globalized world.

  16. Newton and scholastic philosophy.

    Science.gov (United States)

    Levitin, Dmitri

    2016-03-01

    This article examines Isaac Newton's engagement with scholastic natural philosophy. In doing so, it makes two major historiographical interventions. First of all, the recent claim that Newton's use of the concepts of analysis and synthesis was derived from the Aristotelian regressus tradition is challenged on the basis of bibliographical, palaeographical and intellectual evidence. Consequently, a new, contextual explanation is offered for Newton's use of these concepts. Second, it will be shown that some of Newton's most famous pronouncements - from the General Scholium appended to the second edition of the Principia (1713) and from elsewhere - are simply incomprehensible without an understanding of specific scholastic terminology and its later reception, and that this impacts in quite significant ways on how we understand Newton's natural philosophy more generally. Contrary to the recent historiographical near-consensus, Newton did not hold an elaborate metaphysics, and his seemingly 'metaphysical' statements were in fact anti-scholastic polemical salvoes. The whole investigation will permit us a brief reconsideration of the relationship between the self-proclaimed 'new' natural philosophy and its scholastic predecessors.

  17. Physics, philosophy and environment

    International Nuclear Information System (INIS)

    Angel Maya, Augusto

    2001-01-01

    Physics and philosophy has join developments since the Jonios. The present article tries to analyze some of the philosophical problems that arise of the classic and contemporary physics and that affect the environmental vision. In general, it can be said that the discoveries of the physics has meant a progressive desplatonization of the western world, including the remaining of Platon that is included in Aristoteles philosophy. From the analysis some problems arise that is worthwhile to emphasize. Above all the relationship between determinism and random theory, from the environmental perspective it is necessary to wonder if it is licit to apply these concepts to man. With it the problem of freedom arise, attacked by Spinoza, but carefully protected by Kant's philosophy. Their acceptance supposes, however, the division between man and the cultural schizophrenia. Is it possible to explain freedom from the physics, such as was pretended by Epicuro or Prigonine? Has nature a wide field of freedom as it is assumed in some of the currents of contemporary physics? All of them are questions that the environmental thought has to confront, although it cannot solve them

  18. The philosophy of modelling or does the philosophy of biology have any use?

    Science.gov (United States)

    Orzack, Steven Hecht

    2012-01-19

    Biologists in search of answers to real-world issues such as the ecological consequences of global warming, the design of species' conservation plans, understanding landscape dynamics and understanding gene expression make decisions constantly that are based on a 'philosophical' stance as to how to create and test explanations of an observed phenomenon. For better or for worse, some kind of philosophy is an integral part of the doing of biology. Given this, it is more important than ever to undertake a practical assessment of what philosophy does mean and should mean to biologists. Here, I address three questions: should biologists pay any attention to 'philosophy'; should biologists pay any attention to 'philosophy of biology'; and should biologists pay any attention to the philosophy of biology literature on modelling? I describe why the last question is easily answered affirmatively, with the proviso that the practical benefits to be gained by biologists from this literature will be directly proportional to the extent to which biologists understand 'philosophy' to be a part of biology, not apart from biology.

  19. Free vibration analysis of dragonfly wings using finite element method

    OpenAIRE

    M Darvizeh; A Darvizeh; H Rajabi; A Rezaei

    2016-01-01

    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...

  20. Philosophy at Cambridge, Newsletter of the Faculty of Philosophy

    OpenAIRE

    2004-01-01

    Philosophy Newsletter. Articles by: Edward Craig - From the Chairman. Onora O'Neill - "It's the newspapers I can't stand. Serena Olsaretti - The 2004 Annual Royal Institute of Philosophy Conference. Mary Leng - Mathematical Knowledge Conference. Postgraduate Conference. Jane Heal - Facts, Fables and Funds. Hugh Mellor - Uses and Abuses of Probability. Amanda Boyle - Nobody Knows Anything: Philosophy, Film and Me. Jaime Whyte - Seven Years at Cambridge Alex Oliver...

  1. Shakespeare's Philosophy of Music

    Directory of Open Access Journals (Sweden)

    Emily A. Sulka

    2017-09-01

    Full Text Available Shakespeare is one of the most widely read figures in literature, but his use of music is not usually touched on in literary discussions of his works. In this paper, I discuss how Shakespeare portrays music within the context of his plays, through both dialogue and songs performed within each work. In Shakespeare’s time, Boethius’s philosophy of the Music of the Spheres was still highly popular. This was the idea that the arrangement of the cosmos mirrored musical proportions. As a result, every aspect of the universe was believed to be highly ordered, and this idea is prominent throughout Shakespeare’s works, from "Hamlet" to "A Midsummer Night’s Dream." To make this clear to the reader, I discuss dialogue symmetry weaved throughout "The Merchant of Venice," clear allusions to the music of the spheres in "Pericles," and the use of music as a signifier of the strange and mysterious – from madness to love – in numerous works, always relating these topics back to the philosophy of the music of the spheres. In order to compile this information and make it clear, I researched the philosophy of music during Shakespeare’s era. I also researched how he uses music thematically to emphasize different characters’ struggles as well as plot details. After examining his plays as well as the other sources available on the subject, it is clear that Shakespeare was highly influenced by the philosophical and practical ideas regarding music of his time, specifically the theory of the music of the spheres.

  2. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  3. A TQC philosophy

    Directory of Open Access Journals (Sweden)

    K. Sandrock

    2003-12-01

    Full Text Available There has been a recent upsurge in the quest for world class manufacturing. Tremendous amounts of effort are being exerted to attain Total quality Control (TQC - so as to be able to produce "the best". The EEC has stated categorically that it will only support accredited suppliers, and this has been partly responsible for the recent fixation on techniques for excellence. These techniques often fail to produce results. This paper presents a systems based philosophy for working towards world class levels of manufacturing.

  4. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  5. Poetry, philosophy, political

    Directory of Open Access Journals (Sweden)

    Alberto Pucheu

    2016-07-01

    Full Text Available Considering how persistently a certain amount of specialized critics work to diminish contemporary Brazilian poetry, this essay seeks to conceive an articulation among poetry, philosophy and politics. We atempt to do that, on the one hand, through the philosophical concepts of aporia and wonder (thaumazein, and, on the another hand, by considering what Giorgio Agamben refers to as “an insurmontable disjunction between whatever singularity and the State organization”. Among the many poets that could be approached in this context, we chose to close the text with an interpretation some of Tarso de Melo's remarkably and explicitly political poems.

  6. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  7. Philosophy of mathematics

    CERN Document Server

    Gabbay, Dov M; Woods, John

    2009-01-01

    One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

  8. Einstein's Phobia of Philosophy

    Science.gov (United States)

    Martinez, Alberto

    The famous philosopher Henri Bergson criticized Einstein's special theory of relativity by imagining giants, microbes, two-dimensional beings, and a ''supreme consciousness.'' He argued that Einstein had arbitrarily made a sharp distinction between local and distant events and that Einstein confused time itself with mere clock measurements. I will discuss why Einstein dodged Bergson's pushy efforts to inject more subjectivity into relativity theory by explaining how Einstein, as a lonely young man, developed his critical views on philosophy. This talk is part of the invited FHP session on The Physicist and the Philosopher: Einstein, Bergson and the Debate that Changed Our Understanding of Time.

  9. Rorty, Pragmatism, and Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Cheryl Misak

    2013-07-01

    Full Text Available One of Richard Rorty's legacies is to have put a Jamesian version of pragmatism on the contemporary philosophical map. Part of his argument has been that pragmatism and analytic philosophy are set against each other, with pragmatism almost having been killed off by the reigning analytic philosophy. The argument of this paper is that there is a better and more interesting reading of both the history of pragmatism and the history of analytic philosophy.

  10. The philosophy of physics

    CERN Document Server

    Rickles, Dean

    2016-01-01

    Does the future exist already? What is space? Are time machines physically possible? What is quantum mechanical reality like? Are there many universes? Is there a 'true' geometry of the universe? Why does there appear to be an arrow of time? Do humans play a special role in the world? In this unique introductory book, Dean Rickles guides the reader through these and other core questions that keep philosophers of physics up at night. He discusses the three pillars of modern physics (quantum mechanics, statistical mechanics, and the theories of relativity), in addition to more cutting-edge themes such as econophysics, quantum gravity, quantum computers, and gauge theories. The book's approach is based on the idea that philosophy of physics is a kind of 'interpretation game' in which we try to map physical theories onto our world. But the rules of this game often lead to a multiplicity of possible victors: rarely do we encounter a simple answer. The Philosophy of Physics offers a highly accessible introduction...

  11. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  12. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  13. 87 Philosophy and African Philosophy: A Conceptual Analysis ...

    African Journals Online (AJOL)

    Tracie1

    (wisdom). Thus, to the Greeks, philosophy meant philosophia love of wisdom and a philosopher was regarded as a lover or friend of wisdom. This was what Pythagoras the one who purportedly was the first to use the word 'philosopher' called himself in preference to being called a 'wise man.xivPhilosophy here means 'love ...

  14. Philosophy, Moral Philosophy, and Counseling Ethics: Not an Abstraction.

    Science.gov (United States)

    Urofsky, Robert I.; Engels, Dennis W.

    2003-01-01

    Over the past several decades, increased attention has been given to ethics in the preparation of counselors and psychologists. With that increase comes a number of voices calling for exposure to and integration of not only moral philosophy but other areas of philosophy to enhance understanding and provide a foundation for counseling practice. The…

  15. The Revolutions in English Philosophy and Philosophy of Education

    Science.gov (United States)

    Gilroy, Peter

    2013-01-01

    This article was first published in 1982 in "Educational Analysis" (4, 75-91) and republished in 1998 (Hirst, P. H., & White, P. (Eds.), "Philosophy of education: Major themes in the analytic tradition," Vol. 1, "Philosophy and education, Part 1," pp. 61-78. London: Routledge). I was then a lecturer in philosophy…

  16. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available A variable stability, blended-wing-body research mini-UAV was developed at the CSIR in South Africa. The purpose of the UAV was to study some of the aerodynamic design and control issues associated with flying wing geometries and to develop a...

  17. COLIBRI : A hovering flapping twin-wing robot

    NARCIS (Netherlands)

    Roshanbin, A.; Altartouri, H.; Karasek, M.; Preumont, André

    2017-01-01

    This paper describes the results of a six-year project aiming at designing and constructing a flapping twin-wing robot of the size of hummingbird (Colibri in French) capable of hovering. Our prototype has a total mass of 22 g, a wing span of 21 cm and a flapping frequency of 22 Hz; it is actively

  18. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  19. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.

    2010-01-01

    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite

  20. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  1. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0035: Dynamics and Control and Computational Design of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2012-10-01

    prototype FWMAVs. A brushless DC motor was used to drive a four-bar crank- rocker mechanism to transform rotational motion into a rocking motion, i.e...stroke actuation using brushless DC motors . Furthermore, the microcontrollers were required to communicate with a remote controller and with each other...low-level motor control laws that enable wing beat motion profiles to be produced that generate desired cycle-averaged control forces and moments

  2. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  3. Introduction: philosophy in and philosophy of cognitive science.

    Science.gov (United States)

    Brook, Andrew

    2009-04-01

    Despite being there from the beginning, philosophical approaches have never had a settled place in cognitive research and few cognitive researchers not trained in philosophy have a clear sense of what its role has been or should be. We distinguish philosophy in cognitive research and philosophy of cognitive research. Concerning philosophy in cognitive research, after exploring some standard reactions to this work by nonphilosophers, we will pay particular attention to the methods that philosophers use. Being neither experimental nor computational, they can leave others bewildered. Thought experiments are the most striking example but not the only one. Concerning philosophy of cognitive research, we will pay particular attention to its power to generate and test normative claims, claims about what should and should not be done. Copyright © 2009 Cognitive Science Society, Inc.

  4. Philosophy of phenomenology: how understanding aids research.

    Science.gov (United States)

    Converse, Mary

    2012-01-01

    To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.

  5. Constructive philosophy of technology and responsible innovation

    NARCIS (Netherlands)

    Brey, Philip A.E.; Franssen, M.; Vermaas, P.E.; Kroes, P.; Meijers, A.W.M.

    2016-01-01

    This essay argues for a new turn after the empirical turn in the philosophy of technology: the societal turn, which is the turn from reflective philosophy of technology (academic philosophy concerned with analysis and understanding) to constructive philosophy of technology (philosophy that is

  6. Present Day Philosophies of Education

    Science.gov (United States)

    Ediger, Marlow

    2006-01-01

    Presently, there are competing philosophies of education which need comparison. Two philosophies will be compared which are at opposite ends of the continuum. They are distinctly different. And yet, both schools of thought have their disciples. Each of the two will be discussed in terms of its essential features and then there will be selected…

  7. Odera Oruka's Contribution to Philosophy

    African Journals Online (AJOL)

    Commentators on the four trends in contemporary African philosophy as enunciated by H. Odera Oruka frequently focus on the merits and demerits of each trend. However, many of them are obblivious to the way in which sagacity emancipates African philosophy by putting reason in its rightful pivotal position. This article ...

  8. Elementary School Philosophy: A Response

    Science.gov (United States)

    Wartenberg, Thomas E.

    2012-01-01

    This article is a response to criticism of my book "Big Ideas for Little Kids." The main topics addressed are: Who is the audience for the book? Can people without formal philosophical training can be good facilitators of elementary school philosophy discussions? Is it important to assess attempts to teach philosophy in elementary school? Should…

  9. Kaupapa Maori, Philosophy and Schools

    Science.gov (United States)

    Stewart, Georgina

    2014-01-01

    Goals for adding philosophy to the school curriculum centre on the perceived need to improve the general quality of critical thinking found in society. School philosophy also provides a means for asking questions of value and purpose about curriculum content across and between subjects, and, furthermore, it affirms the capability of children to…

  10. Reflections concerning radiation protection philosophy

    International Nuclear Information System (INIS)

    Seelentag, W.

    1981-01-01

    Critical philosophy also includes observations of the technical amplified senses make, i.e. the application of accessory instruments, measuring instruments and statistic methods. The application of this philosophy is, among other things, referred to when taking the linear dose response relationship for stochastic radiation effects as an example. (DG) [de

  11. Towards Intercultural Philosophy of Education

    Science.gov (United States)

    Bai, Heesoon; Eppert, Claudia; Scott, Charles; Tait, Saskia; Nguyen, Tram

    2015-01-01

    In this paper, we propose an understanding of philosophy of education as cultural and intercultural work and philosophers of education as cultural and intercultural workers. In our view, the discipline of philosophy of education in North America is currently suffering from measures of insularity and singularity. It is vital that we justly and…

  12. Philosophy of statistics

    CERN Document Server

    Forster, Malcolm R

    2011-01-01

    Statisticians and philosophers of science have many common interests but restricted communication with each other. This volume aims to remedy these shortcomings. It provides state-of-the-art research in the area of philosophy of statistics by encouraging numerous experts to communicate with one another without feeling "restricted” by their disciplines or thinking "piecemeal” in their treatment of issues. A second goal of this book is to present work in the field without bias toward any particular statistical paradigm. Broadly speaking, the essays in this Handbook are concerned with problems of induction, statistics and probability. For centuries, foundational problems like induction have been among philosophers' favorite topics; recently, however, non-philosophers have increasingly taken a keen interest in these issues. This volume accordingly contains papers by both philosophers and non-philosophers, including scholars from nine academic disciplines.

  13. Philosophy of Computer Science

    Directory of Open Access Journals (Sweden)

    Aatami Järvinen

    2014-06-01

    Full Text Available The diversity and interdisciplinary of Computer Sciences, and the multiplicity of its uses in other sciences make it difficult to define them and prescribe how to perform them. Furthermore, also cause friction between computer scientists from different branches. Because of how they are structured, these sciences programs are criticized for not offer an adequate methodological training, or a deep understanding of different research traditions. To collaborate on a solution, some have decided to include in their curricula courses that enable students to gain awareness about epistemology and methodological issues in Computer Science, as well as give meaning to the practice of computer scientists. In this article the needs and objectives of the courses on the philosophy of Computer Science are analyzed, and its structure and management are explained.

  14. Physics and philosophy

    CERN Document Server

    Feyerabend, P K; Agassi, Joseph

    2015-01-01

    This collection of the writings of Paul Feyerabend is focused on his philosophy of quantum physics, the hotbed of the key issues of his most debated ideas. Written between 1948 and 1970, these writings come from his first and most productive period. These early works are important for two main reasons. First, they document Feyerabend's deep concern with the philosophical implications of quantum physics and its interpretations. These ideas were paid less attention in the following two decades. Second, the writings provide the crucial background for Feyerabend's critiques of Karl Popper and Thomas Kuhn. Although rarely considered by scholars, Feyerabend's early work culminated in the first version of Against Method. These writings guided him on all the key issues of his most well-known and debated theses, such as the incommensurability thesis, the principles of proliferation and tenacity, and his particular version of relativism, and more specifically on quantum mechanics.

  15. Philosophy of ecology

    CERN Document Server

    Brown, Bryson; Peacock, Kent A

    2011-01-01

    The most pressing problems facing humanity today - over-population, energy shortages, climate change, soil erosion, species extinctions, the risk of epidemic disease, the threat of warfare that could destroy all the hard-won gains of civilization, and even the recent fibrillations of the stock market - are all ecological or have a large ecological component. in this volume philosophers turn their attention to understanding the science of ecology and its huge implications for the human project. To get the application of ecology to policy or other practical concerns right, humanity needs a clear and disinterested philosophical understanding of ecology which can help identify the practical lessons of science. Conversely, the urgent practical demands humanity faces today cannot help but direct scientific and philosophical investigation toward the basis of those ecological challenges that threaten human survival. This book will help to fuel the timely renaissance of interest in philosophy of ecology that is now oc...

  16. Legitimizing Blacks in Philosophy

    Directory of Open Access Journals (Sweden)

    Jameliah Shorter-Bourhanou

    2017-12-01

    Full Text Available In its efforts toward improving diversity, the discipline of philosophy has tended to focus on increasing the number of black philosophers. One crucial issue that has received less attention is the extent to which black philosophers are delegitimized in the discipline because their philosophical contributions challenge the status quo. A systematic problem that bars black philosophers from equal and full participation, this delegitimization precludes the emergence of genuine diversity and reveals the importance of interrogating broader attitudes toward black philosophical contributions. In this essay, I argue for radical systematic changes to disciplinary hallmarks of professionalization such as pedagogy, mentoring, publishing, and hiring practices with the aim of legitimizing black philosophers and their contributions.

  17. Philosophie en islam

    OpenAIRE

    Jambet, Christian

    2013-01-01

    I. L’héritage d’Avicenne au xviie siècle : le Commentaire de la Métaphysique du Shifā’ par Mullā Ṣadrā Les philosophes de l’Iran safavide ont une dette envers l’œuvre d’Avicenne, Abū ʽAlī ibn Sīnā (m. 428/1037). L’ouvrage synthétique et allusif d’Avicenne, al-Ishārāt wa l-tanbīhāt fut méthodiquement étudié par les savants imamites quand Naṣīr al-Dīn al-Ṭūsī en eut achevé son commentaire vers 664/1246. Les philosophes instruits de la théologie rationnelle imamite et de la philosophie « illumin...

  18. Philosophy of clinical psychopharmacology.

    Science.gov (United States)

    Aragona, Massimiliano

    2013-03-01

    The renewal of the philosophical debate in psychiatry is one exciting news of recent years. However, its use in psychopharmacology may be problematic, ranging from self-confinement into the realm of values (which leaves the evidence-based domain unchallenged) to complete rejection of scientific evidence. In this paper philosophy is conceived as a conceptual audit of clinical psychopharmacology. Its function is to criticise the epistemological and methodological problems of current neopositivist, ingenuously realist and evidence-servant psychiatry from within the scientific stance and with the aim of aiding psychopharmacologists in practicing a more self-aware, critical and possibly useful clinical practice. Three examples are discussed to suggest that psychopharmacological practice needs conceptual clarification. At the diagnostic level it is shown that the crisis of the current diagnostic system and the problem of comorbidity strongly influence psychopharmacological results, new conceptualizations more respondent to the psychopharmacological requirements being needed. Heterogeneity of research samples, lack of specificity of psychotropic drugs, difficult generalizability of results, need of a phenomenological study of drug-induced psychopathological changes are discussed herein. At the methodological level the merits and limits of evidence-based practice are considered, arguing that clinicians should know the best available evidence but that guidelines should not be constrictive (due to several methodological biases and rhetorical tricks of which the clinician should be aware, sometimes respondent to extra-scientific, economical requests). At the epistemological level it is shown that the clinical stance is shaped by implicit philosophical beliefs about the mind/body problem (reductionism, dualism, interactionism, pragmatism), and that philosophy can aid physicians to be more aware of their beliefs in order to choose the most useful view and to practice coherently

  19. A predictive quasi-steady model of aerodynamic loads on flapping wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; van Keulen, A.

    2016-01-01

    Quasi-steady aerodynamic models play an important role in evaluating aerodynamic performance and conducting design and optimization of flapping wings. The kinematics of flapping wings is generally a resultant motion of wing translation (yaw) and rotation (pitch and roll). Most quasi-steady models

  20. [Treatment goals in FACE philosophy].

    Science.gov (United States)

    Martin, Domingo; Maté, Amaia; Zabalegui, Paula; Valenzuela, Jaime

    2017-03-01

    The FACE philosophy is characterized by clearly defined treatment goals: facial esthetics, dental esthetics, periodontal health, functional occlusion, neuromuscular mechanism and joint function. The purpose is to establish ideal occlusion with good facial esthetics and an orthopedic stable joint position. The authors present all the concepts of FACE philosophy and illustrate them through one case report. Taking into account all the FACE philosophy concepts increases diagnostic ability and improves the quality and stability of treatment outcomes. The goal of this philosophy is to harmonize the facial profile, tooth alignment, periodontium, functional occlusion, neuromuscular mechanism and joint function. The evaluation and treatment approach to vertical problems are unique to the philosophy. © EDP Sciences, SFODF, 2017.

  1. Amerykańska filozofia polityczna. Niedokończona debata (AMERICAN POLITICAL PHILOSOPHY. AN UNFINISHED DEBATE

    Directory of Open Access Journals (Sweden)

    Piotr Bołtuć

    2007-06-01

    Full Text Available The author begins by drawing a distinction between an earlier stage of contemporary American political philosophy, informed by the Rawls-Nozick-Walzer debate, and a later stage geared towards social issues such as multiculturalism. His point is that the earlier debate was incomplete because an important group of views went underrepresented. This becomes clear when one use two variables to classify the main political theories: higher taxes and more social services versus lower taxes and fewer social services (economic left and right and the level of individualism versus collectivism (liberals and communitarians. This gives us four positions: left-wing liberalism, left-wing communitarianism, right-wing liberalism and right-wing communitarianism. The author claims that right-wing communitarianism is barely represented in the debate that grounded today's political philosophy. He sketches a version of conservatism, relying mostly on Nisbet and Kirk, to illustrate the missing position of right wing communitarianism. Although he does not endorse many aspects of conservatism as right-wing communitarianism, he argues that it is a theoretically viable option and suggest that sociological reasons may explain why it is underrepresented among professional philosophers. As a part of the argument he also outlines a position called equality without egalitarianism.

  2. Philosophy of Research in Applied Linguistics

    OpenAIRE

    Mohammad Ali Torabi

    2011-01-01

    The term  “ philosophy of research in applied linguistics” may be considered to cover a wide range of academically and philosophically important issues that have recently begun to capture the attention of scholars in research programs in their efforts, on the one hand, to reflect upon how they have traditionally approached their scientific practices and, on the other, to reconsider and redefine their research priorities in the light of new findings and revise their methodologies and designs i...

  3. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  4. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  5. Qualitative tools and experimental philosophy

    Science.gov (United States)

    Andow, James

    2016-01-01

    Abstract Experimental philosophy brings empirical methods to philosophy. These methods are used to probe how people think about philosophically interesting things such as knowledge, morality, and freedom. This paper explores the contribution that qualitative methods have to make in this enterprise. I argue that qualitative methods have the potential to make a much greater contribution than they have so far. Along the way, I acknowledge a few types of resistance that proponents of qualitative methods in experimental philosophy might encounter, and provide reasons to think they are ill-founded. PMID:28392629

  6. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  7. Yoneda Philosophy in Engineering

    Directory of Open Access Journals (Sweden)

    Lambrini Seremeti

    2013-01-01

    Full Text Available Mathematical models, such as sets of equations, are used in engineering to represent and analyze the behaviour of physical systems. The conventional notations in formulating engineering models do not clearly provide all the details required in order to fully understand the equations, and, thus, artifacts such as ontologies, which are the building blocks of knowledge representation models, are used to fulfil this gap. Since ontologies are the outcome of an intersubjective agreement among a group of individuals about the same fragment of the objective world, their development and use are questions in debate with regard to their competencies and limitations to univocally conceptualize a domain of interest. This is related to the following question: “What is the criterion for delimiting the specification of the main identifiable entities in order to consistently build the conceptual framework of the domain in question?” This query motivates us to view the Yoneda philosophy as a fundamental concern of understanding the conceptualization phase of each ontology engineering methodology. In this way, we exploit the link between the notion of formal concepts of formal concept analysis and a concluding remark resulting from the Yoneda embedding lemma of category theory in order to establish a formal process.

  8. Cosmology and philosophy

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1981-01-01

    The problem of establishing boundaries between cosmology and philosophy is discussed. It is stated that the theoretic knowledge and observation data do not contradict the selection of one of non-stationary homogenous and isotropic relativistic models, which are also called the Friedmann models. In this model (with a zero Λ - member) there is a critical value of the substance density which is 10 -29 g/cm 2 . The determination of the average density of the Universe substance relatively to this value enables to choose between a closed and an open Universe model. Nowadays, this problem is not yet solved. But some philosophic theses reject the closed cosmological model without any naturally scientific argumentation. Critical remarks about such an approach to the problem studied are presented. The conclusion is made that the problems of the Universe volume infinity of finity, laws of its evolution in time or the like are not philosophic and should be considered taking into account the data of astronomic observations and modern physics

  9. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  10. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  11. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  12. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. The changing shape of U.S. licensing philosophy

    International Nuclear Information System (INIS)

    Remick, F.J.

    1992-01-01

    The shape of U.S. nuclear licensing and regulatory philosophy and process has already changed. The new process requires NRC review and approval of the vendor designs before a prospective utility license applicant purchases the design and begins construction. The new philosophy has resulted from the lessons learned from extensive operating experience accumulated in the United States. New criteria established for judging reactor designs include the capability of future designs to be more tolerant of accidents beyond the traditional design basis events. Qualitative and quantitative goals have been chosen as a guide for allocating resources for regulation of the currently operating plants. The changing shape of nuclear licensing and regulatory philosophy is also a result of economic circumstances in the United States. All will have a better opportunity to take part in the process which is most likely to encourage further development of safe nuclear energy in the United States. (author)

  14. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  15. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  16. Experimental Investigation of a Wing-in-Ground Effect Craft

    Science.gov (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  17. The Concept "System of Philosophy"

    DEFF Research Database (Denmark)

    Catana, Leo

    2005-01-01

    is to analyze Jacob Brucker’s employment of the concept in his influential history of philosophy, Historia critica philosophiae, dating from 1742-68. To Brucker, a ‘system of philosophy’ is characterized by the following four features: (a) it is autonomous in regard to other, non-philosophical disciplines; (b......In this article I shall examine and discuss the concept ‘system of philosophy’ as a methodological tool in the history of philosophy. I shall do so in two moves. First I shall analyze the historical origin of the concept in the seventeenth and eighteenth centuries. Thereafter I shall undertake...... a discussion of its methodological weaknesses — a discussion, which is not only relevant to the writing of history of philosophy in the seventeenth and eighteenth centuries, but also to the writing of history of philosophy in our times, where the concept remains an important methodological tool. My first move...

  18. Why still philosophy?: Once again

    Directory of Open Access Journals (Sweden)

    Krstić Predrag

    2007-01-01

    Full Text Available The intention of this paper is to revisit, once again the question asked by Adorno and Habermas and other contemporary thinkers under different headings few decades ago. The author is suggesting that nowadays philosophy requires a final departure from the idea of having single and perennial face, and that this would not only allow, but also enable philosophy to test its various faces freely, that is, without norm or limit set in advance. At the same time, by creating such ′liberal′ climate philosophy would no longer be frightened by the possible answer, and hence would no longer dramatize the very question of ′why still?′. Even if philosophy turns out to be far less than the mission it once bestowed upon itself.

  19. [Neurosciences and philosophy of mind].

    Science.gov (United States)

    Saal, Aarón

    2005-01-01

    In this paper we argue that the interaction between neurosciences and philosophy of the mind is on the way to understand consciousness, and to solve the mind-body or mind-brain problem. Naturalism is the view that mental processes are just brain processes and that consciousness is a natural phenomenon. It is possible to construct a theory about its nature by blending insights from neuroscience, philosophy of the mind, phenomenology, psychology and evolutionary biology.

  20. Testing philosophy and simulation techniques

    International Nuclear Information System (INIS)

    Holtbecker, H.

    1977-01-01

    This paper reviews past and present testing philosophies and simulation techniques in the field of structure loading and response studies. The main objective of experimental programmes in the past was to simulate a hypothetical energy release with explosives and to deduce the potential damage to a reactor from the measured damage to the model. This approach was continuously refined by improving the instrumentation of the models, by reproducing the structures as faithful as possible and by developing new explosive charges. This paper presents an analysis of the factors which are expected to have an influence on the validity of the results e.g. strain rate effects and the use of water instead of sodium. More recently the discussion of a whole series of accidents in the probabilistic accident analysis and the intention to compare different reactor designs has revealed the need to develop and validate computer codes. Consequently experimental programmes have been started in which the primary aim is not to test a specific reactor but to validate codes. This paper shows the principal aspects of this approach and discusses first results. (Auth.)

  1. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  2. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  3. HOBBES’ POLITICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    MHAI NOVAC

    2013-05-01

    Full Text Available This is basically an attempt at an original conceptual reconstruction of Hobbes’ philosophy as set in Lehiathan, namely one in the view of which Hobbes was neither an atheist nor an absolutist, as the standard interpretation holds, but rather what we could call an agnostical pragmatist (fact which, quite surprisingly, places Hobbes in the company of Burke. More to the point, my basic claim within this paper is that Hobbes was not such an ‘enemy of individual freedom’ as we traditionally hold him to be and that his thought was just as attached to the notion of individual freedom as the later contractualist views. The difference however, arises from the fact that Hobbes, unlike Locke, Rousseau or Kant, was what we could call a voluntaristic determinist and consequently viewed human freedom not so much as ‘unhindered action derived from reflective choice’, but rather as what we could call ‘reasonable fulfillment of the basic human inclinations’ (self-interest. As such, I will analyze the three main focal points of Hobbes’ thought, namely (i human nature, (ii the principle of association and (iii the principle of authority. More specifically I will try to offer a perspective on the link between his voluntaristic determinism, his notion of legitimate absolute coercion (sovereignity and his political theology (the view that any form of political authority rests on a religious legitimacy in trying to demonstrate how all these were Hobbes’ specific way of seeking to find individual freedom a place under the sun.

  4. Science and philosophy in Deleuze

    Directory of Open Access Journals (Sweden)

    Krtolica Igor

    2015-01-01

    Full Text Available Deleuze will not wait until he had completed his works to frame and formulate a theory on the relation between philosophy and science. The first articulations of this question are already present as early as the 1950s and 1960s in the studies on Bergson and Nietzsche, and then in Difference and repetition as well as in The Logic of Sense. It is also true that this question will be specifically developed in 1991 in What Is Philosophy? But throughout his work, the main thrust would proceed. This issue, it seems, comprises three main aspects: in the first place, in a polemic against the neo-Kantian epistemological legacy, it primarily consists in denying the critical definition of philosophy as being a ‘reflection on scientific knowledge’ to replace it by a conception drawn from Bergson’s expressionist ontology that places science and philosophy on both sides of the being; secondly, in an attempt to restore the concept of dialectics, it consists in making the dialectics of ideas the communal sphere of both science and philosophy; thirdly, aiming to specify every form of thinking, it consists in shaping how each expresses its ideas or its problems with its own signs. These three aspects, it seems, can frame the overall conception Deleuze formed of the link between science and philosophy. We shall successively analyze them, exclusively considering the first period of Deleuze’s work, which is to say the pre-guattarian publications.

  5. The Question of African Philosophy: Methodological or ...

    African Journals Online (AJOL)

    The ontological status of African Philosophy has generated a lot of controversy. While some scholars have been sceptical on the existence of African philosophy, others have maintained that African philosophy is an established branch of philosophy, and dismissed any sceptical attitude towards it. Against this background ...

  6. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  7. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  8. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    can combine the advantages of a variable stiffness design with- out the use of actuators. Curved beams, which couple torsion and bending , counteract... torsional deflection, control natural frequency, exploit coupling of bending and tor- sion to control flutter, reduce thickness to chord ratios due to...disregarded any bending or torsional effects caused by displacement of the wing, and was thus not considered. Therefore, the initial design analysis

  9. Topology Synthesis of Distributed Actuation Systems for Morphing Wing Structures (Postprint)

    National Research Council Canada - National Science Library

    Inoyam, Daisaku; Sanders, Brian P; Joo, James J

    2007-01-01

    .... For demonstration purposes, the in-plane morphing wing model is presented. Topology optimization is performed on a semiground structure with design variables that control the system configuration...

  10. Experimental Elastic Deformation Characterization of a Flapping-Wing MAV Using Visual Image Correlation

    National Research Council Canada - National Science Library

    Stewart, Kelly; Albertani, Roberto

    2007-01-01

    .... By knowing the elastic deformation that occurs, researchers can better understand the mechanics and aerodynamic effects behind flexible, flapping wings and apply that knowledge to various design...

  11. Caring to Care: Applying Noddings' Philosophy to Medical Education.

    Science.gov (United States)

    Balmer, Dorene F; Hirsh, David A; Monie, Daphne; Weil, Henry; Richards, Boyd F

    2016-12-01

    The authors argue that Nel Noddings' philosophy, "an ethic of caring," may illuminate how students learn to be caring physicians from their experience of being in a caring, reciprocal relationship with teaching faculty. In her philosophy, Noddings acknowledges two important contextual continuities: duration and space, which the authors speculate exist within longitudinal integrated clerkships. In this Perspective, the authors highlight core features of Noddings' philosophy and explore its applicability to medical education. They apply Noddings' philosophy to a subset of data from a previously published longitudinal case study to explore its "goodness of fit" with the experience of eight students in the 2012 cohort of the Columbia-Bassett longitudinal integrated clerkship. In line with Noddings' philosophy, the authors' supplementary analysis suggests that students (1) recognized caring when they talked about "being known" by teaching faculty who "cared for" and "trusted" them; (2) responded to caring by demonstrating enthusiasm, action, and responsibility toward patients; and (3) acknowledged that duration and space facilitated caring relations with teaching faculty. The authors discuss how Noddings' philosophy provides a useful conceptual framework to apply to medical education design and to future research on caring-oriented clinical training, such as longitudinal integrated clerkships.

  12. Free vibration analysis of dragonfly wings using finite element method

    Directory of Open Access Journals (Sweden)

    M Darvizeh

    2016-04-01

    Full Text Available In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.

  13. Transcendental Philosophy and its Transformations

    DEFF Research Database (Denmark)

    Ishihara, Yuko

    There is an interesting overlap between Heidegger and Nishida that has not gained attention in the literature. During the late 1920s, both philosophers looked to transcendental philosophy as a way to overcome the Western metaphysical tradition. Neither philosopher, however,simply accepted...... traditional forms of transcendental philosophy. Rather, both attempted to transform it from within. In this work, I aim to articulate the extent to which Heidegger and Nishidastill worked within a traditional transcendental framework and also the ways in which they attempt to transform transcendental...... philosophy. I argue that while Heidegger’s “hermeneutic” and Nishida’s “chorological” (I employ this term from Plato’s chōra) transformations have much in common, the latter is more radical than the former. Specifically, Nishida reveals the pre-reflective origin of transcendental reflection not in the pre...

  14. MEDIA TECHNOLOGIES IN TEACHING PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    Elena Grednovskaya

    2016-12-01

    Full Text Available This article describes the experience of the Department of Philosophy of the South Ural State University (Russia on the use of media technology in the teaching of philosophy. Media technologies are examined not simply as tools of knowledge translation to students, but they are comprehended as a media reality, which sometimes completely dissolve a human. Media philosophy which appeared as a new philosophical trend that meets the today realities, contemplates the nowadays situation of influence of mass communications on human’s world outlook, on his selfidentification, also on his body and feelings. The students are possessed to analyze a visual media material, because the foundation of media reality is a visual image.

  15. Considering the Relationship between Architecture and Philosophy: Toyo Ito's Conceptual Architecture

    OpenAIRE

    Serap Durmus

    2016-01-01

    The aim of this paper is to exemplify the relation of architecture and philosophy over the Japanese architect Toyo Ito's conceptual architecture. The study is practiced in 'Architecture and Philosophy Readings' elective course with 22 sophomore architecture students in Karadeniz Technical University Department of Architecture. It is planned as a workshop, which discusses the design philosophy of Toyo Ito's buildings and the reflections of concept in his intellectual architecture. So, the pape...

  16. Philosophy, policies, and procedures - The three P's of flight-deck operations

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Standard operating procedures are drafted and provided to flightcrews to dictate the manner in which tasks are carried out. Failure to conform to Standard Operating Procedures (SOP) is frequently listed as the cause of violations, incidents, and accidents. However, procedures are often designed piecemeal, rather than being based on a sound philosophy of operations and policies that follow from such a philosophy. A framework of philosophy, policies, and procedures is proposed.

  17. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  18. Nursing practice. Developing a philosophy.

    Science.gov (United States)

    Johns, C

    1989-01-01

    The application of nursing models has been a recent theme in British nursing. Part of this process is the development of a nursing philosophy which underpins the model. Nurses at clinical level are often required to define their philosophy to meet clinical, educational and managerial objectives. The first part of this two-part article explores the significance of nursing philosophy to practice. In the second part, a case study is used to illustrate how clinical nurses can set about defining a philosophy of nursing for themselves. Dickoff et al (1) indicate that a philosophy is significant in the generation of theory. By identifying the nature of practice, theoretical relationships become apparent. It is also significant as Johnson (2) states in nursing's development as a profession. Johnson further asserts that nurses should use their beliefs to build a conceptual system of the person to be served and an abstract model for practice which allows such purpose to be fulfilled. However a nurse's beliefs and values about nursing may have no theoretical substance to them. They may be purely intuitive in nature. Writing a philosophy legitimates intuition. Kitson (3) considers that nurse theorists who believe that only developing a knowledge base through a scientific approach are at risk of throwing away the intuitive sources of knowledge within nursing. Yet gut reactions have been shown to be critical in the development of excellence in nursing (4). Kitson believes that intuitions can lead to developing 'grassroots standards of care' and a clearer definition of what nursing is.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  20. Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    Science.gov (United States)

    Labovitz, M. L.; Masuoka, E. J.; Broderick, P. W.; Garman, T. R.; Ludwig, R. W.; Beltran, G. N.; Heyman, P. J.; Hooker, L. K.

    1983-01-01

    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted

  1. ENVIRONMENTAL PHILOSOPHY AND ECOLOGICAL CULTURE

    Directory of Open Access Journals (Sweden)

    Kalimat M. Alilova

    2017-01-01

    Full Text Available Aim. The aim of the research is to study environmental problems related to the decline of culture, the importance of philosophy in overcoming private and personal interests as well as the unilateral approach of man in his relationship to nature. The study shows how philosophy can participate in the formation of ecological culture, a new ecological consciousness in man, while ecological culture is called upon to resist technocratic stereotypes and the course of history was aimed at preventing the biosphere from becoming deserted. Discussion. On the basis of the analysis of literary sources, we used the method of socio-cultural and socio-natural approaches based on the possibility of philosophy to introduce a new life into culture, new ecological values and new ecological principles. To solve these problems, environmental philosophy develops new theories. Representatives of different cultures, ethnic groups, nations, religions must learn to coexist with each other. We consider philosophy as a means of teaching rapprochement between peoples and creating new opportunities for understanding and improving the environmental situation. Cultural development makes it possible to assess the level of a man’s knowledge of nature, himself and the world around him. Ecological culture is a way of connecting man with nature on the basis of deeper knowledge and understanding. Philosophy says that you cannot move away from nature and be lauded over it since this will destroy culture. Rational doctrines tend to put a person above other living beings so the synthesis of philosophy with culture can have a positive ecological meaning. Conclusion. The findings obtained can be recommended for practical use in schools, starting from primary school, as well as in secondary special educational institutions and universities. It is necessary to work on the motivation and values of people, develop a common and ecological culture. Only a cultured person can move from

  2. Logic and Philosophy of Time

    DEFF Research Database (Denmark)

    A.N. Prior (1914-69) in the course of the 1950s and 1960s founded a new and revolutionary paradigm in philosophy and logic. Its most central feature is the preoccupation with time and the development of the logic of time. However, this was inseparably interwoven with fundamental questions about...... human freedom, ethics, and existence. This remarkable integration of themes also embodies an original and in fact revolutionary conception of logic. The book series, Logic and Philosophy of Time, is dedicated to a deep investigation and also the further development of Prior’s paradigm. ...

  3. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  4. How is a philosophy of photography possible?

    Directory of Open Access Journals (Sweden)

    Savchuk Valery

    2015-01-01

    Full Text Available This paper focuses on the following question: how is philosophy of anything possible? Where lies the boundary of specialisation area beyond which the term “philosophy” loses not only its strength, but also its meaning? When we talk about specific genre, for example, graphic art or sculpture we use the term “philosophy” in a broader, metaphorical sense. Why then should philosophy of photography be any different? All of the abovementioned questions are discussed in the present article. Philosophy of photography is, indeed, a legitimate discipline, just as philosophy of language, philosophy of science and technology and philosophy of politics are.

  5. Precision Position Control of the DelFly II Flapping-wing Micro Air Vehicle in a Wind-tunnel

    NARCIS (Netherlands)

    Cunis, T.; Karasek, M.; de Croon, G.C.H.E.

    2016-01-01

    Flapping-wing MAVs represent an attractive alternative to conventional designs with rotary wings, since they promise a much higher efficiency in forward flight. However, further insight into the flapping-wing aerodynamics is still needed to get closer to the flight performance observed in natural

  6. From Daily Life to Philosophy

    NARCIS (Netherlands)

    Bransen, J.A.M.

    2004-01-01

    This article argues that the little everyday things of life often provide excellent entries into the intellectual problems of academic philosophy. This is illustrated with an analysis of four small stories taken from daily life in which people are in agony because they do not know what to do. It is

  7. GREEN CHEMISTRY: NEW CHEMICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    F. A. Tykhomirova

    2015-11-01

    Full Text Available The review deals with the principles and guidelines of “Green chemistry” in comparison with the philosophy of nanotechnology. Modern philosophy and methodology of science research focus is on the process of the growth of scientific knowledge. Modern chemistry is complex, hierarchical, multilevel and multidimensional system. Philosophy of nanotechnology relies heavily on the value of scientism and the idea of domination of man over nature , there is an apology of human intervention in nature. “Green chemistry” is called “new thinking”of chemistry, philosophy of modern chemical research. The chemicals and processes in accordance with the principles of “Green chemistry” are considered not only in terms of production of substances and materials with desired properties, but also taking into account the consequences for the environment. In the “Green chemistry” created image of the “ideal customer” – he uses a minimum number of products understands the need to preserve the environment. Ideological landmark “Green chemistry” – co-evolution of man and nature, preservation of the biosphere. It emphasized the need to implement the ideology of “Green chemistry” in the training of future specialists.

  8. The Philosophy of Mathematics Education

    DEFF Research Database (Denmark)

    research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also...

  9. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  10. CONTEMPORARY AFRICAN PHILOSOPHY: EMERGENT ISSUES ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    prominent issues. Really, the problem of African identity, one dares to say, has constituted the basic perennial question of contemporary. African philosophy. In various ..... of the trauma of the slave trade, of the humiliation that was colonization, of ... form of government could be “bad” or “ideally good,” it is not the case that it ...

  11. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  12. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  13. Features of formation of philosophy of Russia

    OpenAIRE

    Baranov G. V.

    2016-01-01

    in article the main content of problems and achievements of philosophy of Russia on initial stage of its history is researched; urgent achievements of the Russian philosophy in their value for modern humanitarian culture are characterized.

  14. Phenomenological Philosophy and Orthodox Christian Scientific ...

    African Journals Online (AJOL)

    denise

    documents/hf_ben-xvi_spe_2006. 0912_university-regensburg_en.html. Boudouris, K., & Kalimtzis, K. (Eds.). (1999). Philosophy and ecology: Greek philosophy and the environment. (Vols. 1 & 2). Athens: Ionia Publications. Davis, C. (1967).

  15. A unifying philosophy of governance

    Directory of Open Access Journals (Sweden)

    Sankarshan Acharya

    2012-09-01

    Full Text Available Bertrand Russell won Nobel Prize for arguing that science has triumphed over religion. Since religions are based on god, Russell’s argument implies that science has triumphed over both religion and god. But neither Russell nor anyone else has ever defined religion and god, rationally. The assertion about triumph of science (which is founded on rationality over concepts such as religion and god (which are not defined rationally or scientifically in the extant literature cannot be rational. This paper offers a novel rational philosophical foundation for the concepts of god, religion and science in which the claim that science triumphs over religion is redundant. This paper also presents substantial new insights about epistemic truths to help resolve current problems facing humanity like financial moral hazard and terrorism which have unnerved nations worldwide. The humanity now begs to answer a fundamental question of how we can govern ourselves. This paper offers a coherent set of credible answers. In particular, it offers a coherent unified philosophy about how humans have universally formed beliefs to govern themselves and how this philosophy could help resolve current problems. The universal rendering of beliefs articulated here subsumes the extant characterization of probability beliefs in mathematics, science, engineering, economics, religion and philosophy. The universal beliefs so articulated in this paper obviate the currently prevalent philosophical conflicts between religion and science or between theism and atheism and paves the way for optimal governance for prosperity amid stability. This philosophy also offers a rational characterization of the spiritual notion of Nirvana or salvation of the soul and the notion of epistemic truth. The unifying philosophy can help humanity achieve unity, stability and prosperity, sans financial moral hazard, antagonism, wars, nuclear proliferation, global warming and atmospheric pollution.

  16. A decentralized design philosophy for satellites

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Larsen, Jesper Abildgaard

    2011-01-01

    For the last decade development and construction of student cubesat satellites has played an important part in the engineering Master Program within Electrical Engineering and Information Technology at Aalborg University, Denmark. As a result three cubesats AAU CUBESAT, AAUSAT-II and AAUSAT3 has ...

  17. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  18. An introductory course in philosophy of medicine.

    Science.gov (United States)

    Rudnick, A

    2004-06-01

    Philosophy of medicine, narrowly defined as ontology and epistemology of medicine, is a well developed research field, yet education in this field is less well developed. The aim of this paper is to present an educational development in philosophy of medicine-an introductory course in philosophy of medicine. Central features of the course are described. Participants (medical undergraduate students) scored high on average. The conclusion is that further such educational ventures in philosophy of medicine should be developed and implemented.

  19. A Companion to the Philosophy of Technology

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg O.; Pedersen, Stig Andur; Hendricks, Vincent F.

    The aim of philosophy of technology is to help us understand technology's complex interrelationships with the environment, society, culture - and with our very existence. A Companion to the Philosophy of Technology is the first comprehensive, authoritative reference source for this burgeoning...... those of the humanities, social studies, natural science, sociology, psychology, and engineering sciences and reflect a diversity of philosophical traditions such as pragmatism, analytical philosophy, and phenomenology. Erudite and authoritative, A Companion to the Philosophy of Technology is a major...

  20. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  1. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  2. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  3. Educational Studies and the Map of Philosophy

    Science.gov (United States)

    Haldane, John

    2012-01-01

    One figure who was transitional between educational philosophy and philosophy of education, and who by his industry and prominence laid the foundation for the London school of analytical philosophers of education, was Louis Arnaud Reid who was appointed at the London Institute of Education to the first UK professorship in the philosophy of…

  4. Freedom of Speech and Philosophy of Education

    Science.gov (United States)

    Harris, Roy

    2009-01-01

    Why is freedom of speech so seldom raised as an issue in philosophy of education? In assessing this question, it is important to distinguish (i) between a freedom and its exercise, and (ii) between different philosophies of education. Western philosophies of education may be broadly divided into classes derived from theories of knowledge first…

  5. Contemporary African philosophy: emergent issues and challenges ...

    African Journals Online (AJOL)

    ... all philosophies remain context-dependent and cultureoriented. A contrary view ignores the proper nature of philosophy. A new phenomenon confronts currently confronts all comers to contemporary African philosophy: an expansive vision of African philosophical discourse. Contemporary African philosophers attempt to ...

  6. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  7. Philosophy and the Disciplines: The Borderlines | Minimah ...

    African Journals Online (AJOL)

    This work examines the borderlines of philosophy in relation to the central concern of other disciplines. As a preliminary step towards our examination, we attempt to uncover the specific nature of philosophy on the basis of its subject matter. We argue that while philosophy asks 'second order' questions about the totality of ...

  8. PHILOSOPHY IN CONTEMPORARY TIME: RELEVANCE VS ...

    African Journals Online (AJOL)

    JONATHAN

    students of philosophy do not understand what philosophy students do in their philosophy classes. Some people have ... contributing to the practical existence of the contemporary society or to society in general? To hold a position in the ..... bewitchment of our intelligence by means of language”.27. For this singular reason, ...

  9. PHILOSOPHY AND LOGIC AS INESCAPABLE ORGANON FOR ...

    African Journals Online (AJOL)

    JONATHAN

    Philosophy of literature and philosophy of history is of similar value in understanding the humanities and philosophy ... thinking about value, ethical theory and the messy facts of human social arrangements into the discussion. .... guide the journalist in the collection and dissemination of news information. If journalists have.

  10. Public School Superintendent Philosophies and Their Tenure

    Science.gov (United States)

    Garner, John

    2012-01-01

    Postmodernism is a philosophical description that encompasses philosophy, the arts, a period of history, and many other aspects of today's existence. This dissertation examines the extent to which Indiana public school superintendents use postmodern philosophy as opposed to modern philosophy to inform their practice. This was accomplished by…

  11. Philosophical sagacity as conversational philosophy and its ...

    African Journals Online (AJOL)

    In this study, I aimed to carry out a comparative analysis of the methods of conversational philosophy and sage philosophy as contributions towards overcoming the problem of methodology in African philosophy. The purpose was to show their points of convergence and probably, if possible, their point of divergence as well.

  12. Philosophy, Exposure, and Children: How to Resist the Instrumentalisation of Philosophy in Education

    Science.gov (United States)

    Biesta, Gert

    2011-01-01

    The use of philosophy in educational programmes and practices under such names as philosophy for children, philosophy with children, or the community of philosophical enquiry, has become well established in many countries around the world. The main attraction of the educational use of philosophy seems to lie in the claim that it can help children…

  13. Philosophical Questions about Teaching Philosophy: What's at Stake in High School Philosophy Education?

    Science.gov (United States)

    Norris, Trevor

    2015-01-01

    What is at stake in high school philosophy education, and why? Why is it a good idea to teach philosophy at this level? This essay seeks to address some issues that arose in revising the Ontario grade 12 philosophy curriculum documents, significant insights from philosophy teacher education, and some early results of recent research funded by the…

  14. Is Philosophy of Education a Historical Mistake? Connecting Philosophy and Education Differently

    Science.gov (United States)

    Biesta, Gert

    2014-01-01

    In this article, I suggest that the question whether the proper place for philosophy of education is in the domain of philosophy or the domain of education cannot be resolved as long as we think of the connection between philosophy and education in terms of the idea of "philosophy of education". To substantiate this point, I look into…

  15. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  16. From philosophy to science (to natural philosophy): evolutionary developmental perspectives.

    Science.gov (United States)

    Love, Alan C

    2008-03-01

    This paper focuses on abstraction as a mode of reasoning that facilitates a productive relationship between philosophy and science. Using examples from evolutionary developmental biology, I argue that there are two areas where abstraction can be relevant to science: reasoning explication and problem clarification. The value of abstraction is characterized in terms of methodology (modeling or data gathering) and epistemology (explanatory evaluation or data interpretation).

  17. Philosophy of biology. Is there still a need for philosophy?

    Science.gov (United States)

    Graziano, Mario

    2013-01-01

    In this paper we now focus on critically examining the theoretical and methodological conceptual foundations in the particular field of science of the living, namely the philosophy of biology. The latter seems to draw attention to two disparate disciplines in methods and scope of interest. On the one hand there seems to be a point of view that considers the cognitive phenomenon in question in a way so as to say "abstract", i.e. as something that seeks to determine the nature or essence, to use a term dear to many philosophers. On the other hand, there is a point of view that considers these phenomena in the actual place, the result of a process caused by the cognitive system of the subject, if the latter, of course, does not mean that they are human beings. We will argue that the two approaches do not represent two distinct planes of research: in fact philosophy takes on a main task, namely helping to lay the foundations for a philosophy of nature capable of meeting first a completeness, that is, to describe and explain what is special in all the different layers of the different natural systems.

  18. Development and experiments of the Sea-Wing underwater glider

    Science.gov (United States)

    Yu, Jian-Cheng; Zhang, Ai-Qun; Jin, Wen-Ming; Chen, Qi; Tian, Yu; Liu, Chong-Jie

    2011-12-01

    Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.

  19. Philosophy versus Student Need? A Reply to Smith and Hilton.

    Science.gov (United States)

    Rainforth, Beverly

    1994-01-01

    This response to Smith and Hilton (1994) suggests that those authors reject philosophical bases for decision making regarding program design for students with mental retardation while actually proposing their own philosophical base for such decision making. The importance of philosophy in guiding decisions and practice over the last several…

  20. Philosophies and School Evaluations: Are They Origins of Hypocrisy?

    Science.gov (United States)

    Heusser, H. Earl, Jr.

    This two-part article addresses itself to philosophical and instructional guidelines. Part I is entitled "Relationships of High School Philosophy and Objectives to Curriculum and Instruction in the Education Process" and Part II, "A Rating Instrument Designed to Improve School Evaluation and the Resulting Instructional Program." (CK)

  1. Classroom Teacher's Adherence to Philosophy and Ethics of Home ...

    African Journals Online (AJOL)

    This study analyzed and discussed the philosophy and goals of education, evaluating them on how classroom teachers adhere to the ethics of home economics for sustainable development in Anambra state, Nigeria. A descriptive survey design was used and the sample, randomly selected, was made up of two hundred ...

  2. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    OpenAIRE

    di Luca, Matteo; Mintchev, Stefano; Heitz, Grégoire Hilaire Marie; Noca, Flavio; Floreano, Dario

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly...

  3. DEVELOPMENT OF EDUCATIONAL SOFTWARE FOR STRESS ANALYSIS OF AN AIRCRAFT WING

    Directory of Open Access Journals (Sweden)

    TAZKERA SADEQ

    2012-06-01

    Full Text Available A stress analysis software based on MATLAB, Graphic user interface (GUI has been developed. The developed software can be used to estimate load on a wing and to compute the stresses at any point along the span of the wing of a given aircraft. The generalized formulation allows performing stress analysis even for a multispar (multicell wing. The software is expected to be a useful tool for effective teaching learning process of courses on aircraft structures and aircraft structural design.

  4. Later Wittgenstein and the Philosophy of Religion

    DEFF Research Database (Denmark)

    Hansen, Stig Børsen

    2010-01-01

    This article sets out by distinguishing Wittgenstein’s own views in the philosophy of religion from a school of thought in the philosophy of religion that relies on later Wittgenstein’s philosophy of language. After a survey of distinguishing features of Wittgenstein’s later philosophy, the third...... section explores Wittgenstein’s treatment of Frazer’s account of magic among primitive peoples. The following section offers an account of Wittgensteinian philosophy of religion, including the use of the notions of a language game and superstition. I conclude by criticizing a very influential argument...

  5. Chinese Traditional Philosophy and Indigenous Management Research

    DEFF Research Database (Denmark)

    Li, Xin

    2013-01-01

    This paper focuses on three key notions of Chinese traditional philosophy, i.e., Zhongyong, Yin Yang, and Wu, pointing out the possible mistakes in Prof. Peter Ping Li's arguments as well as some questions that are often neglected and taken for granted. The author posits, Chinese traditional...... philosophy is a system of thought distinct from the Western philosophy; while the Western philosophy is mainly concerned about the True, i.e., the objective knowledge of the world, the aim of Chinese traditional philosophy is the pursuit of the Good, i.e., the unification of heaven and human....

  6. [Towards a philosophy of medication].

    Science.gov (United States)

    da Silva, Cléber Domingos Cunha

    2015-09-01

    Medicine and philosophy: where do these concepts intersect? From a biopolitical standpoint, the scope of this essay is to highlight the existence of new challenges for those who deal with the issue of pharmaceuticalization in contemporary society. The analyses revealed that essentially technical approaches are insufficient to confront issues such as: the exorbitant profits from the sale of medication; the disproportionate ratio of these amounts with the number of new innovative molecules; and the difficulty of access to the few new drugs. It would seem to be the opportune moment for adopting a more critical stance for drafting a philosophy of medication in the field of public health with the establishment of areas of resistance to the omnipresent pharmacotherapeutic onslaught. After all, medication is not a constitutive element that is isolated from human life; although, it has become a central component in the management of contemporary life, its adequate use requires the exercise of in-depth introspection.

  7. A history of erotic philosophy.

    Science.gov (United States)

    Soble, Alan

    2009-01-01

    This essay historically explores philosophical views about the nature and significance of human sexuality, starting with the Ancient Greeks and ending with late 20th-century Western philosophy. Important figures from the history of philosophy (and theology) discussed include Sappho, Plato, Aristotle, St. Augustine, St. Jerome, the Pelagians, St. Thomas Aquinas, Michel de Montaigne, Rene Descartes, Thomas Hobbes, David Hume, Immanuel Kant, Søren Kierkegaard, Arthur Schopenhauer, Jeremy Bentham, John Stuart Mill, Karl Marx, Friedrich Engels, Sigmund Freud, Jean-Paul Sartre, Simone de Beauvoir, Wilhelm Reich, and Herbert Marcuse. Contemporary philosophers whose recent work is discussed include Michel Foucault, Thomas Nagel, Roger Scruton, Karol Wojtyla (Pope John Paul II), Catharine MacKinnon, Richard Posner, and John Finnis. To show the unity of the humanities, the writings of various literary figures are incorporated into this history, including Mark Twain, Arthur Miller, James Thurber, E. B. White, Iris Murdoch, and Philip Roth.

  8. Reading Bohr physics and philosophy

    CERN Document Server

    Plotnitsky, Arkady

    2006-01-01

    Reading Bohr: Physics and Philosophy offers a new perspective on Niels Bohr's interpretation of quantum mechanics as complementarity, and on the relationships between physics and philosophy in Bohr's work, which has had momentous significance for our understanding of quantum theory and of the nature of knowledge in general. Philosophically, the book reassesses Bohr's place in the Western philosophical tradition, from Kant and Hegel on. Physically, it reconsiders the main issues at stake in the Bohr-Einstein confrontation and in the ongoing debates concerning quantum physics. It also devotes greater attention than in most commentaries on Bohr to the key developments and transformations of his thinking concerning complementarity. Most significant among them were those that occurred, first, under the impact of Bohr's exchanges with Einstein and, second, under the impact of developments in quantum theory itself, both quantum mechanics and quantum field theory. The importance of quantum field theory for Bohr's thi...

  9. Cluster randomization and political philosophy.

    Science.gov (United States)

    Chwang, Eric

    2012-11-01

    In this paper, I will argue that, while the ethical issues raised by cluster randomization can be challenging, they are not new. My thesis divides neatly into two parts. In the first, easier part I argue that many of the ethical challenges posed by cluster randomized human subjects research are clearly present in other types of human subjects research, and so are not novel. In the second, more difficult part I discuss the thorniest ethical challenge for cluster randomized research--cases where consent is genuinely impractical to obtain. I argue that once again these cases require no new analytic insight; instead, we should look to political philosophy for guidance. In other words, the most serious ethical problem that arises in cluster randomized research also arises in political philosophy. © 2011 Blackwell Publishing Ltd.

  10. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  11. Philosophy of education in Norway

    OpenAIRE

    Aakre, Bjørn Magne

    2009-01-01

    In Japan as well as Norway we experience growing interests and discussions about education. The main reason seems to be the fact that education has become more important than ever before. At the same time, most educational systems seem to face problems adapting to the rapid changes caused by globalization of values and cultures. Therefore, discussions about education not only involve new technology or alternative teaching methods, but also fundamental issues related to philosophy of education...

  12. Kierkegaardian motives in Heidegger's philosophy

    OpenAIRE

    Stepanov, Viacheslav; Luchynska, Iryna

    2015-01-01

    The article aims at critical assessment of methodological approaches to historical analysis of Heidegger's references to Kierkegaard. Heidegger's relation to existentialist philosophy seems to be one of the is sues which are deeply contaminated by the philosopher's ambivalent self-interpretations distorting the course of objective historical and philosophical study of real links between Heidegger's discourse and the legacy of existentialist thinkers. Analysis of reflexive literature on the pr...

  13. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    , and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the

  14. Toward a Philosophy of Transnationalism

    Directory of Open Access Journals (Sweden)

    Laura Doyle

    2009-02-01

    Full Text Available This essay suggests, first of all, that the power of transnational studies lies in its fundamentally dialectical approach, and, secondly, that this approach opens the way to a fresh consideration of the human subject of history. In the kind of transnational studies highlighted here, the focus is less strictly on the movements of people and capital across national borders and more on the implicitly other-oriented interactions between and among nations, making them mutually contingent phenomena, a situation which in turn entails intersubjective and intertextual events and calls for a fresh philosophy of the subject. Doyle draws on the thinking of Frantz Fanon, Maurice Merleau-Ponty, and Louis Althusser to explore one such possible "transnational philosophy." The second half of the essay pursues the idea that literature offers a micro-world of the dialectics of both transnational history and existential intersubjectivity. Doyle interprets Daniel Defoe's Robinson Crusoe and Olaudah Equiano's Interesting Narrative in relation to each other as well as in relation to transnational Atlantic history. Such readings model a method for transnational literary studies, one grounded in philosophy as well as history.

  15. Toward a Philosophy of Transnationalism

    Directory of Open Access Journals (Sweden)

    Laura Doyle

    2009-02-01

    Full Text Available

    This essay suggests, first of all, that the power of transnational studies lies in its fundamentally dialectical approach, and, secondly, that this approach opens the way to a fresh consideration of the human subject of history. In the kind of transnational studies highlighted here, the focus is less strictly on the movements of people and capital across national borders and more on the implicitly other-oriented interactions between and among nations, making them mutually contingent phenomena, a situation which in turn entails intersubjective and intertextual events and calls for a fresh philosophy of the subject. Doyle draws on the thinking of Frantz Fanon, Maurice Merleau-Ponty, and Louis Althusser to explore one such possible "transnational philosophy." The second half of the essay pursues the idea that literature offers a micro-world of the dialectics of both transnational history and existential intersubjectivity. Doyle interprets Daniel Defoe's Robinson Crusoe and Olaudah Equiano's Interesting Narrative in relation to each other as well as in relation to transnational Atlantic history. Such readings model a method for transnational literary studies, one grounded in philosophy as well as history.

  16. Russia needs the Subjective Philosophy

    Directory of Open Access Journals (Sweden)

    S. Z. Gontcharov

    2012-01-01

    Full Text Available Based on the comparative analysis of different kinds of philosophic thinking, the paper reveals the advantages of subjective philosophy – the most adequate universal essentiality of socialized human being, opening the prospects for Russia as the creative society of cultural spontaneous activity. Objective principle of thinking is limited by the logic of outward definition. According to the above logic, people are regarded as tiny parts of social mechanism, the objects of manipulation. Separating action from spontaneous activity, object changes from self-alteration of human subject, executive functions from norm-creating ones brings about alienated practices and such social situation that makes individuals perceive their own existence as alien non- existence, or opposing existence.Subjectivity is a form of social activity regarding individuals and groups according to their ability in self-definition, self-organizing, self-control, norm-creating, as well as their actual rights and duties in social spheres of needs and objectives, and their feasible power over forces of nature and society. Subjective philosophy perceives the material production as the means for cultivating wholesome and spontaneously active individuals due to educational fundamentality and cultural prosperity. Accordingly, accumulation of capital turns into accumulation of culture and personal creativity growth. The results of the undertaken analysis and its conclusions can be implemented in developing creative anthropological bases for philosophy, pedagogy, psychology, economics, political science, as well as the relating discipline teaching. 

  17. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  18. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  19. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  20. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  1. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  2. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  3. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  4. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  5. Safety philosophy of the GTHTR300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji

    2003-01-01

    In parallel to successful operation of the Japan's first High Temperature Gas-cooed Reactor, HTTR (High Temperature Engineering Test Reactor), JAERI (Japan Atomic Energy Research Institute) started design and development of a high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300 (Gas Turbine High Temperature Reactor 300), in April 2001. The GTHTR300 is expected to be deployed in 2010s as a safe and economically competitive electric generation system in Japan. Unique safety philosophy is proposed for this system. Severe accidents are defined as any conditions beyond design base accidents, causing core damages with fission product releases to the environment, although all severe accident sequences are very low in probability. The new safety philosophy is to avoid most accidents, and to achieve a probability of severe accidents of 10 -8 /ry that is at least two orders lower than current reactors. Even in the worst event such as double guillotine break of a primary concentric duct, fuel temperature exceeding its failure limit and excessive fuel oxidation by air ingress can be avoided because of inherent safety features and the passive decay heat removal system. Furthermore, double confinement buildings are enough to keep reactor safety in such accidents. Elimination of a leak-tight steel containment vessel is a big economical advantage for this system. Another unique feature is that nearly full-scale worst accident simulation tests can be carried out to obtain licensing before commercial operations because safety assessment by analysis is not usually enough to convince the public and the regulators of trusting this safety concept. In current reactors no accident simulation tests are carried out before commercial operations although inspection and performance tests in normal condition are conducted. This paper describes the safety philosophy together with the outline of the design features of the GTHTR300, and the results of

  6. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  8. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  9. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  10. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  11. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  12. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  13. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  14. Aircraft wing weight build-up methodology with modification for materials and construction techniques

    Science.gov (United States)

    York, P.; Labell, R. W.

    1980-01-01

    An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.

  15. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  16. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  17. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  18. Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal

    Science.gov (United States)

    Hunt, L. R.

    1979-01-01

    Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.

  19. Glenn Parson's 'The Philosohpy of Design'

    DEFF Research Database (Denmark)

    Galle, Per

    2015-01-01

    With The Philosophy of Design, Glenn Parsons constructs an elegant bridge between two major islands in the archipelago of human thought: philosophy and design. Per Galle, The Royal Danish Academy of Fine Arts, School of Design.......With The Philosophy of Design, Glenn Parsons constructs an elegant bridge between two major islands in the archipelago of human thought: philosophy and design. Per Galle, The Royal Danish Academy of Fine Arts, School of Design....

  20. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.

    Science.gov (United States)

    Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao

    2017-09-19

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.

  1. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs

    Science.gov (United States)

    Jiang, Peng; Li, Deshi; Sun, Tao

    2017-01-01

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960

  2. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-08-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on education changed; you may think of quite different schools of philosophy, from Marxist or positivist to such exotic but at some places influential philosophic positions like that of Rudolph Steiner; of course, you may limit the subject to special fields like epistemology, theory of scientific methodology, or, what has become fashionable recently, sociology of knowledge which may have a considerable bearing on physics teaching (Collins and Shapin 1983; Jung 1985). Again we may think of the topic treated by a philosopher, a scientist, an educationalist, a teacher, which would mean quite a difference. I am trying here to speak as an educationalist, with the physics teacher in mind: this is my vocational perspective as someone who educates physics teachers. Of course, our main concern is the contribution of science, especially physics, to general education, which integrates many of the special topics mentioned. Philosophy of science comes in because it is not at all clear what science and physics is, and what of it should be taught, and how such chosen parts should be taught. I also take this opportunity to give an idea of the longstanding tradition of this discussion in Germany, connected with names like Wagenshein, Litt, Heisenberg and many others.

  3. Environmental philosophy: response to critics.

    Science.gov (United States)

    Sarkar, Sahotra

    2014-03-01

    The following piece is a response to the critiques from Frank, Garson, and Odenbaugh. The issues at stake are: the definition of biodiversity and its normativity, historical fidelity in ecological restoration, naturalism in environmental ethics, and the role of decision theory. The normativity of the concept of biodiversity in conservation biology is defended. Historical fidelity is criticized as an operative goal for ecological restoration. It is pointed out that the analysis requires only minimal assumptions about ethics. Decision theory is presented as a tool, not a domain-limiting necessary requirement for environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 1. Editorial: Philosophy and Geography

    Directory of Open Access Journals (Sweden)

    Manuela Albertone

    2017-01-01

    Full Text Available After “Erasmian Science” and “Gastronomy and Revolution”, the Journal of Interdisciplinary History of Ideas has again issued a Call for Paper, for a special issue dedicated to the historical relations of Philosophy and Geography. It will be guest-edited by Ernesto Sferrazza Papa and Simone Mammola, and appear end 2017. In the Editorial we present the contents of the Call, that can also be found, together with practical information for submission, in the News of the JIHI.

  5. Numerical Analysis of the Influence of Fibre Orientations in a two-layered Biomimetic Flapping Wing

    Directory of Open Access Journals (Sweden)

    Rayhan Saiaf Bin

    2017-01-01

    Full Text Available A numerical study was carried out to investigate the effects of fibre orientation angles in an adopted biomimetic flapping wing having two-layered Carbon/Epoxy Composite T300/5208. The purpose of this paper is to understand how different orientation angles with different combinations affect the stresses of a flapping-wing. One flapping cycle was divided into twelve segments and both maximum stress and deformation were calculated for all the segments. The results revealed that, the maximum stress was produced in [0/-45] combination, where the least was found for [45/0]. For all the simulated wings, deformation was found less than 1.8 mm. ANSYS DesignModeler and Static Structural was used to design and perform structural analysis. The findings are helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.

  6. Live-bed scour experiments with 45 wing-wall abutments

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 39; Issue 5. Live-bed scour experiments with 45° wing-wall ... Keywords. Scour; bridge foundation; abutments; hydraulics; rivers. ... A design equation is proposed for estimating maximum scour depth at 45°wing-wall abutment under live-bed condition. The calculated values of scour ...

  7. Live-bed scour experiments with 45° wing-wall abutments

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 39; Issue 5. Live-bed scour experiments with 45° wing-wall abutments ... Keywords. Scour; bridge foundation; abutments; hydraulics; rivers. ... A design equation is proposed for estimating maximum scour depth at 45°wing-wall abutment under live-bed condition. The calculated values of ...

  8. A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing

    NARCIS (Netherlands)

    Ferreira, J.P.; De Breuker, R.

    2016-01-01

    This study describes the development of a morphing wing concept for a Portuguese Air Force Unmanned Air Vehicle (UAV), the UAS-30. Nowadays, optimized fuel efficiency is a primary requirement in the aerospace industry, and it can be significantly improved by designing adaptive wings which can change

  9. Insect-inspired wing actuation structures based on ring-type resonators

    NARCIS (Netherlands)

    Bolsman, C.T.; Goosen, J.F.L.; Van Keulen, F.

    2008-01-01

    In this paper, we illustrate and study the opportunities of resonant ring type structures as wing actuation mechanisms for a flapping wing Micro Air Vehicle (MAV). Various design alternatives are presented and studied based on computational and physical models. Insects provide an excellent source of

  10. Philosophy and the front line of science.

    Science.gov (United States)

    Pernu, Tuomas K

    2008-03-01

    According to one traditional view, empirical science is necessarily preceded by philosophical analysis. Yet the relevance of philosophy is often doubted by those engaged in empirical sciences. I argue that these doubts can be substantiated by two theoretical problems that the traditional conception of philosophy is bound to face. First, there is a strong normative etiology to philosophical problems, theories, and notions that is dfficult to reconcile with descriptive empirical study. Second, conceptual analysis (a role that is typically assigned to philosophy) seems to lose its object of study if it is granted that terms do not have purely conceptual meanings detached from their actual use in empirical sciences. These problems are particularly acute to the current naturalistic philosophy of science. I suggest a more concrete integration of philosophy and the sciences as a possible way of making philosophy of science have more impact.

  11. On the Need for Speculative Philosophy Today

    Directory of Open Access Journals (Sweden)

    Andrew James Taggart

    2012-05-01

    Full Text Available ‘On the Need for Speculative Philosophy Today’ takes seriously Hegel’s claims that speculative philosophy begins in diremption and ends in higher-order conceptualization. To make Hegel’s theses more perspicuous, I examine the set of modern life needs—historical, metaphysical, phenomenological, and political—that give rise to speculative philosophy. I then attempt to show that speculative philosophy’s ultimate aim is to provide us with higher-order consolation. In the final section, I mean to draw on the second sense of speculation, conjecturing that rational form of inquiry I have undertaken is a propaedeutic to ‘philosophies of action’: philosophy of life and public philosophy.

  12. Philosophy and Post-Totalitarian Practices

    Directory of Open Access Journals (Sweden)

    Serhii Yosypenko

    2018-04-01

    Full Text Available This writing aims to outline the principles of researches on philosophy in Central and Eastern European countries, preferably USSR, in the latest soviet and post-soviet periods. In author’s opinion, the crucial points for such kind of research are: a to discover a correlation between philosophy and the phenomenon of totalitarianism; b to correlate a soviet philosophy with totalitarian experience. The article considers methodological and axiological problems in research of post-totalitarian practices in general as such as in philosophy. In author’s opinion the main problem in development of the post-soviet philosophy is interiorisation of intellectual, cultural and social practices, which were formed concerning to totalitarian experience. This became a reason of “cynicism” and “nihilism” of post-soviet philosophy. It’s impossible to cast mentioned phenomena off without consideration of totalitarian phenomenon and critical reconsideration of the own totalitarian experience.

  13. The philosophy and limitations of FAA aeromedical standards, policies and procedures.

    Science.gov (United States)

    1971-06-01

    Designated Aviation Medical Examiners need available basic information concerning the FAA medical certification system, the philosophy which underlies standards, policy and procedures, and certain limitations of the system. It is through such informa...

  14. Some Trends in the Philosophy of Physics

    Directory of Open Access Journals (Sweden)

    Henrik Zinkernagel

    2011-07-01

    Full Text Available A short review of some recent developments in the philosophy of physics is presented. I focus on themes which illustrate relations and points of common interest between philosophy of physics and three of its `neighboring' elds: Physics, metaphysics and general philosophy of science. The main examples discussed in these three `border areas' are (i decoherence and the interpretation of quantum mechanics; (ii time in physics and metaphysics; and (iiimethodological issues surrounding the multiverse idea in modern cosmology.

  15. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  16. Shape matters: improved flight in tapered auto-rotating wings

    Science.gov (United States)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  17. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  18. The Need to Revive Islamic Philosophy

    Directory of Open Access Journals (Sweden)

    Mohammed A. Muqtedar Khan

    1998-06-01

    Full Text Available This paper argues that the contemporary attempts at reviving Islamic civilization will remain incomplete until a simultaneous effort is made to revive Islamic philosophy. This paper identifies the characteristics of Islamic philosophy and underscores its significance to Islamic intellectual renaissance. Islamic philosophy has a unique dimension-it encompasses science and spirituality along with reason and logic. Arguing that perhaps the decline of philosophy was an important element in the decline of Islamic civilization, the paper contends that Muslim efforts at negotiating modernity or appropriating science will not be successful without the support of a rejuvenated Islamic philosophical tradition.

  19. Peter Redpath’s Philosophy of History

    Directory of Open Access Journals (Sweden)

    Curtis L. Hancock

    2016-03-01

    Full Text Available Peter Redpath is a distinguished historian of philosophy. He believes that the best way to acquire a philosophical education is through the study of philosophy’s history. Because he is convinced that ideas have consequences, he holds that the history of philosophy illuminates important events in history. Philosophy is a necessary condition for sound education, which, in turn, is a necessary condition for cultural and political leadership. Hence, the way educators and leaders shape culture reflects the effects of philosophy on culture. In light of this background, it is possible to discern in Redpath’s account of the history of philosophy a corresponding philosophy of history. This emerges as he explains how philosophers have produced changes in thinking that have profound consequences for the culture at large. Some of these changes, many of them significant, have been positive, but others have been disastrous. Much of Redpath’s philosophy of history diagnoses what went wrong in the history of philosophy so as to indicate why modern culture suffers considerable disorder. The good news is that Redpath’s philosophy of history prescribes ways to correct Western Civilization’s current malaise.

  20. Philosophy of biology: naturalistic or transcendental?

    Science.gov (United States)

    Kolen, Filip; Van de Vijver, Gertrudis

    2007-01-01

    The aim of this article is to clarify the meaning of a naturalistic position within philosophy of biology, against the background of an alternative view, founded on the basic insights of transcendental philosophy. It is argued that the apparently minimal and neutral constraints naturalism imposes on philosophy of science turn out to involve a quite heavily constraining metaphysics, due to the naturalism's fundamental neglect of its own perspective. Because of its intrinsic sensitivity to perspectivity and historicity, transcendental philosophy can avoid this type of hidden metaphysics.

  1. Philosophy of medicine 2017: reviewing the situation.

    Science.gov (United States)

    Daly, Patrick

    2017-12-01

    In this introduction to a special subsection of Theoretical Medicine and Bioethics comprising separate reviews of the Springer Handbook of the Philosophy of Medicine, The Routledge Companion to Philosophy of Medicine, and The Bloomsbury Companion to Contemporary Philosophy of Medicine, I compare the three texts with respect to their overall organization and their approach to the relation between the science and the art of medicine. I then indicate two areas that merit more explicit attention in developing a comprehensive philosophy of medicine going forward: health economics and systematic relations within the field as a whole. The reviews that follow speak for themselves.

  2. A Companion to Philosophy of Technology

    DEFF Research Database (Denmark)

    Olsen, Jan-Kyrre Berg

    The aim of philosophy of technology is to help us understand technology's complex interrelationships with the environment, society, culture - and with our very existence. A Companion to the Philosophy of Technology is the first comprehensive, authoritative reference source for this burgeoning...... those of the humanities, social studies, natural science, sociology, psychology, and engineering sciences and reflect a diversity of philosophical traditions such as pragmatism, analytical philosophy, and phenomenology. Erudite and authoritative, A Companion to the Philosophy of Technology is a major...... contribution to one of the fastest-growing and most vital areas of scholarship and study today....

  3. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  4. Modern Basics Philosophy of Education

    Directory of Open Access Journals (Sweden)

    Oleg Bazaluk

    2015-07-01

    Full Text Available In thisarticle the authors examine the current understanding ofthe foundations ofthe philosophy of education. Lately when it is spoken about human development and education and concretized that it is the perfection of its mind. And if at the end of the twentieth century the subject of educational impact was human being, consisting of social and biological entities, at the beginning of the XXI century the situation has changed. Advances in neuroscience (Risto Nааtаnеn, James Olds, Donald Hebb, Elkhonon Goldberg and others allowed specifying the subject of the educational impact and identifying in a person the material organization that really makes him standing out from the world of living organisms. We are talking about the neural structures that are formed and developed in the human brain and which are not observed (and if they are observed, then in a different format and with different functional manifestations in the brain of higher animals. We are talking about consistently evolving neural networks and subconscious consciousness which perform the corresponding functions: subliminal (unconscious and conscious. If the consistent development of the structure of the human brain sees neuroscience, the development of the functions of this structure, considering psychology. Methods, ways and means of transmission of socio-cultural heritage from one generation to another explores pedagogy. Therefore, the philosophy of education that considers the impact of educational technology, global educational model should be based on the integration of research in neuroscience, psychology and pedagogy.

  5. Buddha philosophy and western psychology.

    Science.gov (United States)

    Aich, Tapas Kumar

    2013-01-01

    Four noble truths as preached by Buddha are that the life is full of suffering (Duhkha), that there is a cause of this suffering (Duhkha-samudaya), it is possible to stop suffering (Duhkha-nirodha), and there is a way to extinguish suffering (Duhkha-nirodha-marga). Eight fold Path (astangika-marga) as advocated by Buddha as a way to extinguish the sufferings are right views, right resolve/aspiration, right speech, right action/conduct, right livelihood, right effort right mindfulness and right concentration. Mid-twentieth century saw the collaborations between many psychoanalysts and Buddhist scholars as a meeting between "two of the most powerful forces" operating in the Western mind. Buddhism and Western Psychology overlap in theory and in practice. Over the last century, experts have written on many commonalities between Buddhism and various branches of modern western psychology like phenomenological psychology, psychoanalytical psychotherapy, humanistic psychology, cognitive psychology and existential psychology. Orientalist Alan Watts wrote 'if we look deeply into such ways of life as Buddhism, we do not find either philosophy or religion as these are understood in the West. We find something more nearly resembling psychotherapy'. Buddha was a unique psychotherapist. His therapeutic methods helped millions of people throughout the centuries. This essay is just an expression of what little the current author has understood on Buddha philosophy and an opportunity to offer his deep tribute to one of the greatest psychotherapists the world has ever produced!

  6. Medicine in John Locke's philosophy.

    Science.gov (United States)

    Sanchez-Gonzalez, M A

    1990-12-01

    John Locke's philosophy was deeply affected by medicine of his times. It was specially influenced by the medical thought and practice of Thomas Sydenham. Locke was a personal friend of Sydenham, expressed an avid interest in his work and shared his views and methods. The influence of Sydenham's medicine can be seen in the following areas of Locke's philosophy: his "plain historical method"; the emphasis on observation and sensory experience instead of seeking the essence of things; the rejection of hypotheses and principles; the refusal of research into final causes and inner mechanisms; the ideal of irrefutable evidence and skepticism on the possibilities of certainty in science. The science which for Locke held the highest paradigmatic value in his theory of knowledge was precisely medicine. To a great extent, Locke's Essay on Human Understanding can be understood as an attempt to justify, substantiate, and promote Sydenham's medical method. This method, generalized, was then proposed as an instrument for the elaboration of all natural sciences.

  7. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  8. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx).

    Science.gov (United States)

    Bischoff, Kara; Ballew, Anna C; Simon, Michael A; O'Reilly, Alana M

    2009-12-01

    The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  9. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    2009-12-01

    Full Text Available The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1].Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells.Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  10. Pulsed eddy current inspection of CF-188 inner wing spar

    Science.gov (United States)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  11. Aerodynamic characteristics and flow field of delta wings with the canard

    Directory of Open Access Journals (Sweden)

    Mochizuki Saya

    2018-01-01

    Full Text Available Now, many kinds of explorations for outer planets have been proposed around the world. Among them Mars attracts much attention for future exploration. Orbiters and landers have been used for Mars exploration. Recently as a new exploration method, the usage of an airplane has been seriously considered and there are some development projects for Mars airplane. However, the airplane flying on the Earth atmosphere cannot fly on the Mars atmosphere, because atmospheric conditions are much different each other. Therefore, we focused on the usage of the airplane with unfolding wings for Mars exploration. These unfolding wings are designed as delta wings. However, delta wings do not have enough aerodynamics characteristics in a low speed region. In this study, to improve the aerodynamic characteristics of delta wings, we have proposed the usage of canard wings. The purpose of this study is to examine the effectiveness of canard wings to improve aerodynamic characteristics in a low speed region. CFD analysis is performed using four wing models with different canard shapes. The result shows that the usage of canards is effective to improve aerodynamic characteristics of delta wings in a low speed region. In addition, increasing lift coefficient is possible by changing the shape of canards.

  12. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  13. [Sustainable process improvement with application of 'lean philosophy'].

    Science.gov (United States)

    Rouppe van der Voort, Marc B V; van Merode, G G Frits; Veraart, Henricus G N

    2013-01-01

    Process improvement is increasingly being implemented, particularly with the aid of 'lean philosophy'. This management philosophy aims to improve quality by reducing 'wastage'. Local improvements can produce negative effects elsewhere due to interdependence of processes. An 'integrated system approach' is required to prevent this. Some hospitals claim that this has been successful. Research into process improvement with the application of lean philosophy has reported many positive effects, defined as improved safety, quality and efficiency. Due to methodological shortcomings and lack of rigorous evaluations it is, however, not yet possible to determine the impact of this approach. It is, however, obvious that the investigated applications are fragmentary, with a dominant focus on the instrumental aspect of the philosophy and a lack of integration in a total system, and with insufficient attention to human aspects. Process improvement is required to achieve better and more goal-oriented healthcare. To achieve this, hospitals must develop integrated system approaches that combine methods for process design with continuous improvement of processes and with personnel management. It is crucial that doctors take the initiative to guide and improve processes in an integral manner.

  14. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  15. Redpath on the Nature of Philosophy

    Directory of Open Access Journals (Sweden)

    Robert A. Delfino

    2016-03-01

    Full Text Available In this article the author discusses Peter A. Redpath’s understanding of the nature of philosophy and his account of how erroneous understandings of philosophy have led to the decline of the West and to the separation of philosophy from modern science and modern science from wisdom. Following Aristotle and St. Thomas Aquinas, Redpath argues that philosophy is a sense realism because it begins in wonder about real things known through the senses. Philosophy presupposes pre-philosophical knowledge, common sense, which consists of principles rooted in sensation that make human experience, sense wonder, and philosophy possible. Philosophy is certain knowledge demonstrated through causes and thus philosophy is the same as science. Redpath understands science as a habit that we acquire through repeated practice. More precisely, a scientific habit is a simple quality of the intellect that enables us to demonstrate (prove the necessary properties of a genus through their causes or principles. In this way, science is the study of the one and the many. Redpath argues that metaphysics is the final cause of the arts and sciences, providing the foundation for all of the arts and sciences and justifying their principles. Finally, he argues that with modernity’s loss of belief in God and its rejection of metaphysics as a science, utopian socialism has become an historical/political substitute for metaphysics.

  16. Philosophy, Human Development and National Question | Ekei ...

    African Journals Online (AJOL)

    While the solution to this dilemma is still being sought, Socrates shifted the attention of philosophy (with obvious reasons) from nature to ethical-political question, that is, to the issue of human development. It interests this essay, to find out, what exactly is human development, and why philosophy after Socrates considers ...

  17. Information Retrieval and the Philosophy of Language.

    Science.gov (United States)

    Blair, David C.

    2003-01-01

    Provides an overview of some of the main ideas in the philosophy of language that have relevance to the issues of information retrieval, focusing on the description of the intellectual content. Highlights include retrieval problems; recall and precision; words and meanings; context; externalism and the philosophy of language; and scaffolding and…

  18. African Tradition, Philosophy, and Modernization | Ikuenobe ...

    African Journals Online (AJOL)

    I examine Wiredu's views that (1) ethnophilosophy cannot be considered a legitimate philosophy because it has the feature of authoritarianism, and that (2) this feature of African tradition will not allow modern philosophy to flourish because it prevents individuals from rationally and critically examining beliefs. The ability to ...

  19. "Open" Philosophy or Down the Rabbit Hole?

    Science.gov (United States)

    Bowman, Wayne

    2017-01-01

    In this essay, I challenge the open-closed dualism at the heart of Allsup's project and question the very possibility of an "open" philosophy. I propose an account of music, musical instruction, and philosophy as ethically guided practices, discussing a number of practical and philosophical consequences that follow from such a view.

  20. School and the Limits of Philosophy

    Science.gov (United States)

    Fitzsimons, Peter

    2014-01-01

    Philosophy and schools, children and dynamite, elephants and postage stamps: each has a place, but not necessarily in any natural combination with the other. Whether schools and philosophy belong together depends largely on what we mean by both. To the extent that schools are instruments of government regulation and a mechanism for production of…