WorldWideScience

Sample records for wing bone lengths

  1. The Effect of Height, Wing Length, and Wing Symmetry on Tabebuia rosea Seed Dispersal

    Directory of Open Access Journals (Sweden)

    Yasmeen Moussa

    2014-12-01

    Full Text Available The relationship between the vertical drop height and the horizontal distance traveled (dispersal ratio was investigated for a sample of fifty Tabebuia rosea seeds by dropping the seeds from five heights ranging from 1.00 to 2.00 meters. The dispersal ratio was found to be a constant 0.16 m/m for these heights. The effects of total seed length and asymmetry of seed wings on dispersal ratio were also measured using separate samples of fifty Tabebuia rosea seeds. It was found that neither seed length nor asymmetry had a significant effect on the dispersal ratio.

  2. Reinforcements in avian wing bones: Experiments, analysis, and modeling.

    Science.gov (United States)

    Novitskaya, E; Ruestes, C J; Porter, M M; Lubarda, V A; Meyers, M A; McKittrick, J

    2017-12-01

    Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Wing bone geometry reveals active flight in Archaeopteryx.

    Science.gov (United States)

    Voeten, Dennis F A E; Cubo, Jorge; de Margerie, Emmanuel; Röper, Martin; Beyrand, Vincent; Bureš, Stanislav; Tafforeau, Paul; Sanchez, Sophie

    2018-03-13

    Archaeopteryx is an iconic fossil taxon with feathered wings from the Late Jurassic of Germany that occupies a crucial position for understanding the early evolution of avian flight. After over 150 years of study, its mosaic anatomy unifying characters of both non-flying dinosaurs and flying birds has remained challenging to interpret in a locomotory context. Here, we compare new data from three Archaeopteryx specimens obtained through phase-contrast synchrotron microtomography to a representative sample of archosaurs employing a diverse array of locomotory strategies. Our analyses reveal that the architecture of Archaeopteryx's wing bones consistently exhibits a combination of cross-sectional geometric properties uniquely shared with volant birds, particularly those occasionally utilising short-distance flapping. We therefore interpret that Archaeopteryx actively employed wing flapping to take to the air through a more anterodorsally posteroventrally oriented flight stroke than used by modern birds. This unexpected outcome implies that avian powered flight must have originated before the latest Jurassic.

  4. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range.

    Science.gov (United States)

    Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker

    2016-01-01

    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

  5. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  6. The primary feather lengths of early birds with respect to avian wing shape evolution.

    Science.gov (United States)

    Wang, X; Nudds, R L; Dyke, G J

    2011-06-01

    We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. Blood parasites, body condition, and wing length in two subspecies of yellow wagtail (Motacilla flava) during migration.

    Science.gov (United States)

    Shurulinkov, Peter; Chakarov, Nayden; Daskalova, Girgina

    2012-05-01

    Blood parasites of migrating yellow wagtails of two subspecies--Motacilla flava feldegg and Motacilla flava flava-were studied on a sample of 473 birds caught in spring and autumn periods in Bulgaria. We controlled eight "migration waves" (flocks captured in different evenings) of yellow wagtails for four parameters--average body mass, average fat level, average wing length, and average prevalence of different hematozoan species. Gametocytes or meronts of a total of six species of hematozoa belonging to three genera were identified-Haemoproteus motacillae, Haemoproteus anthi, Plasmodium relictum, Plasmodium subpraecox, Plasmodium cathemerium, and Tryponosoma avium. Mixed infections were detected in 31 cases, of which 14 were of H. anthi/H. motacillae type. Parasite species composition was similar in the two studied subspecies of M. flava. We did not find any significant differences in the overall infection prevalence or number of infecting parasites between M. f. flava and M. f. feldegg. Parasite prevalence and the number of co-infecting parasites in spring were much higher than in fall. Season had a strong influence on the prevalence of H. anthi and H. motacillae, and for both, there was a marginally significant interaction between subspecies and season, but not a season-independent influence of subspecies. Males of M. f. feldegg had a significantly higher overall blood parasite prevalence and prevalence of H. anthi than females. Sex-related differences in the prevalence of other parasites were not significant. Migration waves of yellow wagtails differed in overall infection status and in H. motacillae prevalence, but not for H. anthi prevalence. We also found significant differences in fat score, weight, and wing length between the studied migration waves of the yellow wagtails. Fat scores of birds infected with different hematozoa were lower compared with those of the non-infected birds. This only marginally was true for body weight and was not the case for wing

  8. Wing bone stresses in free flying bats and the evolution of skeletal design for flight.

    Science.gov (United States)

    Swartz, S M; Bennett, M B; Carrier, D R

    1992-10-22

    The primary mechanical functions of limb bones are to resist deformation, and hence provide stiff levers against which muscles can act, and to be sufficiently strong to prevent breaking under static or dynamic loads which arise from normal and accidental activities. If bones perform these functions with a minimum amount of material, the energetic costs associated with building, maintaining and transporting the skeleton will be minimized. Appropriate skeletal architecture for minimizing mass while maximizing strength depends on forces imposed on structural elements. In the evolutionary acquisition of flight in the bat lineage, the forelimb skeleton must have come to experience locomotor-forces that differed from those engendered by the terrestrial locomotion of non-flying bat relatives. Here we successfully measure in vivo strain on the wing bones of flying mammals. Our data demonstrate that torsion and shear are unique and crucial features of skeletal biomechanics during flight, and suggest that the evolution of skeletal design in bats and other flying vertebrates may be driven by the need to resist these loads.

  9. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice.

    Science.gov (United States)

    Yamada, Shunsuke; Wallingford, Mary C; Borgeia, Suhaib; Cox, Timothy C; Giachelli, Cecilia M

    2018-01-01

    Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of Osteotomy Lengths on the Temperature Rise of the Crestal Bone During Implant Site Preparation.

    Science.gov (United States)

    Katic, Zvonimir; Jukic, Tomislav; Stubljar, David

    2018-02-13

    To compare temperatures of the crestal bone during implant site preparation for different osteotomy lengths and implant systems. Bovine ribs were used to simulate the cortical bone of the human mandible. Three different implant systems were tested: Astra Tech, Ankylos, and XiVE. Six drills per system were performed, meaning each drilling set was used for 2 drills per 3 osteotomy lengths (8, 12, and 16 mm). Drilling force, drilling speed, drilling length, and temperature were recorded. Differences in the maximum temperature of the crestal bone during the first drilling for various osteotomy lengths (P = 0.021) and all implant systems (P = 0.013) were observed. A similar result was showed during the second drilling; osteotomy lengths (P = 0.014) and drilling systems (P = 0.003). Second drillings showed lower temperatures of the crestal bone with statistical differences on all measurements (P Ankylos implant systems showed similar performance; XiVE had lower temperature and higher temperature differences between osteotomy lengths. Different drilling lengths contributed to the variation in temperature regardless of the implant system. Longer drills and osteotomies induced higher temperatures on the crestal bone. The maximum temperature difference between the shortest and the longest osteotomy was under 1°C. Temperature above 47°C that could cause bone necrosis was not recorded at any time. The XiVE system showed the best performance.

  11. The Effect of Implant Length and Diameter on the Primary Stability in Different Bone Types

    Directory of Open Access Journals (Sweden)

    Hamidreza Barikani

    2013-01-01

    Full Text Available Objective: The focus of this paper is to evaluate the influence of mechanical characteristics of the implant on primary stability in different bone types, based on resonance frequency analysis (RFA.Materials and Methods: A number of 60 Nobel Biocare Replace Select TiUnit Tapered implants of two different lengths (10 mm and 13 mm and three different widths as 3.4 mm (narrow platform (NP, 4.3 mm (regular platform (RP and 5 mm (wide platform (WP were placed into two different groups of bone blocks. Bone blocks were different in bone quality, but similar to bone types D1 and D3. Immediately, after implant placement, implant stability quotient (ISQ was measured using the Osstell mentor device.Results: ISQ values for implant placements in D1 bone were significantly higher than those for implants placed in D3 bone. In D1 bone, the implant length did not make any significant difference in primary stability; however, in D3 bone, the primary stability of the implant increased when longer implants were utilized. NP implants presented significantly lower ISQ values compared to the two wider implants.Conclusion: In cases of low bone quality, the optimum increase in the implant length and diameter should be taken into account to achieve higher primary stability.

  12. Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings.

    Science.gov (United States)

    Atay, Tolga; Aksoy, Besir Andac; Aydogan, Nevres Hurriyet; Baydar, Metin Lutfi; Yildiz, Mustafa; Ozdemir, Ragip

    2009-09-01

    Telecommunication has gained a different meaning in daily life with the introduction of the mobile phone system. However, electromagnetic pollution has increased in parallel to this improvement. In this study, we aimed to investigate the effects of electromagnetic waves emitted from cellular phones operating at a frequency of 900 to 1800 MHz on the bone mineral density of the human iliac bone wings, which are the most common carriage sites for mobile phones. A total of 150 male volunteer participants were included in this study. The mean age was 31.85 years, and the age range was between 21 and 57 years. The participants were separated into 2 groups based on as follows: iliac side exposed to electromagnetic wave (group 1) and unexposed side (group 2). Of the total number of participants, 122 were carrying their phones on their right iliac wings, whereas 28 were carrying their phones on their left iliac wings. The mean daily carriage duration was 14.7 hours (between 12 and 20 h), and the mean duration for cellular phone use was 6.2 years (between 4 and 9 yr). Mineral bone density was measured using dual-energy x-ray absorptiometry in the right and the left iliac wings of all the participants. The SPSS 15 software (SPSS Inc, Chicago, IL) was used for statistical analysis. In the comparison of the 2 sides, Student t test was performed and P 0.05). In addition, the mean values of group 1 were not as low as those measured in osteopeny or osteoporosis cases. Current data may suggest that taking into consideration cellular phone use when iliac bone graft is necessary in clinical practice would constitute an important factor for more favorable outcomes.

  13. [Estimation of the body length from the hand bones in adult subjects].

    Science.gov (United States)

    Zviagin, V N; Zamiatina, A O

    2008-01-01

    A method for estimation of the body length from the wrist bones in adult subjects is reported for the first time. Carpal, metacarpal, and phalangeal bone length in 108 skeletons of Caucasoid subjects (stored in the collections of the Department of Anthropology, M V. Lomonosov Moscow State University, and Museum of Anthropology, Sankt Peterburg State University) was measured to the nearest 0.1 mm by the method of R. Martin. The SPSS programs were used to calculate multiple regression equations allowing for the determination of the body length from the lengths of carpal bones (to the accuracy within +/- 46.1 mm), metacarpal bones 1-V (to the accuracy within +/- 56.7 to 48.6 mm), their combinations (to the accuracy +/- 49.1 to 47.9 mm), and the longitudinal size of radii I-V (to within +/- 50.8-44.4 mm). The precision of the estimation was as high as +/- 3.5 mm provided all the wrist bones were available for the measurement. It is concluded that the results of verification of this method may be applied in the practice of forensic medicine.

  14. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  15. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Science.gov (United States)

    Fernandes, Daniel Jogaib; Elias, Carlos Nelson; Ruellas, Antônio Carlos de Oliveira

    2015-01-01

    The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66), bovine femurs (n = 18) and rabbit tibia (n = 12) with different cortical thicknesses (1 to 8 mm). Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001), bovine (p = 0.0035) and rabbit (p < 0.05) sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability. PMID:28793582

  16. [Changes in bone mineral density of postmenopausal women in relation to the menstrual cycle length].

    Science.gov (United States)

    Enchev, E; Dimitrakova, E

    2010-01-01

    There is a strong relationship between the age of menarche, the length of the menstrual cycle and menstrual bleeding and fracture risk in the postmenopausal period. Evaluation of the menstrual cycle length and lumbar bone mineral density in postmenopausal women. We investigated three groups of postmenopausal women (each - n = 50). The first group included women with menstrual duration of 27 days during reproductive age, the second group included postmenopausal women with menstrual duration of 28 days during the reproductive age, and the third group consisted of postmenopausal women with menstrual duration of 30 days during reproductive age. The average age of women was 58.80 +/- 0.94 y. in the first group, 60.36 +/- 5.12 y. in the second group and -61.84 +/- 0.80 y. in the third group. Age, age of menarche, number of childbirths, length of the menstrual cycle and menstrual bleeding, and lumbar bone density were assessed and registered for each woman. We used DXA in a anterior-posterior projection to assess the bone density of the lumbar spine; the obtained results are shown in gram/cm2. The women from the third group, with average menstrual cycle length of 30 days, reach menopause at a significantly later age, have longer menstrual cycle and shorter menstrual bleeding, and higher lumbar spine bone density, compared to the other two groups. The data from our research show that women with anamnesis for average normal menstrual cycle length of 30 days reach menopausal period at a significantly later age, have shorter menstrual bleeding, and higher lumbar spine bone density compared to those with shorter menstrual cycle duration (27 and 28 days).

  17. The effect of distal ulnar implant stem material and length on bone strains.

    Science.gov (United States)

    Austman, Rebecca L; Beaton, Brendon J B; Quenneville, Cheryl E; King, Graham J W; Gordon, Karen D; Dunning, Cynthia E

    2007-01-01

    Implant design parameters can greatly affect load transfer from the implant stem to the bone. We have investigated the effect of length or material of distal ulnar implant stems on the surrounding bone strains. Eight cadaveric ulnas were instrumented with 12 strain gauges and secured in a customized jig. Strain data were collected while loads (5-30 N) were applied to the medial surface of the native ulnar head. The native ulnar head was removed, and a stainless steel implant with an 8-cm-long finely threaded stem was cemented into the canal. After the cement had cured, the 8-cm stem was removed, leaving a threaded cement mantle in the canal that could accept shorter threaded stems of interest. The loading protocol was then repeated for stainless steel stems that were 7, 5, and 3 cm in length, as well as for a 5-cm-long titanium alloy (TiAl(6)V(4)) stem. Other stainless steel stem lengths between 3 and 7 cm were tested at intervals of 0.5 cm, with only a 20 N load applied. No stem length tested matched the native strains at all gauge locations. No significant differences were found between any stem length and the native bone at the 5th and 6th strain gauge positions. Strains were consistently closer to the native bone strains with the titanium stem than the stainless steel stem for each gauge pair that was positioned on the bone overlying the stem. The 3-cm stem results were closer to the native strains than the 7-cm stem for all loads at gauges locations that were on top of the stem. The results from this study suggest that the optimal stem characteristics for distal ulnar implants from a load transfer point of view are possessed by shorter (approximately 3 to 4 cm) titanium stems.

  18. Infant bone age estimation based on fibular shaft length: model development and clinical validation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Stamoulis, Catherine; Bixby, Sarah D.; Breen, Micheal A.; Connolly, Susan A.; Kleinman, Paul K. [Boston Children' s Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2016-03-15

    Bone age in infants (<1 year old) is generally estimated using hand/wrist or knee radiographs, or by counting ossification centers. The accuracy and reproducibility of these techniques are largely unknown. To develop and validate an infant bone age estimation technique using fibular shaft length and compare it to conventional methods. We retrospectively reviewed negative skeletal surveys of 247 term-born low-risk-of-abuse infants (no persistent child protection team concerns) from July 2005 to February 2013, and randomized them into two datasets: (1) model development (n = 123) and (2) model testing (n = 124). Three pediatric radiologists measured all fibular shaft lengths. An ordinary linear regression model was fitted to dataset 1, and the model was evaluated using dataset 2. Readers also estimated infant bone ages in dataset 2 using (1) the hemiskeleton method of Sontag, (2) the hemiskeleton method of Elgenmark, (3) the hand/wrist atlas of Greulich and Pyle, and (4) the knee atlas of Pyle and Hoerr. For validation, we selected lower-extremity radiographs of 114 normal infants with no suspicion of abuse. Readers measured the fibulas and also estimated bone ages using the knee atlas. Bone age estimates from the proposed method were compared to the other methods. The proposed method outperformed all other methods in accuracy and reproducibility. Its accuracy was similar for the testing and validating datasets, with root-mean-square error of 36 days and 37 days; mean absolute error of 28 days and 31 days; and error variability of 22 days and 20 days, respectively. This study provides strong support for an infant bone age estimation technique based on fibular shaft length as a more accurate alternative to conventional methods. (orig.)

  19. Sex Determination According to the Lengths of Hand Bones in Rhesus Macaques (Macaca Mulatta).

    Science.gov (United States)

    Tian, Huaxiang; Zhao, Xiaojin; Hu, Fengxia; Hu, Haiyang

    2017-10-01

    Measurement of hand bone length has been used for sex determination in humans and nonhuman primates (McFadden and Bracht: Early Hum Dev 85 (2009) 117-124; El-Morsi and Al-Hawary: J Forensic Leg Med 20 (2013) 6-13). The aim of this study was to determine the sex of rhesus macaques (Macaca mulatta) on the basis of the lengths of corresponding rows of metacarpals and phalanges in a macaque population by means of developing discriminant functions. Measurements on direct dry bones only included lengths for 19 bones of the left hand in 39 macaques (consisting of 13 adult males and 26 adult females). The results revealed that the mean values of males were significantly greater than those of females for all of the metacarpals and phalanges. The results were obtained in 84.4% of accuracy from distal phalanges, 93.8% from middle phalanges, and 96.9% from both metacarpals and proximal phalanges, respectively. There was a remarkable difference in the magnitude of sex dimorphism in lengths of each section of the hand bones between the population of macaques and humans. This difference may be attributable to the interaction between genetic factors and various environmental factors. As sex differences of hand bones are population-specific (Lazenby: Am J phys Anthropol 118 (2002) 378-384; Lu, Huo, Shi, Peng, Dang, Jiao, Zhu, Zhong, and Chen: Acta Aantomica Sinica 39 (2008) 267-271; Eshak, Ahmed, and Gawad: J Forensic Leg Med 18 (2011) 246-252), the discriminant equations for all of the metacarpals and phalanges are applicable to the population of Macaca mulatta from the Taihang Mountain. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1741-1746, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Linear intra-bone geometry dependencies of the radius: Radius length determination by maximum distal width

    International Nuclear Information System (INIS)

    Baumbach, S.F.; Krusche-Mandl, I.; Huf, W.; Mall, G.; Fialka, C.

    2012-01-01

    Purpose: The aim of the study was to investigate possible linear intra-bone geometry dependencies by determining the relation between the maximum radius length and maximum distal width in two independent populations and test for possible gender or age effects. A strong correlation can help develop more representative fracture models and osteosynthetic devices as well as aid gender and height estimation in anthropologic/forensic cases. Methods: First, maximum radius length and distal width of 100 consecutive patients, aged 20–70 years, were digitally measured on standard lower arm radiographs by two independent investigators. Second, the same measurements were performed ex vivo on a second cohort, 135 isolated, formalin fixed radii. Standard descriptive statistics as well as correlations were calculated and possible gender age influences tested for both populations separately. Results: The radiographic dataset resulted in a correlation of radius length and width of r = 0.753 (adj. R 2 = 0.563, p 2 = 0.592) and side no influence on the correlation. Radius length–width correlation for the isolated radii was r = 0.621 (adj. R 2 = 0.381, p 2 = 0.598). Conclusion: A relatively strong radius length–distal width correlation was found in two different populations, indicating that linear body proportions might not only apply to body height and axial length measurements of long bones but also to proportional dependency of bone shapes in general.

  1. Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data.

    Science.gov (United States)

    Sotto-Maior, Bruno Salles; Mercuri, Emílio Graciliano Ferreira; Senna, Plinio Mendes; Assis, Neuza Maria Souza Picorelli; Francischone, Carlos Eduardo; Del Bel Cury, Altair Antoninha

    2016-01-01

    Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.

  2. Evaluation of the Survival Rate and Bone Loss of Implants with Various Lengths

    Directory of Open Access Journals (Sweden)

    AR. Rokn

    2006-12-01

    Full Text Available Statement of Problem: The replacement of missing teeth with implant-associated restorations has become a widely used treatment modality in recent years. The length of dental implants may be a critical factor in achieving and maintaining osseointegration.Purpose: The aim of this study was to evaluate the survival rate and bone loss of dental implants with different lengthsMaterials and Methods: A retrospective cohort study was performed on 60 ITI-system implants, evenly distributed into three groups including 8, 10 and 12 mm high implants in the posterior segments of both jaws. Demographic information, oral hygiene,cigarette smoking, implant length, duration of implant placement (at least 24 months,bleeding on probing index and pocket probing depth were recorded for all participants.Bone loss was calculated using pre- and post-operative panoramic radiographs.Results: The mean rate of bone loss was different among the three groups and were found to be 0.21 (0.45, 0.3 (0.41 and 0.43 (0.55 mm in the 8, 10, and 12 mm high implants, respectively. Neither mean bone loss nor bleeding on probing index showed significant differences with implant length. A significant correlation was found between implant length and pocket probing depth (P<0.0001.Conclusion: The results of this study suggest that both short (8 mm high and long (10 or 12 mm high implants may be used with nearly equal success rates in the posterior segments of the jaws.

  3. A Comparison of Panoramic, Periapical and Bite Wing Radiographies in Evaluation of Alveolar Bone Loss in Periodiontitis

    Directory of Open Access Journals (Sweden)

    A Haerian Ardakani

    2007-07-01

    Full Text Available Introduction: The height of the alveolar bone, is normally maintained by equilibrium between bone formation and bone resorption, but in periodontal disease more destruction or lack of bone formation will reduce the alveolar bone height. However the radiography is important in diagnosis, treatment plan and detection of quality and quantity of the alveolar bone; although the type of radiography is more important. The purpose of this study is the comparison between panaromic, P.A (Parallel, Bite Wing radiographs in diagnosis of periodontitis. Methods: This study was descriptive cross-Sectional study Periapical (PA, Bitewing (B.W & Panoramic radiographic images in 32 pationent 13 male and 19 female with moderate to advanced periodontitis (mean age 38 year were taken before surgical treatment. Actual hight of defect were measured by a William's probe during surgery, the distance between cemento enamel junction (CEJ and alveolar crest were measured on radiographs using a digital vernie scale as will as. Actual measurements were compared with values taken from panoramic PA, B.W radiographs. For Data analysis Paired t test was used. Results: A total of 314 linear distances from the panoramic PA , B.W, and CEJ/BL were measured. The mean difference between panoramic and actual Measurements (0.115 and 0.28 P=(0.24-0.07, were not satistically significant (P> 0.05. The mean difference between P.A and actual measurements (0.279-0.498 P=(0.0001-0.004 showed a satistically significant difference (P< 0.05. The mean deference between BW and actual Measurements (0.576-0.613 P=(0.24-0.07 were satistically significant (P<0.05. Conclusion: Although, all forms of radiographic images showed agreement in detection of periodontal bone loss, the accuracy of panoramic radiographs was more than PA & BW radiographs'. Specially when the magnification was adjusted in panoramic radiography.

  4. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus: effect of wing length and hatching sequence.

    Directory of Open Access Journals (Sweden)

    Marek Kouba

    Full Text Available In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days. The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.

  5. Separated centers of ossification caudal to the wing of the pedal bone in horses - a help [to] rule out fractures of the wings and ossification in the accessory cartilages

    International Nuclear Information System (INIS)

    Hertsch, B.; Neuberth, M.

    1991-01-01

    Radiographic evaluation of a lat-med. x-ray of the digits of 278 normal three year old standard bred stallions (group I) and of 300 mares and geldings over the age of six years (group II) was made in view of frequency and clinical relevance of a separated center of ossification caudal to each wing of the pedal bone. The material served both age associated judgement and localisation dependant morphological description of these separated ossified bone piece. Through comparative measurements of the angle of the dorsal hoof wall in the two groups of horses, a possible etiological aspect especially concerning the hoof form is discussed, to true nature of this small separated ossified bone piece

  6. Short implants versus bone grafting and standard-length implants placement: a systematic review.

    Science.gov (United States)

    Palacios, Juan A V; Garcia, Jaime Jiménez; Caramês, João M M; Quirynen, Marc; da Silva Marques, Duarte Nuno

    2018-01-01

    The aim of this study was to conduct a systematic review to compare the survival rates between short implants (length implants (≥ 10 mm) inserted in grafted bone. As secondary outcomes, marginal bone loss and survival rates of the implant supported prostheses were also analysed. Randomised controlled trials (RCT) that compared both techniques were searched on three electronic databases till June 2016, a manual search was performed on the bibliography of the collected articles, and the authors were contacted for additional references. The estimates of the interventions were expressed in relative risk (RR), mean implant survival rates and mean differences in marginal bone. Eight RCTs were included in this study. From a total of 458 short implants, 15 failed (mean survival rates = 96.7%), While from 488 regular implants, 13 failed (mean survival rates = 97.3%). The technique did not significantly affect: the implant failure rate (P > 0.05), with RR of 1.34 (95% CI 0.67-2.87), the mean differences of marginal bone loss (P = 0.18; MD - 0.04 mm [- 0.10; 0.02] 95% CI), at loading or prosthesis failures rates (RR:0.98; 95% CI 0.40-2.41). The mean differences of marginal bone at 1 year follow-up (post loading) presented significant marginal changes in the short implant group (P = 0.002; MD - 0.10 mm [- 0.16; - 0.03] 95% CI) although a significant high heterogeneity was found between groups. This systematic review suggests no difference between both techniques in the treatment of atrophic arches. However, more long-term RCTs are needed to evaluate the predictability at the long run. The use of short implants might be considered an alternative treatment, since it usually requires fewer surgical phases and tends to be a more affordable option.

  7. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation

    Science.gov (United States)

    da SILVA, Aldir Cordeiro; CAPISTRANO, Anderson; de ALMEIDA-PEDRIN, Renata Rodrigues; CARDOSO, Maurício de Almeida; CONTI, Ana Cláudia de Castro Ferreira; CAPELOZZA, Leopoldino

    2017-01-01

    Abstract Objective The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Material and Methods Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (p<0.05). Results There were no statistically significant differences in root length and buccal and palatal bone levels of canines and adjacent teeth among groups. Conclusions Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis. PMID:28198979

  8. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis.

    Science.gov (United States)

    Li, T; Kong, L; Wang, Y; Hu, K; Song, L; Liu, B; Li, D; Shao, J; Ding, Y

    2009-10-01

    This study aimed to create a 3D finite element model for continuous variation of implant diameter and length, thereby identifying their optimal range in type IV bone under biomechanical consideration. Implant diameter ranged from 3.0 to 5.0mm, and implant length ranged from 6.0 to 14.0mm. The results suggest that under axial load, the maximum Von Mises stresses in cortical and cancellous bones decrease by 50% and 27%, respectively; and under buccolingual load, by 52% and 60%, respectively. Under these two loads, the maximum displacements of implant-abutment complex decrease by 39% and 43%, respectively. These results indicate that in type IV bone, implant length is more crucial in reducing bone stress and enhancing the stability of implant-abutment complex than implant diameter. Biomechanically, implant diameter exceeding 4.0mm and implant length exceeding 9.0mm are the combination with optimal properties for a screwed implant in type IV bone.

  10. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation.

    Science.gov (United States)

    Silva, Aldir Cordeiro da; Capistrano, Anderson; Almeida-Pedrin, Renata Rodrigues de; Cardoso, Maurício de Almeida; Conti, Ana Cláudia de Castro Ferreira; Capelozza, Leopoldino

    2017-01-01

    The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (pteeth among groups. Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis.

  11. Anatomic landmarks and availability of bone for placement of orthodontic mini-implants for normal and short maxillary body lengths.

    Science.gov (United States)

    Hourfar, Jan; Bister, Dirk; Lux, Christopher J; Al-Tamimi, Bouthayna; Ludwig, Björn

    2017-05-01

    Increasing numbers of orthodontic mini-implants are placed in the anterior maxilla. To our knowledge, bone levels and root proximity of patients with cephalometrically short maxillae have not been investigated before. The first, second, and third rugae were used as clinical reference lines, and the aim of this study was to measure bone availability in that area by comparing patients with short and normal maxillary body lengths. The sample consisted of 21 patients in each group: short maxillary body length and normal maxillary body length. The patients' study models were bisected, and the outline of the palatal contour was marked on the surface. The models were scanned, and the palatal contours were superimposed on the palatal structures of their respective initial cephalometric headfilms, and the vertical and oblique bone levels of the sagittal plane were compared using the Student t test. The level of significance was set at P 0.05) at the third rugae. Almost equivalent average bone depth at the third rugae in patients with normal and short maxillary body lengths suggests that this site can be used for 8-mm long obliquely inserted orthodontic mini-implants. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Mechanical behavior of osteoporotic bone at sub-lamellar length scales

    Science.gov (United States)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa

    2015-02-01

    Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam (FIB) microscopy and mechanically tested in compression using an atomic force microscope (AFM) while observing using in situ electron microscopy. This experimental approach was shown to be effective at measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties.

  13. Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements

    International Nuclear Information System (INIS)

    Rajon, D.A.; Shah, A.P.; Watchman, C.J.; Bolch, W.E.; Jokisch, D.W.; Patton, P.W.

    2002-01-01

    Chord-length distributions through the trabecular regions of the skeleton have been investigated since the early 1960s. These distributions have become important features for bone marrow dosimetry; as such, current models rely on the accuracy of their measurements. Recent techniques utilize nuclear magnetic resonance (NMR) microscopy to acquire 3D images of trabecular bone that are then used to measure 3D chord-length distributions by Monte Carlo methods. Previous studies have shown that two voxel effects largely affect the acquisition of these distributions within digital images. One is particularly pertinent as it dramatically changes the shape of the distribution and reduces its mean. An attempt was made to reduce this undesirable effect and good results were obtained for a single-sphere model using minimum acceptable chord (MAC) methods (Jokisch et al 2001 Med. Phys. 28 1493-504). The goal of the present work is to extend the study of these methods to more general models in order to better quantify their consequences. First, a mathematical model of a trabecular bone sample was used to test the usefulness of the MAC methods. The results showed that these methods were not efficient for this simulated bone model. These methods were further tested on a single voxelized sphere over a large range of voxel sizes. The results showed that the MAC methods are voxel-size dependent and overestimate the mean chord length for typical resolutions used with NMR microscopy. The study further suggests that bone and marrow chord-length distributions currently utilized in skeletal dosimetry models are most likely affected by voxel effects that yield values of mean chord length lower than their true values. (author)

  14. A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis.

    Science.gov (United States)

    Mosavar, Alireza; Nili, Monireh; Hashemi, Sayed Raouf; Kadkhodaei, Mahmoud

    2017-06-01

    Depending on esthetic, anatomical, and functional aspects, in implant-prosthetic restoration of a completely edentulous jaw, the selection of implant type is highly important; however, bone- and tissue-level implants and their stress distribution in bone have not yet been comparatively investigated. Hence, finite element analysis was used to study the influence of cantilever length in a fixed prosthesis on stress distribution in peri-implant bone around these two types of oral implants. A 3D edentulous mandible was modeled. In simulations, a framework with four posterior cantilever lengths and two types of implants, bone-level and tissue-level, was considered. A compressive load was applied to the distal regions of the cantilevers, and the von-Mises stress of peri-implant bone was investigated. The independent t-test and the Pearson correlation coefficient analyzed the results (α = 0.05). Stresses in the cortical bone around the bone-level implants were greater than those in the tissue-level implants with the same cantilever length. In addition, by extending the cantilever length, the stress values in peri-implant bone increased. Therefore, when the cantilever was at its maximum length, the maximum stress was in cortical bone and around the bone-level distal implants. The results of the present study indicate that treatment with tissue-level implants is potentially more advantageous than with bone-level implants for implant-supported fixed prostheses. © 2015 by the American College of Prosthodontists.

  15. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    International Nuclear Information System (INIS)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-01-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells

  16. A method for estimating age of medieval sub-adults from infancy to adulthood based on long bone length

    DEFF Research Database (Denmark)

    Primeau, Charlotte; Friis, Laila Saidane; Sejrsen, Birgitte

    2016-01-01

    AND METHODS: A total of 183 skeletal sub-adults from the Danish medieval period, were aged from radiographic images. Linear regression formulae were then produced for individual bones. Age was then estimated from the femur length using three different methods: equations developed in this study, data based...... as later than the medieval period, although this would require further testing. The quadratic equations are suggested to yield more accurate ages then using simply linear regression equations. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc.......OBJECTIVES: To develop a series of regression equations for estimating age from length of long bones for archaeological sub-adults when aging from dental development cannot be performed. Further, to compare derived ages when using these regression equations, and two other methods. MATERIAL...

  17. Timing of blunt force injuries in long bones: the effects of the environment, PMI length and human surrogate model.

    Science.gov (United States)

    Coelho, Luís; Cardoso, Hugo F V

    2013-12-10

    Timing of blunt force trauma in human bone is a critical forensic issue, but there is limited knowledge on how different environmental conditions, the duration of postmortem interval (PMI), different bone types and different animal models influence fracture morphology. This study aims at evaluating the influence of the type of postmortem environment and the duration of the postmortem period on fracture morphology, for distinguishing perimortem from postmortem fractures on different types of long bones from different species. Fresh limb segments from pig and goat were sequentially left to decompose, under 3 different environmental circumstances (surface, buried and submerged), resulting in sets with different PMI lengths (0, 28, 56, 84, 112, 140, 168 and 196 days), which were then fractured. Fractured bones (total=325; pig tibia=110; pig fibula=110; goat metatarsals=105) were classified according to the Fracture Freshness Index (FFI). Climatic data for the experiment location was collected. Statistical analysis included descriptive statistics, correlation analysis between FFI and PMI, Mann-Whitney U tests comparing FFI medians for different PMI's and linear regression analysis using PMI, pluviosity and temperature as predictors for FFI. Surface samples presented increases in FFI with increasing PMI, with positive correlations for all bone types. The same results were observed in submerged samples, except for pig tibia. Median FFI values for surface samples could distinguish bones with PMI=0 days from PMI≥56 days. Buried samples presented no significant correlation between FFI and PMI, and nonsignificant regression models. Regression analysis of surface and submerged samples suggested differences in FFI variation with PMI between bone types, although without statistical significance. Adding climatic data to surface regression models resulted in PMI no longer predicting FFI. When comparing different animal models, linear regressions suggested greater increases in

  18. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  19. Fetal Nasal Bone Length as a Novel Marker for Prediction of Adverse Perinatal Outcomes in the First-Trimester of Pregnancy

    Directory of Open Access Journals (Sweden)

    Mehmet Tunç Canda

    2017-04-01

    Full Text Available Background: Adverse outcomes of pregnancy are a challenging health-care problem. Prediction of adverse pregnancy outcomes is important to prevent the morbidities of the foetus and the mother. Aims: To study the clinical interest of fetal nasal bone length in predicting adverse pregnancy outcomes in the first trimester of pregnancy. Study Design: A population-based retrospective cohort study. Methods: Data from 868 women with first-trimester fetal nasal bone length and birth records available were enrolled. Fetal nasal bone length percentiles were determined and evaluated for their ability to predict adverse pregnancy outcomes such as preterm birth, preterm labour, preterm premature rupture of membranes, early preterm birth, gestational diabetes mellitus, gestational hypertension-preeclampsia, small-for-gestational age foetuses, macrosomia, oligohydramnios, polyhydramnios and fetal distress. Results: Fetal nasal bone length >95th percentile was significantly associated with preterm labor and preterm premature rupture of membranes (p=0.02, accuracy 0.91 and p=0.001, accuracy 0.94, respectively, whereas nasal bone length >99th percentile was significantly associated with preterm labor and oligohydramnios (p=0.006, accuracy 0.95 and p=0.014, accuracy 0.97. Conclusion: Fetal nasal bone length at high percentiles in the first trimester of pregnancy may aid in the prediction of adverse outcomes such as preterm labour, preterm premature rupture of membranes and oligohydramnios

  20. A method for estimating age of Danish medieval sub-adults based on long bone length

    DEFF Research Database (Denmark)

    Primeau, C.; Lynnerup, Niels; Friis, Laila Saidane

    2012-01-01

    for aging archaeological Danish sub-adults from the medieval period based on diaphyseal lengths. The problem with using data on Danish samples, which have been derived from a different population, is the possibility of skewing age estimates. In this study 58 Danish archaeological sub-adults were examined...

  1. A method for estimating age of medieval sub-adults from infancy to adulthood based on long bone length.

    Science.gov (United States)

    Primeau, Charlotte; Friis, Laila; Sejrsen, Birgitte; Lynnerup, Niels

    2016-01-01

    To develop a series of regression equations for estimating age from length of long bones for archaeological sub-adults when aging from dental development cannot be performed. Further, to compare derived ages when using these regression equations, and two other methods. A total of 183 skeletal sub-adults from the Danish medieval period, were aged from radiographic images. Linear regression formulae were then produced for individual bones. Age was then estimated from the femur length using three different methods: equations developed in this study, data based on a modern population (Maresh: Human growth and development (1970) pp 155-200), and, lastly, based on archeological data with known ages (Rissech et al.: Forensic Sci Int 180 (2008) 1-9). As growth of long bones is known to be non-linear it was tested if the regression model could be improved by applying a quadratic model. Comparison between estimated ages revealed that the modern data result in lower estimated ages when compared to the Danish regression equations. The estimated ages using the Danish regression equations and the regression equations developed by Rissech et al. (Forensic Sci Int 180 (2007) 1-9) were very similar, if not identical. This indicates that the growth between the two archaeological populations is not that dissimilar. This would suggest that the regression equations developed in this study may potentially be applied to archaeological material outside Denmark as well as later than the medieval period, although this would require further testing. The quadratic equations are suggested to yield more accurate ages then using simply linear regression equations. © 2015 Wiley Periodicals, Inc.

  2. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.

    Science.gov (United States)

    Baggi, Luigi; Cappelloni, Ilaria; Di Girolamo, Michele; Maceri, Franco; Vairo, Giuseppe

    2008-12-01

    Load transfer mechanisms and possible failure of osseointegrated implants are affected by implant shape, geometrical and mechanical properties of the site of placement, as well as crestal bone resorption. Suitable estimation of such effects allows for correct design of implant features. The purpose of this study was to analyze the influence of implant diameter and length on stress distribution and to analyze overload risk of clinically evidenced crestal bone loss at the implant neck in mandibular and maxillary molar periimplant regions. Stress-based performances of 5 commercially available implants (2 ITI, 2 Nobel Biocare, and 1 Ankylos implant; diameters of 3.3 mm to 4.5 mm, bone-implant interface lengths of 7.5 mm to 12 mm) were analyzed by linearly elastic 3-dimensional finite element simulations, under a static load (lateral component: 100 N; vertical intrusive component: 250 N). Numerical models of maxillary and mandibular molar bone segments were generated from computed tomography images, and local stress measures were introduced to allow for the assessment of bone overload risk. Different crestal bone geometries were also modelled. Type II bone quality was approximated, and complete osseous integration was assumed. Maximum stress areas were numerically located at the implant neck, and possible overloading could occur in compression in compact bone (due to lateral components of the occlusal load) and in tension at the interface between cortical and trabecular bone (due to vertical intrusive loading components). Stress values and concentration areas decreased for cortical bone when implant diameter increased, whereas more effective stress distributions for cancellous bone were experienced with increasing implant length. For implants with comparable diameter and length, compressive stress values at cortical bone were reduced when low crestal bone loss was considered. Finally, dissimilar stress-based performances were exhibited for mandibular and maxillary

  3. Association between leukocyte telomere length and bone mineral density in women 25-93 years of age

    DEFF Research Database (Denmark)

    Nielsen, Barbara Rubek; Linneberg, Allan; Bendix, Laila

    2015-01-01

    completed a health and lifestyle questionnaire. The associations were estimated by regression models that considered age, body mass index (BMI), menopause, physical activity, alcohol consumption and smoking habits. We found a statistically significant unadjusted association between LTL and age (estimate......Leukocyte telomere length (LTL) and bone mineral density (BMD) are associated with health and mortality. Because osteoporosis is an age-related condition and LTL is considered to be a biomarker of aging, we hypothesized that shorter LTL could predict lower BMD. The aim of our study was to assess...... whether there is an association of LTL with BMD and to determine whether this possible association is independent of age. The BMDs of the lumbar spine (LS), femoral neck (FN) and total hip (TH) were evaluated in 460 women using DXA. LTL was analyzed using quantitative polymerase chain reaction. The women...

  4. [Alveolar bone thickness and root length changes in the treatment of skeletal Class III patients facilitated by improved corticotomy: a cone-beam CT analysis].

    Science.gov (United States)

    Wu, Jiaqi; Jiang, Jiuhui; Xu, Li; Liang, Cheng; Li, Cuiying; Xu, Xiao

    2015-04-01

    To evaluate the alveolar bone thickness and root length changes of anterior teeth with cone-beam computed tomography (CBCT). CBCT scans were taken for 12 skeletal Class III patients who accepted the improved corticotomy (IC) procedures during pre-surgical orthodontics. The CBCT data in T1 (the maxillary dental arch was aligned and leveled) and T2 (extraction space closure) were superimposed and the alveolar bone thickness at root apex level and root length measurements were done. From T1 to T2, the buccal alveolar bone thickness for the upper lateral incisors increased from (1.89±0.83) to (2.47±1.02) mm (Pteeth of 72 was located in Grade 1, two teeth in Grade 2, one tooth in Grade 3. The improved corticotomy had the potential to increase the buccal alveolar bone thickness and the root resorption in most teeth was in Grade 1 according to Sharpe grading system.

  5. Virtual quad zygoma implant placement using cone beam computed tomography: sufficiency of malar bone volume, intraosseous implant length, and relationship to the sinus according to the degree of alveolar bone atrophy.

    Science.gov (United States)

    Bertos Quílez, J; Guijarro-Martínez, R; Aboul-Hosn Centenero, S; Hernández-Alfaro, F

    2018-02-01

    The objective of this study was to investigate the malar bone volume and length that a zygomatic implant can engage, and the relationship to the sinus according to the degree of alveolar bone atrophy. A three-dimensional evaluation was performed using cone beam computed tomography scans from 23 patients with a totally edentulous maxilla; quad zygoma implants were virtually placed. The predictor variable was the amount of malar bone volume and length that a zygomatic implant can engage. The primary outcome variable was the relationship to the sinus according to the degree of alveolar bone atrophy. Other variables were the residual alveolar bone height to the floor of the sinus and the nasal cavity. The mean volume of malar bone engaged in this sample of 92 zygomatic implants was 0.19±0.06cm 3 . The implant had an extrasinus path in 60.9% of cases, a parasinus path in 25%, and an intrasinus path in 14.1%. The results suggest that the average volume of malar bone engaged by a zygomatic implant is constant regardless of implant position and the degree of alveolar bone atrophy. As alveolar atrophy increases, the trajectory of the implant becomes more parasinus and intrasinus. The examiners were able to find enough bone to adequately distribute the implants in all cases. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  7. Short implants (6mm) vs. vertical bone augmentation and standard-length implants (≥9mm) in atrophic posterior mandibles: a 5-year retrospective study.

    Science.gov (United States)

    Pieri, F; Forlivesi, C; Caselli, E; Corinaldesi, G

    2017-12-01

    This retrospective study compared the 5-year clinical and radiographic outcomes of short implants (6 mm) (short group), and standard-length implants (≥9mm) placed after a vertical augmentation with autologous bone blocks (augmentation group), supporting partial fixed prostheses in the posterior mandible. Forty-five partially edentulous patients were enrolled in the study and evaluated after 5 years: 22 (51 implants) in the augmentation group and 23 (46 implants) in the short group. Eight surgical complications occurred in the augmentation group versus none in the short group (P=0.003). One short implant failed before loading and one standard-length implant failed after 4 years because of peri-implantitis (P=1.0). Eight biological and two prosthetic complications occurred in the augmentation group vs. three biological and three prosthetic complications in the short group (P=0.09 and P=1.0, respectively). A mean marginal bone loss of 1.61±1.12mm in the augmentation group and 0.68±0.68mm in the short group was found (P=0.002). Within the limitations of this study, both techniques resulted in successful clinical results after 5 years, but short implants exhibited less surgical complications and marginal bone loss than standard-length implants placed in augmented bone. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Comparative evaluation of bone marrow aspirate with trephine biopsy in hematological disorders and determination of optimum trephine length in lymphoma infiltration.

    Science.gov (United States)

    Goyal, Surbhi; Singh, Usha Rani; Rusia, Usha

    2014-01-02

    Bone marrow examination is an indispensable diagnostic tool to evaluate neoplastic and non neoplastic hematological diseases. To compare bone marrow aspirate with trephine biopsy in hematological disorders. To determine the optimum trephine preprocessing length in lymphoma infiltration. Diagnostic comparison was done between simultaneous bone marrow aspirates and trephine biopsies in 449 patients. Biopsies were fixed in formalin, decalcified in 5.5% EDTA and routinely processed. Concordance rates and validity parameters for aspirate were calculated. Three deeper sections of trephine biopsy, cut at 0.1-0.2 mm intervals, were assessed for lymphoma involvement. Proportion of biopsies showing marrow infiltration by lymphoma cells was plotted against trephine length and correlation was assessed. Aspirate had a high sensitivity for acute leukemia (89.4%) and multiple myeloma (88.5%), moderate for NHL (67.6%) and nonhematopoietic metastases (58.3%) and low for aplastic anemia (38.5%) and Hodgkin lymphoma (5%). Aspirate has no role in granulomatous myelitis and myelofibrosis. Lymphoma positivity increased with trephine length, with maximum positivity (68.9%) seen in 17-20 mm group and no further gain beyond 20 mm. (lymphoma positivity ≤16mm=40.3% and ≥17mm=66.1%, p=0.0011). Aspirate has a high specificity; its sensitivity depends upon the type of disease. Apart from few conditions, in which aspirate alone is sufficient, biopsy is mandatory in most. Preprocessing trephine length of 17-20 mm examined at multiple deeper levels was found optimal for assessing lymphoma positivity.

  9. Quantitative trait loci for bone lengths on chromosome 5 using dual energy X-Ray absorptiometry imaging in the Twins UK cohort.

    Directory of Open Access Journals (Sweden)

    Usha Chinappen-Horsley

    Full Text Available Human height is a highly heritable and complex trait but finding important genes has proven more difficult than expected. One reason might be the composite measure of height which may add heterogeneity and noise. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL for lengths of spine, femur, tibia, humerus and radius. These were investigated as alternative measures for height in a large, population-based twin sample with the potential to find genes underlying bone size and bone diseases. 3,782 normal Caucasian females, 18-80 years old, with whole body dual energy X-ray absorptiometry (DXA images were used. A novel and reproducible method, linear pixel count (LPC was used to measure skeletal sizes on DXA images. Intraclass correlations and heritability estimates were calculated for lengths of spine, femur, tibia, humerus and radius on monozygotic (MZ; n = 1,157 and dizygotic (DZ; n = 2,594 twins. A genome-wide linkage scan was performed on 2000 DZ twin subjects. All skeletal sites excluding spine were highly correlated. Intraclass correlations showed results for MZ twins to be significantly higher than DZ twins for all traits. Heritability results were as follows: spine, 66%; femur, 73%; tibia, 65%; humerus, 57%; radius, 68%. Results showed reliable evidence of highly suggestive linkage on chromosome 5 for spine (LOD score = 3.0 and suggestive linkage for femur (LOD score = 2.19 in the regions of 105cM and 155cM respectively. We have shown strong heritability of all skeletal sizes measured in this study and provide preliminary evidence that spine length is linked to the chromosomal region 5q15-5q23.1. Bone size phenotype appears to be more useful than traditional height measures to uncover novel genes. Replication and further fine mapping of this region is ongoing to determine potential genes influencing bone size and diseases affecting bone.

  10. Effects of implant length and 3D bone-to-implant contact on initial stabilities of dental implant: a microcomputed tomography study.

    Science.gov (United States)

    Hsu, Jui-Ting; Wu, Aaron Yu-Jen; Fuh, Lih-Jyh; Huang, Heng-Li

    2017-11-21

    The influences of potential bone-to-implant contact (BIC) area (pBICA), BIC area (BICA), and three dimensional (3D) BIC percentage (3D BIC%; defined as BICA divided by pBICA) in relation to the implant length on initial implant stability were studied. Correlations between these parameters were also evaluated. Implants with lengths of 8.5, 10, 11.5, and 13 mm were placed in artificial bone specimens to measure three indexes of the initial implant stability: insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ). The implants and bone specimens were also scanned by microcomputed tomography, and the obtained images were imported into Mimics software to reconstruct the 3D models and calculate the parameters of 3D bone-to-implant contact including pBICA, BICA, and 3D BIC%. The Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni adjustment, and Spearman correlations were applied for statistical and correlation analyses. The implant length affected ITV more than PTV and ISQ, and significantly affected pBICA, BICA, and 3D BIC%. A longer implant increased pBICA and BICA but decreased 3D BIC%. The Spearman coefficients were high (>0.78) for the correlations between the three 3D BIC parameters and the three indexes of the initial implant stability. pBICA, BICA, and 3D BIC% are useful when deciding on treatment plans related to various implant lengths, since these 3D BIC parameters are predictive of the initial implant stability.

  11. Common Genetic Variation in the DKK1 Gene is Associated with Hip Axis Length but not with Bone Mineral Density and Bone Turnover Markers in Young Adult Men: Results from the Odense Androgen Study

    DEFF Research Database (Denmark)

    Piters, Elke; Balemans, Wendy; Nielsen, Torben Leo

    2010-01-01

    LRP5 was recently confirmed as an important susceptibility gene for osteoporosis. Our objective was to evaluate the effect of DKK1 polymorphisms on bone mineral density (BMD), hip geometry, and bone turnover. DKK1 is a secreted protein that binds to LRP5/6 receptors and inhibits canonical Wnt...... with hip axis length (HAL), independent of BMD and height. Moreover, the association seemed to be driven by the nonsedentary subgroup (P = 0.004). Haplotype analysis further confirmed the association of rs1569198 with HAL. Furthermore, we obtained indications for interaction between DKK1 and LRP5 genotypes...

  12. Lengths of the maxillary central incisor, the nasal bone, and the anterior cranial base in different skeletal malocclusions

    DEFF Research Database (Denmark)

    Arntsen, Torill; Kjær, Inger; Sonnesen, Liselotte

    2009-01-01

    malocclusions. Material and methods . Incisor, nasal, and cranial base lengths were measured on lateral radiographs of adult patients with skeletal malocclusions, including open bite (n=35), mandibular overjet (n=56), maxillary overjet (n=31), deep bite (n=19), and compared with those of a control group...... with neutral occlusion and normal craniofacial morphology (n=39). Two-way ANOVA tests were used to evaluate differences in lengths between groups and gender. Results. Statistically shorter maxillary central incisor length was found in the open bite group (p....001), and in the deep bite group (p

  13. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  14. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  15. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  16. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  17. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  18. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  19. Assessment of Marginal Peri-implant Bone-Level Short-Length Implants Compared with Standard Implants Supporting Single Crowns in a Controlled Clinical Trial: 12-Month Follow-up.

    Science.gov (United States)

    Mendoza-Azpur, Gerardo; Lau, Miguel; Valdivia, Erick; Rojas, Jorge; Muñoz, Henry; Nevins, Myron

    In oral rehabilitation, crown-to-root ratio is accepted as an indicator of bone loss, and this concept was transferred to implants. Recent studies have indicated that there is no significant difference between short and standard implants. The aim of this study was to compare marginal bone-level alteration through radiographic evaluation and clinical parameters between short and standard implants supporting single crowns. This prospective clinical trial study included 82 systemically healthy, nonsmoking subjects. Patients were divided into two groups: one group for short dental implants measuring 5.5 or 7 mm, and one group for standard dental implants measuring 10 or 12 mm, in accordance with the individual needs of the patient. A clinical dental history was taken for each subject, including model casts, dental radiography, and cone beam computed tomography. A periapical analysis was also performed using ImageJ computer software to establish the initial bone measurement and periapical bone loss. A statistically significant difference was found in favor of the standard-length implants after 12 months, with greater gingival recession around the implant; however, bone loss in the short implants did not exceed 0.53 mm. The treatment with 5.5- to 7-mm-length implants is as reliable as treatment with 10- or 12-mm implants. Peri-implant bone loss is minimal, and therefore use of short implants can be recommended as treatment for the restoration of partially edentulous patients without the need for splinted crowns.

  20. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  1. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  2. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  3. Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control

    NARCIS (Netherlands)

    Lommen, S.T.E.

    2013-01-01

    The central theme of this PhD thesis is natural variation in the wing length of the predatory two-spot ladybird beetle, Adalia bipunctata. ‘Wingless’ individuals of this species occur occasionally. They possess truncated wing covers and flight wings and cannot fly, but the extent of the reduction is

  4. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  5. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    Science.gov (United States)

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-01-26

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45o. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3x103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5~10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings. © 2018 IOP Publishing Ltd.

  6. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  7. Performance Comparison between Optimised Camber and Span for a Morphing Wing

    Directory of Open Access Journals (Sweden)

    Christopher Simon Beaverstock

    2015-09-01

    Full Text Available Morphing technology offers a strategy to modify the wing geometry, and the wing planform and cross-sectional parameters can be optimised to the flight conditions. This paper presents an investigation into the effect of span and camber morphing on the mission performance of a 25-kg UAV, with a straight, rectangular, unswept wing. The wing is optimised over two velocities for various fixed wing and morphing wing strategies, where the objective is to maximise aerodynamic efficiency or range. The investigation analyses the effect of the low and high speed velocity selected, the weighting of the low and high velocity on the computation of the mission parameter, the maximum allowable span retraction and the weight penalty on the mission performance. Models that represent the adaptive aspect ratio (AdAR span morphing concept and the fish bone active camber (FishBAC camber morphing concept are used to investigate the effect on the wing parameters. The results indicate that generally morphing for both span and camber, the aerodynamic efficiency is maximised for a 30%–70% to 40%–60% weighting between the low and high speed flight conditions, respectively. The span morphing strategy with optimised fixed camber at the root can deliver up to 25% improvement in the aerodynamic efficiency over a fixed camber and span, for an allowable 50% retraction with a velocity range of 50–115 kph. Reducing the allowable retraction to 25% reduces the improvement to 8%–10% for a 50%–50% mission weighting. Camber morphing offers a maximum of 4.5% improvement approximately for a velocity range of 50–90 kph. Improvements in the efficiency achieved through camber morphing are more sensitive to the velocity range in the mission, generally decreasing rapidly by reducing or increasing the velocity range, where span morphing appears more robust for an increase in velocity range beyond the optimum. However, where span morphing requires considerable modification to the

  8. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  9. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Percutaneous radiofrequency ablation: relationship between different probe types and procedure time on length and extent of osteonecrosis in dog long bones

    Energy Technology Data Exchange (ETDEWEB)

    Martel, J.; Bueno, A. [Fundacion Hospital Alcorcon, Departamento de Diagnostico por Imagen, Alcorcon, Madrid (Spain); Dominguez, M.P. [Fundacion Hospital Alcorcon, Departamento de Patologia, Alcorcon, Madrid (Spain); Llorens, P.; Quiros, J.; Delgado, C. [Universidad Complutense, Facultad de Veterinaria, Madrid (Spain)

    2008-02-15

    We have been using radiofrequency ablation for the percutaneous treatment of osteoid osteoma since 2001. Frequently, lesions are located near the joint surface, involve the vertebral body or are close to major nerves. We seek to determine whether radiofrequency ablation (RFA) can be used safely in these cases. A total of 65 lesions were induced in 4 dogs. Each dog underwent RFA on the diaphysis of long bones, as well as femoral and humeral heads. Four different sessions were carried out by using 1- and 2-cm probes with or without a cool-tip system and by varying the timing of the procedure. Plain film, CT, and MRI were obtained. All bone samples were examined histologically. The dogs' activity after the procedure was normal. No pathologic fractures occurred despite unrestricted activity of the animals. Cortical bone was always respected; therefore, articular cartilage has not been damaged. Radiological findings were characteristic. There were no significant differences in lesion size, probe type, and the duration of the procedure. The mean lesion diameter perpendicular to the electrode was 18.5 mm. Our study confirms the insulative effect of cortical bone. RFA can be safely performed close to the joint surface without damaging the cartilage. (orig.)

  11. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  12. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  13. Abnormal development of the lesser wing of the sphenoid with microphthalmos and microcephaly

    International Nuclear Information System (INIS)

    Jacquemin, C.; Bosley, T.M.

    2001-01-01

    We report two patients with abnormal development of the lesser wing of the sphenoid bone, globe, optic nerve and cerebral hemisphere without stigmata of neurofibromatosis type 1. The lesser wing of the sphenoid bone was abnormally formed and was not ossified ipsilateral to the dysmorphic eye and underdeveloped cerebral hemisphere. Maldevelopment of the sphenoid wing may interfere with the normal closure of the optic vesicle and normal growth of encephalic structures, possibly by disturbing developmental tissue interactions. These patients may exhibit a type of restricted primary sphenoid dysplasia, while the sphenoid dysplasia of neurofibromatosis type 1 may be secondary to orbital or ocular neurofibromas and other factors associated with that disease. (orig.)

  14. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  15. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  16. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  17. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. An investigation into the variables associated with length of hospital stay related to primary cleft lip and palate surgery and alveolar bone grafting.

    Science.gov (United States)

    Izadi, N; Haers, P E

    2012-10-01

    This retrospective study evaluated variables associated with length of stay (LOS) in hospital for 406 admissions of primary cleft lip and palate and alveolus surgery between January 2007 and April 2009. Three patients were treated as day cases, 343 (84%) stayed one night, 48 (12%) stayed 2 nights and 12 (3%) stayed > 2 nights. Poisson regression analysis showed that there was no association between postoperative LOS and age, distance travelled, diagnosis and type of operation, with a p value > 0.2 for all variables. 60/406 patients stayed 2 nights or more postoperatively mostly due to poor pain control and inadequate oral intake. Patients with palate repair were more likely to have postoperative LOS > 1 night, compared to patients with lip repair, p value = 0.011. Four patients (1%), all of whom had undergone cleft palate surgery, were readmitted within 4 weeks of the operation due to respiratory obstruction or haemorrhage. Using logistic regression, evidence showed that these readmissions were related to a longer original postoperative LOS. This study shows that length of stay for primary cleft lip, palate and alveolus surgery can in most cases be limited to one night postoperatively, provided that adequate support can be provided at home. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Study on airflow characteristics of rear wing of F1 car

    Science.gov (United States)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  20. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  1. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  2. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  3. Effect of Winged Subsoiler and Traditional Tillage Integrated with ...

    African Journals Online (AJOL)

    Effect of Winged Subsoiler and Traditional Tillage Integrated with Fanya Juu on Selected Soil Physico-Chemical and Soil Water Properties in the Northwestern ... Soil evaporation was estimated by a conceptual model whereby leaf area index, canopy cover, crop root length, moisture at saturation and field capacity were ...

  4. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  5. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  6. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  7. Flight in slow motion: aerodynamics of the pterosaur wing.

    Science.gov (United States)

    Palmer, Colin

    2011-06-22

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.

  8. How the pterosaur got its wings.

    Science.gov (United States)

    Tokita, Masayoshi

    2015-11-01

    Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now

  9. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  10. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  11. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  12. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  13. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  14. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  15. The redder the better: wing color predicts flight performance in monarch butterflies.

    Science.gov (United States)

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  16. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  17. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

    Science.gov (United States)

    Bergou, Attila J.; Swartz, Sharon M.; Vejdani, Hamid; Riskin, Daniel K.; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S.

    2015-01-01

    The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles. PMID:26569116

  18. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  19. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  20. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  1. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  2. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  3. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  4. The Hydraulic Mechanism of the Unfolding of Hind Wings in Dorcus titanus platymelus (Order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2014-04-01

    Full Text Available In most beetles, the hind wings are thin and fragile; when at rest, they are held over the back of the beetle. When the hind wing unfolds, it provides the necessary aerodynamic forces for flight. In this paper, we investigate the hydraulic mechanism of the unfolding process of the hind wings in Dorcus titanus platymelus (Oder: Coleoptera. The wing unfolding process of Dorcus titanus platymelus was examined using high speed camera sequences (400 frames/s, and the hydraulic pressure in the veins was measured with a biological pressure sensor and dynamic signal acquisition and analysis (DSA during the expansion process. We found that the total time for the release of hydraulic pressure during wing folding is longer than the time required for unfolding. The pressure is proportional to the length of the wings and the body mass of the beetle. A retinal camera was used to investigate the fluid direction. We found that the peak pressures correspond to two main cross-folding joint expansions in the hind wing. These observations strongly suggest that blood pressure facilitates the extension of hind wings during unfolding.

  5. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    Science.gov (United States)

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  6. Protection against wing icing for Airbus A300 and A310

    Science.gov (United States)

    Woelfer, G.

    1981-01-01

    To improve economy of operation, it is now planned to modify the anti-icing system used on the A300 Airbus wing. Thus, for the A310 Airbus, the deicing system will be applied to only half the wing length. Other essential modifications are a substantial simplification of the warm-air system and discontinuation of the use of a double wall in slats.

  7. A Numerical Study of Vortex Dynamics of Flexible Wing Propulsors

    Science.gov (United States)

    2011-03-30

    Final Report Title: A numerical study of vortex dynamics of flexible wing propulsors AFOSR/AOARD Reference Number: AOARD-09-4077 AFOSR/AOARD Program ...NUMBER FA23860914077 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kartik Venkatraman 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...trailing-edge amplitude showed variations with change in filament length though the frequency of flapping was almost constant. Fitt & Pope (2001) showed the

  8. Bone Diseases

    Science.gov (United States)

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  9. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  10. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  11. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  12. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  13. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.

  14. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  15. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  16. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  17. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  18. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  19. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  20. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  1. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  2. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  3. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  4. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  5. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  6. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  7. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  8. Turbulence investigation of the NASA common research model wing tip vortex

    Directory of Open Access Journals (Sweden)

    Čantrak Đorđe S.

    2017-01-01

    Full Text Available The paper presents high-speed stereo particle image velocimetry investigation of the NASA Common Research Model wing tip vortex. A three-percent scaled semi–span model, without nacelle and pylon, was tested in the 32- by 48-inch Indraft tunnel, at the Fluid Mechanics Laboratory at the NASA Ames Research Center. Turbulence investigation of the wing tip vortex is presented. Measurements of the wing-tip vortex were performed in a vertical cross-stream plane three tip-chords downstream of the wing tip trailing edge with a 2 kHz sampling rate. Experimental data are analyzed in the invariant anisotropy maps for three various angles of attack (0°, 2°, and 4° and the same speed generated in the tunnel (V∞ = 50 m/s. This corresponds to a chord Reynolds number 2.68x105, where the chord length of 3” is considered the characteristic length. The region of interest was x = 220 mm and y = 90 mm. The 20 000 particle image velocimetry samples were acquired at each condition. Velocity fields and turbulence statistics are given for all cases, as well as turbulence structure in the light of the invariant theory. Prediction of the wing tip vortices is still a challenge for the computational fluid dynamics codes due to significant pressure and velocity gradients. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  9. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  10. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Braune, B.M.; Scheuhammer, A.M.; Bond, D.E.

    2007-01-01

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  11. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  12. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  13. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  14. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings

    Directory of Open Access Journals (Sweden)

    Satterfield Dara A.

    2014-01-01

    Full Text Available The migration of monarch butterflies (Danaus plexippus in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width, and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010, results showed that the earliest migrants (n = 20 in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17. There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind

  15. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  16. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  17. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  18. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  19. Low Bone Density

    Science.gov (United States)

    ... Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone ... to people with normal bone density. Detecting Low Bone Density A bone density test will determine whether ...

  20. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  1. Nonlinear Large Deflection Theory with Modified Aeroelastic Lifting Line Aerodynamics for a High Aspect Ratio Flexible Wing

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel

    2017-01-01

    This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.

  2. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  3. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  4. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  5. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    Science.gov (United States)

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  6. Extensão máxima de retalho pediculado de omento maior através de túnel subcutâneo para ossos longos em cães Maximum length of greater omentum pedicle flap through subcutaneous tunnel for long bones in dogs

    Directory of Open Access Journals (Sweden)

    Kelly Cristiane Ito

    2010-03-01

    little research with greater omentum flap as angiogenic and immunogenic inductor, however, their adhesion properties and drainage are well known. This study wondered whether if the greater omentum can be used as angiogenic inductor in bone fractures, and therefore increase osteogenenic rates and decreasing bone infection. Initially it was designed an experimental study which aimed to obtain a greater omentum pedicle flap and conduct it so long as possible through a subcutaneous defect in order to reach long bones (femur, tibia, humerus, radius/ulna. For the experiment it was used 30 dogs cadavers of all breeds, except condrosdistrophics breeds. The results were conclusive and confirmed the possibility of reaching the omentum flap for long bones. All the animals had reached the distal half of the evaluated bones. Results were satisfactorily accomplished and in 100% of the cases the flap reached the distal half of the evaluated bones. The averages of the different flap length were: 30.87cm when double layer was used; 54.37cm in simple layer; and 92.7cm when the flap was built in L. The maximum length of the omentum has secured the possibility of reaching the distal metaphases of all the bones studied. The average length exceeded 29.87cm to femur, 20.73cm to tibia/fibula, 25.13cm to humerus, and 16.27cm to radius/ulna. The flap length variety statistically evaluated showed moderate positive correlation on the presented individuals. It was concluded that the omentum pedicle flap can be taken through the subcutaneous defect until the distal metaphase of the long bones of dogs cadavers without tension. Animals with high corporal weight have the biggest L flap length.

  7. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  8. Can body traits, other than wings, reflect the flight ability of Triatominae bugs?

    Directory of Open Access Journals (Sweden)

    María Laura Hernández

    2015-12-01

    Full Text Available Abstract: INTRODUCTION : Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? METHODS : The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. RESULTS : Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. CONCLUSIONS: We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.

  9. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    Science.gov (United States)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  10. Can body traits, other than wings, reflect the flight ability of Triatominae bugs?

    Science.gov (United States)

    Hernández, María Laura; Dujardin, Jean Pierre; Gorla, David Eladio; Catalá, Silvia Susana

    2015-01-01

    Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.

  11. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  12. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  13. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  14. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  15. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness.

    Science.gov (United States)

    Smith, N Adam; Clarke, Julia A

    2014-02-01

    Although studies of osteological morphology, gross myology, myological histology, neuroanatomy, and wing-scaling have all documented anatomical modifications associated with wing-propelled diving, the osteohistological study of this highly derived method of locomotion has been limited to penguins. Herein we present the first osteohistological study of the derived forelimbs and hind limbs of wing-propelled diving Pan-Alcidae (Aves, Charadriiformes). In addition to detailing differences between wing-propelled diving charadriiforms and nondiving charadriiforms, microstructural modifications to the humeri, ulnae and femora of extinct flightless pan-alcids are contrasted with those of volant alcids. Histological thin-sections of four species of pan-alcids (Alca torda, †Alca grandis, †Pinguinus impennis, †Mancalla cedrosensis) and one outgroup charadriiform (Stercorarius longicaudus) were compared. The forelimb bones of wing-propelled diving charadriiforms were found to have significantly thicker (∼22%) cortical bone walls. Additionally, as in penguins, the forelimbs of flightless pan-alcids are found to be osteosclerotic. However, unlike the pattern documented in penguins that display thickened cortices in both forelimbs and hind limbs, the forelimb and hind limb elements of pan-alcids display contrasting microstructural morphologies with thickened forelimb cortices and relatively thinner femoral cortices. Additionally, the identification of medullary bone in the sampled †Pinguinus impennis specimen suggests that further osteohistological investigation could provide an answer to longstanding questions regarding sexual dimorphism of Great Auks. Finally, these results suggest that it is possible to discern volant from flightless wing-propelled divers from fragmentary fossil remains. Copyright © 2013 Wiley Periodicals, Inc.

  16. Ultrasonic guided waves in bone.

    Science.gov (United States)

    Moilanen, Petro

    2008-01-01

    Recent progress in quantitative ultrasound (QUS) has shown increasing interest toward measuring long bones by ultrasonic guided waves. This technology is widely used in the field of nondestructive testing and evaluation of different waveguide structures. Cortical bone provides such an elastic waveguide and its ability to sustain loading and resist fractures is known to be related to its mechanical properties at different length scales. Because guided waves could yield diverse characterizations of the bone's mechanical properties at the macroscopic level, the method of guided waves has a strong potential over the standardized bone densitometry as a tool for bone assessment. Despite this, development of guided wave methods is challenging, e.g., due to interferences and multiparametric inversion problems. This paper discusses the promises and challenges related to bone characterization by ultrasonic guided waves.

  17. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  18. Association between antennal phenotype, wing polymorphism and sex in the genus Mepraia (Reduviidae: Triatominae).

    Science.gov (United States)

    Moreno, Mariana Laura; Gorla, David; Catalá, Silvia

    2006-05-01

    Mepraia spinolai and Mepraia gajardoi (Hemiptera, Reduviidae) are only found in the arid regions of northern Chile. Mepraia is the only genus of Triatominae with marked wing polymorphism. Females of both species are micropterous, males of M. spinolai may be micropterous, brachypterous or macropterous, while males of M. gajardoi are always brachypterous. Because of this wing polymorphism, Mepraia can be used as a model to analyze morphological adaptations related to the flying activity and evolutionary relationships in the Triatominae. The study presented here analyses the antennal phenotype of the Mepraia species and carries out a comparison with the two species of Triatoma included in the spinolai complex (Triatoma eratyrusiformis and Triatoma breyeri). The analysis of the antennal phenotype of Mepraia showed a marked intraspecific phenotypic variability related with sex and wing condition. The number and length of multiporous trichoid sensilla (TH) on the pedicel are significantly higher and longer in winged males and are strongly reduced in females. The great length of the TH sensillum is an infrequent characteristic within Triatominae. The results show that phenetic distances between sexes are greater than between the two species. Similarity between the Mepraia species and T. eratyrusiformis was found as they all show long bristles (BR) and TH and two sized basiconic receptors (BA), a pattern that have not been observed in other species of Triatominae. These characters are not present in T. breyeri.

  19. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  20. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  1. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  2. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  3. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  4. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  5. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  6. First `Winged' and `X'-shaped Radio Source Candidates

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C.C.

    2007-01-22

    A small number of double-lobed radio galaxies (17 from our own census of the literature) show an additional pair of low surface brightness ''wings'', thus forming an overall ''X''-shaped appearance. The origin of the wings in these radio sources is unclear. They may be the result of back-flowing plasma from the currently active radio lobes into an asymmetric medium surrounding the active nucleus, which would make these ideal systems in which to study thermal/non-thermal plasma interactions in extragalactic radio sources. Another possibility is that the wings are the aging radio lobes left over after a (rapid) realignment of the central supermassive black-hole/accretion disk system due perhaps to a merger. Generally, these models are not well tested; with the small number of known examples, previous works focused on detailed case studies of selected sources with little attempt at a systematic study of a large sample. Using the VLA-FIRST survey database, we are compiling a large sample of winged and X-shaped radio sources for such studies. As a first step toward this goal, an initial sample of 100 new candidate objects of this type are presented in this paper. The search process is described, optical identifications from available literature data, and basic radio data are presented. From the limited resolution FIRST images ({approx} 5''), we can already confidently classify a sufficient number of these objects as having the characteristic wing lengths >80% of the active lobes to more than double the number of known X-shaped radio sources. We have also included as candidates, radio sources with shorter wings (<80% wing to lobe length ratios), or simply ''winged'' sources, as it is probable that projection effects are important. Finally, among the candidates are four quasars (z=0.37 to 0.84), and several have morphologies suggestive of Fanaroff-Riley type-I (low-power) radio galaxies. While followup

  7. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Haley Johnson

    Full Text Available In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus, a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width, which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%. Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  8. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  9. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  10. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  11. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  12. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  13. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings.

    Science.gov (United States)

    Xu, Xing; Zheng, Xiaoting; Sullivan, Corwin; Wang, Xiaoli; Xing, Lida; Wang, Yan; Zhang, Xiaomei; O'Connor, Jingmai K; Zhang, Fucheng; Pan, Yanhong

    2015-05-07

    The wings of birds and their closest theropod relatives share a uniform fundamental architecture, with pinnate flight feathers as the key component. Here we report a new scansoriopterygid theropod, Yi qi gen. et sp. nov., based on a new specimen from the Middle-Upper Jurassic period Tiaojishan Formation of Hebei Province, China. Yi is nested phylogenetically among winged theropods but has large stiff filamentous feathers of an unusual type on both the forelimb and hindlimb. However, the filamentous feathers of Yi resemble pinnate feathers in bearing morphologically diverse melanosomes. Most surprisingly, Yi has a long rod-like bone extending from each wrist, and patches of membranous tissue preserved between the rod-like bones and the manual digits. Analogous features are unknown in any dinosaur but occur in various flying and gliding tetrapods, suggesting the intriguing possibility that Yi had membranous aerodynamic surfaces totally different from the archetypal feathered wings of birds and their closest relatives. Documentation of the unique forelimbs of Yi greatly increases the morphological disparity known to exist among dinosaurs, and highlights the extraordinary breadth and richness of the evolutionary experimentation that took place close to the origin of birds.

  14. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  15. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Federica Talarico

    2011-05-01

    Full Text Available In carabid beetles, physiological and behavioural characteristics reflect specific habitat demands and there is a strong correlation between body form and habit in species with different life style. In this study, we compared the morphometry and compound eye characteristics of three species of the genus Siagona: S. jenissoni, S. dejeani and S. europaea. These carabids have a stenotopic lifestyle in Mediterranean clayey soils, inhabiting the ground fissure system formed during the dry season. All species have a Mediterranean distribution and are nocturnal olfactory hunters, and are strict ant predators. For morphometric measurements, we considered body length (mm, wing length (mm, antenna length (mm, head width (mm, trochanter length (mm, number of ommatidia, eye surface area (mm2, ommatidia density (number of ommatidia/mm2 of eye surface area, head height (mm, thorax height (mm and abdomen height (mm. The data revealed intersexual and interspecific differences. The three species differ in relative length of the antennae, density and number of ommatidia and relative trochanter length. Significant differences occurred in wing sizes, which are well developed in S. europaea, the only species capable of flight. When eye size is compared with other ground beetles of various lifestyles, Siagona shows pronounced “microphthalmy” an adaptation to subterranean life in clayey crevices of tropical and subtropical climates with a marked dry season.

  16. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.

    Science.gov (United States)

    Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D

    2017-12-22

    Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

  17. Flutter suppression and stability analysis for a variable-span wing via morphing technology

    Science.gov (United States)

    Li, Wencheng; Jin, Dongping

    2018-01-01

    A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.

  18. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  19. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  20. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  1. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  2. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  3. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  4. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  5. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  6. [Clinical application of biological bone carrier in repair of long bone defect of femur].

    Science.gov (United States)

    Yao, L; Chen, J; Hu, X

    1997-05-01

    It is difficult to repair long defect of bone. Biological bone carrier (BBC) was one of the artifical bone substitutes. It was obtained from human or swine bone after a series of biochemical treatment. It had good histocompatibility. It had the same components and structure of bone, and its biological strength was samiliar to bone. In clinic, BBC was applied to repair of long defect of bone in two cases. The lengths of defect were 13 cm and 11 cm, respectively. After followed up for 2 to 3 years, it was found that the implanted BBC had been combined with the femur with new bone. It had the same metabolism and density as that of the normal bone.

  7. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  8. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  9. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  10. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.

    Science.gov (United States)

    Simons, Erin L R; O'connor, Patrick M

    2012-03-01

    Wing bone histology in three species of birds was characterized in order to test hypotheses related to the relationship between skeletal microstructure and inferred wing loading during flight. Data on the degree of laminarity (the proportion of circular vascular canals) and the occurrence of secondary osteons were obtained from three species that utilize different primary flight modes: the Double-crested cormorant, a continuous flapper; the Brown pelican, a static soarer; and the Laysan albatross, a dynamic soarer. Laminarity indices were calculated for four quadrants for each of the three main wing elements. Ulnae and carpometacarpi were predicted to exhibit quadrant specific patterns of laminarity due to hypothesized differences in locally applied loads related to the attachment of flight feathers. However, few differences among the quadrants were identified. No significant differences were identified among the three elements, which is notable as different bones are likely experiencing different loading conditions. These results do not support the concept of bone functional adaptation in the primary structure of the wing elements. Significant differences in laminarity were found among the three primary flight modes. The dynamic soaring birds exhibited significantly lower laminarity than the flapping and static soaring birds. These results support the proposed hypothesis that laminarity is an adaptation for resisting torsional loading. This may be explained by overall wing shape: whereas dynamic soaring birds have long slender wings, flappers and static soaring birds have broader wings with a larger wing chord that would necessarily impart a higher torsional moment on the feather-bearing bones. Copyright © 2012 Wiley Periodicals, Inc.

  11. Lightning protection design and testing of an all composite wet wing for the Egrett

    Science.gov (United States)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  12. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  13. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  14. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  15. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  16. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  17. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  18. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Figure 12. Thin spline plate graphics for the species belonging to the genus Cerceris. Figure 13. Fore wing landmarks of the significant wing characteristics in the honeybee Apis mellifera. Linnaeus. stated as the traditional wing morphometry that enables the practical discrimination of the honeybee (Apis sp ...

  19. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  20. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  1. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  2. Broken bone

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Broken bone URL of this page: //medlineplus.gov/ency/ ... following steps to reduce your risk of a broken bone: Wear protective ... pads. Create a safe home for young children. Place a gate at stairways ...

  3. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  4. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  5. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  6. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  7. Air Base Wing and Air Mobility Wing Consolidating on AMC-LED Joint Bases: A Delphi Study

    Science.gov (United States)

    2014-06-13

    AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY GRADUATE RESEARCH PAPER Mason E. MacGarvey... DELPHI STUDY GRADUATE RESEARCH PAPER Presented to the Faculty Graduate School of Engineering Management Air Force Institute of Technology...iv AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY Mason E. MacGarvey, BS, MBA

  8. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  9. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  10. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  11. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  12. Chemical evaluation of winged beans ( Psophocarpus ...

    African Journals Online (AJOL)

    Chemical evaluation of winged beans ( Psophocarpus Tetragonolobus ), Pitanga cherries ( Eugenia uniflora) and orchid fruit ( Orchid fruit myristic a) ... The acid value ranged between 0.71 and 2.82 mg/KOH/g while iodine value ranged between 91.15 and 144.57. The refractive index ranged between 1.465 and 1.474 in all ...

  13. ``Schooling'' of wing pairs in flapping flight

    Science.gov (United States)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  14. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium.

    Science.gov (United States)

    Börstler, Jessica; Lühken, Renke; Rudolf, Martin; Steinke, Sonja; Melaun, Christian; Becker, Stefanie; Garms, Rolf; Krüger, Andreas

    2014-06-01

    The reliability of the length of wing radial vein r(2/3) as a character for the morphological discrimination of the two potential arbovirus vectors Culex pipiens s.s. and Cx. torrentium from Germany was reassessed, after this character had been neglected for more than 40 years. Additionally, multivariate morphometric analyses were applied to evaluate wing shape variation between both species. Although high-throughput molecular tools are now available to differentiate the two species, a simple, low-cost routine alternative may be useful in the absence of a molecular laboratory, such as under semi-field conditions. A thin-plate splines transformation confirmed that primarily the shrinkage of vein r(2/3) is responsible for the wing differences between the two species. In the bivariate analysis, the r(2/3)/r3 indices of Cx. pipiens s.s. and Cx. torrentium were 0.185 and 0.289, respectively, resulting in a correct classification of more than 91% of all tested specimens. Using the absolute length of vein r(2/3) alone still allowed for more than 90% accurate discrimination. Furthermore, classification accuracy of linear discriminant analysis exceeded 97%. © 2014 The Society for Vector Ecology.

  15. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  16. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S

    2017-01-23

    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Management of Bone Gaps with Intramedullary Autologous Fibular ...

    African Journals Online (AJOL)

    ... 7 consecutive patients who presented with bone gaps that were managed with intramedullary non vascularised fibular strut graft. Method: Intramedulary Autologous fibular strut graft was used to breach the bone and the whole length augmented with cancellous graft and bridged with bone plate; external fixators or k wires.

  18. Anterior palatal island advancement flap for bone graft coverage ...

    African Journals Online (AJOL)

    ... Palatal Island Advancement Flap was effective in bone graft coverage in premaxillary edentulous area. Conclusion: It can be used as an aid for bone graft coverage of premaxillary edentulous ridge, where the need for mucosa is small in width but long in length. Keywords: Anterior maxilla, bone graft, dental implant, ...

  19. Spatial orientation in bone samples and Young's modulus

    NARCIS (Netherlands)

    Geraets, W.G.M.; van Ruijven, L.J.; Verheij, H.G.C.; van der Stelt, P.F.; van Eijden, T.M.G.J.

    2008-01-01

    Bone mass is the most important determinant of the mechanical strength of bones, and spatial structure is the second. In general, the spatial structure and mechanical properties of bones such as the breaking strength are direction dependent. The mean intercept length (MIL) and line frequency

  20. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    International Nuclear Information System (INIS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-01-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from −2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings

  1. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  3. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  4. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  5. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti.

    Science.gov (United States)

    Jirakanjanakit, N; Leemingsawat, S; Thongrungkiat, S; Apiwathnasorn, C; Singhaniyom, S; Bellec, C; Dujardin, J P

    2007-11-01

    Variation in wing length among natural populations of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) is associated with different vectorial capacities. Geometric morphometrics allowed us to use a more powerful estimator of wing size ('centroid size'), as well as to visualize the variation of wing shape, to describe the effects of density or food variation at larval stage on 20 anatomical landmarks of the wing of A. aegypti. Almost perfect correlations between (centroid) size and larval density or size and larval food were observed in both sexes: a negative correlation with increasing density and a positive one with increasing amount of food. The allometric component of shape change was always highly significant, with stronger contribution of size to shape under food effects. Within each experiment, either food or density effects, and excluding extreme conditions, allometric trends were similar among replicates and sexes. However, they differed between the two experiments, suggesting different axes of wing growth. Aedes aegypti size is highly sensible to food concentration or population density acting at larval stages. As larger individuals could be better vectors, and because of the stronger effect of food concentration on size, vector control activities should pay more attention in eliminating containers with rich organic matter. Furthermore, as a simple reduction in larval density could significantly increase the size of the survivors, turning them into potentially better vectors, the control activities should try to obtain a complete elimination of the domestic populations.

  6. Structure of a novel winged-helix like domain from human NFRKB protein.

    Directory of Open Access Journals (Sweden)

    Abhinav Kumar

    Full Text Available The human nuclear factor related to kappa-B-binding protein (NFRKB is a 1299-residue protein that is a component of the metazoan INO80 complex involved in chromatin remodeling, transcription regulation, DNA replication and DNA repair. Although full length NFRKB is predicted to be around 65% disordered, comparative sequence analysis identified several potentially structured sections in the N-terminal region of the protein. These regions were targeted for crystallographic studies, and the structure of one of these regions spanning residues 370-495 was determined using the JCSG high-throughput structure determination pipeline. The structure reveals a novel, mostly helical domain reminiscent of the winged-helix fold typically involved in DNA binding. However, further analysis shows that this domain does not bind DNA, suggesting it may belong to a small group of winged-helix domains involved in protein-protein interactions.

  7. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  8. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  9. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  10. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.

    Science.gov (United States)

    Parker, Joseph; Struhl, Gary

    2015-10-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.

  11. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  12. Bone Biopsy

    Science.gov (United States)

    ... bear denotes child-specific content. Related Articles and Media Computed Tomography (CT) - Body Magnetic Resonance Imaging (MRI) - Body X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Bone Biopsy Sponsored by Please note ...

  13. Bone sarcomas

    International Nuclear Information System (INIS)

    Mudry, P.

    2008-01-01

    Bone sarcomas are malignancies with peak incidence in adolescents and young adults. The most frequent are osteosarcoma and Ewing sarcoma/PNET, in an older adults are seen chondrosarcomas, other ones are rare. In general, biology of sarcomas is closely related to pediatric malignancies with fast growth, local aggressiveness, tendency to early hematogenic dissemination and chemo sensitivity. Diagnostics and treatment of bone sarcomas should be done in well experienced centres due to low incidence and broad issue of this topic. An interdisciplinary approach and staff education is essential in due care of patients with bone sarcoma. If these criteria are achieved, the cure rate is contemporary at 65 - 70 %, while some subpopulation of patients has chance for cure up to 90 %. Osteosarcoma and Ewing sarcoma/PNET are discussed below as types of most frequent bone sarcoma. (author)

  14. Bone pain

    DEFF Research Database (Denmark)

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie

    2016-01-01

    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  15. POSTMORTEM DIAGNOSIS OF ONE POPULATION OF BLUE-WINGED TEAL (Anas discors IN THE STATE OF VERACRUZ

    Directory of Open Access Journals (Sweden)

    Lorena López-De-Buen

    2011-11-01

    Full Text Available The health status of 30 Blue-winged Teal (Anas discors hunted in Amatitlán, in the central region of the state of Veracruz, Mexico, was assessed. The ducks were weighed, the wings were morphometrically measured, and of each organ the appearance, weight and length were evaluated, making comparisons between males and females, and between adults and immatures. The males weighed more than the females (n = 30, F(1,28 = 9.525, P = 0.004 and the adults more than the immatures (n = 19, F(1,17 = 6.526, P = 0.020. In all the groups the length of the wings was similar, as well as the internal organs had normal color, texture and location. The weight and size of lungs (5.4 g, 441 mm, liver (8.8 g, 608 mm, pancreas (1.5 g, 572 mm, gizzard (20.03 g, 448 mm and intestines (21 g were also similar among groups; however, the heart (3.8 g, 290 mm was larger in the males (n = 30, F(1,28 = 13.513, P = 0.0009, and the kidneys (3 g, 505 mm were heavier in the immature males (n = 19, F(1,17 = 7.417, P = 0.014. It was concluded that the Blue-winged Teal were in good health when hunted.

  16. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  17. Adjoint-based optimization for flapping wings

    Science.gov (United States)

    Xu, Min; Wei, Mingjun

    2012-11-01

    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  18. Medicines and Bone Loss

    Science.gov (United States)

    Fact Sheet Medici a ne n s d Bone Loss Some types of medicines can cause bone loss, making your bones weak, if used for a long time. Use over a short time ... old bone and replaces it with new bone. Bone loss occurs when old bone breaks down faster than ...

  19. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  20. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  1. Logistics Supply of the Distributed Air Wing

    Science.gov (United States)

    2014-09-01

    Event Graph The Consumption Process first instantiates the variables . The model follows a conveyor belt pattern, whereby after processing an event...to any part of the world. A capstone project, conducted by the system engineering curriculum, proposed to distribute the air assets from the aircraft...SUBJECT TERMS distributed air wing, logistics, supply, unmanned air systems , cargo UAS, unmanned systems , discrete event simulation, vehicle routing

  2. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  3. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    can combine the advantages of a variable stiffness design with- out the use of actuators. Curved beams, which couple torsion and bending , counteract... torsional deflection, control natural frequency, exploit coupling of bending and tor- sion to control flutter, reduce thickness to chord ratios due to...disregarded any bending or torsional effects caused by displacement of the wing, and was thus not considered. Therefore, the initial design analysis

  4. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  6. An approach for determining quantitative measures for bone volume and bone mass in the pediatric spina bifida population.

    Science.gov (United States)

    Horenstein, Rachel E; Shefelbine, Sandra J; Mueske, Nicole M; Fisher, Carissa L; Wren, Tishya A L

    2015-08-01

    The pediatric spina bifida population suffers from decreased mobility and recurrent fractures. This study aimed to develop a method for quantifying bone mass along the entire tibia in youth with spina bifida. This will provide information about all potential sites of bone deficiencies. Computed tomography images of the tibia for 257 children (n=80 ambulatory spina bifida, n=10 non-ambulatory spina bifida, n=167 typically developing) were analyzed. Bone area was calculated at regular intervals along the entire tibia length and then weighted by calibrated pixel intensity for density weighted bone area. Integrals of density weighted bone area were used to quantify bone mass in the proximal and distal epiphyses and diaphysis. Group differences were evaluated using analysis of variance. Non-ambulatory children suffer from decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children (P≤0.001). Ambulatory children with spina bifida showed statistically insignificant differences in bone mass in comparison to typically developing children at these sites (P>0.5). This method provides insight into tibial bone mass distribution in the pediatric spina bifida population by incorporating information along the whole length of the bone, thereby providing more information than dual-energy x-ray absorptiometry and peripheral quantitative computed tomography. This method can be applied to any population to assess bone mass distribution across the length of any long bone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  8. Morphometric analysis of bone vascular channels during the biointegration of autologous bone grafts.

    Science.gov (United States)

    Petrescu, H P; Dinu, G; Nodiţi, G; Craina, M; Berceanu-Văduva, Delia; Berceanu-Văduva, M; Vermeşan, D

    2013-01-01

    Vascularization of the transplanted bone tissue is a key factor for success and precedes the formation of bone tissue. Vascularized bone grafts have been widely used in bone transplantation for their efficiency. Maturation of the bone tissue at the place of the transplant involves the change in the vascular patterning, from plexiform irregular vascular networks, to regular, polygonal networks following the structure of osteons. Seven dogs were performed bone transplantation and intravenous injection with China ink in order to highlight the network of blood vessels during bone formation at the place of the transplant. The area occupied by blood vessels increased during osteogenesis, and their length decreased in evolution, suggesting a maturation of the vascular pattern.

  9. Wing geometry of Triatoma sordida (Hemiptera: Reduviidae) populations from Brazil.

    Science.gov (United States)

    Vendrami, Daniel Pagotto; Obara, Marcos Takashi; Gurgel-Gonçalves, Rodrigo; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-04-01

    Triatoma sordida has a widespread distribution in Argentina, Bolivia, Brazil, Paraguay, and Uruguay and is frequently found in peridomestic environments. We investigated size and shape variability of T. sordida wings across Brazil. Field-collected adults from twelve populations were studied. For each individual female, seven landmarks on the right wing were digitalized. Shape variables derived from Procrustes superimposition were used in Principal Component Analysis (PCA). Wing size and shape variations among populations was explored by means of ANOVA. Wing centroid size was significantly different among T. sordida populations; specimens from Bahia (East) were larger than those of Mato Grosso do Sul (West). PCA based on wing shape variables showed low wing shape variability. These results reinforce previous data showing low genetic variability among T. sordida populations from Brazil. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  11. Donor site complications in bone grafting: comparison of iliac crest, calvarial, and mandibular ramus bone.

    Science.gov (United States)

    Scheerlinck, Laura M E; Muradin, Marvick S M; van der Bilt, Andries; Meijer, Gert J; Koole, Ronald; Van Cann, Ellen M

    2013-01-01

    To compare the donor site complication rate and length of hospital stay following the harvest of bone from the iliac crest, calvarium, or mandibular ramus. Ninety-nine consecutively treated patients were included in this retrospective observational single-center study. Iliac crest bone was harvested in 55 patients, calvarial bone in 26 patients, and mandibular ramus bone in 18 patients. Harvesting of mandibular ramus bone was associated with the lowest percentages of major complications (5.6%), minor complications (22.2%), and total complications (27.8%). Harvesting of iliac crest bone was related to the highest percentages of minor complications (56.4%) and total complications (63.6%), whereas harvesting of calvarial bone induced the highest percentage of major complications (19.2%). The length of the hospital stay was significantly influenced by the choice of donor site (P = .003) and age (P = .009); young patients with the mandibular ramus as the donor site had the shortest hospital stay. Harvesting of mandibular ramus bone was associated with the lowest percentage of complications and the shortest hospital stay. When the amount of bone to be obtained is deemed sufficient, mandibular ramus bone should be the first choice for the reconstruction of maxillofacial defects.

  12. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  13. Free vibration analysis of dragonfly wings using finite element method

    OpenAIRE

    M Darvizeh; A Darvizeh; H Rajabi; A Rezaei

    2016-01-01

    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...

  14. From bone biology to bone analysis.

    NARCIS (Netherlands)

    Schoenau, E.; Saggese, G.; Peter, F.; Baroncelli, G.I.; Shaw, N.J.; Crabtree, N.J.; Zadik, Z.; Neu, C.M.; Noordam, C.; Radetti, G.; Hochberg, Z.

    2004-01-01

    Bone development is one of the key processes characterizing childhood and adolescence. Understanding this process is not only important for physicians treating pediatric bone disorders, but also for clinicians and researchers dealing with postmenopausal and senile osteoporosis. Bone densitometry has

  15. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  16. Construction of a human powered oscillating wing ship. Jinryoku shindo yokusen no shisaku

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, M.; Teruya, I.; Kugai, K. (University of The Ryukyus, Okinawa (Japan). Faculty of Engineering); Neho, Y. (Hitachi, Ltd., Tokyo (Japan))

    1991-09-01

    Considerations were given on a human powered oscillating wing ship fabricated on a prototype basis, and its propulsion experiment. Carp, tilapias and dolphins were observed for their swimming motions, and the dimensionless speed, which is a ratio of the body length related speed (U/l) to the oscillation frequency (f) of their fins, was takan as a swimming number to define S{sub W}= U/(f{center dot}l ) enabling to compare swimming capabilities of aquatic animals. The principle of generating propulsion by oscillating wings was applied to a human powered oscillating wing ship to carry out propulsion experiments. As a result, the weaker the spring, the higher the swimming number in low frequency regions, and the higher efficiency. However, as the oscillation is raised, the fall in the swimming number was sharper than with stronger spring. When this ship was rowed actually, the stepping motion was felt much heavier than anticipated. Further, the center board installed on the hull bottom worked only poorly to prevent rolling. On the one hand, the achieved result of the maximum speed of 0.97 m/s and the mean swimming number of 0.49 proved that the ship has as near propulsion performance as has been designed. 17 refs., 3 figs.

  17. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Shen, Lu; Wen, Chih-yung

    2017-06-01

    This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.

  18. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  19. Effects of Canard on the Flowfield over a Wing

    Science.gov (United States)

    Nayebzadeh, Arash

    2015-11-01

    Surface and flowfield pressure measurements have been done over delta wing/canard configuration in a variety of canard vertical and horizontal locations and angles of attack. The experimental model consisted of wing, canard and a body to accommodate pressure tubing and canard rotation mechanism. All the tests have been performed at subsonic velocities and the effect of canard were analyzed through comparison between surface and flowfield pressure distributions. It was found that vortex flow pattern over the wing is dominated mainly by canard vertical position and in some cases, by merging of canard and wing vortices. In addition, the pressure loss induced by canard vortex on the wing surface moves the wing vortex toward the leading edge. In the mid canard configuration, canard and wing vortices merge at x/c greater than 0.5 and as a result of this phenomenon, abrupt pressure loss induces more stable vortex flow over the wing. It is also shown that canard plays a vital role in vortex break down over the wing.

  20. Fabrication of a three-dimensional insect-wing model by micromolding of thermosetting resin with a thin elastmeric mold

    Science.gov (United States)

    Tanaka, Hiroto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-12-01

    For investigating insect flight, a low-cost micromolding technique using a thin polydimethylsiloxane (PDMS) mold to fabricate an artificial insect wing with a three-dimensional (3D) shape was developed. The wing consists of 3D polyurethane (PU) frames and a Parylene-C membrane. Using a low-viscosity thermosetting PU resin, this method can fabricate a wing frame with a thickness of 200 µm and a length of more than 100 mm. To create a 3D mold channel for the PU resin, a thin PDMS mold was pressed along the curved surface of a rigid bottom mold. Depositing Parylene-C on the bottom mold made it possible to integrate the molded product with a Parylene film. To estimate the deformation rate of the PDMS mold during the pressing process, the height and width of the molded PU frames were compared with those of the original channels of the PDMS molds. It was found that both the height and width of the PU frame were more than 85% of those of the original channel when the aspect ratio of the channel ranged from 0.5 to 2.0. The length of the PU frame was also found to be related to the aspect ratio. Moreover, the maximum length was over 500 times bigger than the cross-sectional width.

  1. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    Science.gov (United States)

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  2. Facts about Broken Bones

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Broken Bones KidsHealth / For Kids / Broken Bones What's in this ... sticking through the skin . What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  3. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... the cut, then pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  4. Osedax borings in fossil marine bird bones

    Science.gov (United States)

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L.

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  5. Folding wings like a cockroach: a review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania.

    Directory of Open Access Journals (Sweden)

    István Mikó

    Full Text Available We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea. It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves.

  6. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  7. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    Science.gov (United States)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  8. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  9. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling...... of aged bones....

  10. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho

    2015-12-01

    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  11. Bone marker gene expression in calvarial bones: different bone microenvironments.

    Science.gov (United States)

    Al-Amer, Osama

    2017-12-01

    In calvarial mice, mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and then differentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix. In this case, the cells participating in bone formation include MSCs, osteoprogenitor cells, osteoblasts and osteocytes. The calvariae of C57BL/KaLwRijHsD mice consist of the following five bones: two frontal bones, two parietal bones and one interparietal bone. This study aimed to analyse some bone marker genes and bone related genes to determine whether these calvarial bones have different bone microenvironments. C57BL/KaLwRijHsD calvariae were carefully excised from five male mice that were 4-6 weeks of age. Frontal, parietal, and interparietal bones were dissected to determine the bone microenvironment in calvariae. Haematoxylin and eosin staining was used to determine the morphology of different calvarial bones under microscopy. TaqMan was used to analyse the relative expression of Runx2, OC, OSX, RANK, RANKL, OPG, N-cadherin, E-cadherin, FGF2 and FGFR1 genes in different parts of the calvariae. Histological analysis demonstrated different bone marrow (BM) areas between the different parts of the calvariae. The data show that parietal bones have the smallest BM area compared to frontal and interparietal bones. TaqMan data show a significant increase in the expression level of Runx2, OC, OSX, RANKL, OPG, FGF2 and FGFR1 genes in the parietal bones compared with the frontal and interparietal bones of calvariae. This study provides evidence that different calvarial bones, frontal, parietal and interparietal, contain different bone microenvironments.

  12. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  13. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  14. A parametric wing design study for a modern laminar flow wing

    Science.gov (United States)

    Koegler, J. A., Jr.

    1979-01-01

    The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used.

  15. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  16. Desmoid tumor of bone with enchondromatous nodules, mistaken for chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Won-Jong [Musculoskeletal Oncology Study Group, Catholic University of Korea (Korea); Department of Orthopaedic Surgery, Uijongbu St. Mary' s Hospital, 65-1 Geumohdong, Uijongbu, Gyunggido, 480-130 (Korea); Kang, Yong-Koo; Lee, An-Hee [Musculoskeletal Oncology Study Group, Catholic University of Korea (Korea); Mirra, Joseph M. [Orthpaedic Oncology, Orthopaedic Hospital, Los Angeles, CA (United States)

    2003-04-01

    Desmoid tumor of bone, also termed desmoplastic fibroma or aggressive fibromatosis, is a rare, locally aggressive fibroblastic tumor. We present a 16-year-old male with a huge desmoid tumor involving the iliac wing. It was associated with enchondromatous nodules mimicking malignancy. The tumor in this patient was mistaken for chondrosarcoma and hemipelvectomy was performed. To our knowledge, such a case has not previously been documented fully in the English literature. The radiographic and pathologic findings and a possible mechanism of enchondromatous nodule formation in fibrous bone tumors are discussed. (orig.)

  17. Air Space Proportion in Pterosaur Limb Bones Using Computed Tomography and Its Implications for Previous Estimates of Pneumaticity

    Science.gov (United States)

    Martin, Elizabeth G.; Palmer, Colin

    2014-01-01

    Air Space Proportion (ASP) is a measure of how much air is present within a bone, which allows for a quantifiable comparison of pneumaticity between specimens and species. Measured from zero to one, higher ASP means more air and less bone. Conventionally, it is estimated from measurements of the internal and external bone diameter, or by analyzing cross-sections. To date, the only pterosaur ASP study has been carried out by visual inspection of sectioned bones within matrix. Here, computed tomography (CT) scans are used to calculate ASP in a small sample of pterosaur wing bones (mainly phalanges) and to assess how the values change throughout the bone. These results show higher ASPs than previous pterosaur pneumaticity studies, and more significantly, higher ASP values in the heads of wing bones than the shaft. This suggests that pneumaticity has been underestimated previously in pterosaurs, birds, and other archosaurs when shaft cross-sections are used to estimate ASP. Furthermore, ASP in pterosaurs is higher than those found in birds and most sauropod dinosaurs, giving them among the highest ASP values of animals studied so far, supporting the view that pterosaurs were some of the most pneumatized animals to have lived. The high degree of pneumaticity found in pterosaurs is proposed to be a response to the wing bone bending stiffness requirements of flight rather than a means to reduce mass, as is often suggested. Mass reduction may be a secondary result of pneumaticity that subsequently aids flight. PMID:24817312

  18. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  19. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  20. Anterior maxillary osteotomy: A technical note for superior repositioning: A bird wing segment

    Directory of Open Access Journals (Sweden)

    V Sadesh Kannan

    2014-01-01

    Full Text Available Aim: The aim of this study is to evaluate the efficacy of a single piece bird wing osteotectomy segment during anterior maxillary osteotomy (AMO markedly reduces the duration of the surgery by nearly one-half of the time during bone removal with the conventional method thereby reducing the kinking effect to the palatal pedicle and gives good perfusion to the anterior segment. Materials and Methods: This study was conducted at Karpaga Vinayaga Institute of Dental Sciences composing of 20 patients in which male: female ratio was 8:12, with a mean age of 25-30 years. This bird wing segment technique is performed following presurgical orthodontics under the guidance of clinical assessment of the gummy smile with an incisal show when the lip is at repose (vertical maxillary excess, especially for the calculated amount of superior repositioning. It is calculated by subtracting 2 mm from the total amount of an incisor show when the lip is at repose. The normal incisal show when the lip is at repose is 2 mm. After conventional primary AMO cut was performed, the precise calculated. Results: All our cases were tested positive for pulp vitality, no relapse, and minimal edema and with no changes in the bite or dentoalveolar relation followed until 1 year postoperatively indicating a good perfusion to the anterior segment and all the patients were satisfied esthetically and free of complaints. Conclusion: This simple technique allows the precise amount of calculated bone removal in a single piece from the nasal floor markedly reduces the duration of the surgery by nearly one-half of the time during bone removal with the conventional method there by reducing the kinking effect to the palatal pedicle and maintains good perfusion.

  1. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  2. Morphing Wing Design with an Innovative Three-Dimensional Warping Actuation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced wing configurations where traditional control surfaces are replaced by dynamically controlled distribution of wing twist and/or camber can provide...

  3. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  4. The biomechanical basis of bone strength development during growth.

    Science.gov (United States)

    Kontulainen, Saija A; Hughes, Julie M; Macdonald, Heather M; Johnston, James D

    2007-01-01

    Understanding the development of the material composition and structure of bone during growth, both key determinants of bone strength, and identifying factors that regulate the development of these properties are important for developing effective lifestyle interventions to optimize peak bone strength. New imaging technologies provide the ability to measure estimates of both the material composition and structure of bone, and thus, estimates of whole bone strength. During childhood and adolescence, bone structure is altered by growth in length and width, which is associated with increases in mass, and alterations in tissue density. These processes lead to a bone with an optimal size, shape, and architecture to withstand the normal physiological loads imposed on it. Longitudinal bone growth is the result of endochondral ossification, a process that continues throughout childhood and rapidly increases during the adolescent growth spurt. Along the shaft, long bones continually grow in width, thus improving the resistance to bending forces by depositing new bone on the periosteal surface with simultaneous resorption on the endocortical surface. Sexual dimorphism in periosteal bone formation and endosteal bone resorption result in sex-specific differences in adult bone conformation. Changes in linear and periosteal growth are closely tied to changes in bone mass, with approximately one quarter of adult total body bone mineral accrued during the 2 years around the adolescent growth spurt. These structural and material changes are under mechanical regulation and influenced by the hormonal environment. Overall, bones must continually adapt their geometry and mass to withstand loads from increases in bone length, muscle mass and external forces during growth. However, the tempo, timing, and extent of such adaptations are also closely regulated by several systemic hormones.

  5. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  6. Wing design for light transport aircraft with improved fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, D.; Birrenbach, R.; Haberland, W.

    An advanced technology wing has been designed for a light utility and commuter service aircraft with the requirements for economy, safety and flexibility. Trade-off studies give optimum area and aspect-ratio of the wing. A new airfoil was developed to fulfill the performance requirements. Wing planform and twist were chosen to give high maximum lift, low drag and good stall characteristics. Preset ailerons were optimized for wheel forces and lateral control. The applied aerodynamic methods, including two- and three-dimensional wind tunnel tests are shown. Various structural configurations of the wing and various flap systems are evaluated. The cantilever tapered wing and a Fowler-flap with a two-lever mechanism were found to be the most economic ones. The wing was constructed and flight-tested with a modified Dornier Do 28 Skyservant as a test bed. The new wing is being applied to a family of light transport aircraft. Finally, aircraft with the new wing are compared performancewise with contemporary aircraft.

  7. Design and Testing of Aeroelastically Tailored Wings Under Maneuver Loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.

    2016-01-01

    The goal of the present paper is to provide experimental validation data for the aeroelastic analysis of composite aeroelastically tailored wings with a closed-cell cross-sectional structure. Several rectangular wings with differ- ent skin thicknesses and composite layups are designed in order to

  8. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available A variable stability, blended-wing-body research mini-UAV was developed at the CSIR in South Africa. The purpose of the UAV was to study some of the aerodynamic design and control issues associated with flying wing geometries and to develop a...

  9. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  10. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  11. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.

    2011-01-01

    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept

  12. COLIBRI : A hovering flapping twin-wing robot

    NARCIS (Netherlands)

    Roshanbin, A.; Altartouri, H.; Karasek, M.; Preumont, André

    2017-01-01

    This paper describes the results of a six-year project aiming at designing and constructing a flapping twin-wing robot of the size of hummingbird (Colibri in French) capable of hovering. Our prototype has a total mass of 22 g, a wing span of 21 cm and a flapping frequency of 22 Hz; it is actively

  13. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  14. Temporal variation of wing geometry in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Paloma Oliveira Vidal

    2012-12-01

    Full Text Available Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010 in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  15. Temporal variation of wing geometry in Aedes albopictus.

    Science.gov (United States)

    Vidal, Paloma Oliveira; Carvalho, Eneas; Suesdek, Lincoln

    2012-12-01

    Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010) in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean) and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  16. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  17. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scal...

  18. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  19. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  20. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  1. DETERMINATION OF COMMERCIAL AIRCRAFT WING GEOMETRY DURING THE FLIGHT

    Directory of Open Access Journals (Sweden)

    V. I. Shevyakov

    2015-01-01

    Full Text Available The article deals with the task of determination of wing shape for sub-sonic commercial aircraft by photogrammetric method. It provides the procedure for measurements taken on ground and in flight. It also provides the outcome of wing twist for commercial aircraft at cruise.

  2. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.

    2010-01-01

    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite

  3. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  4. 14 CFR 23.302 - Canard or tandem wing configurations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.302 Canard or tandem wing...

  5. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    Overall wing size was analysed here using centroid size. (defined as the square root of the sum .... For those isochromosomal lines that were common to both experimental temperatures .... subobscura reared at 18ºC. CS refers to centroid size (values in pixels2; 1 mm = 144 pixels), and WS to wing shape (all values ×. 104).

  6. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  7. Computation of Lifting Wing-Flap Configurations

    Science.gov (United States)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  8. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  9. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    Directory of Open Access Journals (Sweden)

    Meftah S.M.A

    2014-03-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  10. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  11. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  12. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  13. Experimental Investigation of a Wing-in-Ground Effect Craft

    Science.gov (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  14. Toward mechanical systems biology in bone.

    Science.gov (United States)

    Trüssel, Andreas; Müller, Ralph; Webster, Duncan

    2012-11-01

    Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

  15. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  16. 7 Length-weight relationship

    African Journals Online (AJOL)

    Administrator

    Length-weight measurements were taken from well-preserved fish specimens from which stomachs were extracted for the analysis of the food contents, using frequency of occurrence, numerical and gravimetric methods, as well as index of relative importance. The length-frequency analysis showed a size distribution with a ...

  17. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  18. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  19. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    Science.gov (United States)

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Three-dimensional geometric analysis of felid limb bone allometry.

    Directory of Open Access Journals (Sweden)

    Michael Doube

    Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  1. Three-dimensional geometric analysis of felid limb bone allometry.

    Science.gov (United States)

    Doube, Michael; Wiktorowicz-Conroy, Alexis; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R; Shefelbine, Sandra

    2009-01-01

    Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  2. Bone shortening of clavicular fractures

    DEFF Research Database (Denmark)

    Thorsmark, A. H.; Muhareb Udby, P.; Ban, I.

    2017-01-01

    Background: The indication for operative treatment of clavicular fractures with bone shortening over 2 cm is much debated. Correct measurement of clavicular length is essential, and reliable measures of clavicular length are therefore highly requested by clinical decision-makers. The aim of this ......Background: The indication for operative treatment of clavicular fractures with bone shortening over 2 cm is much debated. Correct measurement of clavicular length is essential, and reliable measures of clavicular length are therefore highly requested by clinical decision-makers. The aim...... of this study was to investigate if three commonly scientifically used measurement methods were interchangeable to each other. Methods: A retrospective study using radiographs collected as part of a previous study on clavicular fractures. Two independent raters measured clavicle shortening on 60 patients using......, Weir's protocol for Standard error of measurement (SEM) and minimal detectable change (MDC), and Bland-Altman plots. Results: None of the methods were directly interchangeable. The side difference method by Lazarides et al. was the most reliable of the three methods, but had a high proportion of post-fracture...

  3. Sex Differences and Bone Metastases of Breast, Lung, and Prostate Cancers: Do Bone Homing Cancers Favor Feminized Bone Marrow?

    Directory of Open Access Journals (Sweden)

    Mary C. Farach-Carson

    2017-08-01

    Full Text Available Sex-associated differences in bone metastasis formation from breast, lung, and prostate cancer exist in clinical studies, but have not been systematically reviewed. Differences in the bone marrow niche can be attributed to sexual dimorphism, to genetic variations that affect sex hormone levels, or to the direct effects of sex hormones, natural or exogenously delivered. This review describes the present understanding of sex-associated and sex hormone level differences in the marrow niche and in formation of bone metastasis during the transition of these three cancers from treatable disease to an often untreatable, lethal metastatic one. Our purpose is to provide insight into some underlying molecular mechanisms for hormonal influence in bone metastasis formation, and to the potential influence of sexual dimorphism, genetic differences affecting sex assignment, and sex hormone level differences on the bone niche and its favorability for metastasis formation. We reviewed publications in PubMed and EMBASE, including full length manuscripts, case reports, and clinical studies of relevance to our topic. We focused on bone metastasis formation in breast, lung, and prostate cancer because all three commonly present with bone metastases. Several clear observations emerged. For breast cancer bone metastasis formation, estrogen receptor (ER signaling pathways indicate a role for ER beta (ERβ. Estrogen influences the bone microenvironment, creating and conditioning a favorable niche for colonization and breast cancer progression. For lung cancer, studies support the hypothesis that females have a more favorable bone microenvironment for metastasis formation. For prostate cancer, a decrease in the relative androgen to estrogen balance or a “feminization” of bone marrow favors bone metastasis formation, with a potentially important role for ERβ that may be similar to that in breast cancer. Long-term estrogen administration or androgen blockade in males

  4. Sex Differences and Bone Metastases of Breast, Lung, and Prostate Cancers: Do Bone Homing Cancers Favor Feminized Bone Marrow?

    Science.gov (United States)

    Farach-Carson, Mary C; Lin, Sue-Hwa; Nalty, Theresa; Satcher, Robert L

    2017-01-01

    Sex-associated differences in bone metastasis formation from breast, lung, and prostate cancer exist in clinical studies, but have not been systematically reviewed. Differences in the bone marrow niche can be attributed to sexual dimorphism, to genetic variations that affect sex hormone levels, or to the direct effects of sex hormones, natural or exogenously delivered. This review describes the present understanding of sex-associated and sex hormone level differences in the marrow niche and in formation of bone metastasis during the transition of these three cancers from treatable disease to an often untreatable, lethal metastatic one. Our purpose is to provide insight into some underlying molecular mechanisms for hormonal influence in bone metastasis formation, and to the potential influence of sexual dimorphism, genetic differences affecting sex assignment, and sex hormone level differences on the bone niche and its favorability for metastasis formation. We reviewed publications in PubMed and EMBASE, including full length manuscripts, case reports, and clinical studies of relevance to our topic. We focused on bone metastasis formation in breast, lung, and prostate cancer because all three commonly present with bone metastases. Several clear observations emerged. For breast cancer bone metastasis formation, estrogen receptor (ER) signaling pathways indicate a role for ER beta (ERβ). Estrogen influences the bone microenvironment, creating and conditioning a favorable niche for colonization and breast cancer progression. For lung cancer, studies support the hypothesis that females have a more favorable bone microenvironment for metastasis formation. For prostate cancer, a decrease in the relative androgen to estrogen balance or a "feminization" of bone marrow favors bone metastasis formation, with a potentially important role for ERβ that may be similar to that in breast cancer. Long-term estrogen administration or androgen blockade in males may feminize the bone

  5. Distribution, density and biological breeding of white wing pheasant (Phasianus colchicus principalis, Sclater, 1885 in Northeast of Iran

    Directory of Open Access Journals (Sweden)

    Nasrin Kayvanfar

    2014-01-01

    Full Text Available Common pheasant (Phasianus colchicus, Linnaeus, 1758 is an endemic naturally distributed in the Palearctic regions. White wing pheasant (P. c. principalis is distributed from Turkmenistan and north of Afghanistan along to Harir-Rud river in northeast of Iran. This study was the first attempt to determine the geographical range, density and breeding biology of white wing pheasant populations in northeast of Iran. To do so, 36 stations were defined in the breeding range of the species in two cities, namely Sarakhs and Dargaz in northeast of Iran. The breeding behaviors including egg lying, hatching and feeding behavior of chicks' were monitored and photographed using camera traps in 14 active nests in 10 stations. Collected data showed that white wing pheasant had a simple nest shape breeding season started in early April hatching began end of May and lasted 24±1 days (based on 14 active nests and finally enjoiyed little parental caring, particularly for the males. Comparative morphometrical data for eggs (length and width, nest and clutch size showed that there was a significant variation between the studied populations (P<0.05, ANOVA, in which the populations could be separated based on discriminant function analysis and the euclidean eendrogram. Comparision of morphometrical data of eggs in captive and wild nests showed that there was a significant length variation between them (P<0.05.

  6. A New Operative One-Wing Technique to Correct Fronto-Orbital Region in Unilateral Nonsyndromic Plagiocephaly.

    Science.gov (United States)

    Messi, Marco; Luzi, Michele; Consorti, Giuseppe

    2018-01-01

    Anterior plagiocephaly is a premature closing of unilateral coronal suture. This premature suture fusion causes a series of cranial asymmetry and alteration of the fronto-orbital region.The authors described a new surgical technique to correct the facial asymmetry that reduces the operative time and the possible complications.In a period between 2013and 2016, 12 children affected by nonsyndromic anterior plagiocephaly were treated with this new procedure.Clinical, cranial development, and absence of postoperative complication demonstrated that one-wing surgical bone correction is a useful and innovative technique.

  7. Dating of cremated bones

    NARCIS (Netherlands)

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process.

  8. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  9. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    Science.gov (United States)

    2011-03-01

    life span, and must be cared for and used expeditiously. Once a hawkmoth hatches from its cocoon, its wing is liberated, taking care to cut the...more controlled fashion than the butterfly, but is not sufficiently so for a Micro- MAV (courtesy of http://www.science-store.com/ life /specimens/la460...50. Michelson, Robert C. and Naqvi, Messam A. Extraterrestrial Flight. s.l. : RTO- AVT von Karman Institute for Fluid Dynamics Lecture Series, 2003

  10. Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft

    OpenAIRE

    Adegbindin, Moustaine Kolawole Agnide

    2017-01-01

    Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response. Distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and a Genetic Algorithm were used here for the control a...

  11. FUSELAGE SHAPE OPTIMIZATION AIMED AT WING-FUSELAGE CONFIGURATION DRAG REDUCTION AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The problem of fuselage shape optimization of the wing-body configuration is considered in the following three formulations. In the first one, the angle of attack is fixed and equal to zero, the wing has a symmetric airfoil, and the fuse- lage is based on circular cross sections. In the second one, the fuselage cross sections are elliptical. In the third one, the angle of attack is varied, the lifting force coefficient is fixed, the wing is preliminary optimized, the fuselage is designed by the cross sections that consist of upper and lower half-ellipses with a possibility of a shift along vertical axis. The configu- ration volume, fuselage length, shape and position of the wing are fixed. The drag coefficient is the objective function. The optimization is carried out by the Indirect Optimization based on Self-Organization (IOSO technology. Aerodynamic coef- ficients are obtained from the solution of the RANS equations with SST turbulence model by the ANSYS CFX software on the structured multiblock meshes. The results obtained by the optimization are compared with the configuration that is de- signed by traditional means. The fuselage of this configuration has a cylindrical part in the area of the wing-fuselage con- nection and nose part of the von Karman’s ogive shape. The solution of the optimization problem in the first formulation reduces drag coefficient at zero angle of attack by approximately 3 %. The use of the fuselage with elliptical cross sections makes it possible to reduce drag coefficient at zero angle of attack by 9 %. The solution of the optimization problem in first two formulations reduces drag coefficient at the wide range of angles of attack. When the lifting coefficient is selected for the third problem formulation as constraint the drag reduction is about 7 %. Additional drag reduction of about 2,5 % is obtained by the use of the fuselage asymmetric relative to the horizontal plane. The optimal fuselage design has a

  12. Prediction of Wing Downwash Using CFD

    Directory of Open Access Journals (Sweden)

    Mohammed MAHDI

    2015-06-01

    Full Text Available Wing downwash study and estimation of downwash effect on the tail plane is an important task during the aircraft design process, although a lot of papers and works has been done, but the experimental work is the most important, the progress in CFD simulation has reached to the point it is able to reduce the number of runs in the wind tunnel. In this work CFD has been utilized to calculate the downwash angle and downwash gradient with respect to the angle of attack over a high aspect ratio of a typical UAV. The results of the simulation shall be used in the estimation and calculation of the longitudinal static stability analysis of the UAV.

  13. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    Science.gov (United States)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  14. Modeling the Motion of a Flapping Wing Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vorochaeva L.Y.

    2017-01-01

    Full Text Available The article discusses the vertical flight of a flapping wing aerial vehicle, which is also called an ornithopter. The robot is a chain of five links connected in series by active cylindrical hinges with the central link being the body and the remainder forming folding wings in pairs. The distinctive feature of this device is that the flaps of its wings imitate those of a seagull i.e. the device has a biological prototype. We construct a mathematical model of this device; much attention is given to the model of the interaction of the wings with the air environment and we determine the positions and velocities of points of application of the reduced aerodynamic forces to each of the links. Based on the results of numerical modelling of the vertical flight of the robot three modes of flight were established: ascent, hovering at a certain height and descent. The device can operate in these modes based on the oscillation parameters of the wings in particular flapping frequency and amplitude, the ratio of the amplitudes of two links and one wing and the shift of the equilibrium oscillation position of the wings relative to zero.

  15. Antibiotics, primary symbionts and wing polyphenism in three aphid species.

    Science.gov (United States)

    Hardie, Jim; Leckstein, Peter

    2007-08-01

    The possible role of the primary Buchnera symbionts in wing polyphenism is examined in three aphid species. Presumptive winged aphids were fed on antibiotic-treated beans to destroy these symbionts. As previously reported, this leads to inhibited growth and low/zero fecundity. When such treatment is applied to the short-day-induced gynoparae (the winged autumn migrant) of the black bean aphid, Aphis fabae, it also causes many insects to develop as wingless or winged/wingless intermediate adult forms (apterisation). However, whilst antibiotic treatment of crowd-induced, long-day winged forms of the pea aphid, Acyrthosiphon pisum (a green and a pink clone) and the vetch aphid, Megoura viciae has similar effects on size and fecundity, it does not affect wing development. Food deprivation also promotes apterisation in A. fabae gynoparae but not in the crowd-induced winged morphs of the other two species. Thus, it appears that apterisation in A. fabae is not a direct effect of antibiotic treatment or a novel role for symbionts but is most likely related to impaired nutrition induced by the loss of the symbiont population.

  16. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  17. Sexual selection on wing interference patterns in Drosophila melanogaster.

    Science.gov (United States)

    Katayama, Natsu; Abbott, Jessica K; Kjærandsen, Jostein; Takahashi, Yuma; Svensson, Erik I

    2014-10-21

    Animals with color vision use color information in intra- and interspecific communication, which in turn may drive the evolution of conspicuous colored body traits via natural and sexual selection. A recent study found that the transparent wings of small flies and wasps in lower-reflectance light environments display vivid and stable structural color patterns, called "wing interference patterns" (WIPs). Such WIPs were hypothesized to function in sexual selection among small insects with wing displays, but this has not been experimentally verified. Here, to our knowledge we present the first experimental evidence that WIPs in males of Drosophila melanogaster are targets of mate choice from females, and that two different color traits--saturation and hue--experience directional and stabilizing sexual selection, respectively. Using isogenic lines from the D. melanogaster Genetic Reference Panel, we compare attractiveness of different male WIPs against black and white visual backgrounds. We show that males with more vivid wings are more attractive to females than are males with dull wings. Wings with a large magenta area (i.e., intermediate trait values) were also preferred over those with a large blue or yellow area. These experimental results add a visual element to the Drosophila mating array, integrating sexual selection with elements of genetics and evo-devo, potentially applicable to a wide array of small insects with hyaline wings. Our results further underscore that the mode of sexual selection on such visual signals can differ profoundly between different color components, in this case hue and saturation.

  18. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  19. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Wood, Robert J

    2010-01-01

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  20. The design and testing of subscale smart aircraft wing bolts

    International Nuclear Information System (INIS)

    Vugampore, J M V; Bemont, C

    2012-01-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers. (paper)

  1. Comparative anatomy of long bones of the appendicular skeleton of ...

    African Journals Online (AJOL)

    Morphometry of the long bones of the forelimbs and hindlimbs were studied in Yankassa sheep and Red Sokoto goat. A total of 10 goats and 10 sheep were used for the study. The lengths, and weights of the bones as well as the diameters for the proximal, distal extremities and mid-shaft were determined and compared ...

  2. Free vibration analysis of dragonfly wings using finite element method

    Directory of Open Access Journals (Sweden)

    M Darvizeh

    2016-04-01

    Full Text Available In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.

  3. A Video-Based Experimental Investigation of Wing Rock

    Science.gov (United States)

    1989-08-01

    maintained a negative damping in roll (Fig. 6b). Ross concluded that wing tanks act like an aerodynamic fence, controlling flow separation over the wing...to Ross that wing rock was initiated by a nonlinear yawing moment due to sideslip, which caused a divergent Dutch roll oscillation to grow into the...20 30 40 50 e) (p (D EG) * Fig. 128 Continued S * 158 (Fig. 128a) and cycle B (Fig. 128b ) both occurred early in the 0 build-up and consisted of

  4. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  5. Winging of scapula due to serratus anterior tear

    Directory of Open Access Journals (Sweden)

    Varun Singh Kumar

    2014-10-01

    Full Text Available 【Abstract】Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle. Traumatic injury to serratus anterior muscle itself is very rare. We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male. Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test. Patient was managed conservatively and achieved satisfactory result. Key words: Serratus anterior tear; Scapula; Wounds and injuries

  6. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  7. Dating of cremated bones

    OpenAIRE

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a r...

  8. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    Science.gov (United States)

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological

  9. Epiphyseal plate closure of radio-ulna bone in red Sokoto goat ...

    African Journals Online (AJOL)

    The radiographs of their forearms were taken and the proximal and distal epiphyseal plate lengths of both radius and ulna bones were measured. The radiographic images of the bones showed that the proximal and distal epiphyseal plates of the radius were opened at week 1 with mean lengths of 0.50±0.05mm and ...

  10. Manufacturing and Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the Manduca Sexta Wing Under Simulated Flapping Conditions

    Science.gov (United States)

    2011-03-24

    thorax to the wings will continue for a short period of time, preserving the integrity of these wings. This small window was considered in order to...PromasterTM Digital XR EDO Aspherical LD (IF) 17-50 mm 1:2.8 Macro φ 67. Photomodeler provides the means to calibrate a camera via subroutine within...36. 20. DeLeón, N., O’Hara, R., and Palazotto, A., “Manufacturing of Engineering Bio- logically Inspired Flapping Wings,” 25th Annual US- Japan

  11. Bone age assessment by digital images

    International Nuclear Information System (INIS)

    Silva, Ana Maria Marques da

    1996-01-01

    An algorithm which allows bone age assessment by digital radiological images was developed. For geometric parameters extraction, the phalangeal and metacarpal regions of interest are enhanced and segmented, through spatial and morphological filtering. This study is based on perimeter, length and area, from distal to proximal portions. The quantification of these parameters make possible comparison between chronological and skeletal age, using growth standard tables

  12. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... at 146 days of life and five left and right ribs (fourth to eighth) were removed for analysis. The influence of AKG on skeletal system development was evaluated in relation to both geometrical and mechanical properties, as well as quantitative computed tomography (QCT). No significant differences between...... has a long-term effect on skeletal development when given early in neonatal life, and that changes in rib properties serve to improve chest mechanics and functioning in young animals. Moreover, neonatal administration of AKG may be considered as an effective factor enhancing proper development...

  13. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  14. Application of SMP composite in designing a morphing wing

    Science.gov (United States)

    Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2008-11-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.

  15. Toward Wing Aerostructural Optimization Using Simultaneous Analysis and Design Strategy

    NARCIS (Netherlands)

    Elham, A.; van Tooren, M.J.L.

    2017-01-01

    The application and computational efficiency of wing aerostructural optimization us- ing simultaneous analysis and design (SAND) strategy is investigated. A coupled adjoint aerostructural analysis method based on quasi-three-dimensional aerodynamic analysis is used for this research. Two different

  16. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  17. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  18. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  19. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  20. The Comparative Analysis of a Novel Acetabular Component against Hemispherical Component in Case of Extensive Acetabular Bone Defects — A Study of Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Wenhui Ma

    2013-02-01

    Full Text Available The purpose of this study was to evaluate the design of a cup using finite element method and to analyze possible effects of joint loading postoperatively, and its initial mechanical stability, so as to direct its further optimization. Finite-element (FE models of the cup with three wings and the hemispherical cup were created to calculate the stress patterns during a normal gait cycle. The stress in the acetabular components were analyzed and compared. The FE analysis demonstrated that all kinds of acetabular components had the same trend for stress and strain. The stress of the wings increased gradually from rim to root. Its peak stress was significantly lower than the yield force of the Co-Cr-Mo alloy at the joint between the wing and the shell. The graft portion near the acetabular component was subjected to higher stress conditions. The contact stresses were found to be decreased with a reduced abduction angle of wings. The cup with wings of abduction angle of 15° had lower stresses compared with other cups. The cup with wings is a reliable option for the reconstruction of the acetabulum with extensive bone socket defects. The reduced abduction angle of wings helps to decrease the stress of the cup with wings. The FE analysis is a useful tool with which to address these issues.

  1. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    Science.gov (United States)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  2. Wing sexual dimorphism of pathogen-vector culicids.

    Science.gov (United States)

    Virginio, Flávia; Oliveira Vidal, Paloma; Suesdek, Lincoln

    2015-03-14

    Sexual dimorphism in animals has been studied from different perspectives for decades. In 1874 Darwin hypothesized that it was related to sexual selection, and even after nearly 140 years, when additional empirical data has become available and the subject has been investigated from a contemporary viewpoint, this idea is still supported. Although mosquito (Culicidae) wings are of great importance as they play a sex-specific role, little is known about wing sexual dimorphism in these pathogen-vector insects. Detection and characterization of wing sexual dimorphism in culicids may indirectly enhance our knowledge of their epidemiology or reveal sex-linked genes, aspects that have been discussed by vector control initiatives and developers of genetically modified mosquitoes. Using geometric morphometrics, we carried out a comparative assessment of wing sexual dimorphism in ten culicid species of medical/veterinary importance from genera Culex, Aedes, Anopheles and Ochlerotatus collected in Brazil. Discriminant analysis revealed significant sexual dimorphism in all the species studied, indicating that phenotypic expression of wing shape in mosquitoes is indeed sex-specific. A cross-validated test performed to reclassify the sexes with and without allometry yielded very similar results. Mahalanobis distances among the ten species showed that the species had different patterns of shape sexual dimorphism and that females are larger than males in some species. Wing morphology differed significantly between species. The finding of sexual dimorphism in all the species would suggest that the wing geometry of Culicidae is canalized. Although sexual dimorphism is prevalent, species-specific patterns occur. Allometry was not the main determinant of sexual dimorphism, which suggests that sexual selection or other evolutionary mechanisms underlie wing sexual dimorphism in these insects.

  3. Simulating Bird Strike on Aircraft Composite Wing Leading Edge.

    OpenAIRE

    Ericsson, Max

    2012-01-01

    In this master thesis project the possibility to model the response of a wing when subjected to bird strike using finite elements is analyzed. Since this transient event lasts only a few milliseconds the used solution method is explicit time integration. The wing is manufactured using carbon fiber laminate. Carbon fiber laminates have orthotropic material properties with different stiffness in different directions. Accordingly, there are damage mechanisms not considered when using metal that ...

  4. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  5. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  6. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  7. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  8. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  9. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  10. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  11. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  12. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  13. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  14. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  15. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880 were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts.

  16. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    Science.gov (United States)

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  18. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.

    Science.gov (United States)

    Du, Gang; Sun, Mao

    2012-05-07

    We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  20. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  1. Butterfly wing colors : glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Giraldo, Marco A.; Leertouwer, Hein L.

    2010-01-01

    The wings of the swordtail butterfly Graphium sarpedon nipponum contain the bile pigment sarpedobilin, which causes blue/green colored wing patches. Locally the bile pigment is combined with the strongly blue-absorbing carotenoid lutein, resulting in green wing patches and thus improving camouflage.

  2. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  3. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  4. Relationship of functional leg-length discrepancy to abnormal pronation.

    Science.gov (United States)

    Rothbart, Brian A

    2006-01-01

    The objective of this study was to determine whether a correlation exists between abnormal pronation and functional leg-length discrepancies. Visual assessment and a pelvic thrust maneuver were used to identify the functionally short leg in 56 indigenous Mexicans (20 males and 36 females; mean age, 33 years; mean weight, 59 kg; and mean height, 1.60 m). The Foot Posture Index was used with a modified stance position to identify the more pronated foot. The posterosuperior iliac spines were used to identify the "relative" position of the innominate bones. The raw data obtained from this study were evaluated using the McNemar test for paired proportions. A significant positive correlation was found between abnormal pronation and hip position and between hip position and functional leg-length discrepancy. These results are consistent with a theoretical ascending dysfunctional pelvic model: Abnormal pronation pulls the innominate bones anteriorly (forward); anterior rotation of the innominate bones shifts the acetabula posteriorly and cephalad (backward and upward); and this shift in the acetabula hyperextends the knees and shortens the legs, with the shortest leg corresponding to the most pronated foot.

  5. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  6. Induced mutations of winged bean in Ghana

    International Nuclear Information System (INIS)

    Klu, G.Y.P.; Quaynor-Addy, M.; Dinku, E.; Dikumwin, E.

    1989-01-01

    Winged bean (Psophocarpus tetragonolobus (L.) D.C.) was introduced into Ghana about two decades ago and not long after a high quality baby food was compounded from it. Germplasm collections are established at the Kade Agricultural Research Station of the University of Ghana and the University of Cape Coast. In 1980 a mutation breeding project was initiated at the University of Cape Coast under FAO/IAEA research contract and among various mutants a single erect stem mutant, a multiple branched bush type and a mutant with extra long pods were obtained. A similar programme was started at the National Nuclear Research Centre Kwabenya in 1982. Seeds of accessions UPS 122 and Kade 6/16 were gamma irradiated (100-400 Gy). In M 2 a mutant was obtained that did not flower throughout a growing period of five months. This mutant had very few leaves but developed an underground tuber weighing ca. 100 g. The parent, UPS 122, although normally tuber producing did not form tubers at Kwabenya within the period studied. In M 3 , mutants with variations in seed size and seed coat colour have been detected

  7. Comparación de la morfología alar de Tadarida brasiliensis (Chiroptera: Molossidae y Myotis chiloensis (Chiroptera: Vespertilionidae, representantes de dos diferentes patrones de vuelo Comparison of the wing morphology of Tadarida brasiliensis (Chiroptera: Molossidae and Myotis chiloensis (Chiroptera: Vespertilionidae as representatives of two flight patterns

    Directory of Open Access Journals (Sweden)

    MAURICIO CANALS

    2001-09-01

    results showed that T. brasiliensis is larger and with higher wing span than M. chiloensis, although the wing area does not differ between these bats. The latter species showed a smaller variability in body mass and cortical area of humerus, probably related with mechanic and energetic constraints. Without size effect, there were differences in the external diameter and medullar diameter of humerus, but with a similar cortical area. The humerus of T. brasiliensis is a bone of similar length, wider and with smaller cortical thickness than in M. chiloensis, which is related to a higher resistance to bending and torsional forces. The wing shape found in each bat is in agree with the life mode: slow, short and manoeuvrable flight in wooded zones of M. chiloensis and fast and long distance flight in open areas of T. brasiliensis

  8. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  9. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    Morales G, R.; Cano P, R.; Mendoza P, R.

    1993-01-01

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  10. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  11. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  12. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay.

    Science.gov (United States)

    Peraza-Vega, Ricardo I; Castañeda-Sortibrán, América N; Valverde, Mahara; Rojas, Emilio; Rodríguez-Arnaiz, Rosario

    2017-05-01

    The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.

  13. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    Science.gov (United States)

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.

  14. Physiological trade-off between cellular immunity and flight capability in the wing-dimorphic cricket, Gryllus firmus

    Science.gov (United States)

    The sand cricket, Gryllus firmus, is a wing-dimorphic species with long-wing (LW) and short wing (LW) morphs. The LW forms have very well developed wings and flight muscles and their SW counterparts have reduced wings and flight muscles, coupled with greater resource allocations to reproduction. Thi...

  15. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  16. Pulsed eddy current inspection of CF-188 inner wing spar

    Science.gov (United States)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  17. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  18. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    Science.gov (United States)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  19. Radio-transmitters do not affect seasonal productivity of female Golden-winged Warblers

    Science.gov (United States)

    Streby, Henry M.; Peterson, Sean M.; Gesmundo, Callie; Johnson, Michael K.; Fish, Alexander C.; Lehman, Justin A.; Andersen, David E.

    2013-01-01

    Investigating the potential effects of handling and marking techniques on study animals is important for correct interpretation of research results and to effect progress in data-collection methods. Few investigators have compared the reproductive output of radio-tagged and non-radio-tagged songbirds, and no one to date has examined the possible effect of radio-tagging adult songbirds on the survival of their fledglings. In 2011 and 2012, we compared several parameters of reproductive output of two groups of female Golden-winged Warblers (Vermivora chrysoptera) breeding in Minnesota, including 45 females with radio-transmitters and 73 females we did not capture, handle, or mark. We found no difference between groups in clutch sizes, hatching success, brood sizes, length of incubation and nestling stages, fledging success, number of fledglings, or survival of fledglings to independence. Thus, radio-tags had no measurable impact on the productivity of female Golden-winged Warblers. Our results build upon previous studies where investigators have reported no effects of radio-tagging on the breeding parameters of songbirds by also demonstrating no effect of radio-tagging through the post-fledging period and, therefore, the entire breeding season.

  20. Effects of the mosquito larvicide GB-1111 on red-winged blackbird embryos

    International Nuclear Information System (INIS)

    Albers, P.H.; Hoffman, D.J.; Buscemi, D.M.; Melancon, M.J.

    2003-01-01

    Mosquito larvicide GB-1111 poses a minimal risk to red-winged blackbird embryos when applied according to product label guidance. - Golden Bear Oil (GB-1111; legal trade name for GB-1313) is a petroleum distillate that is used in the United States and other countries as a larvicide for mosquito suppression. As part of a multi-species evaluation of the potential effects of GB-1111 on birds, red-winged blackbird eggs were collected, artificially incubated, and treated with one of five amounts of GB-1111 varying from 0 to 10 times the expected exposure from a spray application of the maximum recommended amount (X=47 l/ha, 5 gal/ac). The application of 10 X caused a significant reduction in hatching success. A dose-related reduction of hepatic microsomal monooxygenase activity (EROD) was detected. Among body weights, skeletal measurements, and age at death, only crownrump length was different among experimental groups. Overall, the potential hazard to embryos of a representative wetland passerine appears minimal until the application rate exceeds 3 X

  1. Cyclic codes of length 2

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    [X]/〈X2m. − 1〉 are given. Cyclic codes of length 2m over the finite field Fq, of odd characteristic, are defined in terms of their generator polynomials. The exact minimum distance and the dimension of the codes are obtained. Keywords.

  2. Diet, nutrition and telomere length.

    Science.gov (United States)

    Paul, Ligi

    2011-10-01

    The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Fractional baud-length coding

    Directory of Open Access Journals (Sweden)

    J. Vierinen

    2011-06-01

    Full Text Available We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.

  4. Femur length and biparietal diameter

    African Journals Online (AJOL)

    2014-12-02

    Dec 2, 2014 ... Shipp TD, Bromley B, Mascola M, Benacerraf B. Variation in fetal femur length with respect to maternal race. J Ultrasound Med 2001;20:141‑4. 25. Deter RL, Harrist RB, Birnholz JC, Hadlock FP. Quantitative Obstetrical. Ultrasonography. New York: Wiley; 1986. 26. Yeh MN, Bracero L, Reilly KB, Murtha L, ...

  5. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-02-01

    Full Text Available The thermohydraulic performance in a tube containing a modified twisted tape with alternate-axes and wing arrangements is reported. This work aims to investigate the effects of wing arrangements (opposite (O and parallel (P wings at different wing shapes (triangle (Tri, rectangular (Rec, and trapezoidal (Tra wings and on the thermohydraulic performance characteristics. The obtained results show that wing twisted tapes with all wing shape arrangements (O-Tri/O-Rec/O-Tra/P-Tri/P-Rec/P-Tra give superior thermohydraulic performance and heat transfer rate to the typical twisted tape. In addition, the tapes with opposite wing arrangement of O-Tra, O-Rec, and O-Tri give superior thermohydraulic performances to those with parallel wing arrangement of P-Tra, P-Rec, and P-Tri around 2.7%, 3.5%, and 3.2%, respectively.

  6. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  7. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  8. The biphasic effect of triiodothyronine compared to bone resorbing effect of PTH on bone modelling of mouse long bone in vitro

    International Nuclear Information System (INIS)

    Soskolne, W.A.; Schwartz, Z.; Goldstein, M.; Ornoy, A.

    1990-01-01

    To examine the effects of T3 on fetal long bone modelling the radii and ulnae of 16 day old fetal mice were grown in vitro for two days. Their growth, mineralization, and resorption were assessed by measuring diaphyseal length, calcium and phosphorus content, hydroxyproline content, and the release of incorporated 45 Ca. The effects of T3 were compared to the effects of 1-34 PTH, a known resorbing agent, on the same system. Devitalized bones were used as a control. The results showed that T3 had a biphasic effect. At high concentrations (10(-5) M-10(-6) M) T3 inhibited the growth of the bones as indicated by their diaphyseal length and hydroxyproline content. Calcium and phosphorus content were significantly decreased while 45 Ca release was increased. Similar effects were also found after the addition of 1-34 PTH to the media. However, T3, at lower concentrations (10(-7) M-10(-9) M), stimulated the growth and calcification of the bones as indicated by an increase in diaphyseal length and the hydroxyproline, calcium, and phosphorus content. 45 Ca release was significantly decreased at these concentrations. Neither T3 nor 1-34 PTH affected devitalized bones in the same system. The results suggest that at physiological concentrations, T3 has a direct, anabolic effect on bone, which may explain its major role in the growth process of various species. At high doses, however, T3 stimulates bone resorption in a way similar to PTH

  9. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  10. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle

    Science.gov (United States)

    Helms, V. T., III; Bradley, P. F.

    1984-01-01

    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  11. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  12. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  13. Simulation of wing-body junction flows with hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Fu Song; Xiao Zhixiang; Chen Haixin; Zhang Yufei; Huang Jingbo

    2007-01-01

    In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5 o angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k-ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements

  14. "Bird-Wing" abdominal phalloplasty: A novel surgical technique for penile reconstruction

    Directory of Open Access Journals (Sweden)

    Minu Bajpai

    2013-01-01

    Full Text Available Aim: To describe a technique of phalloplasty that is devoid of donor site scarring and suitable for urethral inlay and penile prosthesis in subsequent stages in cases of aphallia. Materials and Methods: Four patients with various disorders of sex development with 46 XY and severe penile deficiency, including one with complete androgen insensitivity syndrome who was initially raised as female, have been operated using a "Bird Wing" lower abdominal skin crease incision. Results: The patients′ age ranged from 6 to 17 years with preoperative stretched penile lengths between 1 and 2.5 cm. Phallic sizes between 7.5 and 12.5 cm was achieved leaving the donor site unremarkable with lower abdominal skin crease linear scar and excellent postoperative recovery. Conclusions: This phalloplasty technique can be utilized as a definitive procedure in many situations of penile insufficiency. Subsequent stages of urethral repair and insertion of penile prosthesis can be easily added.

  15. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Vivian Petersen

    Full Text Available Abstract: INTRODUCTION: Mass production of mosquitoes under laboratory conditions allows implementing methods to control vector mosquitoes. Colony development depends on mosquito size and weight. Body size can be estimated from its correlation with wing size, whereas weight is more difficult to determine. Our goal was to test whether wing size can predict the weight. METHODS: We compared dry weight and wing centroid size of Culex quinquefasciatus reared at different temperatures and four diets. RESULTS: Weight and wing size were strongly correlated. The diets did not influence wing size. CONCLUSIONS: Wing centroid size is a good predictor of Cx. quinquefasciatus body weight.

  16. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  17. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus.

    Science.gov (United States)

    Petersen, Vivian; Marchi, Marco Jacometto; Natal, Delsio; Marrelli, Mauro Toledo; Barbosa, Admilson Clayton; Suesdek, Lincoln

    2016-01-01

    Mass production of mosquitoes under laboratory conditions allows implementing methods to control vector mosquitoes. Colony development depends on mosquito size and weight. Body size can be estimated from its correlation with wing size, whereas weight is more difficult to determine. Our goal was to test whether wing size can predict the weight. We compared dry weight and wing centroid size of Culex quinquefasciatus reared at different temperatures and four diets. Weight and wing size were strongly correlated. The diets did not influence wing size. Wing centroid size is a good predictor of Cx. quinquefasciatus body weight.

  18. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    Science.gov (United States)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.

  19. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  20. Age-class separation of blue-winged ducks

    Science.gov (United States)

    Hohman, W.L.; Moore, J.L.; Twedt, D.J.; Mensik, John G.; Logerwell, E.

    1995-01-01

    Accurate determination of age is of fundamental importance to population and life history studies of waterfowl and their management. Therefore, we developed quantitative methods that separate adult and immature blue-winged teal (Anas discors), cinnamon teal (A. cyanoptera), and northern shovelers (A. clypeata) during spring and summer. To assess suitability of discriminant models using 9 remigial measurements, we compared model performance (% agreement between predicted age and age assigned to birds on the basis of definitive cloacal or rectral feather characteristics) in different flyways (Mississippi and Pacific) and between years (1990-91 and 1991-92). We also applied age-classification models to wings obtained from U.S. Fish and Wildlife Service harvest surveys in the Mississippi and Central-Pacific flyways (wing-bees) for which age had been determined using qualitative characteristics (i.e., remigial markings, shape, or wear). Except for male northern shovelers, models correctly aged lt 90% (range 70-86%) of blue-winged ducks. Model performance varied among species and differed between sexes and years. Proportions of individuals that were correctly aged were greater for males (range 63-86%) than females (range 39-69%). Models for northern shovelers performed better in flyway comparisons within year (1991-92, La. model applied to Calif. birds, and Calif. model applied to La. birds: 90 and 94% for M, and 89 and 76% for F, respectively) than in annual comparisons within the Mississippi Flyway (1991-92 model applied to 1990-91 data: 79% for M, 50% for F). Exclusion of measurements that varied by flyway or year did not improve model performance. Quantitative methods appear to be of limited value for age separation of female blue-winged ducks. Close agreement between predicted age and age assigned to wings from the wing-bees suggests that qualitative and quantitative methods may be equally accurate for age separation of male blue-winged ducks. We interpret annual

  1. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  2. Keeping disease at arm's length

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2015-01-01

    and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving......Many older people live with a range of chronic diseases. However, these diseases do not necessarily impede an active lifestyle. In this article the author analyses the relation between the active ageing discourse and the way older people at two Danish activity centres handle disease. How does...... active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...

  3. Regulation of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Shahi

    2017-05-01

    Full Text Available Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells. In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs, bone morphogenetic proteins (BMPs, wingless-type (Wnt genes, runt-related transcription factor 2 (RUNX2 and osteoblast-specific transcription factor (osterix or OSX.

  4. Bone disease in hypoparathyroidism.

    Science.gov (United States)

    Clarke, Bart L

    2014-07-01

    Hypoparathyroidism is a rare disorder that may be acquired or inherited. Postsurgical hypoparathyroidism is responsible for the majority of acquired hypoparathyroidism. Bone disease occurs in hypoparathyroidism due to markedly reduced bone remodeling due to the absence or low levels of parathyroid hormone. Chronically reduced bone turnover in patients with hypoparathyroidism typically leads to higher bone mass than in age- and sex-matched controls. Whether this increased bone density reduces fracture risk is less certain, because while increased bone mineralization may be associated with increased brittleness of bone, this does not appear to be the case in hypoparathyroidism. Treatment of hypoparathyroidism with recombinant parathyroid hormone may reduce bone mineral density but simultaneously strengthen the mechanical properties of bone.

  5. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  6. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  7. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  8. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  9. Bone-Immune Cell Crosstalk: Bone Diseases

    Directory of Open Access Journals (Sweden)

    Giorgio Mori

    2015-01-01

    Full Text Available Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  10. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  11. Histological investigation of the palatine bone in prenatal trisomy 21

    DEFF Research Database (Denmark)

    Lauridsen, H; Fischer Hansen, B; Reintoft, I

    2001-01-01

    OBJECTIVE: The purpose of the present study was to investigate the horizontal part of the palatine bone in palates from human fetuses with trisomy 21 to improve the phenotypic classification of the genotypic anomaly. METHODS: Material from 23 human trisomy 21 fetuses was included in the study....... The crown rump lengths of the fetuses ranged from 80 mm to 190 mm, corresponding to about 12 to 21 weeks of gestational age. The material was examined histologically. RESULTS AND CONCLUSIONS: Histological examination demonstrated four different palatal phenotypes on the basis of the development...... of the horizontal part of the palatine bone: type I, palatine bone complete; type II, the mesial region of the horizontal part of the palatine bone is lacking; type III, complete absence of the horizontal part of the palatine bone; and type IV, auxiliary bones in the region of the transpalatine suture. This finding...

  12. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    Science.gov (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  13. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  14. An overview of two nonlinear supersonic wing design studies

    Science.gov (United States)

    Miller, D. S.; Pittman, J. L.; Wood, R. M.

    1983-01-01

    The progress of two studies which apply nonlinear aerodynamics to supersonic wing design is reviewed. The first study employed a nonlinear potential flow code to design wings for high lift and low drag due to lift by employing a controlled leading-edge expansion in which the crossflow accelerates to supercritical conditions and decelerates through a weak shock. The second study utilized a modified linearized theory code to explore the concept of using 'attainable' leading-edge thrust as a guide for selecting a wing leading-edge shape (planform and radius) for maintaining attached flow and maximizing leading-edge thrust. Experimental and theoretical results obtained during the course of these two studies are discussed.

  15. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  16. AERODYNAMIC LOAD OF AN AIRCRAFT WITH A HIGHLY ELASTIC WING

    Directory of Open Access Journals (Sweden)

    Pavel Schoř

    2017-09-01

    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  17. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  18. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  19. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  20. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  1. Shape matters: improved flight in tapered auto-rotating wings

    Science.gov (United States)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  2. Development and experiments of the Sea-Wing underwater glider

    Science.gov (United States)

    Yu, Jian-Cheng; Zhang, Ai-Qun; Jin, Wen-Ming; Chen, Qi; Tian, Yu; Liu, Chong-Jie

    2011-12-01

    Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.

  3. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  4. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  5. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  6. Macrophages and bone inflammation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2017-07-01

    Full Text Available Bone metabolism is tightly regulated by the immune system. Accelerated bone destruction is observed in many bone diseases, such as rheumatoid arthritis, fracture, and particle-induced osteolysis. These pathological conditions are associated with inflammatory responses, suggesting the contribution of inflammation to bone destruction. Macrophages are heterogeneous immune cells and are polarized into the proinflammatory M1 and antiinflammatory M2 phenotypes in different microenvironments. The cytokines produced by macrophages depend on the macrophage activation and polarization. Macrophages and macrophage-derived cytokines are important to bone loss in inflammatory bone disease. Recent studies have shown that macrophages can be detected in bone tissue and interact with bone cells. The interplay between macrophages and bone cells is critical to bone formation and repair. In this article, we focus on the role of macrophages in inflammatory bone diseases, as well as discuss the latest studies about macrophages and bone formation, which will provide new insights into the therapeutic strategy for bone disease.

  7. Design, realization and structural testing of a compliant adaptable wing

    International Nuclear Information System (INIS)

    Molinari, G; Arrieta, A F; Ermanni, P; Quack, M; Morari, M

    2015-01-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing. (paper)

  8. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  9. Cabin-fuselage-wing structural design concept with engine installation

    Science.gov (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  10. Experimental Investigation of Pitch Control Enhancement to the Flapping Wing Micro Air Vehicle

    National Research Council Canada - National Science Library

    Kian, Chin C

    2006-01-01

    .... The MAV without the main fixed-wing is placed in a laminar flow field within a low speed wind tunnel with the wake after the flapping wings characterized with a constant temperature anemometer...

  11. Cephalometric assessment of maxillary length in Serbian children with skeletal class III.

    Science.gov (United States)

    Stojanović, Zdenka; Nikolić, Predrag; Nikodijević, Angelina; Milić, Jasmina; Stojanović, Branislav

    2013-07-01

    Malocclusion of skeletal class III is a complex irregularity of sagittal inter-jaw relationship, which is due to irregularities of sagittal position of one or both of the jaw bones, which is often associated with disproportionate ratio of their length. The aim of this study was to determine whether the length of the jaw of children with skeletal class III in the period of mixed dentition was changed. Fifty children with skeletal class III and the same number of those with skeletal class I, of both sexes, have been selected on the basis of cephalometric analysis of profile tele-x-ray of the head. All the children aged 6-12 had mixed dentition, and were divided according to sex and age into three subgroups within each group. The length of maxilla, mandible and cranial base were measured. Proportions among the lengths measured within each group were found and difference significance in the measured lengths and their proportions among groups and subgroups were evaluated. The children with skeletal class III, compared with the findings in the control group, had significantly lower values of maxillary length, total maxillary length, as well as lower values of their lengths in proportion to lengths of the front or the total length of cranial base and in proportion to mandibular lengths (p children with skeletal class III have significantly shorter maxilla than those with skeletal class I.

  12. The effective compliance of spatially evolving planar wing-cracks

    Science.gov (United States)

    Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.

    2018-02-01

    We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.

  13. Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.

    Science.gov (United States)

    Hage, W.; Meyer, R.; Bechert, D. W.

    1997-11-01

    In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.

  14. Experimental and computational study of transonic flow about swept wings

    Science.gov (United States)

    Bertelrud, A.; Bergmann, M. Y.; Coakley, T. J.

    1980-01-01

    An experimental investigation of NACA 0010 and 10% circular arc wing models, swept at 45 deg, spanning a channel, and at zero angle of attack is described. Measurements include chordwise and spanwise surface pressure distributions and oil-flow patterns for a range of transonic Mach numbers and Reynolds numbers. Calculations using a new three-dimensional Navier-Stokes code and a two-equation turbulence model are included for the circular-arc wing flow. Reasonable agreement between measurements and computations is obtained.

  15. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  16. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  17. Temporal bone imaging

    International Nuclear Information System (INIS)

    Shaffer, K.A.

    1987-01-01

    Although pluridirectional tomography had been the standard method to evaluate the temporal bone, computed tomography has replaced it for nearly all applications. Magnetic resonance imaging can demonstrate nonosseous temporal bone structures as well

  18. Bone Marrow Diseases

    Science.gov (United States)

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  19. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  20. What causes bone loss?

    Science.gov (United States)

    ... Paula FJA, Black DM, Rosen CJ. Osteoporosis and bone biology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: ... HM. Bone development and remodeling. In: Jameson JL, De Groot ...

  1. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation.

    Science.gov (United States)

    Kim, Ji-Beom; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Ji Hye; Yoo, Won Joon; Cho, Tae-Joon; Choi, In Ho

    2015-09-01

    Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. The immature rabbit tibial DO model (20 mm length-gain) was used. Twenty-eight animals received DBM 100 mg percutaneously at the end of distraction. Another 22 animals were left without further procedure (control). Plain radiographs were taken every week. Postmortem bone dual-energy X-ray absorptiometry and micro-computed tomography (micro-CT) studies were performed at the third and sixth weeks of the consolidation period and histological analysis was performed. The regenerate bone mineral density was higher in the DBM group when compared with that in the saline injection control group at the third week postdistraction. Quantitative analysis using micro-CT revealed larger trabecular bone volume, higher trabecular number, and less trabecular separation in the DBM group than in the saline injection control group. Cross-sectional area and cortical thickness at the sixth week postdistraction, assessed using micro-CT, were greater in the regenerates of the DBM group compared with the control group. Histological evaluation revealed higher trabecular bone volume and trabecular number in the regenerate of the DBM group. New bone formation was apparently enhanced, via endochondral ossification, at the site and in the vicinity of the injected DBM. DBM was absorbed slowly, but it remained until the sixth postoperative week after injection. DBM administration into the distraction gap at the end of the distraction period resulted in a significantly greater regenerate bone area, trabecular number, and cortical thickness in the rabbit tibial DO model. These data suggest

  2. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants......Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern......- and autograf as they have the capability of inducing new bone and improving implant fixation through enhancing bone ingrowth. The purpose of this study was to investigate the effect of DBM alone or with CB on the fixation of porous-coated titanium implants.Material and MethodsDBM100 (pure DBM) and CB produced...

  3. Influence of temperature on developmental rate, wing, length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae)

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Ali, A.; Lobinske, R. J.

    2002-01-01

    Roč. 95, č. 4 (2002), s. 699-705 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z6066911 Keywords : midge * Chironomidae * temperature Subject RIV: EH - Ecology, Behaviour Impact factor: 0.865, year: 2002

  4. Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis

    Science.gov (United States)

    Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica

    2012-06-01

    Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.

  5. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  6. A new genus of long-legged flies displaying remarkable wing directional asymmetry.

    OpenAIRE

    Runyon, Justin B; Hurley, Richard L

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left-right axis during development, a level of differentiation whose existence has been questioned for insects. Wing asymmetry of this magnitude has implications ...

  7. Gracile bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Kazimierz [Department of Medical Imaging, The Children' s Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW (Australia); Masel, John [Department of Radiology, Royal Children' s Hospital, Brisbane (Australia); Sillence, David O. [Department of Paediatrics and Child Health, The University of Sydney (Australia); Arbuckle, Susan [Department of Anatomical Pathology, The Children' s Hospital at Westmead, NSW (Australia); Juttnerova, Vera [Oddeleni Lekarske Genetiky, Hradec Kralove (Czech Republic)

    2002-09-01

    Gracile bone dysplasias constitute a group of disorders characterised by extremely slender bones with or without fractures. We report four newborns, two of whom showed multiple fractures. Two babies had osteocraniostenosis and one had features of oligohydramnios sequence. The diagnosis in the fourth newborn, which showed thin long bones and clavicles and extremely thin, poorly ossified ribs, is uncertain. Exact diagnosis of a gracile bone dysplasia is important for genetic counselling and medico-legal reasons. (orig.)

  8. Bone mineral density of the coracoid process decreases with age.

    Science.gov (United States)

    Beranger, Jean Sébastien; Maqdes, Ali; Pujol, Nicolas; Desmoineaux, Pierre; Beaufils, Philippe

    2016-02-01

    Surgical options in the treatment of recurrent anterior shoulder instability are numerous. The Latarjet procedure is one of the most common procedures performed. It has been previously demonstrated that bone mineral density decreases with age. This reduction thus increases the risk of osteoporosis and osteoporosis-related iatrogenic, traumatic or pathological fractures. The objective of this study was to quantify the bone mineral density of the coracoid process in different age groups. The hypothesis was that mineral bone density of the coracoid process decreases with age. Using the hospital's electronic database, 60 patients who underwent a shoulder CT scan were randomly selected retrospectively. Four groups of 15 were formed with mean ages of 20, 30, 40 and 50 years. Bone density, length, width and thickness of the coracoid process 10 mm from the tip were measured four times by two different evaluators. Bone density was expressed in Hounsfield units (HU). The mean bone mineral density of the coracoid process significantly decreased with age (p < 0.0001). A lower but insignificant difference of bone mineral density was observed in females. A good inter- and intra-observer reliability was found for bone mineral density measurement of the coracoid process (0.67 and 0.7, respectively). The bone mineral density of the coracoid process diminishes with age, thus confirming our hypothesis. There is a good inter- and intra-observer reliability of our CT scan-based coracoid process bone mineral density measurement rendering it reproducible in daily clinical practice. IV.

  9. Postnatal long bone growth in terrestrial placental mammals: allometry, life history, and organismal traits.

    Science.gov (United States)

    Kilbourne, Brandon M; Makovicky, Peter J

    2012-10-01

    The ontogenetic allometry of long bone proportions is poorly understood in Mammalia. It has previously been suggested that during mammalian ontogeny long bone proportions grow more slender (positive allometry; length ∝ circumference(>1.0) ), although this conclusion was based upon data from a few small-bodied taxa. It remains unknown how ontogenetic long bone allometry varies across Mammalia in terms of both taxonomy and body size. We collected long bone length and circumference data for ontogenetic samples of 22 species of mammals spanning six major clades and three orders of magnitude in body mass. Using reduced major axis bivariate regressions to compare bone length to circumference, we found that isometry and positive allometry are the most widespread patterns of growth across mammals. Negative allometry (i.e., bones growing more robust during ontogeny) occurs in mammals but is largely restricted to cetartiodactyls. Using regression slope as a proxy for long bone allometry, we compared long bone allometry to life history and organismal traits. Neonatal body mass, adult body mass, and growth rate have a negative relationship with long bone allometry. At an adult mass of roughly 15-20 kg, long bone growth shifts from positive allometry to mainly isometry and negative allometry. There were no significant relationships between ontogenetic long bone allometry and either cursoriality or basal metabolic rate. Copyright © 2012 Wiley Periodicals, Inc.

  10. Bone transport and compression-distraction in the treatment of bone loss of the lower limbs.

    Science.gov (United States)

    Lavini, Franco; Dall'Oca, Carlo; Bartolozzi, Pietro

    2010-11-01

    A clinical series of 17 adult patients operated due to significant by bone loss of the long bones of the lower extremity (3 femurs and 11 tibias), is presented. Their management consisted of 6 bone transports (6 tibias) and 11 compression distraction procedures (3 femurs and 8 tibiae) using monolateral external fixators. Bone loss ranged from 3.9 cm to 14.7 cm. Mean healing time was 301 days with a mean healing index of 45.6 days for cm of lengthening achieved. The clinical and radiological results were excellent in 9, good in 6 and fair in 2 patients according to the utilised criteria of assessment. Consolidation was achieved in all but one patient who developed an aseptic stiff non-union. Two patients developed residual limb-length discrepancy less than 1.5 cm, three tibias ended up with less than 5° of valgus deviation. In two cases the half-pins were re-inserted due to early loosening. In two cases reoperation was needed for late bending of the callus after fixator removal. Three cases of bone transport and 1 case of compression distraction needed bone grafting at the docking site. Bone transport and compression-distraction are effective methods for treating bone loss in the lower extremity. It is suggested that the compression-distraction technique is preferable, since this is associated with a lower incidence of complications than bone transport procedures. The deciding factor, however, is the actual extent of the bone loss. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. [Artificial bone substitutes].

    Science.gov (United States)

    Koníček, Petr

    Bone tissue substitutes are divided into basic classification with its pros and cons described. Arteficial bone grafts are especially pointed out in article, publishing our own experience with two specific synthetic preps. Finally there is a blink in the near future of bone tissue augmentation.

  12. (unicameral) bone cysts

    African Journals Online (AJOL)

    When encountering a radiologically benign lucent bone lesion in a child, a simple bone cyst is a reasonable diagnostic consideration. Simple or unicameral bone cysts are expansile, serous-fluid-containing defects, that are not true neoplasms. Peak age ranges between 3 and 14 years in. 80% of cases. The incidence is ...

  13. Failure load of patellar tendon grafts at the femoral side: 10- versus 20-mm-bone blocks

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); M.J.N. Niggebrugge (Marnix); J.A.N. Verhaar (Jan)

    2009-01-01

    textabstractThe aim of the study was to investigate whether use of short bone blocks is safe in anterior cruciate ligament (ACL) reconstruction. Our hypothesis was that the smaller 10-mm-length bone blocks will fail at lower loads than 20-mm-bone blocks. Ten paired human cadaver knees were randomly

  14. A mechanical model of wing and theoretical estimate of taper factor ...

    Indian Academy of Sciences (India)

    PRAKASH

    β angle between humerus and body βmin minimum angle between humerus and body βe empirical span ratio (bobs/ bmax) βmin,sr minimum span ratio b wing span. bB body width bmax maximum wing span bobs observed wingspan c wing chord. Cl,max maximum lift coefficient e taper factor g acceleration due to gravity.

  15. Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber

    NARCIS (Netherlands)

    Keidel, D.H.K.; Sodja, J.; Werter, N.P.M.; De Breuker, R.; Ermanni, P.; Monajjemi, M.; Liang, W.

    2015-01-01

    Driven by the need to improve the performance and energy-efficiency of aircraft, current research in the field of morphing wings is growing in significance. The most recently developed concepts typically adjust only one characteristic of the wing. Within this paper a new concept for morphing wings

  16. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  17. Flapping wing actuation using resonant compliant mechanisms : An insect-inspired design

    NARCIS (Netherlands)

    Bolsman, C.T.

    2010-01-01

    The realization of a wing actuation mechanism for a flapping wing micro air vehicle requires a move away from traditional designs based on gears and links. An approach inspired by nature’s flyers is better suited. For flapping flight two wing motions are important: the sweeping and the pitching

  18. A predictive quasi-steady model of aerodynamic loads on flapping wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; van Keulen, A.

    2016-01-01

    Quasi-steady aerodynamic models play an important role in evaluating aerodynamic performance and conducting design and optimization of flapping wings. The kinematics of flapping wings is generally a resultant motion of wing translation (yaw) and rotation (pitch and roll). Most quasi-steady models

  19. Note on the glide of a bird with wings bent downwards

    NARCIS (Netherlands)

    Sparenberg, J. A.

    This note considers the influence of the bending down of the wings of a bird on the performance of its glide. The induced drag of bent wings is compared with the induced drag of a corresponding straight wing. Numerical results are given.

  20. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Science.gov (United States)

    2013-01-16

    ...) of this AD, inspect the wing lift strut forks for cracks using magnetic particle procedures, such as... Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts AGENCY: Federal Aviation... existing airworthiness directive (AD) that applies to certain aircraft equipped with wing lift struts. The...

  1. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  2. The Photodynamic Bone Stabilization System: a minimally invasive, percutaneous intramedullary polymeric osteosynthesis for simple and complex long bone fractures.

    Science.gov (United States)

    Vegt, Paul; Muir, Jeffrey M; Block, Jon E

    2014-01-01

    The treatment of osteoporotic long bone fractures is difficult due to diminished bone density and compromised biomechanical integrity. The majority of osteoporotic long bone fractures occur in the metaphyseal region, which poses additional problems for surgical repair due to increased intramedullary volume. Treatment with internal fixation using intramedullary nails or plating is associated with poor clinical outcomes in this patient population. Subsequent fractures and complications such as screw pull-out necessitate additional interventions, prolonging recovery and increasing health care costs. The Photodynamic Bone Stabilization System (PBSS) is a minimally invasive surgical technique that allows clinicians to repair bone fractures using a light-curable polymer contained within an inflatable balloon catheter, offering a new treatment option for osteoporotic long bone fractures. The unique polymer compound and catheter application provides a customizable solution for long bone fractures that produces internal stability while maintaining bone length, rotational alignment, and postsurgical mobility. The PBSS has been utilized in a case series of 41 fractures in 33 patients suffering osteoporotic long bone fractures. The initial results indicate that the use of the light-cured polymeric rod for this patient population provides excellent fixation and stability in compromised bone, with a superior complication profile. This paper describes the clinical uses, procedural details, indications for use, and the initial clinical findings of the PBSS.

  3. PHOTOGRAMMETRIC MEASUREMENTS IN FIXED WING UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    E. Gülch

    2012-07-01

    Full Text Available Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a

  4. The shifting trajectory of growth in femur length during gestation.

    Science.gov (United States)

    Bjørnerem, Ashild; Johnsen, Synnøve L; Nguyen, Tuan V; Kiserud, Torvid; Seeman, Ego

    2010-05-01

    Bone size is a determinant of bone strength and tracks in its percentile of origin during childhood and adolescence. We hypothesized that the ranking of an individual's femur length (FL) is established in early gestation and tracks thereafter. Fetal FL was measured serially using 2D ultrasound in 625 Norwegian fetuses. Tracking was assessed using Pearson correlation, a generalized estimating equation model, and by calculating the proportion of fetuses whose FL remained within the same quartile. Baseline FL Z-score (weeks 10 to 19) and later measurements correlated, but more weakly as gestation advanced: r = 0.59 (weeks 20 to 26); r = 0.45 (weeks 27 to 33); and r = 0.32 (weeks 34 to 39) (p baseline FL Z-score, placental weight (150 g), maternal height (5 cm), and weight (10 kg), was associated with a 0.25, 0.15, 0.10, and 0.05 SD higher FL Z-score at the end of gestation, respectively (p ranging from <0.001 to 0.02). Tracking within the same percentile throughout the whole of gestation, as suggest by growth charts, is uncommon. Deviation from tracking is more common and is the result of changes in growth velocity within and between fetuses and is partly influenced by maternal, fetal, and placental factors. (c) 2010 American Society for Bone and Mineral Research.

  5. Cytology of Bone.

    Science.gov (United States)

    Barger, Anne M

    2017-01-01

    Cytology of bone is a useful diagnostic tool. Aspiration of lytic or proliferative lesions can assist with the diagnosis of inflammatory or neoplastic processes. Bacterial, fungal, and protozoal organisms can result in significant osteomyelitis, and these organisms can be identified on cytology. Neoplasms of bone including primary bone tumors such as osteosarcoma, chondrosarcoma, fibrosarcoma, synovial cell sarcoma, and histiocytic sarcoma and tumors of bone marrow including plasma cell neoplasia and lymphoma and metastatic neoplasia can result in significant bone lysis or proliferation and can be diagnosed effectively with cytology. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  7. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  8. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds

    Science.gov (United States)

    Gloss, B. B.

    1975-01-01

    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  9. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    In this study, using Drosophila melanogaster isofemale lines derived from wild flies collected on both slopes of the canyon, we investigated the effect of developmental temperature upon the different components of phenotypic variation of a complex trait: the wing. Combining geometric and traditional morphometrics, we find ...

  10. Investigating Biological Controls to Suppress Spotted Wing Drosophila Populations

    Science.gov (United States)

    The spotted wing drosophila has become a major cherry pest in California. To develop sustainable management options for this highly mobile pest, we worked with cooperators at Oregon State University and the USDA to discover and import natural enemies of the fly from its native range in South Korea ...

  11. Monitoring of a Full-Scale Wing Fatigue Test

    NARCIS (Netherlands)

    Heida, Jaap; Hwang, Joong Sun

    2014-01-01

    A wing of a decommissioned aircraft of the Royal Netherlands Air Force (RNLAF) was fatigue tested to more than two times the design life. Part of the test was the evaluation of load monitoring and Structural Health Monitoring (SHM) techniques. For load monitoring the data of conventional resistance

  12. Electric Propulsion Concepts for an Inverted Joined Wing Airplane Demonstrator

    Directory of Open Access Journals (Sweden)

    Cezary Galinski

    2017-05-01

    Full Text Available One of the airplane design concepts that potentially allows for significantly increased efficiency, but has not yet been investigated thoroughly, is the inverted joined wing configuration, where the upper wing is positioned in front of the lower one. We performed wind tunnel and flight testing of a demonstrator of this concept, first by applying electrical propulsion to simplify wind tunnel testing, and then the same electrical-propulsion demonstrator performed several flights. As the chosen propulsion method proved to be too cumbersome for an intensive flight campaign and significant loss of battery performance was also observed, the electrical propulsion was then replaced by internal combustion propulsion in the second phase, involving longer-duration flight testing. Next we identified and analyzed two potentially beneficial modifications to the design tested: one involved shifting the center of gravity towards the aft, the other involved modifying the thrust vector position, both with the assumption that electric motors can be applied for propulsion. On this basis, the paper finishes with some conclusions concerning a new concept of electrical propulsion for an inverted joined wing design, combining two ideas: hybridization and distribution along the aft wing leading edge.

  13. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  14. Wings of the Night: The Natural History of Bats

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Wings of the Night: The Natural History of Bats. Uttam Saikia. General Article Volume 12 Issue 11 November 2007 pp 63-76. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/11/0063-0076 ...

  15. Robust Backstepping Control of Wing Rock Using Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Dawei Wu

    2017-02-01

    Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.

  16. Male secondary sexual characters in Aphnaeinae wings (Lepidoptera: Lycaenidae)

    OpenAIRE

    Bálint, Zsolt; Heath, Alan; Katona, Gergely; Kertész, Krisztián; Sáfián, Szabolcs

    2017-01-01

    Male secondary sexual characters have been discovered on the hindwing verso of genera Aphnaeus Hübner, [1819], Cigaritis Donzel, 1847, Lipaphnaeus Aurivillius, 1916 and Pseudaletis Druce, 1888 representing the Palaeotropical subfamily Aphnaeinae Lycaenidae: Lepidoptera). Relevant wing parts are illustrated, described, and some observations on the organs are briefly annotated. With an appendix and 14 figures.

  17. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  18. Aeroelastic Modelling and Design of Aeroelastically Tailored and Morphing Wings

    NARCIS (Netherlands)

    Werter, N.P.M.

    2017-01-01

    In order to accommodate the growth in air traffic whilst reducing the impact on the environment, operational efficiency is becoming more and more important in the design of the aircraft of the future. A possible approach to increase the operational efficiency of aircraft wings is the use of

  19. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability

  20. The marginal band system in nymphalid butterfly wings.

    Science.gov (United States)

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.