WorldWideScience

Sample records for wing action resulted

  1. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  2. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    Science.gov (United States)

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Waldman, J Rhea S; Swartz, Sharon M

    2015-10-07

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical 'string-like' system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. © 2015 The Author(s).

  3. Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results

    Science.gov (United States)

    Vicroy, Dan D.

    2009-01-01

    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented.

  4. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.

    2015-01-01

    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  5. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    Science.gov (United States)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  6. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  7. C-130: Results of center wing residual strength and crack propagation test program

    Science.gov (United States)

    Reeder, F. L.; Dirkin, W. J.; Snider, H. L.

    1971-01-01

    Fourteen C-130 airplane center wings which had experienced from approximately 4,000 to 13,000 hours of flight service and its associated fatigue damage were tested to destruction, seven in upbending and seven in downbending. Six wings were tested directly for static residual strength in the fatigue-damaged condition as received from field service. The other eight wings were tested in crack propagation cyclic testing at a prescribed stress level for a maximum of 10,000 cycles. Then the stress level was reduced and testing was continued up to a maximum of 20,000 total cycles. Cyclic testing was performed with constant-amplitude stresses at a stress ratio of +0.1. Maximum cyclic skin stresses were approximately 18,000 psi. At the conclusion of cyclic testing, a static test to destruction was conducted to determine the residual strength of each fatigue-damaged specimen.

  8. "Action": Publishing Research Results in Film

    Directory of Open Access Journals (Sweden)

    Susan Thieme

    2012-01-01

    Full Text Available Researchers commonly disseminate their research findings in academic papers or books that have a selected and limited target audience. A potential method for disseminating the information other than the traditional academic is through film, but this means tailoring the material to this medium and in many cases collaborating with people who have the necessary skills. The aim of this article is to reflect on the experience of making a film from the researcher's perspective. I will in particular shed light on how the filmmaking team worked together and provide examples of the preceding research, as well as the shooting and editing of the film material. The long period of research leading up to the film was a major factor in its success. In addition, all of the people involved have to be willing to share their experiences, recognize each other's expertise and be able to compromise. The film was much more than just an extension of the ongoing multi-site qualitative research. The shooting not only provided new insights into people's lives but also forced me to think much harder about my research and "the fieldwork." The additional costs and efforts related to the film can be justified by a transdisciplinary understanding of research that requires the results to be disseminated beyond academic circles, attract attention from policymakers and activists, and also allow the subjects of the research (who generally do not read English academic articles to become an active audience. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1201316

  9. Characteristics of complaints resulting in disciplinary actions against Danish GPs

    DEFF Research Database (Denmark)

    S, Birkeland; RD, Christensen; N, Damsbo

    2013-01-01

    The risk of being disciplined in connection with a complaint case causes distress to most general practitioners. The present study examined the characteristics of complaint cases resulting in disciplinary action.......The risk of being disciplined in connection with a complaint case causes distress to most general practitioners. The present study examined the characteristics of complaint cases resulting in disciplinary action....

  10. Impact of recovery actions on IPE back-end results

    International Nuclear Information System (INIS)

    Guey, Ching; Kabadi, Jay

    1993-01-01

    This paper presents a sensitivity study of the impact of various recovery/accident management actions on the IPE results. The human actions studied include: (1) RWST replenishment; (2) depressurization; (3) AC power recovery; (4) Component Cooling Water (CCW) cross-connection; and (5) manual actuation of containment spray (cavity flooding). The results indicate that the total frequency of severe accident sequences involving containment failure is lower than 1.0 x E-6/yr when all these recovery/accident management actions are taken credit. It is concluded that with appropriate considerations of operator actions in Emergency Operating Procedures (EOPs) and future accident management policy, the uncertain phenomenological issues may not play as important a role as they do now. Although the actual nonrecovery probability used in this study may be refined during future implementation of the accident management policy, the results of this study indicate that the frequency of severe accidents in which the reactor vessel fails is low when the recovery/accident management actions are taken credit. It is also clear from the study that with major recovery actions (such as RWST replenishment, AC power recovery and depressurization) being taken credit, additional accident management type of actions (e.g. manual actuation of containment spray and CCW cross-connection) may not be as effective in reducing the risk

  11. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Felker, Fort F.

    1991-01-01

    A test of a 0.658-scale V-22 rotor and wing was conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The principal objectives of the test were to measure the wing download in hover for a variety of test configurations, and rotor performance in forward flight. Also, a limited amount of data on rotor performance in vertical climb were acquired. This paper presents the results from the test with predictions from appropriate analytical methods. A new method for presenting and interpreting wing surface pressure data in hover is described, and this method shows that the wing flap can produce substantial lift loads in hover. The rotor performance in vertical climb was underpredicted by CAMRAD/JA and by the free wake analysis EHPIC. A simple momentum theory is presented which provides good predictions of rotor performance in forward flight.

  12. Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results

    Science.gov (United States)

    Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra

    2009-01-01

    The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.

  13. Results of design studies and wind tunnel tests of high-aspect-ratio supercritical wings for an energy efficient transport

    Science.gov (United States)

    Steckel, D. K.; Dahlin, J. A.; Henne, P. A.

    1980-01-01

    These basic characteristics of critical wings included wing area, aspect ratio, average thickness, and sweep as well as practical constraints on the planform and thickness near the wing root to allow for the landing gear. Within these constraints, a large matrix of wing designs was studied with spanwise variations in the types of airfoils and distribution of lift as well as some small planform changes. The criteria by which the five candidate wings were chosen for testing were the cruise and buffet characteristics in the transonic regime and the compatibility of the design with low speed (high-lift) requirements. Five wing-wide-body configurations were tested in the NASA Ames 11-foot transonic wind tunnel. Nacelles and pylons, flap support fairings, tail surfaces, and an outboard aileron were also tested on selected configurations.

  14. Human action perspectives based on individual plant examination results

    International Nuclear Information System (INIS)

    Forester, J.; Thompson, C.; Drouin, M.; Lois, E.

    1996-01-01

    This paper provides perspectives on human actions gained from reviewing 76 individual plant examination (IPE) submittals. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed. Since there are numerous factors that can influence the quantification of human error probabilities (HEPs) and introduce significant variability in the resulting HEPs (which in turn can influence which events are found to be important), the variability in HEPs for similar events across IPEs is examined to assess the extent to which variability in results is due to real versus artifactual differences. Finally, similarities and differences in human action observations across BWRs and PWRs are examined

  15. Results of cost-beneficial licensing actions programs

    International Nuclear Information System (INIS)

    Sokolsky, D.; Ross, A.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission (NRC) formally established the cost-beneficial licensing action (CBLA) initiative in April 1993. This initiative provides an opportunity for nuclear plant licensees to reduce costs through either relief from regulatory requirements or changes in their commitments that are marginal to plant safety. The NRC recognized that licensees may have open-quotes overcommittedclose quotes to meet regulatory requirements and that revisions to these commitments Could result in cost savings. The NRC has defined CBLA as those licensee actions that are of relatively high cost and low safety significance. Since the CBLA initiative was established, licensees have made - 150 CBLA requests to the NRC. However, before and after the CBLA initiative became effective, licensees had made hundreds of regulatory reduction and commitment change requests to the NRC that were not identified as CBLA. The CBLAs discussed in this paper include both types of requests. Two types of cost savings can result from CBLAs - direct and averted. Direct cost savings result in an immediate cost reduction from the open-quotes bottom lineclose quotes as a result of the elimination of personnel or equipment. Averted cost savings, commonly known as resource reallocation, occur when a licensee action that takes up a small percentage of an employee's time is eliminated. In this instance, the employee would not be terminated, so no direct cost savings result, but that employee is available to perform other, more safety-significant actions

  16. Plan Puebla-Panama: Actions and results of an administration

    International Nuclear Information System (INIS)

    Archila, Raul

    2003-01-01

    The author of the article explains the main actions and results of the Plan Puebla Panama, also describes the interconnected power systems of Central America with Mexico, the financial plans given by the Banco Interamericano de Desarrollo and the Japan Bank of International Cooperation for the projects of geothermal energy, and the infraestructure to be built with the differents projects of energy

  17. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  18. Urban youth, fear of crime, and resulting defensive actions.

    Science.gov (United States)

    Williams, J S; Singh, B K; Singh, B B

    1994-01-01

    One of the most neglected populations studied in victimology has been juveniles. The present study examines the impact of fear of crime among a sample of urban youth on their defensive actions. Studies of urban adult populations have found that a significant number of people fear to venture outside their homes at night. When they do go out, they often take defensive measures to insure their safety. Carrying "mace," whistles, guns, knives, and clubs, for example, is not uncommon. Some have indicated that they have undertaken training in a variety of self-defensive arts and/or keep dogs to protect themselves from the possibility of being victimized. Using data collected from a sample of 1,775 urban youth in 1986 it was found that this population has taken many of the same defensive actions. Only 11% of the sample indicated that they had not taken any defensive actions as a result of fear of crime. Nearly three-fifths took the precaution of having an escort when they went out at night. Learning a technique of self-defense was reported by 19% of the sample; 10% indicated that they carried "mace" or some other type of repellant. Only 4% reported that they carried a whistle because of crime concerns. Significant predictors of personal defensive actions include gender, crime-witnessing status, victimization status and type of victimization (theft vs. witnessing Other defensive actions taken by members of the respondents' households included installing a burglar alarm (22%), keeping a "trained dog" (17%), keeping lights on a night (39%), and installing security locks (38%).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  20. Microneurolysis and decompression of long thoracic nerve injury are effective in reversing scapular winging: Long-term results in 50 cases

    Directory of Open Access Journals (Sweden)

    Lyons Andrew B

    2007-03-01

    Full Text Available Abstract Background Long thoracic nerve injury leading to scapular winging is common, often caused by closed trauma through compression, stretching, traction, direct extrinsic force, penetrating injury, or neuritides such as Parsonage-Turner syndrome. We undertook the largest series of long thoracic nerve decompression and neurolysis yet reported to demonstrate the usefulness of long thoracic nerve decompression. Methods Winging was bilateral in 3 of the 47 patients (26 male, 21 female, yielding a total of 50 procedures. The mean age of the patients was 33.4 years, ranging from 24–57. Causation included heavy weight-lifting (31 patients, repetitive throwing (5 patients, deep massage (2 patients, repetitive overhead movement (1 patient, direct trauma (1 patient, motor bike accident (1 patient, and idiopathic causes (9 patients. Decompression and microneurolysis of the long thoracic nerve were performed in the supraclavicular space. Follow-up (average of 25.7 months consisted of physical examination and phone conversations. The degree of winging was measured by the operating surgeon (RKN. Patients also answered questions covering 11 quality-of-life facets spanning four domains of the World Health Organization Quality of Life questionnaire. Results Thoracic nerve decompression and neurolysis improved scapular winging in 49 (98% of the 50 cases, producing "good" or "excellent" results in 46 cases (92%. At least some improvement occurred in 98% of cases that were less than 10 years old. Pain reduction through surgery was good or excellent in 43 (86% cases. Shoulder instability affected 21 patients preoperatively and persisted in 5 of these patients after surgery, even in the 5 patients with persistent instability who experienced some relief from the winging itself. Conclusion Surgical decompression and neurolysis of the long thoracic nerve significantly improve scapular winging in appropriate patients, for whom these techniques should be considered

  1. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  2. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx).

    Science.gov (United States)

    Bischoff, Kara; Ballew, Anna C; Simon, Michael A; O'Reilly, Alana M

    2009-12-01

    The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  3. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    2009-12-01

    Full Text Available The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1].Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells.Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  4. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION 2

    International Nuclear Information System (INIS)

    KIRK WINTERHOLLER

    2008-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards

  5. The pedagogical practices in inclusive context: strategies, actions and results

    Directory of Open Access Journals (Sweden)

    Marco Antonio Melo Franco

    2016-10-01

    Full Text Available This research seeks to go beyond the theoretical debate on the integration and inclusion of children with disability. It addresses pedagogical work in the classroom, with the disabled child, in this case, the child with cerebral palsy. This is a qualitative approach and action research that aims to understand the reality investigated and it intervene. Participates in the research a public school that has students with cerebral palsy. The classes were followed weekly during the school year, in order to understand and analyze the process of teaching and learning. In addition, we attempted to intervene and build new teaching practices with teachers. As a result we identified the adoption of pedagogical strategies that consider the individuality of the subjects and their participation in the school community. Strategies were adopted as written economy, reorganization of spaces, change in the form of participation, curriculum adaptation, and adaptation activities, among others.

  6. Comparison of analytical and wind-tunnel results for flutter and gust response of a transport wing with active controls

    Science.gov (United States)

    Abel, I.; Perry, B., III; Newsom, J. R.

    1982-01-01

    Two flutter suppression control laws wre designed and tested on a low speed aeroelastic model of a DC-10 derivative wing. Both control laws demontrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. In addition, one of the control laws was effective in reducing loads due to turbulence generated in the wind tunnel. The effect of variations in gain and phase on the closed-loop performance was measured and is compared with predictions. In general, both flutter and gust response predictions agree reasonably well with experimental data.

  7. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  8. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  9. Proposed Relocation of the 37th Tactical Fighter Wing and Other Tactical Force Structure Actions. Draft Environmental Impact Statement

    Science.gov (United States)

    1991-02-05

    sabulosa Dune unicorn plant A-8 Table A-4. New Mexico State Endangered Plant Species Known to Occur Within Area of Alternative Actions (continued...NOx SO2 PM(a) Startup Idle 0.105 22.7 8.8 0.3 0.1 0.0 Taxi Out Idle 0.092 19.8 7.7 0.2 0.1 0.0 Eng Chk Mili 0.018 0.7 0.1 7.5 0.3 0.1 Roll Mili 0.007

  10. Climate Action Gaming Experiment: Methods and Example Results

    Directory of Open Access Journals (Sweden)

    Clifford Singer

    2015-09-01

    Full Text Available An exercise has been prepared and executed to simulate international interactions on policies related to greenhouse gases and global albedo management. Simulation participants are each assigned one of six regions that together contain all of the countries in the world. Participants make quinquennial policy decisions on greenhouse gas emissions, recapture of CO2 from the atmosphere, and/or modification of the global albedo. Costs of climate change and of implementing policy decisions impact each region’s gross domestic product. Participants are tasked with maximizing economic benefits to their region while nearly stabilizing atmospheric CO2 concentrations by the end of the simulation in Julian year 2195. Results are shown where regions most adversely affected by effects of greenhouse gas emissions resort to increases in the earth’s albedo to reduce net solar insolation. These actions induce temperate region countries to reduce net greenhouse gas emissions. An example outcome is a trajectory to the year 2195 of atmospheric greenhouse emissions and concentrations, sea level, and global average temperature.

  11. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  12. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  13. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  14. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  15. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  16. Setting Priorities: Personal Values, Organizational Results. Ideas into Action Guidebooks

    Science.gov (United States)

    Cartwright, Talula

    2007-01-01

    Successful leaders get results. To get results, you need to set priorities. This book can help you do a better job of setting priorities, recognizing the personal values that motivate your decision making, the probable trade-offs and consequences of your decisions, and the importance of aligning your priorities with your organization's…

  17. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  18. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  19. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  20. Experimental result analysis for scaled model of UiTM tailless blended wing-body (BWB) Baseline 7 unmanned aerial vehicle (UAV)

    Science.gov (United States)

    Nasir, R. E. M.; Ahmad, A. M.; Latif, Z. A. A.; Saad, R. M.; Kuntjoro, W.

    2017-12-01

    Blended wing-body (BWB) aircraft having planform configuration similar to those previously researched and published by other researchers does not guarantee that an efficient aerodynamics in term of lift-to-drag ratio can be achieved. In this wind tunnel experimental study, BWB half model is used. The model is also being scaled down to 71.5% from the actual size. Based on the results, the maximum lift coefficient is found to be 0.763 when the angle is at 27.5° after which the model starts to stall. The minimum drag coefficient is 0.014, measured at zero angle of attack. The corrected lift-to-drag ratio (L/D) is 15.9 at angle 7.8°. The scaled model has a big flat surface that surely gives an inaccurate data but the data obtained shall give some insights for future perspective towards the BWB model being tested.

  1. Defining Learning Space in a Serious Game in Terms of Operative and Resultant Actions

    Science.gov (United States)

    Martin, Michael W.; Shen, Yuzhong

    2012-01-01

    This paper explores the distinction between operative and resultant actions in games, and proposes that the learning space created by a serious game is a function of these actions. Further, it suggests a possible relationship between these actions and the forms of cognitive load imposed upon the game player. Association of specific types of cognitive load with respective forms of actions in game mechanics also presents some heuristics for integrating learning content into serious games. Research indicates that different balances of these types of actions are more suitable for novice or experienced learners. By examining these relationships, we can develop a few basic principles of game design which have an increased potential to promote positive learning outcomes.

  2. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  3. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  4. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  5. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  6. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  7. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  8. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  9. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  10. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  11. Probabilistic Robustness Analysis of Timber Structures—Results from EU COST Action E55:WG3

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    The present paper outlines results from Working Group 3 (WG3) in the EU COST Action E55—‘Modelling of the performance of timber structures’. The objectives of the project are related to the three main research activities: the identification and modelling of relevant load and environmental exposur...

  12. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  13. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  14. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  15. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  16. Probabilistic Robustness Analysis of Timber Structures—Results from EU COST Action E55:WG3

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    The present paper outlines results from Working Group 3 (WG3) in the EU COST Action E55—‘Modelling of the performance of timber structures’. The objectives of the project are related to the three main research activities: the identification and modelling of relevant load and environmental exposur...... scenarios, the improvement of knowledge concerning the behaviour of timber structural elements and the development of a generic framework for the assessment of the life-cycle vulnerability and robustness of timber structures....

  17. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  18. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  19. Genetic toxicity in surface water from Guaiba Hydrographic Region under the influence of industrial, urban and agricultural sewage in the Drosophila Wing-Spot Test

    International Nuclear Information System (INIS)

    Souza do Amaral, Viviane; Sinigaglia, Marialva; Reguly, Maria Luiza; Rodrigues de Andrade, Heloisa Helena

    2006-01-01

    Mutagenic and recombinagenic activity of surface waters in the Guaiba Hydrographic Region (RS, Brazil) was investigated using the SMART in Drosophila melanogaster. Two positive results in Cai River (September 2000 and August 2001) and in Taquari River (August 2001 and February 2002) - linked to direct recombinagenic toxicants were observed. In Jacui samples, an indirect mutagenic and recombinagenic action was detected in a September 2000 collection and a direct recombinational activity was observed in February 2002. Also in February 2002 - samples from Diluvio Brook and Guaiba Lake (GPC) were able to induce wing spots by mitotic recombinagenesis. The former sampling site showed toxicants to have a direct action, and the latter an increment in mitotic recombination that depended on metabolic action. The SMART wing test shows that all positive responses were mainly related to homologous mitotic recombination. - Drosophila Wing-Spot Test can be used for detection of environmental mutagenesis

  20. Actions for Professional Development to Enhance Competence in Communicating Scientific Results

    Directory of Open Access Journals (Sweden)

    Alexeis Ruíz-Díaz

    2017-04-01

    Full Text Available The main goal of this research is to propose an action plan for professional development to enhance competence in communicating scientific results in teachers of municipal secondary schools. The research is part of a complementary methodological approach that combines different quantitative and qualitative methods based on specific objectives. The diagnosis was made at the Municipal University Center of Sagua La Grande, with a sample of 25 teachers who are members of the Industrial Engineering career staff at the institution, attached to the Central University “Marta Abreu” of Las Villas, Cuba. Regularities were found from the stage of the initial diagnosis of professional development needs and the level in which the “competence in communicating scientific results” variable was. With this information justifying the purposes of this research, a process was designed following a systemic approach, and the practical result was the proposal of the organization and design of an action plan for development through postgraduate education forms during the implementation phase.

  1. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    Science.gov (United States)

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  2. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    Science.gov (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  3. Quebec and climate change : 2006-2012 action plan first year results

    International Nuclear Information System (INIS)

    2007-06-01

    This brochure was released by the Quebec government in order to provide the first year results of the Quebec and Climate Change Action Plan. The plan implemented 24 actions for the reduction of greenhouse gas (GHG) emissions. The measures are expected to reduce emissions by 10 megatonnes by 2012. A federal government grant of $350 million is also being used to reduce GHGs by a further 3.8 megatonnes. A $1.2 billion budget has been financed through a duty levied on fossil fuels. The plan included a comprehensive energy efficiency and new technologies program; programs to encourage marine transport as well as a program to develop innovative public transportation initiatives. The plan also included the creation of an industrial research chair in cellulose ethanol as well as 2 demonstration plants for the production of cellulose ethanol. A program has also been introduced to support municipalities who wish to adopt bylaws prohibiting vehicle idling. A draft regulation has also been prepared concerning the mandatory reporting of releases of contaminants into the atmosphere. The plan will include awareness raising and assistance activities. Funding has also been given to the development of local climate models. It was concluded that the Quebec government is preparing to meet the environmental challenges of the future. 4 figs

  4. Results From Canada's 2016 ParticipACTION Report Card on Physical Activity for Children and Youth.

    Science.gov (United States)

    Barnes, Joel D; Cameron, Christine; Carson, Valerie; Chaput, Jean-Philippe; Faulkner, Guy E J; Janson, Katherine; Janssen, Ian; Kramers, Roger; LeBlanc, Allana G; Spence, John C; Tremblay, Mark S

    2016-11-01

    The ParticipACTION Report Card on Physical Activity for Children and Youth is the most comprehensive assessment of child and youth physical activity in Canada and provides an update or "state of the nation" that assesses how Canada is doing at promoting and facilitating physical activity opportunities for children and youth. The purpose of this paper is to summarize the results of the 2016 ParticipACTION Report Card. Twelve physical activity indicators were graded by a committee of experts using a process that was informed by the best available evidence. Sources included national surveys, peer-reviewed literature, and gray literature such as government and nongovernment reports and online content. Grades were assigned to Daily Behaviors (Overall Physical Activity: D-; Organized Sport and Physical Activity Participation: B; Active Play: D+; Active Transportation: D; Physical Literacy: D+; Sleep: B; Sedentary Behaviors: F), Settings and Sources of Influence (Family and Peers: C+; School: B; Community and Environment: A-), and Strategies and Investments (Government: B-; Nongovernment: A-). Similar to previous years of the Report Card, Canada generally received good grades for indicators relating to investment, infrastructure, strategies, policies, and programming, and poor grades for behavioral indicators (eg, Overall Physical Activity, Sedentary Behaviors).

  5. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  6. Failure Analysis Results and Corrective Actions Implemented for the EMU 3011 Water in the Helmet Mishap

    Science.gov (United States)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    During EVA (Extravehicular Activity) No. 23 aboard the ISS (International Space Station) on 07/16/2013 water entered the EMU (Extravehicular Mobility Unit) helmet resulting in the termination of the EVA (Extravehicular Activity) approximately 1-hour after it began. It was estimated that 1.5-L of water had migrated up the ventilation loop into the helmet, adversely impacting the astronauts hearing, vision and verbal communication. Subsequent on-board testing and ground-based TT and E (Test, Tear-down and Evaluation) of the affected EMU hardware components led to the determination that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator function which resulted in EMU cooling water spilling into the ventilation loop, around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Filter Beds which led to various levels of contaminants being introduced into the Filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware and operational corrective actions that were implemented as a result of findings from this investigation.

  7. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  8. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  9. Engaging Chicago residents in climate change action: Results from Rapid Ethnographic Inquiry

    Science.gov (United States)

    Lynne M. Westphal; Jennifer. Hirsch

    2010-01-01

    Addressing climate change requires action at all levels of society, from neighborhood to international levels. Using Rapid Ethnography rooted in Asset Based Community Development theory, we investigated climate-friendly attitudes and behaviors in two Chicago neighborhoods in order to assist the City with implementation of its Climate Action Plan. Our research suggests...

  10. AREVA - 2012 annual results: significant turnaround in performance one year after launching the Action 2016 plan

    International Nuclear Information System (INIS)

    Duperray, Julien; Berezowskyj, Katherine; Kempkes, Vincent; Rosso, Jerome; Thebault, Alexandre; Scorbiac, Marie de; Repaire, Philippine du

    2013-01-01

    One year after launching Areva's Action 2016 strategic plan, the first results are in. AREVA is ahead of schedule in executing its recovery plan. While pursuing its efforts in the management of a few difficult projects (such as OL3), Areva group was able to return to a virtuous performance cycle rooted in strong growth in nuclear order intake and good progress on its cost reduction program. Commercially, despite the difficult economic environment, AREVA was able to capitalize on its leadership in the installed base and on its long-term partnerships with strategic customers, beginning with EDF, with which AREVA renewed a confident and constructive working relationship. Areva has secured 80% of its objective of one billion euros of savings by the end of 2015 to improve its competitiveness. The group also continued efforts to optimize working capital requirement and control the capital expenditure trajectory. Together, these results enabled AREVA to exceed the objectives set for 2012 for two key indicators of its strategic plan: EBITDA and free operating cash flow. Nearly 60% of the 2.1 billion euros devoted to capital expenditures for future growth in 2012 were funded by operations, a quasi-doubled share compared to 2011. Areva's floor target for asset disposals was achieved one year ahead of schedule, also helping the Group to control its net debt, which remained below 4 billion euros. In 2013, Areva is continuing to implement the Action 2016 plan to keep its turnaround on track. In summary: - Backlog renewed over the year 2012 to euro 45.4 bn thanks to the increase in nuclear order intake; - Sales revenue growth: euro 9.342 bn (+5.3% vs. 2011), led by nuclear and renewables operations; - Very sharp upturn in EBITDA: euro 1.007 bn (+euro 586 m vs. 2011) - Very net improvement in free operating cash flow: -euro 854 m (+euro 512 m vs. 2011); - Back to positive reported operating income: euro 118 m (+euro 1.984 bn vs. 2011); - 2012-2013 floor target for asset disposals

  11. Wing geometry of Triatoma sordida (Hemiptera: Reduviidae) populations from Brazil.

    Science.gov (United States)

    Vendrami, Daniel Pagotto; Obara, Marcos Takashi; Gurgel-Gonçalves, Rodrigo; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-04-01

    Triatoma sordida has a widespread distribution in Argentina, Bolivia, Brazil, Paraguay, and Uruguay and is frequently found in peridomestic environments. We investigated size and shape variability of T. sordida wings across Brazil. Field-collected adults from twelve populations were studied. For each individual female, seven landmarks on the right wing were digitalized. Shape variables derived from Procrustes superimposition were used in Principal Component Analysis (PCA). Wing size and shape variations among populations was explored by means of ANOVA. Wing centroid size was significantly different among T. sordida populations; specimens from Bahia (East) were larger than those of Mato Grosso do Sul (West). PCA based on wing shape variables showed low wing shape variability. These results reinforce previous data showing low genetic variability among T. sordida populations from Brazil. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  13. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  14. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-02-01

    Full Text Available The thermohydraulic performance in a tube containing a modified twisted tape with alternate-axes and wing arrangements is reported. This work aims to investigate the effects of wing arrangements (opposite (O and parallel (P wings at different wing shapes (triangle (Tri, rectangular (Rec, and trapezoidal (Tra wings and on the thermohydraulic performance characteristics. The obtained results show that wing twisted tapes with all wing shape arrangements (O-Tri/O-Rec/O-Tra/P-Tri/P-Rec/P-Tra give superior thermohydraulic performance and heat transfer rate to the typical twisted tape. In addition, the tapes with opposite wing arrangement of O-Tra, O-Rec, and O-Tri give superior thermohydraulic performances to those with parallel wing arrangement of P-Tra, P-Rec, and P-Tri around 2.7%, 3.5%, and 3.2%, respectively.

  15. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  16. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    Science.gov (United States)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  17. Results of the independent verification of radiological remedial action at EG ampersand G Area 6, Monticello, Utah (MS00136)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-12-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1986, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at EG ampersand G Area 6, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  18. Results of the independent verification of radiological remedial action at 148 East 4th South Street, Monticello, Utah (MS00087)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-12-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 148 East 4th South Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  19. Results of the independent verification of radiological remedial action at 196 East 3rd South Street, Monticello, Utah (MS00083)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-10-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE) Surplus Facilities Management program with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984 and 1985, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 196 East 3rd South Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  20. Results of the independent verification of radiological remedial action at 480 South Main Street, Monticello, Utah (MS00049)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-05-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that has been contaminated by radioactive material resulting from mill operations. During 1984 and 1985, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 480 South Main Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  1. Results of the independent verification of radiological remedial action at 381 East 3rd South Street, Monticello, Utah (MS00140)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-10-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1986, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity at 381 East 3rd South Street, Monticello, Utah. The Pollutant Assessments group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  2. Results of the independent verification of radiological remedial action at 384 South 2nd East Street, Monticello, Utah (MS00084)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-10-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 384 South 2nd East Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  3. Results of the independent verification of radiological remedial action at 396 South 2nd East Street, Monticello, Utah (MS00085)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-12-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1985, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 396 South 2nd East Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 34 refs., 2 tabs

  4. Results of the independent verification of radiological remedial action at 98 East 5th South Street, Monticello, Utah (MS00076)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-10-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management program with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 98 East 5th South Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  5. Results of the independent verification of radiological remedial action at 87 East 5th South Street, Monticello, Utah (MS00074)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-10-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 87 East 5th South Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described

  6. Results of the independent verification of radiological remedial action at 273 East 1st South Street, Monticello, Utah (MS00092)

    International Nuclear Information System (INIS)

    Crutcher, J.W.; Smuin, M.W.

    1989-12-01

    In 1980 the site of a vanadium and uranium mill at Monticello, Utah, was accepted into the US Department of Energy's (DOE's) Surplus Facilities Management Program, with the objectives of restoring the government-owned mill site to safe levels of radioactivity, disposing of or containing the tailings in an environmentally safe manner, and performing remedial actions on off-site (vicinity) properties that had been contaminated by radioactive material resulting from mill operations. During 1984 and 1985, UNC Geotech, the remedial action contractor designated by DOE, performed remedial action on the vicinity property at 273 East 1st South Street, Monticello, Utah. The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory was assigned the responsibility of verifying the data supporting the adequacy of remedial action and confirming the site's compliance with DOE guidelines. The PAG found that the site successfully meets the DOE remedial action objectives. Procedures used by PAG are described. 3 refs., 2 tabs

  7. NRC action plan developed as a result of the TMI-2 accident. Volume 2

    International Nuclear Information System (INIS)

    1980-05-01

    The Action Plan provides a comprehensive and integrated plan for all actions judged necessary by the Nuclear Regulatory Commission to correct or improve the regulation and operation of nuclear facilities based on the experience from the accident at the Three Mile Island, Unit 2, nuclear facility and the official studies and investigations of the accident. The tables included in this volume list the recommendations from the various organizations and task forces investigating the accident at Three Mile Island. The tables are annotated to provide easy references to the associated parts of the Action Plan in Volume 1. The tables are also annotated to provide a shorthand indication of how the various recommendations are treated in the Action Plan

  8. In Uncontrolled Diabetes, Hyperglucagonemia and Ketosis Result From Deficient Leptin Action in the Parabrachial Nucleus.

    Science.gov (United States)

    Meek, Thomas H; Matsen, Miles E; Faber, Chelsea L; Samstag, Colby L; Damian, Vincent; Nguyen, Hong T; Scarlett, Jarrad M; Flak, Jonathan N; Myers, Martin G; Morton, Gregory J

    2018-04-01

    Growing evidence implicates neurons that project from the lateral parabrachial nucleus (LPBN) to the hypothalamic ventromedial nucleus (VMN) in a neurocircuit that drives counterregulatory responses to hypoglycemia, including increased glucagon secretion. Among LPBN neurons in this circuit is a subset that expresses cholecystokinin (LPBNCCK neurons) and is tonically inhibited by leptin. Because uncontrolled diabetes is associated with both leptin deficiency and hyperglucagonemia, and because intracerebroventricular (ICV) leptin administration reverses both hyperglycemia and hyperglucagonemia in this setting, we hypothesized that deficient leptin inhibition of LPBNCCK neurons drives activation of this LPBN→VMN circuit and thereby results in hyperglucagonemia. Here, we report that although bilateral microinjection of leptin into the LPBN does not ameliorate hyperglycemia in rats with streptozotocin-induced diabetes mellitus (STZ-DM), it does attenuate the associated hyperglucagonemia and ketosis. To determine if LPBN leptin signaling is required for the antidiabetic effect of ICV leptin in STZ-DM, we studied mice in which the leptin receptor was selectively deleted from LPBNCCK neurons. Our findings show that although leptin signaling in these neurons is not required for the potent antidiabetic effect of ICV leptin, it is required for leptin-mediated suppression of diabetic hyperglucagonemia. Taken together, these findings suggest that leptin-mediated effects in animals with uncontrolled diabetes occur through actions involving multiple brain areas, including the LPBN, where leptin acts specifically to inhibit glucagon secretion and associated ketosis.

  9. Balance between automation and human actions in nuclear power plant operation. Results of international cooperation

    International Nuclear Information System (INIS)

    Sun, B.; Olmstead, R.; Oudiz, A.; Jenkinson, J.; Kossilov, A.

    1990-01-01

    Automation has long been an established feature of power plants. In some applications, the use of automation has been the significant factor which has enabled plant technology to progress to its current state. Societal demands for increased levels of safety have led to greater use of redundancy and diversity and this, in turn, has increased levels of automation. However, possibly the greatest contributory factor in increased automation has resulted from improvements in information technology. Much recent attention has been focused on the concept of inherently safe reactors, which may simplify safety system requirements and information and control system complexity. The allocation of tasks between man and machine may be one of the most critical activity in the design of new nuclear plants and major retro-fits and it therefore warrants a design approach which is commensurate in quality with the high levels of safety and production performance sought from nuclear plants. Facing this climate, in 1989 the International Atomic Energy Agency (IAEA) formed an advisory group from member countries with extensive experience in nuclear power plant automation. The task of this group was to advise on the appropriate balance between manual and automatic actions in plant operation

  10. Balance between automation and human actions in nuclear power plant operation. Results of international cooperation

    International Nuclear Information System (INIS)

    Sun, B.; Olmstead, R.; Oudiz, A.; Jenkinson, J.; Kossilov, A.

    1990-01-01

    Automation has long been an established feature of power plants. In some applications, the use of automation has been the significant factor which has enabled plant technology to progress to its current state. Societal demands for increased levels of safety have led to greater use of redundancy and diversity and this, in turn, has increased levels of automation. However, possibly the greatest contributory factor in increased automation has resulted from improvements in information technology. Much recent attention has been focused on the concept of inherently safe reactors, which may simplify safety system requirements and information and control system complexity. The allocation of tasks between man and machine may be one of the most critical activity in the design of new nuclear plants and major retro-fits and it therefore warrants a design approach which is commensurate in quality with the high levels of safety and production performance sought from nuclear plants. Facing this climate, in 1989 the International Atomic Energy Agency (IAEA) formed an advisory group from member countries with extensive experience in nuclear power plant automation. The task of this group was to advise on the appropriate balance between manual and automatic actions in plant operation. (author) [fr

  11. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    Science.gov (United States)

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  12. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  13. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    Science.gov (United States)

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-01-26

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45o. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3x103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5~10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings. © 2018 IOP Publishing Ltd.

  14. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  15. Butterfly wing colors : glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Giraldo, Marco A.; Leertouwer, Hein L.

    2010-01-01

    The wings of the swordtail butterfly Graphium sarpedon nipponum contain the bile pigment sarpedobilin, which causes blue/green colored wing patches. Locally the bile pigment is combined with the strongly blue-absorbing carotenoid lutein, resulting in green wing patches and thus improving camouflage.

  16. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Science.gov (United States)

    Geisler, T.

    2016-12-01

    Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  17. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  18. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Vivian Petersen

    Full Text Available Abstract: INTRODUCTION: Mass production of mosquitoes under laboratory conditions allows implementing methods to control vector mosquitoes. Colony development depends on mosquito size and weight. Body size can be estimated from its correlation with wing size, whereas weight is more difficult to determine. Our goal was to test whether wing size can predict the weight. METHODS: We compared dry weight and wing centroid size of Culex quinquefasciatus reared at different temperatures and four diets. RESULTS: Weight and wing size were strongly correlated. The diets did not influence wing size. CONCLUSIONS: Wing centroid size is a good predictor of Cx. quinquefasciatus body weight.

  19. Effects of Canard on the Flowfield over a Wing

    Science.gov (United States)

    Nayebzadeh, Arash

    2015-11-01

    Surface and flowfield pressure measurements have been done over delta wing/canard configuration in a variety of canard vertical and horizontal locations and angles of attack. The experimental model consisted of wing, canard and a body to accommodate pressure tubing and canard rotation mechanism. All the tests have been performed at subsonic velocities and the effect of canard were analyzed through comparison between surface and flowfield pressure distributions. It was found that vortex flow pattern over the wing is dominated mainly by canard vertical position and in some cases, by merging of canard and wing vortices. In addition, the pressure loss induced by canard vortex on the wing surface moves the wing vortex toward the leading edge. In the mid canard configuration, canard and wing vortices merge at x/c greater than 0.5 and as a result of this phenomenon, abrupt pressure loss induces more stable vortex flow over the wing. It is also shown that canard plays a vital role in vortex break down over the wing.

  20. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  1. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  3. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  4. Business Intelligence Basics: Multi-Modal Means of Analyzing Data Can Produce Actionable Results

    Science.gov (United States)

    Mills, Lane

    2008-01-01

    School systems face many decisions in developing and maintaining learning environments that create success for all students. From district operations to the classroom, district leaders implement solutions and take action based on the information they have at hand. While there is no shortage of data, turning that data into useful information is as…

  5. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  6. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  7. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  8. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  9. COLIBRI : A hovering flapping twin-wing robot

    NARCIS (Netherlands)

    Roshanbin, A.; Altartouri, H.; Karasek, M.; Preumont, André

    2017-01-01

    This paper describes the results of a six-year project aiming at designing and constructing a flapping twin-wing robot of the size of hummingbird (Colibri in French) capable of hovering. Our prototype has a total mass of 22 g, a wing span of 21 cm and a flapping frequency of 22 Hz; it is actively

  10. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scal...

  11. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S

    2017-01-23

    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  13. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  14. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  15. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  16. A new genus of long-legged flies displaying remarkable wing directional asymmetry.

    OpenAIRE

    Runyon, Justin B; Hurley, Richard L

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left-right axis during development, a level of differentiation whose existence has been questioned for insects. Wing asymmetry of this magnitude has implications ...

  17. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    Directory of Open Access Journals (Sweden)

    Meftah S.M.A

    2014-03-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  18. A predictive quasi-steady model of aerodynamic loads on flapping wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; van Keulen, A.

    2016-01-01

    Quasi-steady aerodynamic models play an important role in evaluating aerodynamic performance and conducting design and optimization of flapping wings. The kinematics of flapping wings is generally a resultant motion of wing translation (yaw) and rotation (pitch and roll). Most quasi-steady models

  19. Note on the glide of a bird with wings bent downwards

    NARCIS (Netherlands)

    Sparenberg, J. A.

    This note considers the influence of the bending down of the wings of a bird on the performance of its glide. The induced drag of bent wings is compared with the induced drag of a corresponding straight wing. Numerical results are given.

  20. Using "The West Wing" for Problem-Based Learning in Public Relations Courses

    Science.gov (United States)

    Smudde, Peter M.; Luecke, John R.

    2005-01-01

    Integrating "The West Wing" in public relations courses can effectively dramatize the concrete and abstract dimensions of public relations. In turn, students see public relations in action (albeit fictionally so) and learn much about it through structured lessons. From individual writing assignments about situations in "The West Wing," to the…

  1. 78 FR 73997 - Airworthiness Directives; Various Aircraft Equipped with Wing Lift Struts

    Science.gov (United States)

    2013-12-10

    ... to promote drilling holes into or otherwise unsealing a sealed strut. This AD retains all the actions... numbers) that were manufactured with rolled threads. Wing lift strut forks manufactured with machine (cut... Requirements for Ultrasonic Inspection of Piper Wing Lift Struts Equipment Requirements 1. A portable...

  2. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  3. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  4. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  5. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  6. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  7. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  8. Experimental Investigation of a Wing-in-Ground Effect Craft

    Science.gov (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  9. 49 CFR 40.208 - What problem requires corrective action but does not result in the cancellation of a test?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What problem requires corrective action but does not result in the cancellation of a test? 40.208 Section 40.208 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems...

  10. The 10% solution: Tying managerial salary increases to workplace wellness actions (and not results).

    Science.gov (United States)

    Robbins, Rebecca; Wansink, Brian

    2016-10-01

    Although manager support is critical for workplace health and wellness efforts, little is known about how to best encourage managers to make creative or bold steps toward employee wellness. We posit that the right interactions between managers and employees could have lasting impact on workplace wellness. To consider how managers might be motivated to take an active role in promoting everyday employee health and wellness, we used a website survey of worksite managers (N = 270) to investigate how tying at least 10% of managerial annual salary increases and promotion would incentivize manager actions in workplace wellness. Overall, regression analyses reveal favorable attitudes from managers and high intentions to implement changes if salary increases and advancement were partially linked to workplace wellness efforts. Managers also expressed a preference for working for a company with this policy, and this was strongest among female managers and managers with a fewer number of subordinates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    Science.gov (United States)

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  12. [Results following an action protocol in patients with severe pelvic inflammatory disease].

    Science.gov (United States)

    Abehsera-Davó, Daniel; Panal-Cusati, Mariana; Sánchez-Pastor, Margarita; Herrera de la Muela, Mária; de Santiago-García, Francisco Javier

    2013-06-01

    Pelvic inflammatory disease is manifested by a broad spectrum of genital tract infections that include: endometritis, salpingitis, tubo-ovarian abscess, and pelvic peritonitis. This disease is associated with evidence of inflammation of the lower genital tract. To evaluate the subgroup of patients with a diagnosis of acute pelvic inflammatory disease requiring hospitalization after implementation of the protocol for action in the patient with suspected pelvic inflammatory disease. Retrospective analysis conducted between January and December 2011 in a cohort of patients diagnosed with severe pelvic inflammatory disease after implementation of a hospital protocol for suspected patients with this condition. Patients who met the diagnostic criteria of Centers for Disease Control and Prevention (CDC) and required hospitalization were considered with severe pelvic inflammatory disease. In all cases the same complementary tests were conducted and the same antibiotic protocol was prescribed. We included 38 patients and found a statistically significant relationship between the IUD and mixed gram-negative flora etiologic agent (p pelvic inflammatory disease IUD is associated with gram-negative mixed flora infection. The normal or moderately elevated concentrations of leukocytes were correlated with failure of medical treatment.

  13. Perceptions of Barriers to Effective Obesity Care: Results from the National ACTION Study.

    Science.gov (United States)

    Kaplan, Lee M; Golden, Angela; Jinnett, Kimberly; Kolotkin, Ronette L; Kyle, Theodore K; Look, Michelle; Nadglowski, Joseph; O'Neil, Patrick M; Parry, Thomas; Tomaszewski, Kenneth J; Stevenin, Boris; Lilleøre, Søren Kruse; Dhurandhar, Nikhil V

    2018-01-01

    ACTION (Awareness, Care, and Treatment in Obesity maNagement) examined obesity-related perceptions, attitudes, and behaviors among people with obesity (PwO), health care providers (HCPs), and employer representatives (ERs). A total of 3,008 adult PwO (BMI ≥ 30 by self-reported height and weight), 606 HCPs, and 153 ERs completed surveys in a cross-sectional design. Despite several weight loss (WL) attempts, only 23% of PwO reported 10% WL during the previous 3 years. Many PwO (65%) recognized obesity as a disease, but only 54% worried their weight may affect future health. Most PwO (82%) felt "completely" responsible for WL; 72% of HCPs felt responsible for contributing to WL efforts; few ERs (18%) felt even partially responsible. Only 50% of PwO saw themselves as "obese," and 55% reported receiving a formal diagnosis of obesity. Despite HCPs' reported comfort with weight-related conversations, time constraints deprioritized these efforts. Only 24% of PwO had a scheduled follow-up to initial weight-related conversations. Few PwO (17%) perceived employer-sponsored wellness offerings as helpful in supporting WL. Although generally perceived as a disease, obesity is not commonly treated as such. Divergence in perceptions and attitudes potentially hinders better management. This study highlights inconsistent understanding of the impact of obesity and need for both self-directed and medical management. © 2017 The Obesity Society.

  14. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    Science.gov (United States)

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  15. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  16. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing

    2017-01-01

    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  17. ``Schooling'' of wing pairs in flapping flight

    Science.gov (United States)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  18. Sexual selection on wing interference patterns in Drosophila melanogaster.

    Science.gov (United States)

    Katayama, Natsu; Abbott, Jessica K; Kjærandsen, Jostein; Takahashi, Yuma; Svensson, Erik I

    2014-10-21

    Animals with color vision use color information in intra- and interspecific communication, which in turn may drive the evolution of conspicuous colored body traits via natural and sexual selection. A recent study found that the transparent wings of small flies and wasps in lower-reflectance light environments display vivid and stable structural color patterns, called "wing interference patterns" (WIPs). Such WIPs were hypothesized to function in sexual selection among small insects with wing displays, but this has not been experimentally verified. Here, to our knowledge we present the first experimental evidence that WIPs in males of Drosophila melanogaster are targets of mate choice from females, and that two different color traits--saturation and hue--experience directional and stabilizing sexual selection, respectively. Using isogenic lines from the D. melanogaster Genetic Reference Panel, we compare attractiveness of different male WIPs against black and white visual backgrounds. We show that males with more vivid wings are more attractive to females than are males with dull wings. Wings with a large magenta area (i.e., intermediate trait values) were also preferred over those with a large blue or yellow area. These experimental results add a visual element to the Drosophila mating array, integrating sexual selection with elements of genetics and evo-devo, potentially applicable to a wide array of small insects with hyaline wings. Our results further underscore that the mode of sexual selection on such visual signals can differ profoundly between different color components, in this case hue and saturation.

  19. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  20. The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action

    OpenAIRE

    A. A. Panfilov

    2013-01-01

    The paper presents the results of laboratory experiments on electromagnetic emission excitation (electric component of electromagnetic field) by rock samples due to different forms of mechanical stress applications. It was shown that samples generate electric impulses with different spectra when the impact action, gradual loading or dynamic friction is applied. It was ascertained that level and spectral compositions of signals, generated by rock samples, cha...

  1. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ * (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  2. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  3. Winging of scapula due to serratus anterior tear

    Directory of Open Access Journals (Sweden)

    Varun Singh Kumar

    2014-10-01

    Full Text Available 【Abstract】Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle. Traumatic injury to serratus anterior muscle itself is very rare. We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male. Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test. Patient was managed conservatively and achieved satisfactory result. Key words: Serratus anterior tear; Scapula; Wounds and injuries

  4. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    Science.gov (United States)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  5. Modeling the Motion of a Flapping Wing Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vorochaeva L.Y.

    2017-01-01

    Full Text Available The article discusses the vertical flight of a flapping wing aerial vehicle, which is also called an ornithopter. The robot is a chain of five links connected in series by active cylindrical hinges with the central link being the body and the remainder forming folding wings in pairs. The distinctive feature of this device is that the flaps of its wings imitate those of a seagull i.e. the device has a biological prototype. We construct a mathematical model of this device; much attention is given to the model of the interaction of the wings with the air environment and we determine the positions and velocities of points of application of the reduced aerodynamic forces to each of the links. Based on the results of numerical modelling of the vertical flight of the robot three modes of flight were established: ascent, hovering at a certain height and descent. The device can operate in these modes based on the oscillation parameters of the wings in particular flapping frequency and amplitude, the ratio of the amplitudes of two links and one wing and the shift of the equilibrium oscillation position of the wings relative to zero.

  6. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  7. The design and testing of subscale smart aircraft wing bolts

    International Nuclear Information System (INIS)

    Vugampore, J M V; Bemont, C

    2012-01-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers. (paper)

  8. A change in strategy for a CERCLA Removal Action Demolition Project in progress results in overall project enhancements

    International Nuclear Information System (INIS)

    Albertin, M.; Nichols, R.M.; Edwards, D.T.

    1995-01-01

    This paper discusses changes made in a demolition project at the Fernald Environmental Management Project (FEMP), a site on the National Priorities list (NPL), owned by the Department of Energy. The project, to demolish fourteen uranium ore silos and their structure, was based on a Removal Action Work Plan, submitted and approved by the United States Environmental Protection Agency (USEPA), that integrated Comprehensive Environmental Response Compensation and Liability Act (CERCLA) requirements to remove the source of contamination and threat to public health and the environment. After the demolition contractor defaulted at 30% complete, completion of the project by the USEPA deadline was threatened. The recovery plan included re-evaluation of project documents in addition to the schedule. It was determined that re-interpretation of the removal action criteria, including design and Removal Action Work Plan, would eliminate road-blocks, and optimize resources, resulting in project completion by the original deadline even after lost-time in mobilizing another contractor. This presentation will discuss the open-quotes lessons learnedclose quotes by the project team and illustrate how simplification of construction methods resulted in enhancements to the environmental controls, improved material handing, and created a safer work environment

  9. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": first-year activities and results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2014-05-01

    This work aims at presenting the first-year activities and results of COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This Action was launched in April 2013 and will last four years. The principal aim of COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. The first WG

  10. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...... re-compress the upstream flow and the gas Mach number decreases correspondingly. However, the Mach number does not vary significantly from the small, medium and large delta wing configurations. The small delta wing generates a swirl near its surface, but has minor influences on the flow above it....... On the contrary, the use of the large delta wing produces a strong swirling flow in the whole downstream region. For the large delta wing, the collection efficiency reaches 70% with 2 μm particles, indicating a good separation performance of the proposed supersonic separator....

  11. Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids.

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi; Hoddle, Mark; Almeida, Rodrigo P P; Irvin, Nicola A

    2011-08-01

    The capacity to predict the geographic distribution and relative abundance of invasive species is pivotal to developing policy for eradication or control and management. Commonly used methods fall under the ambit of ecological niche models (ENMs). These methods were reviewed and shortcomings identified. Weather-driven physiologically based demographic models (PBDMs) are proposed that resolve many of the deficiencies of ENMs. The PBDM approach is used to analyze the invasiveness of the polyphagous glassy-winged sharpshooter (Homalodisca vitripennis [Germar]), a pest native to the southeastern United States and northeastern Mexico that extended its range into California in 1989. Glassy-winged sharpshooter vectors the pathogenic bacterium, Xylella fastidiosa (Wells) that causes Pierce's disease in grape and scorch-like diseases in other plants. PBDMs for glassy-winged sharpshooter and its egg parasitoids (Gonatocerus ashmeadi Girault and G. triguttatus Girault) were developed and linked to a PBDM for grape published by Wermelinger et al. (1991). Daily weather data from 108 locations across California for the period 1995-2006 were used to drive the PBDM system, and GRASS GIS was used to map the simulation results. The geographic distribution of glassy-winged sharpshooter, as observed, is predicted to be largely restricted to the warm areas of southern California, with the action of the two egg parasitoids reducing its abundance >90%. The average indispensable mortality contributed by G. triguttatus is central valley of California. The utility of holistic analyses for formulating control policy and tactics for invasive species is discussed.

  12. Nanomechanical properties of wing membrane layers in the house cricket (Acheta domesticus Linnaeus).

    Science.gov (United States)

    Sample, Caitlin S; Xu, Alan K; Swartz, Sharon M; Gibson, Lorna J

    2015-03-01

    Many insect wings change shape dynamically during the wingbeat cycle, and these deformations have the potential to confer energetic and aerodynamic benefits during flight. Due to the lack of musculature within the wing itself, the changing form of the wing is determined primarily by its passive response to inertial and aerodynamic forces. This response is in part controlled by the wing's mechanical properties, which vary across the membrane to produce regions of differing stiffness. Previous studies of wing mechanical properties have largely focused on surface or bulk measurements, but this ignores the layered nature of the wing. In our work, we investigated the mechanical properties of the wings of the house cricket (Acheta domesticus) with the aim of determining differences between layers within the wing. Nanoindentation was performed on both the surface and the interior layers of cross-sectioned samples of the wing to measure the Young's modulus and hardness of the outer- and innermost layers. The results demonstrate that the interior of the wing is stiffer than the surface, and both properties vary across the wing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar:" ongoing research activities and mid-term results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2015-04-01

    This work aims at presenting the ongoing activities and mid-term results of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' Almost three hundreds experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been praised among the running Actions as 'COST Success Story' ('The Cities of Tomorrow: The Challenges of Horizon 2020,' September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects

  14. Functional disability and death wishes in older Europeans: results from the EURODEP concerted action.

    Science.gov (United States)

    Mellqvist Fässberg, Madeleine; Östling, Svante; Braam, Arjan W; Bäckman, Kristoffer; Copeland, John R M; Fichter, Manfred; Kivelä, Sirkka-Liisa; Lawlor, Brian A; Lobo, Antonio; Magnússon, Halggrimur; Prince, Martin J; Reischies, Friedel M; Turrina, Cesare; Wilson, Kenneth; Skoog, Ingmar; Waern, Margda

    2014-09-01

    Physical illness has been shown to be a risk factor for suicidal behaviour in older adults. The association between functional disability and suicidal behaviour in older adults is less clear. The aim of this study was to examine the relationship between functional disability and death wishes in late life. Data from 11 population studies on depression in persons aged 65 and above were pooled, yielding a total of 15,890 respondents. Level of functional disability was trichotomised (no, intermediate, high). A person was considered to have death wishes if the death wish/suicidal ideation item of the EURO-D scale was endorsed. Odds ratios for death wishes associated with functional disability were calculated in a multilevel logistic regression model. In total, 5 % of the men and 7 % of the women reported death wishes. Both intermediate (OR 1.89, 95 % CI 1.42; 2.52) and high functional disability (OR 3.22, 95 % CI 2.34; 4.42) were associated with death wishes. No sex differences could be shown. Results remained after adding depressive symptoms to the model. Functional disability was independently associated with death wishes in older adults. Results can help inform clinicians who care for older persons with functional impairment.

  15. [Hypoplasia of the penis: etiologic diagnosis and results of treatment with delayed-action testosterone].

    Science.gov (United States)

    Velásquez-Urzola, A; Léger, J; Aigrain, Y; Czernichow, P

    1998-08-01

    Results of long-term testosterone treatment of congenital hypoplasia of the penis are sparse; the aim of this work was to evaluate these results according to age at onset of treatment, the presence or absence of hypospadias, and its eventual adverse effect upon growth and bone maturation. Sixty-six children with congenital hypoplasia of the penis, isolated (n = 31) or associated with a hypospadias (n = 35), were evaluated between 1 day and 16 years of age. The prevalence (40% of the cases) of the different malformations and/or syndromes associated with congenital hypoplasia and its severity were not different whether the penis was isolated or associated with hypospadias (male-pseudohermaphroditism). The effect of the testosterone heptylate (IM) was evaluated in 40 children treated before 10 years of age. The penis' increase in length was more important in the children with isolated micropenis (+2.1 +/- 0.8 SDS) than those with hypospadias (+1.3 +/- 1.2 SDS) but, in all cases, its increase was better when the treatment was started during the neonatal period, which corresponded to those with the most severe forms of micropenis. A mean regression of the penile volume of -0.7 +/- 0.8 SDS was noticed after the end of each stimulation. No long-term secondary effects related to treatment were seen on later growth and bone-maturation. Penile length at the last follow-up was not associated with total dose of testosterone but with its length at the first evaluation time (r = 0.52; P = 0.002).

  16. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    Energy Technology Data Exchange (ETDEWEB)

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  17. Status and future plans of the Drones for Aerodynamic and Structural Testing (DAST) program. [Aeroelastic Research Wing (ARW)

    Science.gov (United States)

    Murrow, H. N.

    1981-01-01

    Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.

  18. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    Science.gov (United States)

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  19. Values-based action in fibromyalgia: results from a randomized pilot of acceptance and commitment therapy

    Directory of Open Access Journals (Sweden)

    Jennifer L. Steiner

    2013-09-01

    Full Text Available Fibromyalgia Syndrome (FMS is a chronic pain condition characterized by pain, fatigue, and nonrestorative sleep. The disruptive symptoms of FMS are associated with reductions in quality of life related to family, intimate relationships, and work. The present study was part of a randomized pilot study of an 8-week Acceptance and Commitment Therapy (ACT intervention compared to education in a sample of 28 women with FMS. The Chronic Pain Values Inventory was administered at baseline, postintervention, and 12 week follow-up. Both groups showed significant improvements in family success, which were maintained at follow-up. Groups showed a differential pattern of success in work. The ACT group demonstrated significant, maintained improvements in success in intimate relationships, while the education group reported no changes over time. Findings suggest that both interventions may lead to improvements in valued living; however different interventions may be best suited for certain valued domains. The results of this study indicate that FMS patients are able to improve their success in family and intimate relationships and losses in these areas are not necessarily permanent.

  20. Self-initiated actions result in suppressed auditory but amplified visual evoked components in healthy participants.

    Science.gov (United States)

    Mifsud, Nathan G; Oestreich, Lena K L; Jack, Bradley N; Ford, Judith M; Roach, Brian J; Mathalon, Daniel H; Whitford, Thomas J

    2016-05-01

    Self-suppression refers to the phenomenon that sensations initiated by our own movements are typically less salient, and elicit an attenuated neural response, compared to sensations resulting from changes in the external world. Evidence for self-suppression is provided by previous ERP studies in the auditory modality, which have found that healthy participants typically exhibit a reduced auditory N1 component when auditory stimuli are self-initiated as opposed to externally initiated. However, the literature investigating self-suppression in the visual modality is sparse, with mixed findings and experimental protocols. An EEG study was conducted to expand our understanding of self-suppression across different sensory modalities. Healthy participants experienced either an auditory (tone) or visual (pattern-reversal) stimulus following a willed button press (self-initiated), a random interval (externally initiated, unpredictable onset), or a visual countdown (externally initiated, predictable onset-to match the intrinsic predictability of self-initiated stimuli), while EEG was continuously recorded. Reduced N1 amplitudes for self- versus externally initiated tones indicated that self-suppression occurred in the auditory domain. In contrast, the visual N145 component was amplified for self- versus externally initiated pattern reversals. Externally initiated conditions did not differ as a function of their predictability. These findings highlight a difference in sensory processing of self-initiated stimuli across modalities, and may have implications for clinical disorders that are ostensibly associated with abnormal self-suppression. © 2016 Society for Psychophysiological Research.

  1. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    , and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the

  2. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  3. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": ongoing research activities and third-year results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio

    2016-04-01

    This work aims at disseminating the ongoing research activities and third-year results of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." About 350 experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Colombia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been recognised among the running Actions as "COST Success Story" ("The Cities of Tomorrow: The Challenges of Horizon 2020," September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of

  4. Does Education Plus Action Lead to Leadership on Climate? Preliminary Results from the ACE Leadership Development Longitudinal Survey Project

    Science.gov (United States)

    Anderson, R. K.; Qusba, L.; Lappe, M.; Flora, J. A.

    2014-12-01

    Through education and leadership development, Alliance for Climate Education (ACE) is building a generation of confident and capable youth driving climate solutions now throughout their lives. In 2011-12, a random sample of 2,800 high school students across the country was surveyed before and after seeing the ACE Assembly on climate science and solutions. The survey showed that the ACE Assembly resulted in a 27% increase in climate science knowledge scores, with 59% of students increasing their intentions to take action on climate and a doubling of the number of students talking to parents and peers about climate change. Students were also compared to the Global Warming's Six Americas classification of Americans' views on climate. Following the ACE Assembly, 60% of students were alarmed or concerned about climate change. Building off these results, in 2014 ACE began to assess the results of its leadership development program that follows the ACE Assembly. The goal of this survey project is to measure ACE's long-term impact on students' college and career pathways, civic engagement and climate action. Preliminary results show that a majority of students in ACE's leadership development program are alarmed about global warming and are having conversations about global warming. A majority of these students also feel confident in their ability to lead a climate-related campaign in their school and community. These students will continue to be surveyed through 2015.

  5. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  6. A parametric wing design study for a modern laminar flow wing

    Science.gov (United States)

    Koegler, J. A., Jr.

    1979-01-01

    The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used.

  7. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds

    Science.gov (United States)

    Gloss, B. B.

    1975-01-01

    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  8. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    Science.gov (United States)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  9. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  10. Application of SMP composite in designing a morphing wing

    Science.gov (United States)

    Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2008-11-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.

  11. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  12. Study on airflow characteristics of rear wing of F1 car

    Science.gov (United States)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  13. Reproductive success and habitat characteristics of Golden-winged Warblers in high-elevation pasturelands

    Science.gov (United States)

    Wood, Petra; Aldinger, Kyle R.

    2016-01-01

    The Golden-winged Warbler (Vermivora chrysoptera) is one of the most rapidly declining vertebrate species in the Appalachian Mountains. It is the subject of extensive range-wide research and conservation action. However, little is known about this species' breeding ecology in high-elevation pasturelands, a breeding habitat with conservation potential considering the U.S. Natural Resource Conservation Service's Working Lands for Wildlife program targeting private lands in the Appalachian Mountains. We located 100 nests of Golden-winged Warblers in pastures in and around the Monongahela National Forest in West Virginia during 2008–2012. Daily nest survival rate (mean ± SE  =  0.962 ± 0.006), clutch size (4.5 ± 0.1), and number of young fledged per nest attempt (2.0 ± 0.2) and successful nest (4.0 ± 0.1) fell within the range of values reported in other parts of the species' range and were not significantly affected by year or the presence/absence of cattle grazing. Classification tree analysis revealed that nests were in denser vegetation (≥52%) and closer to forest edges (the male's territory. Successful nests had significantly more woody cover (≥9%) within 1 m than failed nests. Our results suggest that cattle grazing at 1.2–2.4 ha of forage/animal unit with periodic mowing can create and maintain these characteristics without interfering with the nesting of Golden-winged Warblers. High-elevation pasturelands may provide a refuge for remaining populations of Golden-winged Warblers in this region.

  14. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  15. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  16. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  17. Application and practice of EU FP5. Research results in the area key action water - pollution prevention: are results fit for use?

    Energy Technology Data Exchange (ETDEWEB)

    Bittens, M. [Univ. Tuebingen (Germany). Center for Applied Geoscience; Prokop, G. [Umweltbundesamt, Wien (Austria)

    2003-07-01

    Embedded in the EU-funded project 'Innovative Management of Groundwater Resources in Europe - Training and RTD Co-ordination (IMAGE-TRAIN)' a two-phase (identification and testing) evaluation process was performed on basis of delivered research results from scientific projects running in the FP5 Key Action 'Management and Quality of Water - Pollution Prevention'. The 'Application and Practice Report', APR, documents available methods, concepts, and applications, which are qualified for supporting and enhancing the implementation processes of European policies and regulations with regard to the management and quality of water. Additionally, the APR determines boundary conditions for the application of available deliverable as result of the testing phase and facilitates the selection of the best available techniques for accompanying European implementation processes in accordance with the sustainable solutions strategy of European Union's 6{sup th} Environmental Action Programme 'Our Future, or choice'. IMAGE-TRAIN has the ambition to improve cooperation and interaction between ongoing research projects in the field of soil and groundwater contamination and to communicate new technology achievements to young scientists by means of training courses. IMAGE-TRAIn is a three year project which started in September 2001 and operates at two levels. (1) Senior level: At this level cluster meetings for researchers of ongoing research projects are being organised with the objective to establish topic links between RTD projects, dealing with contaminated land and groundwater and to promote their practical application. Furthermore practical case studies with selected experts are being organised to perform short feasibility studies related to current groundwater or mine water problems. (2) Junior level: At this level Advanced Study Courses are organised with theobjective to quickly transfer existing and emerging knowledge to young

  18. Experimental Wing Damage Affects Foraging Effort and Foraging Distance in Honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Andrew D. Higginson

    2011-01-01

    Full Text Available Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

  19. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  20. A computational study on the influence of insect wing geometry on bee flight mechanics.

    Science.gov (United States)

    Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid

    2017-12-15

    Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.

  1. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    Science.gov (United States)

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  2. Wing sexual dimorphism of pathogen-vector culicids.

    Science.gov (United States)

    Virginio, Flávia; Oliveira Vidal, Paloma; Suesdek, Lincoln

    2015-03-14

    Sexual dimorphism in animals has been studied from different perspectives for decades. In 1874 Darwin hypothesized that it was related to sexual selection, and even after nearly 140 years, when additional empirical data has become available and the subject has been investigated from a contemporary viewpoint, this idea is still supported. Although mosquito (Culicidae) wings are of great importance as they play a sex-specific role, little is known about wing sexual dimorphism in these pathogen-vector insects. Detection and characterization of wing sexual dimorphism in culicids may indirectly enhance our knowledge of their epidemiology or reveal sex-linked genes, aspects that have been discussed by vector control initiatives and developers of genetically modified mosquitoes. Using geometric morphometrics, we carried out a comparative assessment of wing sexual dimorphism in ten culicid species of medical/veterinary importance from genera Culex, Aedes, Anopheles and Ochlerotatus collected in Brazil. Discriminant analysis revealed significant sexual dimorphism in all the species studied, indicating that phenotypic expression of wing shape in mosquitoes is indeed sex-specific. A cross-validated test performed to reclassify the sexes with and without allometry yielded very similar results. Mahalanobis distances among the ten species showed that the species had different patterns of shape sexual dimorphism and that females are larger than males in some species. Wing morphology differed significantly between species. The finding of sexual dimorphism in all the species would suggest that the wing geometry of Culicidae is canalized. Although sexual dimorphism is prevalent, species-specific patterns occur. Allometry was not the main determinant of sexual dimorphism, which suggests that sexual selection or other evolutionary mechanisms underlie wing sexual dimorphism in these insects.

  3. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.

  4. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  5. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  6. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  7. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  8. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  9. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  10. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  11. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  12. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  13. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  14. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  15. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  16. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  17. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  18. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  19. Functional and Structural Analysis of Wing Folding Mechanism Based on Cockchafer (Melolontha Melolontha

    Directory of Open Access Journals (Sweden)

    Geisler Tomasz

    2014-09-01

    Full Text Available Insects are among nature’s most nimble flyers. In this paper we present the functional and structural analysis of wing joint mechanism. Detailed action of the axillary plates and their mutual interaction was also described. Because of the small dimensions of the wing joint elements and the limited resolution of the light microscope, the authors used a scanning electron microscope. Based upon the knowledge of working principles of beetle flight apparatus a wing joint mechanism kinematics model has been developed.

  20. Waterproof and translucent wings at the same time: problems and solutions in butterflies

    Science.gov (United States)

    Perez Goodwyn, Pablo; Maezono, Yasunori; Hosoda, Naoe; Fujisaki, Kenji

    2009-07-01

    Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered “super-hydrophobic” because the contact angle (CA) with a water drop exceeds 150°. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160°, whereas P. glacialis did not (CA = 100-135°). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30°, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long life and migration

  1. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  2. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    Science.gov (United States)

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.

  3. A new genus of long-legged flies displaying remarkable wing directional asymmetry

    Science.gov (United States)

    Justin B. Runyon; Richard L. Hurley

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left­right axis during development...

  4. Failure Analysis Results and Corrective Actions Implemented for the Extravehicular Mobility Unit 3011 Water in the Helmet Mishap

    Science.gov (United States)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    Water entered the Extravehicular Mobility Unit (EMU) helmet during extravehicular activity (EVA) no. 23 aboard the International Space Station on July 16, 2013, resulting in the termination of the EVA approximately 1 hour after it began. It was estimated that 1.5 liters of water had migrated up the ventilation loop into the helmet, adversely impacting the astronaut's hearing, vision, and verbal communication. Subsequent on-board testing and ground-based test, tear-down, and evaluation of the affected EMU hardware components determined that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator degassing function, which resulted in EMU cooling water spilling into the ventilation loop, migrating around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing shortcomings of the Airlock Cooling Loop Recovery (ALCLR) Ion Filter Beds, which led to various levels of contaminants being introduced into the filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware, and operational corrective actions that were implemented as a result of findings from this investigation.

  5. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  6. Design and flight performance of hybrid underwater glider with controllable wings

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2017-05-01

    Full Text Available Hybrid underwater glider combines motion modes of traditional autonomous underwater glider and those of autonomous underwater vehicles. Different motion modes need different flight performance, including flight efficiency, static stability, and maneuverability. Conventional hybrid underwater glider with fixed wings can’t achieve optimal flight performance in one flight mission demanding various motion modes. In this article, controllable wings for hybrid underwater glider Petrel II are designed. Angle of attack, sweep angle, and aspect ratio of controllable wings can be changed to adapt to different motion modes. Kinematics and dynamics models of Petrel II are established based on multibody theory. Motion simulations of Petrel II with different wing configurations are conducted in three motion modes, including glide motion, spiral motion, and horizontal turning motion. The simulation results show the impact of wing parameters on flight performance. Field trials demonstrate that the controllable wings can improve the flight performance.

  7. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  8. The redder the better: wing color predicts flight performance in monarch butterflies.

    Science.gov (United States)

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  9. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  10. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  11. Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft

    OpenAIRE

    Adegbindin, Moustaine Kolawole Agnide

    2017-01-01

    Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response. Distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and a Genetic Algorithm were used here for the control a...

  12. Design considerations and experiences in the use of composite material for an aeroelastic research wing

    Science.gov (United States)

    Eckstrom, C. V.; Spain, C. V.

    1982-01-01

    Experiences in using composite skin material on an aeroelastic research wing used in flight flutter testing are described. Significant variations in skin shear modulus due to stress and temperature were encountered with the original fiberglass laminate skin designed to minimize wing torsional stiffness. These variations along with the sensitivity of wing torsional stiffness to the skin-to-frame attachment method complicated the structural model vibration mode predictions. A wing skin redesign with different fiber orientation and a reduction in the amount of skin-to-frame bonding resulted in more predictable modal characteristics without sacrificing design objectives. Design and modeling considerations for future applications are discussed.

  13. Wing diagnostic characters for Culex quinquefasciatus and Culex nigripalpus (Diptera, Culicidae

    Directory of Open Access Journals (Sweden)

    Paloma Oliveira Vidal

    2011-03-01

    Full Text Available Wing diagnostic characters for Culex quinquefasciatus and Culex nigripalpus (Diptera, Culicidae. Culex quinquefasciatus and Culex nigripalpus are mosquitoes of public health interest, which can occur sympatrically in urban and semi-urban localities. Morphological identification of these species may be difficult when specimens are not perfectly preserved. In order to suggest an alternative taxonomical diagnosis, wings of these species were comparatively characterized using geometric morphometrics. Both species could be distinguished by wing shape with accuracy rates ranging from 85-100%. Present results indicate that one can identify these species relying only on wing characters when traditional taxonomical characters are not visible.

  14. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  15. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Directory of Open Access Journals (Sweden)

    John J. Lees

    2016-10-01

    Full Text Available The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids. The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes, which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  16. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.

    Science.gov (United States)

    Lees, John J; Dimitriadis, Grigorios; Nudds, Robert L

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  17. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  18. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  19. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  20. Aerodynamic characteristics and flow field of delta wings with the canard

    Directory of Open Access Journals (Sweden)

    Mochizuki Saya

    2018-01-01

    Full Text Available Now, many kinds of explorations for outer planets have been proposed around the world. Among them Mars attracts much attention for future exploration. Orbiters and landers have been used for Mars exploration. Recently as a new exploration method, the usage of an airplane has been seriously considered and there are some development projects for Mars airplane. However, the airplane flying on the Earth atmosphere cannot fly on the Mars atmosphere, because atmospheric conditions are much different each other. Therefore, we focused on the usage of the airplane with unfolding wings for Mars exploration. These unfolding wings are designed as delta wings. However, delta wings do not have enough aerodynamics characteristics in a low speed region. In this study, to improve the aerodynamic characteristics of delta wings, we have proposed the usage of canard wings. The purpose of this study is to examine the effectiveness of canard wings to improve aerodynamic characteristics in a low speed region. CFD analysis is performed using four wing models with different canard shapes. The result shows that the usage of canards is effective to improve aerodynamic characteristics of delta wings in a low speed region. In addition, increasing lift coefficient is possible by changing the shape of canards.

  1. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    Science.gov (United States)

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Results of a Randomized Controlled Trial of Mental Illness Self-management Using Wellness Recovery Action Planning

    Science.gov (United States)

    Cook, Judith A.; Copeland, Mary Ellen; Jonikas, Jessica A.; Hamilton, Marie M.; Razzano, Lisa A.; Grey, Dennis D.; Floyd, Carol B.; Hudson, Walter B.; Macfarlane, Rachel T.; Carter, Tina M.; Boyd, Sherry

    2012-01-01

    The purpose of this study was to determine the efficacy of a peer-led illness self-management intervention called Wellness Recovery Action Planning (WRAP) by comparing it with usual care. The primary outcome was reduction of psychiatric symptoms, with secondary outcomes of increased hopefulness, and enhanced quality of life (QOL). A total of 519 adults with severe and persistent mental illness were recruited from outpatient community mental health settings in 6 Ohio communities and randomly assigned to the 8-week intervention or a wait-list control condition. Outcomes were assessed at end of treatment and at 6-month follow-up using an intent-to-treat mixed-effects random regression analysis. Compared to controls, at immediate postintervention and at 6-month follow-up, WRAP participants reported: (1) significantly greater reduction over time in Brief Symptom Inventory Global Symptom Severity and Positive Symptom Total, (2) significantly greater improvement over time in hopefulness as assessed by the Hope Scale total score and subscale for goal directed hopefulness, and (3) enhanced improvement over time in QOL as assessed by the World Health Organization Quality of Life-BREF environment subscale. These results indicate that peer-delivered mental illness self-management training reduces psychiatric symptoms, enhances participants’ hopefulness, and improves their QOL over time. This confirms the importance of peer-led wellness management interventions, such as WRAP, as part of a group of evidence-based recovery-oriented services. PMID:21402724

  3. The Joint Action on Health Workforce Planning and Forecasting: Results of a European programme to improve health workforce policies.

    Science.gov (United States)

    Kroezen, Marieke; Van Hoegaerden, Michel; Batenburg, Ronald

    2018-02-01

    Health workforce (HWF) planning and forecasting is faced with a number of challenges, most notably a lack of consistent terminology, a lack of data, limited model-, demand-based- and future-based planning, and limited inter-country collaboration. The Joint Action on Health Workforce Planning and Forecasting (JAHWF, 2013-2016) aimed to move forward on the HWF planning process and support countries in tackling the key challenges facing the HWF and HWF planning. This paper synthesizes and discusses the results of the JAHWF. It is shown that the JAHWF has provided important steps towards improved HWF planning and forecasting across Europe, among others through the creation of a minimum data set for HWF planning and the 'Handbook on Health Workforce Planning Methodologies across EU countries'. At the same time, the context-sensitivity of HWF planning was repeatedly noticeable in the application of the tools through pilot- and feasibility studies. Further investments should be made by all actors involved to support and stimulate countries in their HWF efforts, among others by implementing the tools developed by the JAHWF in diverse national and regional contexts. Simultaneously, investments should be made in evaluation to build a more robust evidence base for HWF planning methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  5. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  6. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  7. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  8. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  9. Aeroelastic tailoring using lamination parameters : Drag reduction of a Formula One rear wing

    NARCIS (Netherlands)

    Thuwis, G.A.A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.

    2009-01-01

    The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher

  10. Stakeholders' perceptions of 10years of the Global Action Plan for Influenza Vaccines (GAP) - Results from a survey.

    Science.gov (United States)

    Nannei, Claudia; Goldin, Shoshanna; Torelli, Guido; Fatima, Hiba; Kumar, Kaveri; Bubb-Humfryes, Oliver; Stenson, Bo; Sparrow, Erin

    2016-10-26

    Ten years after the launch of the Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) surveyed stakeholders to understand their perceptions of what the programme had achieved. This article provides a summary of the findings; the full report will be available on-line on the GAP website in November 2016 (http://www.who.int/influenza_vaccines_plan/en/). Seventy-seven responses were received from stakeholders including medical doctors, national influenza center officials, country immunization programme teams, surveillance and disease centers, policy-makers, researchers, vaccine manufacturers, and non-governmental organizations from 28 countries, representing all six WHO regions. Respondents cited GAP's biggest successes as capacity building in developing countries; raising international awareness of global needs in the event of a pandemic; and collaborative alignment of influenza stakeholders. The most commonly reported challenges were the limited progress in development of a broadly protective or universal vaccine and the perceived absence of a major increase in seasonal demand. These findings aligned with the perception that less global progress had been made under the third GAP objective, focused on research and development of better vaccines, than on increasing seasonal vaccine use (objective 1) and pandemic vaccine production capacity (objective 2). Respondents explained what they saw as the major challenges to development of better vaccines, including to development of a universal influenza vaccine. The majority of respondents agreed that the goal chosen at the GAP II consultation is still relevant. Results highlighted the importance of promoting research and development of better vaccines, both for facilitating uptake of seasonal vaccines and for ensuring timely vaccine availability in the event of a pandemic. As the GAP concludes its mandate this year, these findings will contribute to discussions on the impact of programme

  11. Reliability of reported doses for external dosimetric services in Europe - results and conclusions of a EURADOS action

    International Nuclear Information System (INIS)

    Stadtmann, H.; Figel, M.; Kamenopoulou, V.; Kluszczynski, D.; Roed, H.; Van Dijk, J.

    2005-01-01

    Full text: Only limited information is available in the open literature relating to the uncertainty in a dose measurement, being increased by failure of the evaluation or data management system, damage of the dosemeter itself or by the loss of dosemeter. In 2001 EURADOS, the working group on harmonization of individual monitoring in Europe carried out a survey aimed at collecting and analyzing information on the reliability of reported doses. More than 200 questionnaires were sent out to approved dosimetric services in Europe. In total 88 (44 %) questionnaires were returned from services of different size using different dosimetric systems. Both the frequency of occurrence of various error conditions as well as the possible impact of the error condition from a dosimetric point of view was investigated. Data were analyzed with respect to the size of the services as well as the dosimetric system in use (TLD, Film, RPL, TE). As a result of the survey most error conditions (e.g. damage of dosemeter, contamination, loss of data, reader malefunction) were classified as very rare compared to a rather high rate of lost dosemeters (0-10 %). The rate of lost dosemeters, as well as other error conditions like irradiation of the dosemeter when not worn, or wrong wearing position of the dosemeter are however out of the direct control of the services. The focus of this report is to give a comprehensive overview on possible sources of errors encountered in external personal dosimetric services. In addition quality control actions to prevent these errors or minimize the impact are described. (author)

  12. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  13. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  14. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    Science.gov (United States)

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  15. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

    Science.gov (United States)

    Bergou, Attila J.; Swartz, Sharon M.; Vejdani, Hamid; Riskin, Daniel K.; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S.

    2015-01-01

    The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles. PMID:26569116

  16. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  17. AREVA - Results for the first half of 2012: performance materializes as 'Action 2016' plan is rolled out

    International Nuclear Information System (INIS)

    Marie, Patricia; Briand, Pauline; Michaut, Maxime; Rosso, Jerome; Scorbiac, Marie de; Repaire, Philippine du

    2012-01-01

    The results for the first half of 2012 demonstrate the effectiveness of Areva's 'Action 2016' plan, in particular with a sharp rise in EBITDA and a significant improvement in free operating cash flow after capex. Moreover, net debt remains stable even though the Group invested more than 900 million euros in strategic projects and in improvements to safety and to competitiveness of industrial assets. Several factors made this first phase towards restoring the Group's financial performance possible: - revenue growth in the nuclear businesses together with the ramp-up of operations in renewable energies, with the Group continuing to benefit from the strong visibility provided by its backlog, which has also grown over the past twelve months; - ongoing efforts begun in late 2011 to reduce operating costs, with savings measures at the end of June 2012 implemented for nearly 20% of the objective set for the Group through 2015, on an annual basis, another 45% of the objective being secured in addition. - execution ahead of schedule in Areva's asset disposal program, with 961 million euros mainly collected during the first half year and the objective of at least 1.2 billion euros for the 2012- 2013 period to be met this year with the recently announced disposal of La Mancha Resources for about 315 million Canadian dollars. After booking provisions, in accordance with the principle of prudent management, in two areas (construction of the Olkiluoto 3 EPR reactor and the Bakouma and Ryst Kuil mining sites), the Group reports positive operating income and positive net income for the first half of 2012. Results can be summarized as follows: Backlog rises 4.8% year on year to euro 45.2 bn; - Significant revenue growth to euro 4.329 bn, up 8.3% vs. H1 2011; - Strong increase in EBITDA to euro 725 m: +euro 508 m vs. H1 2011; - Marked improvement in FCF to -euro 591 m: +euro 328 m vs. H1 2011; - Net debt stable for the half year; - Positive operating income and net income to owners

  18. The health effects of bioactive plant components in food: Results and opinions of the EU COST 926 action

    NARCIS (Netherlands)

    Dokkum, W. van; Frølich, W.; Saltmarsh, M.; Gee, J.

    2008-01-01

    COST (European Cooperation in the field of Scientific and Technical Research) Action 926 is a networking partnership funded by the European Union through the European Science Foundation. Scientists involved have evaluated whether or not the new 'omic' technologies can offer a means of obtaining the

  19. Towards a More Equitable and Inclusive Learning Environment in Sport Education: Results of an Action Research-Based Intervention

    Science.gov (United States)

    Farias, Cláudio; Hastie, Peter Andrew; Mesquita, Isabel

    2017-01-01

    This study was designed to examine and intervene into student behaviours to promote a democratic, inclusive and participatory focus within Sport Education. To achieve an increased understanding of and changes within student behaviours, a collaborative participatory action research methodology was applied to provide voice to students as agents of…

  20. Blood alcohol test results of motor vehicle deaths as an evaluation method for the Fairfax Alcohol Safety Action Project.

    Science.gov (United States)

    1973-01-01

    The Fairfax Alcohol Safety Action Project (ASAP) was started following the June 1971 approval of the proposal and working plan submitted to the Department of Transportation by the Highway Safety Division of Virginia. A total of $2,123,000 was allocat...

  1. An overview of two nonlinear supersonic wing design studies

    Science.gov (United States)

    Miller, D. S.; Pittman, J. L.; Wood, R. M.

    1983-01-01

    The progress of two studies which apply nonlinear aerodynamics to supersonic wing design is reviewed. The first study employed a nonlinear potential flow code to design wings for high lift and low drag due to lift by employing a controlled leading-edge expansion in which the crossflow accelerates to supercritical conditions and decelerates through a weak shock. The second study utilized a modified linearized theory code to explore the concept of using 'attainable' leading-edge thrust as a guide for selecting a wing leading-edge shape (planform and radius) for maintaining attached flow and maximizing leading-edge thrust. Experimental and theoretical results obtained during the course of these two studies are discussed.

  2. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  3. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  4. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  5. Development and experiments of the Sea-Wing underwater glider

    Science.gov (United States)

    Yu, Jian-Cheng; Zhang, Ai-Qun; Jin, Wen-Ming; Chen, Qi; Tian, Yu; Liu, Chong-Jie

    2011-12-01

    Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.

  6. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  7. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  8. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  9. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  10. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  11. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  12. The effective compliance of spatially evolving planar wing-cracks

    Science.gov (United States)

    Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.

    2018-02-01

    We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.

  13. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  14. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  15. Experimental Research and Numerical Simulation of Wing Boxes under Pure Bending Load

    Directory of Open Access Journals (Sweden)

    Peiyan Wang

    2014-07-01

    Full Text Available Two full-scale wing boxes with different types of butt joints were investigated under pure bending load, and numerical methods, including global analysis and detailed analysis, were proposed to determine the reasons for failure of the wing boxes. Wing boxes were tested under bending loads applied by a multichannel force control system. The experimental results showed that the region of the butt joint was the weakest location of the wing boxes, and the damage loads were far less than the design load. The global analysis and detailed analysis were carried out on the wing boxes, focusing on the region of the butt joint, to determine the reasons for failure. Global analysis in explicit dynamic modulus was adopted to simulate the loading process of the two wing boxes. Meanwhile, detailed finite element models created in Patran/Nastran were used to evaluate the stability. Comparing experimental results with numerical counterparts, it is shown that the failure of the wing boxes is induced by local buckling occurring around the butt joint. In addition, the wing box that uses butt joints with lap jointed sheets is more rigid than that without lap jointed sheets, and the stress distribution is more uniform. The numerical analysis proposed by the paper can help with structure design in preliminary assessment.

  16. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  17. Measurements in Flight of the Pressure Distribution on the Right Wing of a Pursuit-Type Airplane at Several Values of Mach Number

    Science.gov (United States)

    Clousing, Lawrence A; Turner, William N; Rolls, L Stewart

    1946-01-01

    Pressure-distribution measurements were made on the right wing of a pursuit-type airplane at values of Mach number up to 0.80. The results showed that a considerable portion of the lift was carried by components of the airplane other than the wings, and that the proportion of lift carried by the wings may vary considerably with Mach number, thus changing the bending moment at the wing root whether or not there is a shift in the lateral position of the center of pressure. It was also shown that the center of pressure does not necessarily move outward at high Mach numbers, even though the wing-thickness ratio decreases toward the wing tip. The wing pitching-moment coefficient increased sharply in a negative direction at a Mach lift-curve slope increased with Mach number up to values of above the critical value. Pressures inside the wing were small and negative.

  18. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  19. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  20. Cabin-fuselage-wing structural design concept with engine installation

    Science.gov (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  1. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T

    2013-01-01

    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  2. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  3. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

    Science.gov (United States)

    Kang, Chang-kwon; Shyy, Wei

    2013-01-01

    We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300

  4. Tendon-Sheath Mechanisms in Flexible Membrane Wing Mini-UAVs: Control and Performance

    Directory of Open Access Journals (Sweden)

    Tegoeh Tjahjowidodo

    2017-01-01

    Full Text Available Flexible membrane wings (FMWs are known for two inherent advantages, that is, adaptability to gusty airflow as the wings can flex according to the gust load to reduce the effective angle of attack and the ability to be folded for compact storage purposes. However, the maneuverability of UAV with FMWs is rather limited as it is impossible to install conventional ailerons. The maneuver relies only on the rudders. Some applications utilize torque rods to warp the wings, but this approach makes the FMW become unfoldable. In this research, we proposed the application of a tendon-sheath mechanism to manipulate the wing shape of UAV. Tendon-sheath mechanism is relatively flexible; thus, it can also be folded together with the wings. However, its severe nonlinearity in its dynamics makes the wing warping difficult to control. To compensate for the nonlinearity, a dedicated adaptive controller is designed and implemented. The proposed approach is validated experimentally in a wind tunnel facility with imitated gusty condition and subsequently tested in a real flight condition. The results demonstrate a stable and robust wing warping actuation, while the adaptive washout capability is also validated. Accurate wing warping is achieved and the UAV is easily controlled in a real flight test.

  5. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.

    Science.gov (United States)

    Li, Chengyu; Dong, Haibo

    2017-02-03

    This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.

  6. Development and design of flexible Fowler flaps for an adaptive wing

    Science.gov (United States)

    Monner, Hans P.; Hanselka, Holger; Breitbach, Elmar J.

    1998-06-01

    Civil transport airplanes fly with fixed geometry wings optimized only for one design point described by altitude, Mach number and airplane weight. These parameters vary continuously during flight, to which means the wing geometry seldom is optimal. According to aerodynamic investigations a chordwide variation of the wing camber leads to improvements in operational flexibility, buffet boundaries and performance resulting in reduction of fuel consumption. A spanwise differential camber variation allows to gain control over spanwise lift distributions reducing wing root bending moments. This paper describes the design of flexible Fowler flaps for an adaptive wing to be used in civil transport aircraft that allows both a chordwise as well as spanwise differential camber variation during flight. Since both lower and upper skins are flexed by active ribs, the camber variation is achieved with a smooth contour and without any additional gaps.

  7. Numerical Analysis of the Influence of Fibre Orientations in a two-layered Biomimetic Flapping Wing

    Directory of Open Access Journals (Sweden)

    Rayhan Saiaf Bin

    2017-01-01

    Full Text Available A numerical study was carried out to investigate the effects of fibre orientation angles in an adopted biomimetic flapping wing having two-layered Carbon/Epoxy Composite T300/5208. The purpose of this paper is to understand how different orientation angles with different combinations affect the stresses of a flapping-wing. One flapping cycle was divided into twelve segments and both maximum stress and deformation were calculated for all the segments. The results revealed that, the maximum stress was produced in [0/-45] combination, where the least was found for [45/0]. For all the simulated wings, deformation was found less than 1.8 mm. ANSYS DesignModeler and Static Structural was used to design and perform structural analysis. The findings are helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.

  8. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance

    Science.gov (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  9. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  10. Design and construction of a remote piloted flying wing. B.S. Thesis

    Science.gov (United States)

    Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba

    1994-01-01

    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.

  11. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  12. Wing-vortex interaction: unraveling the flowfield of a hovering rotor

    Science.gov (United States)

    Bhagwat, Mahendra J.; Caradonna, Francis X.; Ramasamy, Manikandan

    2015-01-01

    This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.

  13. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  14. Computation of Lifting Wing-Flap Configurations

    Science.gov (United States)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  15. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    ogy and physiology of the hosts, resulting in deformations of structures and even the reversal of sex. These changes can sometimes be so dramatic that parasitized and unparasitized individuals of the same species have been classified as belonging to different species. The phylogenetic placement of these insects.

  16. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  17. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  18. Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae).

    Science.gov (United States)

    Montealegre-Z, Fernando; Jonsson, Thorin; Robert, Daniel

    2011-06-15

    Male field crickets emit pure-tone mating calls by rubbing their wings together. Acoustic radiation is produced by rapid oscillations of the wings, as the right wing (RW), bearing a file, is swept across the plectrum borne on the left wing (LW). Earlier work found the natural resonant frequency (f(o)) of individual wings to be different, but there is no consensus on the origin of these differences. Previous studies suggested that the frequency along the song pulse is controlled independently by each wing. It has also been argued that the stridulatory file has a variable f(o) and that the frequency modulation observed in most species is associated with this variability. To test these two hypotheses, a method was developed for the non-contact measurement of wing vibrations during singing in actively stridulating Gryllus bimaculatus. Using focal microinjection of the neuroactivator eserine into the cricket's brain to elicit stridulation and micro-scanning laser Doppler vibrometry, we monitored wing vibration in actively singing insects. The results show significantly lower f(o) in LWs compared with RWs, with the LW f(o) being identical to the sound carrier frequency (N=44). But during stridulation, the two wings resonate at one identical frequency, the song carrier frequency, with the LW dominating in amplitude response. These measurements also demonstrate that the stridulatory file is a constant resonator, as no variation was observed in f(o) along the file during sound radiation. Our findings show that, as they engage in stridulation, cricket wings work as coupled oscillators that together control the mechanical oscillations generating the remarkably pure species-specific song.

  19. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  20. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  1. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  2. Non-simultaneous ecotoxicity testing of single chemicals and their mixture results in erroneous conclusions about the joint action of the mixture

    NARCIS (Netherlands)

    De Laender, F.; Janssen, C.R.; De Schamphelaere, K.A.C.

    2009-01-01

    The ecotoxicity of binary chemical mixtures with a common mode of action is often predicted with the concentration addition model. The assumption of concentration addition is commonly tested statistically based on results of toxicity experiments with the two single chemicals and their binary

  3. Safety margin evaluation concepts for plant Up rates and life extension. Results of the OECD/NEA/CSNI working group on Safety Margin Action Plan (SMAP)

    International Nuclear Information System (INIS)

    Belac, J

    2006-01-01

    This presentation summarizes results of the OECD/NEA/CSNI working group on Safety Margin Action Plan (SMAP) aimed to develop generalized safety margin concept and means of its quantification for the process of evaluating plant safety in the frame of plant life extension and power up rating activities to be used by OECD member countries. (author)

  4. The Benefits and Challenges of Enterprise Education: Results from an Action Research Project in the Third Grade in Finnish Basic Education

    Science.gov (United States)

    Elo, Janne

    2016-01-01

    This article is the result of an action research project conducted in 2014 in a primary school in the city of Vaasa in Finland. The project focused on developing the practice of integrating enterprise education as a part of everyday teaching in Grade Three. The project involved three class teachers, the headmaster and a university researcher. This…

  5. Notch inhibits Yorkie activity in Drosophila wing discs.

    Directory of Open Access Journals (Sweden)

    Alexandre Djiane

    Full Text Available During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki, the Salvador/Warts/Hippo (SWH pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg. We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs.

  6. Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground

    Science.gov (United States)

    Fink, Marvin P.; Lastinger, James L.

    1961-01-01

    A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.

  7. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  8. Pneumatic artificial muscle and its application on driving variable trailing-edge camber wing

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Liu, Yanju; Leng, Jinsong

    2010-04-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, the experimental setup to measure the static output force of pneumatic artificial muscle was designed and the relationship between the static output force and the air pressure was investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. A variable camber wing based on the pneumatic artificial muscle was developed and the variable camber wing model was manufactured to validate the variable camber concept. Wind tunnel tests were conducted in the low speed wind tunnel. Experimental result shows that the wing camber increases with increasing air pressure.

  9. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    Science.gov (United States)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  10. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  11. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  12. Robust Backstepping Control of Wing Rock Using Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Dawei Wu

    2017-02-01

    Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.

  13. Europa's Alfvén wing: shrinkage and displacement influenced by an induced magnetic field

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2007-05-01

    Full Text Available The Galileo magnetometer data are used to investigate the structure of the Alfvén wing during three flybys of Europa. The presence of an induced magnetic field is shown to shrink the cross section of the Alfvén wing and offset it along the direction radial to Jupiter. Both the shrinkage and the offset depend on the strength of the induced field. The entry and exit points of the spacecraft into and out of the Alfvén wings are modeled to determine the angle between the wings and the background magnetic field. Tracing of the Alfvén characteristics in a model magnetic field consisting of Jupiter's background field and an induced field in Europa produces an offset and shrinking of the Alfvén wing consistent with the geometric modeling. Thus we believe that the Alfvén wing properties have been determined correctly. The Alfvén wing angle is directly proportional to the local Alfvén velocity, and is thus a probe for the local plasma density. We show that the inferred plasma density can be understood in terms of the electron density measured by the plasma wave experiment. When Europa is located in the Jovian plasma sheet the derived mass-per-charge exceeds the previous estimates, which is a result of increased pickup of sputtered ions near the moon. The estimated rate of O2+ pickup agrees well with the results from numerical models.

  14. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  15. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  16. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  17. Temporal trends in recording of diabetes on death certificates: results from Translating Research Into Action for Diabetes (TRIAD).

    Science.gov (United States)

    McEwen, Laura N; Karter, Andrew J; Curb, J David; Marrero, David G; Crosson, Jesse C; Herman, William H

    2011-07-01

    To determine the frequency that diabetes is reported on death certificates of decedents with known diabetes and describe trends in reporting over 8 years. Data were obtained from 11,927 participants with diabetes who were enrolled in Translating Research into Action for Diabetes, a multicenter prospective observational study of diabetes care in managed care. Data on decedents (N=2,261) were obtained from the National Death Index from 1 January 2000 through 31 December 2007. The primary dependent variables were the presence of the ICD-10 codes for diabetes listed anywhere on the death certificate or as the underlying cause of death. Diabetes was recorded on 41% of death certificates and as the underlying cause of death for 13% of decedents with diabetes. Diabetes was significantly more likely to be reported on the death certificate of decedents dying of cardiovascular disease than all other causes. There was a statistically significant trend of increased reporting of diabetes as the underlying cause of death over time (Pdeath. The increase in reporting of diabetes as the underlying cause of death was associated with a decrease in the reporting of cardiovascular disease as the underlying cause of death (PDeath certificates continue to underestimate the prevalence of diabetes among decedents. The increase in reporting of diabetes as the underlying cause of death over the past 8 years will likely impact estimates of the burden of diabetes in the U.S.

  18. Green growth and improving preparedness to adapt to pollinator decline in Nigeria - Communicating results for policy and action

    Directory of Open Access Journals (Sweden)

    Thomas Aneni

    2017-06-01

    Full Text Available Insect pollinators contribute to agricultural crop yield and beekeeping provides a major source of livelihoods for farmers in Nigeria. This study developed two survey questionnaires and collected data from beekeepers, researchers and government officials to generate quantitative indicators for the purpose of description as a guide to action. Evaluation and characterization of colony bee loses by beekeepers were assessed and surveys conducted in Osun State, Southern Nigeria, consisting of questions related to: the importance of pollinators, including managed honeybees (Apis mellifera, in agriculture and observations on factors associated with pollinator declines; and management of bee mortality. A majority of beekeepers were ignorant of the cause of the death of their colonies. Information from policy makers indicate that population abundance trends in honey bee and other pollinator populations have largely not been documented in Nigeria. This study emphasizes pollination and insect pollinators as drivers of agricultural crop production with a view to providing guidance for sustainable management of pollinators and achievement of green growth objectives.

  19. Prediction of Wing Downwash Using CFD

    Directory of Open Access Journals (Sweden)

    Mohammed MAHDI

    2015-06-01

    Full Text Available Wing downwash study and estimation of downwash effect on the tail plane is an important task during the aircraft design process, although a lot of papers and works has been done, but the experimental work is the most important, the progress in CFD simulation has reached to the point it is able to reduce the number of runs in the wind tunnel. In this work CFD has been utilized to calculate the downwash angle and downwash gradient with respect to the angle of attack over a high aspect ratio of a typical UAV. The results of the simulation shall be used in the estimation and calculation of the longitudinal static stability analysis of the UAV.

  20. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  1. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol

    2013-09-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.

  2. Physician assessment of stroke risk in hypertensive patients in the Middle East and Africa: results of the action survey.

    Science.gov (United States)

    Badr, Kamal F; Boudia, Khereddine M Merad; Alami, Mohamed; Khoja, Waleed A; Belhani, Ali B; Nawar, Moustafa; Ragy, Hany; Ishaq, Mohammad; Baron, J M Muscat; Hammoudeh, Ayman J; De Mar Youssef, Suzan S; Nakhle, Reine M; Chalfoun, Amale G

    2007-01-01

    In the absence of reliable, contemporary national data, the ACTION survey was designed to: a) provide preliminary data on stroke risk in the MEA (Middle East and Africa); b) describe the contribution of specific cardiovascular risk factors; 3) assess blood pressure (BP) control. This was a multi-center observational study in nine countries in the MEA region. From 2003 to 2005, 562 physicians from a variety of specialties recorded observations of cardiovascular risk factors in 4,747 hypertensive patients, aged 54-80 years. The 10-year absolute stroke risk was calculated using a scoring system based on the Framingham Heart Study observations, and comparisons made with an age-matched cohort. The mean 10-year stroke risk was estimated at 22.7% and was significantly higher for men (25.4%) than for women (19.5%) (P age-matched Framingham cohort, the estimated stroke risk in our population was almost double, and was significantly higher for females (212%) than for males (192%) (P < .001). Hypertension, diabetes, left ventricular hypertrophy, and smoking were major contributing risk factors, as were physical inactivity and elevated cholesterol. Blood pressure was controlled in only 18% of the population and in 12% of diabetics. Physicians of all specialties were willing to participate in stroke risk assessment. The risk of stroke in hypertensive patients in the MEA region is high, and is higher than would be predicted using Framingham data, particularly for females. Hypertension appears to be poorly controlled in more than 80% of hypertensive patients in the MEA region.

  3. Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration

    National Research Council Canada - National Science Library

    Stute, Nicholas

    2001-01-01

    The purpose of this document is to describe the results for the Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration task jointly sponsored by the Logistics Readiness Branch...

  4. An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors

    International Nuclear Information System (INIS)

    Mieloszyk, Magdalena; Skarbek, Lukasz; Ostachowicz, Wieslaw; Krawczuk, Marek

    2011-01-01

    This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS (registered) and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.

  5. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross.

    Science.gov (United States)

    Hassanalian, M; Throneberry, G; Ali, M; Ben Ayed, S; Abdelkefi, A

    2018-01-01

    Drag reduction of the wings of migrating birds is crucial to their flight efficiency. Wing color impacts absorption of solar irradiation which may affect drag but there is little known in this area. To this end, the drag reduction induced by the thermal effect of the wing color of migrating birds with unpowered flight modes is presented in this study. Considering this natural phenomenon in the albatross as an example of migrating birds, and applying an energy balance for this biological system, a thermal analysis is performed on the wings during the summer and winter to obtain different ranges of air density, viscosity, and wing surface temperature brought about from a range of ambient temperatures and climatic conditions seen in different seasons and to study their effects. The exact shape of the albatross wing is used and nine different wing colors are considered in order to gain a better understanding of the effect different colors' absorptivities make on the change in aerodynamic performances. The thermal effect is found to be more important during the summer than during the winter due to the higher values of solar irradiation and a maximum drag reduction of 7.8% is found in summer changing the wing color from light white to dark black. The obtained results show that albatrosses with darker colored wings are more efficient (constant lift to drag ratio and drag reduction) and have better endurance due to this drag reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  7. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  8. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  9. Wings and Flying in Immersive VR - Controller Type, Sound Effects and Experienced Ownership and Agency

    DEFF Research Database (Denmark)

    Sikström, Erik; Götzen, Amalia De; Serafin, Stefania

    An experiment investigated the subjective experiences of ownership and agency of a pair of virtual wings attached to a motion controlled avatar in an immersive virtual reality setup. A between groups comparison of two ways of controlling the movement of the wings and flight ability. One where the...... their experienced embodiment of the wings on a body ownership and agency questionnaire. The results shows significant differences between the controllers in some of the questionnaire items and that adding self-produced sounds to the avatar, slightly changed the subjects evaluations....

  10. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Science.gov (United States)

    Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien

    2015-01-01

    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.

  11. Performance Comparison of the Optimized Inverted Joined Wing Airplane Concept and Classical Configuration Airplanes

    Directory of Open Access Journals (Sweden)

    Sieradzki Adam

    2016-09-01

    Full Text Available The joined wing concept is an unconventional airplane configuration, known since the mid-twenties of the last century. It has several possible advantages, like reduction of the induced drag and weight due to the closed wing concept. The inverted joined wing variant is its rarely considered version, with the front wing being situated above the aft wing. The following paper presents a performance prediction of the recently optimized configuration of this airplane. Flight characteristics obtained numerically were compared with the performance of two classical configuration airplanes of similar category. Their computational fluid dynamics (CFD models were created basing on available documentation, photographs and some inverse engineering methods. The analysis included simulations performed for a scale of 3-meter wingspan inverted joined wing demonstrator and also for real-scale manned airplanes. Therefore, the results of CFD calculations allowed us to assess the competitiveness of the presented concept, as compared to the most technologically advanced airplanes designed and manufactured to date. At the end of the paper, the areas where the inverted joined wing is better than conventional airplane were predicted and new research possibilities were described.

  12. Wings as a new route of exposure to pesticides in the honey bee.

    Science.gov (United States)

    Poquet, Yannick; Kairo, Guillaume; Tchamitchian, Sylvie; Brunet, Jean-Luc; Belzunces, Luc P

    2015-09-01

    In pesticide risk assessment, estimating the routes and levels of exposure is critical. For honey bees subjected to pesticide spray, toxicity is assessed by thorax contact to account for all possible contact exposures. In the present study, the authors tested 6 active substances with different hydrophobicity. For the first time, the authors demonstrated that it is possible to induce mortality by pesticide contact with only the wings of the honey bee. The toxicities induced by contact with the wings and thorax were similar, with the wing median lethal dose (LD50) being 0.99 to 2.23 times higher than that of the thorax. This finding demonstrates that the wings represent a relevant route of exposure in the honey bee. In a second approach, the authors estimated the air volume displaced by the wings during 1 beating cycle to be 0.51 ± 0.03 cm(3), which corresponds to a volume of 116.8 ± 5.8 cm(3)  s(-1) at a wing beat frequency of 230 Hz. The authors then tested realistic scenarios of exposure for bees flying through a pesticide cloud at different concentrations. In the worst-case scenario, the dose accumulated during the flight reached 525 ng bee(-1)  s(-1). These results show that the procedure used to assess the risk posed by contact with pesticides could be improved by accounting for wing exposure. © 2015 SETAC.

  13. Analysis of 2-spar cantilever wings with special reference to torsion and load transference

    Science.gov (United States)

    Kuhn, Paul

    1936-01-01

    This report deals with the analysis of 2-spar cantilever wings in torsion, taking cognizance of the fact that the spars are not independent, but are interconnected by ribs and other structural members. The principles of interaction are briefly explained, showing that the mutual relief action occurring depends on the "pure torsional stiffness" of the wing cross section. Various practical methods of analysis are outlined. The "Friedrichs-Von Karman equations" are shown to require the least amount of labor. Numerical examples by the several methods of analysis are given and the agreement between the calculation and experiment is shown.

  14. Aerodynamics of Dragonfly in Forward Flight: Force measurements and PIV results

    Science.gov (United States)

    Hu, Zheng; Deng, Xinyan

    2009-11-01

    We used a pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in forward flight, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in forward flight, wing-wing interaction always enhances the aerodynamic forces on the forewing through an upwash brought by the hindwing, while reduces the forces on the hindwing through a downwash brought by the forewing.

  15. Integrated Formative Actions (AFIN: results and challenges of preparatory course for admission to higher education at the Federal University of Uberlândia

    Directory of Open Access Journals (Sweden)

    Adevailton Bernardo dos Santos

    2017-12-01

    Full Text Available The Integrated Formative Actions Program (AFIN is part of an extension context of formation and aims to support and assist the entry of high school students in situations of economic vulnerability in higher education and to contribute to the formation of major students through teaching practices. The program has the characteristics of a popular preparatory course and began its activities in the second semester of 2015, with 115 students, and its continuity in 2016 expanded to 367 students, achieving significant results in the goals set. This text aims to describe the results of this Program and analyze it considering other similar initiatives and popular education references. The analysis presents elements of this contribution, but also points to the possibility of improving the action with a view to achieving its objective.

  16. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  17. Prostaglandins compromise basal forebrain cholinergic neuron differentiation and survival: action at EP1/3 receptors results in AIF-induced death.

    Science.gov (United States)

    Jonakait, G Miller; Ni, Li

    2009-08-18

    Activated microglia produce a factor or cocktail of factors that promotes cholinergic neuronal differentiation of undifferentiated precursors in the embryonic basal forebrain (BF) in vitro. To determine whether microglial prostaglandins mediate this action, microglia were stimulated in the presence of the cyclooxygenase inhibitor ibuprofen, and microglial conditioned medium (CM) was used to culture rat BF precursors at embryonic day 15. Choline acetyltransferase (ChAT) activity served as a measure of cholinergic differentiation. While inhibition of prostaglandin biosynthesis did not affect the ability of microglial CM to promote ChAT activity, treatment of microglia with prostaglandin E2 (PGE2) inhibited it. Agonists of E prostanoid receptors EP2 (butaprost) and EP1/3 (sulprostone) mimicked PGE2, while misoprostol (E1-4) actually enhanced the action of CM. PGE2 added directly to BF cultures together with microglial CM also inhibited ChAT activity. While BF cultures expressed all four prostanoid receptors, direct addition of sulprostone but not butaprost mimicked PGE2, suggesting that PGE2 engaged EP1/3 receptors in the BF. Neither PKA inhibition by H89 nor cAMP induction by forskolin or dibutyrl-cAMP altered the action of sulprostone. Sulprostone severely compromised ChAT activity, dendrite number, axonal length and axonal branching, but caspase inhibition did not restore these. However, sulprostone resulted in increased staining intensity and nuclear translocation of apoptosis-inducing factor (AIF) suggesting caspase-independent cell death. We have found that PGE2 action at microglial EP2 receptors inhibits the microglial production of the cholinergic differentiating cocktail, while action at neuronal EP3 receptors has a deleterious effect on cholinergic neurons causing neurite retraction and cell death.

  18. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with

  19. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  20. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  1. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  2. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  3. Finite element modeling of the radiative properties of Morpho butterfly wing scales.

    Science.gov (United States)

    Mejdoubi, A; Andraud, C; Berthier, S; Lafait, J; Boulenguez, J; Richalot, E

    2013-02-01

    With the aim of furthering the explanation of iridescence in Morpho butterflies, we developed an optical model based on the finite-element (FE) method, taking more accurately into account the exact morphology of the wing, origin of iridescence. We modeled the photonic structure of a basal scale of the Morpho rhetenor wing as a three-dimensional object, infinite in one direction, with a shape copied from a TEM image, and made out of a slightly absorbing dielectric material. Periodic boundary conditions were used in the FE method to model the wing periodic structure and perfectly matched layers permitted the free-space scattering computation. Our results are twofold: first, we verified on a simpler structure, that our model yields the same result as the rigorous coupled wave analysis (RCWA), and second, we demonstrated that it is necessary to assume an absorption gradient in the true structure, to account for experimental reflectivity measured on a real wing.

  4. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  5. Conference Report: Rechtsextremismusforschung – aktuelle Tendenzen empirischer Untersuchungen [Research on Right-wing Extremism—Latest Trends in Empirical Studies

    Directory of Open Access Journals (Sweden)

    Janina Söhn

    2004-01-01

    Full Text Available During this workshop scholars presented new, mainly empirical studies which explored different aspects of right-wing extremism in Germany. While a number of talks focused on political strategies and modern forms of organization of local neo-Nazi scenes, political elites and the music industry, others had chosen a biographical view on the personal development of young right-wing extremists. Studies on the local context of and conditions for right-wing extremist actions were complemented by representative survey data on political attitudes of German citizens. Apart from discussions about the phenomenon of right-wing extremism itself, participants had the opportunity to exchange their experience of doing empirical qualitative research in a dangerous field. URN: urn:nbn:de:0114-fqs0401215

  6. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  7. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones

  8. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  9. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  10. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  11. Investigation of vortex breakdown on delta wings using Navier-Stokes equations

    Science.gov (United States)

    Hsu, C.-H.; Liu, C. H.

    1992-01-01

    An efficient finite-difference scheme solving for the three-dimensional incompressible Navier-Stokes equations is described. Numerical simulations of vortex breakdown are then carried out for a sharp-edged delta wing and a round-edged double-delta wing at high Reynolds numbers. Computed results show that several major features of vortex breakdown are qualitatively in agreement with observations made in experiments.

  12. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves)

    OpenAIRE

    Hieronymus, Tobin L

    2015-01-01

    Background Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecolog...

  13. High Speed and High Angle of Attack Aerodynamic Characteristics of Winged Space Vehicle

    OpenAIRE

    INATANI, Yoshifumi

    1987-01-01

    Static aerodynamic characteristics of winged space vehicle is investigated through a series of wind tunnel testing. This report includes a summary of the test results and associated considerations. The tests were conducted and supported by Working Group for Winged Space Vehicle of Institute of Space and Astronautical Science (ISAS). Attention has been concentrated on both longitudinal and lateral/directional, high angle of attack flight capability at high speed flight condition of the vehicle...

  14. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2016-06-01

    Full Text Available The diving beetles (Dytiscidae, Coleoptera are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings. When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  15. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera).

    Science.gov (United States)

    Sun, Jiyu; Wu, Wei; Ling, Mingze; Bhushan, Bharat; Tong, Jin

    2016-01-01

    The diving beetles (Dytiscidae, Coleoptera) are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings). When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera) was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  16. Structural design studies of a supersonic cruise arrow wing configuration

    Science.gov (United States)

    Sobieszczanski, J.; Mccullers, L. A.; Ricketts, R. H.; Santoro, N. J.; Beskenis, S. D.; Kurtze, W. L.

    1976-01-01

    Structural member cross sections were sized with a system of integrated computer programs to satisfy strength and flutter design requirements for several variants of the arrow wing supersonic cruise vehicle. The resulting structural weights provide a measure of the structural efficiency of the planform geometry, structural layout, type of construction, and type of material including composites. The material distribution was determined for a baseline metallic structure and the results indicate that an approximate fatigue constraint has an important effect on the structural weight required for strength but, in all cases, additional material had to be added to satisfy flutter requirements with lighter mass engines with minimum fuel onboard. The use of composite materials on the baseline configuration was explored and indicated increased structural efficiency. In the strength sizing, the all-composite construction provided a lower weight design than the hybrid construction which contained composites only in the wing cover skins. Subsequent flutter analyses indicated a corresponding lower flutter speed.

  17. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  18. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  19. Gratitude, protective buffering, and cognitive dissonance: How families respond to pediatric whole exome sequencing in the absence of actionable results.

    Science.gov (United States)

    Werner-Lin, Allison; Zaspel, Lori; Carlson, Mae; Mueller, Rebecca; Walser, Sarah A; Desai, Ria; Bernhardt, Barbara A

    2018-03-01

    Clinical genome and exome sequencing (CGES) may identify variants leading to targeted management of existing conditions. Yet, CGES often fails to identify pathogenic diagnostic variants and introduces uncertainties by detecting variants of uncertain significance (VUS) and secondary findings. This study investigated how families understand findings and adjust their perspectives on CGES. As part of NIH's Clinical Sequencing Exploratory Research Consortium, children were recruited from clinics at the Children's Hospital of Pennsylvania (CHOP) and offered exome sequencing. Primary pathogenic and possibly pathogenic, and some secondary findings were returned. Investigators digitally recorded results disclosure sessions and conducted 3-month follow up interviews with 10 adolescents and a parent. An interdisciplinary team coded all transcripts. Participants were initially disappointed with findings, yet reactions evolved within disclosure sessions and at 3-month interviews toward acceptance and satisfaction. Families erroneously expected, and prepared extensively, to learn about risk for common conditions. During disclosure sessions, parents and adolescents varied in how they monitored and responded to each others reactions. Several misinterpreted, or overestimated, the utility of findings to attribute meaning and achieve closure for the CGES experience. Participants perceived testing as an opportunity to improve disease management despite results that did not introduce new treatments or diagnoses. Future research may examine whether families experience cognitive dissonance regarding discrepancies between expectations and findings, and how protective buffering minimizes the burden of disappointment on loved ones. As CGES is increasingly integrated into clinical care providers must contend with tempering family expectations and interpretations of findings while managing complex medical care. © 2018 Wiley Periodicals, Inc.

  20. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  1. Insecticides sought to control adult glassy-winged sharpshooter

    OpenAIRE

    Akey, David H.; Henneberry, Thomas J.; Toscano, Nick

    2001-01-01

    The bacterium that causes Pierce's disease (Xylella fastidiosa) is transmitted to grapevines by the glassy-winged sharpshooter (GWSS). Insecticides were evaluated for efficacy and residual activity against adult GWSS on grapevines. Ten insecticides were tested in the cyclo-chlorinated, carbamate, organic phosphate, pyrethroid and neonicotinoid chemical classes. Results from field trials indicate that the pyrethroids and neonicotinoids are promising control agents. Information on efficacious a...

  2. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  3. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  4. Evaluation of chemical preparation on insect wing shape for geometric morphometrics.

    Science.gov (United States)

    Lorenz, Camila; Suesdek, Lincoln

    2013-11-01

    Geometric morphometrics is an approach that has been increasingly applied in studies with insects. A limiting factor of this technique is that some mosquitoes have wings with dark spots or many scales, which jeopardizes the visualization of landmarks for morphometric analysis. Recently, in some studies, chemically treatment (staining) of the wings was used to improve the viewing of landmarks. In this study, we evaluated whether this method causes deformation of the wing veins and tested whether it facilitates the visualization of the most problematic landmarks. In addition, we tested whether mechanical removal of the scales was sufficient for this purpose. The results showed that the physical and chemical treatments are equally effective in improving visualization of the landmarks. The chemical method did not cause deformation of the wing. Thus, some of these treatments should be performed before beginning geometric morphometric analysis to avoid erroneous landmark digitizing.

  5. Performance Evaluation of Leading Edge Slats on Rigid Wing Sail Catamarans

    Science.gov (United States)

    Johnson, Chelsea; O'Neill, Charles

    2015-11-01

    Rigid wing sails have created the fastest catamarans in history, however with the addition of a leading edge slat higher lift and faster speeds may be achieved. Slats are currently used on airplane wings to increase lift, but have not been implemented on a rigid wing sail catamaran. Using 3D modeling and computational fluid dynamics software, this research investigates the effect that slats have on the performance of rigid wing sail catamarans. Aerodynamics and hydrodynamics form the basis of the research. The preliminary results show an increase in the coefficient of lift for sail models with slats over sail models without slats, allowing the catamaran to perform at higher speeds. The ability of the slat to rotate has also been identified as a key factor in increasing the benefit of the slat. This work was supported by NSF site award 1358991.

  6. Integration effects of pylon geometry on a high-wing transport airplane

    Science.gov (United States)

    Carlson, John R.; Lamb, Milton

    1989-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the installation effects of a series of pylons that had differing cross-sectional shapes on the pressure distributions and aerodynamic characteristics of a 1/24-scale high wing transport. The tests were conducted at Mach numbers at 0.70 and 0.80 at angles of attack from -3 degrees to 4 degrees with the pylons tested at various toe angles between 5 degrees inboard and 5 degrees outboard. Results of this study indicate that the installed drag was lowest for the pylons with a compression pylon type design which kept the flow under the wing in the pylon/wing junction comparable to the clean wing velocities.

  7. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2016-02-01

    Full Text Available A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisciplinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter boundary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quantitative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flexible wings.

  8. Effect of canard deflection on close-coupled canard-wing-body aerodynamics

    Science.gov (United States)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  9. EUROASPIRE (European Action on Secondary Prevention through Intervention to Reduce Events) III--a comparison of Irish and European results.

    LENUS (Irish Health Repository)

    Cooney, M T

    2009-04-01

    The EUROASPIRE III audit was a Europe-wide study which took place in 2006\\/2007. The objective was to examine the control of risk factors in subjects with established cardiovascular disease. Here, we compare the Irish results to those of the other 21 European countries which participated. Control of blood cholesterol was significantly better in Irish participants, with 73% below the target of 4.5 mmol\\/l. Blood pressure control was less satisfactory in both Irish and European individuals, with an average of 52% of Irish participants not achieving blood pressure targets. Medication usage was high throughout, particularly anti-platelet agents, beta-blockers and, especially in Ireland, statins. Obesity figures were particularly high in Ireland and throughout Europe, with 82% Irish men and women either overweight or obese. Smoking figures in Irish women were also of concern, with 24% continuing to smoke. Cardiac rehabilitation attendance was particularly high in Ireland, with 68% attending; substantially higher than the European figure of 34%. In common with the rest of Europe, current control of body weight and blood pressure in Ireland is unsatisfactory and in need of increased consideration on the part of both patients and healthcare professionals.

  10. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  11. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  12. Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Wallace, Laura M.; Ellis, Susan; Little, Tim; Tregoning, Paul; Palmer, Neville; Rosa, Robert; Stanaway, Richard; Oa, John; Nidkombu, Edwin; Kwazi, John

    2014-11-01

    We show results from a network of campaign Global Positioning System (GPS) sites in the Woodlark Rift, southeastern Papua New Guinea, in a transition from seafloor spreading to continental rifting. GPS velocities indicate anticlockwise rotation (at 2-2.7°/Myr, relative to Australia) of crustal blocks north of the rift, producing 10-15 mm/yr of extension in the continental rift, increasing to 20-40 mm/yr of seafloor spreading at the Woodlark Spreading Center. Extension in the continental rift is distributed among multiple structures. These data demonstrate that low-angle normal faults in the continents, such as the Mai'iu Fault, can slip at high rates nearing 10 mm/yr. Extensional deformation observed in the D'Entrecasteaux Islands, the site of the world's only actively exhuming Ultra-High Pressure (UHP) rock terrane, supports the idea that extensional processes play a critical role in UHP rock exhumation. GPS data do not require significant interseismic coupling on faults in the region, suggesting that much of the deformation may be aseismic. Westward transfer of deformation from the Woodlark Spreading Center to the main plate boundary fault in the continental rift (the Mai'iu fault) is accommodated by clockwise rotation of a tectonic block beneath Goodenough Bay, and by dextral strike slip on transfer faults within (and surrounding) Normanby Island. Contemporary extension rates in the Woodlark Spreading Center are 30-50% slower than those from seafloor spreading-derived magnetic anomalies. The 0.5 Ma to present seafloor spreading estimates for the Woodlark Basin may be overestimated, and a reevaluation of these data in the context of the GPS rates is warranted.

  13. Ground effect on the aerodynamics of three-dimensional hovering wings.

    Science.gov (United States)

    Lu, H; Lua, K B; Lee, Y J; Lim, T T; Yeo, K S

    2016-10-25

    This paper reports the results of combined experimental and numerical studies on the ground effect on a pair of three-dimensional (3D) hovering wings. Parameters investigated include hovering kinematics, wing shapes, and Reynolds numbers (Re). The results are consistent with the observation by another study (Gao and Lu, 2008 Phys. Fluids, 20 087101) which shows that the cycle-averaged aerodynamic forces generated by two-dimensional (2D) wings in close proximity to the ground can be broadly categorized into three regimes with respect to the ground clearance; force enhancement, force reduction, and force recovery. However, the ground effect on a 3D wing is not as significant as that on a 2D flapping wing reported in (Lu et al 2014 Exp. Fluids, 55 1787); this could be attributed to a weaker wake capture effect on 3D wings. Also, unlike a 2D wing, the leading edge vortex (LEV) remains attached on a 3D wing regardless of ground clearance. For all the wing kinematics considered, the three above-mentioned regimes are closely correlated to a non-monotonic trend in the strength of downwash due to the restriction of root and tip vortex formation, and a positional shift of wake vortices. The root vortices in interaction with the ground induce an up-wash in-between the two wings, causing a strong 'fountain effect' (Maeda and Liu, 2013 J. Biomech. Sci. Eng., 8 344) that may increase the body lift of insects. The present study further shows that changes in wing planform have insignificant influence on the overall trend of ground effect except for a parallel shift in force magnitude, which is caused mainly by the difference in aspect ratio and leading edge pivot point. On the two Reynolds numbers investigated, the results for the low Re case of 100 do not deviate significantly from those of a higher Re = 5000 except for the difference in force magnitudes, since low Reynolds number generates lower downwash, weaker LEV, and lower rotational circulation. Additionally, lower Re

  14. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  15. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    Science.gov (United States)

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  16. How lizards fly: A novel type of wing in animals.

    Directory of Open Access Journals (Sweden)

    J Maximilian Dehling

    Full Text Available Flying lizards of the genus Draco are renowned for their gliding ability, using an aerofoil formed by winglike patagial membranes and supported by elongated thoracic ribs. It remains unknown, however, how these lizards manoeuvre during flight. Here, I present the results of a study on the aerial behaviour of Dussumier's Flying Lizard (Draco dussumieri and show that Draco attaches the forelimbs to the leading edge of the patagium while airborne, forming a hitherto unknown type of composite wing. The attachment of the forelimbs to the patagium suggests that that aerofoil is controlled through movements of the forelimbs. One major advantage for the lizards is that the forelimbs retain their complete range of movement and functionality for climbing and running when not used as a part of the wing. These findings not only shed a new light on the flight of Draco but also have implications for the interpretation of gliding performance in fossil species.

  17. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  18. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  19. Melanin pigmentation gives rise to black spots on the wings of the silkworm Bombyx mori.

    Science.gov (United States)

    Ito, Katsuhiko; Yoshikawa, Manabu; Fujii, Takeshi; Tabunoki, Hiroko; Yokoyama, Takeshi

    2016-01-01

    Several mutants of the silkworm Bombyx mori show body color variation at the larval and adult stages. The Wild wing spot (Ws) mutant exhibits a phenotype in which the moth has a spot on the apex of the forewing. In this study, we investigated this trait to elucidate the molecular mechanism underlying the color pattern. Microscopy of the black spot of Ws mutants showed that the pigment emerges in the scales of the wing, and accumulation of the pigment becomes strong just before eclosion. We next examined the relationship between the black spot of the Ws mutant and melanin. The spectrophotometry using alkaline extracts from the black spot in the wing showed the highest absorption intensity at 405nm, which is the absorbance wavelength of melanin. Moreover, inhibition assays for enzymes implicated in melanin synthesis using 3-iodo-l-tyrosine (a tyrosine hydroxylase inhibitor) and L-α-methyl-DOPA (a dopa decarboxylase inhibitor) revealed that treatment with each inhibitor disrupted the pigmentation of the wing of the Ws mutant. On the basis of these results, we analyzed the expression pattern of five genes involved in melanin formation, and found that the expression levels of yellow and laccase2 were increased just before pigmentation, whereas those of DDC, tan, and TH were increased when the apex of the wing turned black. These results showed that melanin pigmentation gives rise to the black spot on the wing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  1. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  2. Coordination and carrying out of environment radioactivity measurement programmes in a radiological emergency situation, exploitation and restitution of results - Assessment of IRSN's actions and perspectives

    International Nuclear Information System (INIS)

    Dubiau, Ph.

    2010-01-01

    After having recalled the content of the interdepartmental 'measurement directive' which defines the legal framework of radioactivity measurements in case of a radiological emergency situation, this report described the actions performed by the IRSN (Institut de Radioprotection et de Surete Nucleaire, the French Radioprotection and Nuclear Safety Institute) and concerning these measurements. It discusses how the measurement strategy is defined depending on the accident characteristics and on the environment. It discusses how measurement results are interpreted, and evokes some constraints and limits for this strategy during the emergency phase. A laboratory vehicle is briefly presented which enables sample preparation and measurement by various analysis techniques

  3. Results of the Lunar Exploration Analysis Group (LEAG) Gap Review: Specific Action Team (SAT), Examination of Strategic Knowledge Gaps (SKGs) for Human Exploration of the Moon

    Science.gov (United States)

    Shearer, C. K.; Eppler, D.; Farrell, W.; Gruener, J.; Lawrence, S.; Pellis, N.; Spudis, P. D.; Stopar, J.; Zeigler, R.; Neal, C; hide

    2016-01-01

    The Lunar Exploration Analysis Group (LEAG) was tasked by the Human Exploration Operations Mission Directorate (HEOMD) to establish a Specific Action Team (SAT) to review lunar Strategic Knowledge Gaps (SKGs) within the context of new lunar data and some specific human mission scenarios. Within this review, the SAT was to identify the SKGs that have been fully or partially retired, identify new SKGs resulting from new data and observations, and review quantitative descriptions of measurements that are required to fill knowledge gaps, the fidelity of the measurements needed, and if relevant, provide examples of existing instruments or potential missions capable of filling the SKGs.

  4. RESULTS OF CALCULATION-EXPERIMENTAL INVESTIGATIONS OF ELECTRO-THERMAL RESISTIBILITY OF SHEET STEEL SAMPLES TO ACTION OF RATIONED COMPONENTS OF PULSED CURRENT OF ARTIFICIAL LIGHTING

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-06-01

    Full Text Available Purpose. Calculation and experimental researches of the electro-thermal resistibility of the steel sheet samples to action standard pulse current components of the artificial lightning with amplitude-time parameters (ATP, corresponded the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. Methodology. Electrophysics bases of technique of high tensions and large impulsive currents (LIC, and also scientific and technical bases of planning of devices of high-voltage impulsive technique and measuring in them LIC. Сurrent amplitude ImA=±200 kA (with a tolerance of ±10 %; current action integral JA=2∙106 A2•s (with a tolerance of ±20 %; time, corresponding to the amplitude of the current ImA, tmA≤50 microseconds; the duration of the current flow τpA≤500 microseconds. Results. The results of the evaluation of the calculated and experimental studies of electro-thermal resistance of the samples of plates measuring 0,5 m  0,5 m stainless steel 1 mm thickness to the action on them artificial lightning impulse currents with rationed ATP on the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. A pulse A- component have a first amplitude 192 kA, the corresponding time of 34 μs, and the duration aperiodic component amplitude 804 A, corresponding to the time 9 ms. It has been shown that the long C- component current of artificial lightning can lead to keyhole these samples. The diameter of the holes in this thin steel sheet, which is formed during the flow of current C- components can reach 15 mm. The results of calculation and experiment agree within 28 %. Originality. For the first time in world practice on the generator large pulsed currents experimental studies of resistibility of sheet steel samples to the action of artificial lightning currents with critical parameters. Practical value. Using the results obtained in the practice of lightning protection will significantly improve the

  5. Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism

    Directory of Open Access Journals (Sweden)

    Shan-Shan eGuo

    2016-02-01

    Full Text Available In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS pathway regulate alteration of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5 affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax of the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryo size and higher carbohydrate and protein contents compared to control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid.

  6. Wing motion measurement and aerodynamics of hovering true hoverflies.

    Science.gov (United States)

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  7. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  8. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  9. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    Science.gov (United States)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  10. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    Science.gov (United States)

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of

  11. Aerostructural optimization of a morphing wing for airborne wind energy applications

    Science.gov (United States)

    Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.

    2017-09-01

    Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the

  12. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  13. Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin(Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    María-José Sanzana

    2013-12-01

    Full Text Available Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin (Lepidoptera, Nymphalidae. When the environmental conditions change locally, the organisms and populations may also change in response to the selection pressure, so that the development of individuals may become affected in different degrees. There have been only a few studies in which the patterns of wing morphology variation have been looked into along a latitudinal gradient by means of geometric morphometrics. The aim of this work was to assess the morphologic differentiation of wing among butterfly populations of the species Auca coctei. For this purpose, 9 sampling locations were used which are representative of the distribution range of the butterfly and cover a wide latitudinal range in Chile. The wing morphology was studied in a total of 202 specimens of A. coctei (150 males and 52 females, based on digitization of 17 morphologic landmarks. The results show variation of wing shape in both sexes; however, for the centroid size there was significant variation only in females. Females show smaller centroid size at higher latitudes, therefore in this study the Bergmann reverse rule is confirmed for females of A. coctei. Our study extends morphologic projections with latitude, suggesting that wing variation is an environmental response from diverse origins and may influence different characteristics of the life history of a butterfly.

  14. The presence of quill mites (Gabucinia bicaudata and lice (Struthiolipeurus struthionis in ostrich wing feathers

    Directory of Open Access Journals (Sweden)

    R.G. Cooper

    2006-06-01

    Full Text Available Quill mites (Gabucinia bicaudata and lice (Struthiolipeurus struthionis may infest ostrich feathers, resulting in skin damage, pruritis and excessive feather preening and loss. Four different feather types (prime white, femina extra wide, femina class 1, and femina short; n = 10 were collected. The quill mites and lice were removed with fine forceps, studied using a photographic optical microscope and counted microscopically at ×100 magnification following collection by sedimentation. They were placed in separate Petri dishes containing lactophenol solution and examined (×40 magnification. Anatomical features are described. The density of quill mites in all feather types of both wings was higher than that of the lice. There was no significant difference between the counts of both arthropods on the left wing and the right wing, respectively, except for the femina class 1 quill mites (P = 0.01. The femina extra wide feathers were a preferred habitat in both wings. Large standard deviations (quill mites left wing: 73 + 8; quill mites right wing: 69 + 7 suggested variations in the degree of migration between feather shafts or as a response to escape preening. It is recommended that ostriches be treated with an oral preparation of Ivermectin administered per os at a dosage rate of 0.2 mg / kg at 30-day intervals for quill mites, and with a 1-5 % Malathion dust at 14-day intervals for lice.

  15. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  16. The research on wing sail of a land-yacht robot

    Directory of Open Access Journals (Sweden)

    Shaorong Xie

    2015-12-01

    Full Text Available A wind-driven land-yacht robot which will be applied in polar expedition is presented in this article. As the main power of robot is provided by wing sail, improving the efficiency of wing sail is the key for its motion. Wing sail is composed of airfoil, so airfoil theory is researched first, and then several airfoils and their aerodynamic performance are compared, and a high-efficiency airfoil is selected. After that, overturning torque and start wind speed of robot are analyzed to determine the size of the wing sail. At last, the wing sail is manufactured and checked, and it is tested by start wind speed experiments, running speed experiments, steering motion, and obstacle avoidance experiments. The minimum start wind speed is 6 m/s. When wind speed is 10.3 m/s and angle of attack is 90°, running velocity of robot is 1.285 m/s. A land-yacht robot can run steering motion well and avoid obstacle to the target. The result shows that wing sail satisfies the motion requirement of land-yacht robot.

  17. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  18. A new non-linear vortex lattice method: Applications to wing aerodynamic optimizations

    Directory of Open Access Journals (Sweden)

    Oliviu Şugar Gabor

    2016-10-01

    Full Text Available This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.

  19. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  20. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly.

    Science.gov (United States)

    Outomuro, David; Söderquist, Linus; Nilsson-Örtman, Viktor; Cortázar-Chinarro, María; Lundgren, Cecilia; Johansson, Frank

    2016-07-01

    Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow-based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade-off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species' mating systems and mating behaviors. © 2016 The Author(s).

  1. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  2. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

    Directory of Open Access Journals (Sweden)

    Muhammad Yasar Javaid

    2017-07-01

    Full Text Available We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

  3. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration

    Science.gov (United States)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  4. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings

    Directory of Open Access Journals (Sweden)

    Satterfield Dara A.

    2014-01-01

    Full Text Available The migration of monarch butterflies (Danaus plexippus in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width, and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010, results showed that the earliest migrants (n = 20 in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17. There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind

  5. Contribution of a winged phlebotomy device design to blood splatter.

    Science.gov (United States)

    Haiduven, Donna J; McGuire-Wolfe, Christine; Applegarth, Shawn P

    2012-11-01

    Despite a proliferation of phlebotomy devices with engineered sharps injury protection (ESIP), the impact of various winged device designs on blood splatter occurring during venipuncture procedures has not been explored. To evaluate the potential for blood splatter of 6 designs of winged phlebotomy devices. A laboratory-based device evaluation without human subjects, using a simulated patient venous system. We evaluated 18 winged phlebotomy devices of 6 device designs by Terumo, BD Vacutainer (2 designs), Greiner, Smith Medical, and Kendall (designated A-F, respectively). Scientific filters were positioned around the devices and weighed before and after venipuncture was performed. Visible blood on filters, exam gloves, and devices and measurable blood splatter were the primary units of analysis. The percentages of devices and gloves with visible blood on them and filters with measurable blood splatter ranged from 0% to 20%. There was a statistically significant association between device design and visible blood on devices ([Formula: see text]) and between device design and filters with measurable blood splatter ([Formula: see text]), but not between device design and visible blood on gloves. A wide range of associations were demonstrated between device design and visible blood on gloves or devices and incidence of blood splatter. The results of this evaluation suggest that winged phlebotomy devices with ESIP may produce blood splatter during venipuncture. Reinforcing the importance of eye protection and developing a methodology to assess ocular exposure to blood splatter are major implications for healthcare personnel who use these devices. Future studies should focus on evaluating different designs of intravascular devices (intravenous catheters, other phlebotomy devices) for blood splatter.

  6. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  7. Wing kinematics and flexibility for optimal manoeuvring and escape

    Science.gov (United States)

    Wong, Jaime Gustav

    Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.

  8. Analysis of a Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam

    2013-01-01

    The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.

  9. On the leading edge vortex of thin wings

    Science.gov (United States)

    Arredondo, Abel; Viola, Ignazio Maria

    2016-11-01

    On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.

  10. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  11. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  12. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  13. Mental health promotion in a school community by using the results from the Well-being Profile: an action research project.

    Science.gov (United States)

    Puolakka, Kristiina; Haapasalo-Pesu, Kirsi-Maria; Konu, Anne; Astedt-Kurki, Päivi; Paavilainen, Eija

    2014-01-01

    This article presents an action research project as a method to combine science and practical expertise in order to develop the practices of the health care system. The project aimed at developing mental health promotion in the school community in general and at finding tools for timely help when mental health is at risk. The underlying idea is that mental health is an integral part of health and by promoting general well-being it is also possible to promote and ensure mental health at school. The study was conducted in a Finnish lower secondary school of 446 pupils where the pupils are aged between 12 and 15 years. The initial survey was conducted using the School Well-being Profile, a tool developed by Anne Konu. A well-being questionnaire was used to identify the areas in need of improvement, providing the basis for planning and implementing development measures together with the local actors. The instrument proved to be a usable way of collecting feedback of the well-being of the school environment. As a result of the action research project, the school's physical conditions and social relationships improved and appropriate practices for future problem situations were set.

  14. Deleting the accessory subunit KChIP2 results in loss of I(to,f) and increased I(K,slow) that maintains normal action potential configuration

    DEFF Research Database (Denmark)

    Thomsen, Morten B; Sosunov, Eugene A; Anyukhovsky, Evgeny P

    2008-01-01

    to characterize ventricular repolarization and its determinants in wild-type and KChIP2(-/-) mice. RESULTS: Despite comparable baseline action potentials, APD was more markedly prolonged by 4-aminopyridine (4-AP) in KChIP2(-/-) preparations. Peak K(+) current densities were similar in wild-type and KChIP2......BACKGROUND: Four voltage-gated potassium currents, I(to,f) (K(V)4.2), I(to,s) (K(V)1.4), I(K,slow) (K(V)1.5+K(V)2.1), and I(SS) (TASK1), govern murine ventricular repolarization. Although the accessory subunit KChIP2 influences I(to,f) expression, in preliminary experiments we found that action...... potential duration (APD) is maintained in KChIP2 knockout mice. OBJECTIVE: We tested the role of KChIP2 in regulating APD and studied the underlying ionic currents. METHODS: We used microelectrode techniques, whole-cell patch clamp studies, and real-time polymerase chain reaction amplification...

  15. Decreased use of glucocorticoids in biological-experienced patients with rheumatoid arthritis who initiated intravenous abatacept: results from the 2-year ACTION study

    Science.gov (United States)

    Alten, Rieke; Nüßlein, Hubert; Galeazzi, Mauro; Lorenz, Hanns-Martin; Nurmohamed, Michael T; Bensen, William G; Burmester, Gerd R; Peter, Hans-Hartmut; Pavelka, Karel; Chartier, Mélanie; Poncet, Coralie; Rauch, Christiane; Elbez, Yedid; Le Bars, Manuela

    2016-01-01

    Introduction Prolonged glucocorticoid use may increase the risk of adverse safety outcomes, including cardiovascular events. The European League Against Rheumatism and the Canadian Rheumatology Association advise tapering glucocorticoid dose as rapidly as clinically feasible. There is a paucity of published data on RA that adequately describe concomitant treatment patterns. Methods ACTION (AbataCepT In rOutiNe clinical practice) is a non-interventional cohort study of patients from Europe and Canada that investigated the long-term retention of intravenous abatacept in clinical practice. We assessed concomitant glucocorticoids in patients with established RA who had participated in ACTION and received ≥1 biological agent prior to abatacept initiation. Results The analysis included 1009 patients. Glucocorticoids were prescribed at abatacept initiation in 734 (72.7%) patients at a median 7.5 mg/day dose (n=692). Of the patients who remained on abatacept at 24 months, 40.7% were able to decrease their dose of glucocorticoids, including 26.9% who decreased their dose from >5 mg/day to ≤5 mg/day. Conclusion Reduction and/or cessation of glucocorticoid therapy is possible with intravenous abatacept in clinical practice. PMID:26925253

  16. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  17. AEROELASTIC FLUTTER ANALYSIS OF SUPERSONIC WING WITH MULTIPLE EXTERNAL STORES

    Directory of Open Access Journals (Sweden)

    Nur Azam

    2014-12-01

    Full Text Available ABSTRACT: Flutter may be considered to be one of the most dangerous aeroelastic failure phenomenon. The flutter characteristic differs for each aircraft type, and depends on the wing geometry as well as its operational region of subsonic, transonic or supersonic speeds. Prior to performing a flight flutter test, extensive numerical simulations and Ground Vibration Test should be conducted where the structural finite element modes and the experimentation results should be matched, otherwise the numerical simulation model must be rejected. In this paper, the analysis of simulation of a supersonic wing equipped with external missiles loaded on the wing is presented. The structural mode shapes at each generated frequency are also visually presented. The analysis is carried out using MSC Nastran FEM software. The wing flutter with the external stores was simulated at different altitudes. The result shows that the flutter velocity is sensitive to the flight altitude. For this reason, the flutter analysis is conducted also for a negative altitude. The negative altitude is obtained by considering the constant equivalent speed-Mach number rule at the flutter speed boundary as a requirement in standard regulation of transport aircraft. ABSTRAK: Salah satu fenomena kegagalan aeroelastik yang paling membahayakan adalah kipasan (flutter. Ciri-ciri kegagalan kipasan (flutter adalah berbeza untuk setiap jenis pesawat bergantung pada geometri sayap dan regim operasi sama ada subsonik, transonik atau supersonik. Sebelum melakukan ujian penerbangan kipasan , simulasi berangka luas dan ujian getaran peringkat bawahan (darat perlu dijalankan di mana struktur mod unsur terhingga dan keputusan eksperimen harus dipadankan, sebaliknya model simulasi berangka boleh ditolak. Dalam kertas kerja ini, simulasi sayap supersonik dilengkapi dengan beban luaran peluru berpandu di sayap telah dianalisis di daerah supersonik tinggi. Bentuk mod struktur pada setiap mod frekuensi

  18. Flight Control of a Millimeter-Scale Flapping-Wing Robot

    OpenAIRE

    Chirarattananon, Pakpong

    2014-01-01

    Flying insects display remarkable maneuverability. Unlike typical airplanes, these insects are able to execute an evasive action, rapidly change their flight speed and direction, or leisurely land on flowers buffeted by wind, exhibiting aerodynamic feats unmatched by any state-of-the-art aircraft. By subtly tuning their wing motions, they generate and manipulate unsteady aerodynamic phenomenon that is the basis of their extraordinary maneuverability. Inspired by these tiny animals, scienti...

  19. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  20. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  1. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  2. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  3. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  4. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST cost action) and bioactivities of the resultant peptides.

    Science.gov (United States)

    Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga

    2015-07-01

    The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.

  5. Successful and cost neutral strategies to increase organic food used in public kitchens: results from the Danish Organic Action Plan 2020

    DEFF Research Database (Denmark)

    Thorsen, Anne Vibeke; Brorson, B.; Lassen, Anne Dahl

    of practical strategies being effective in increasing the organic food used in the public kitchens.MethodsStudy design included baseline data collection, training sessions for all kitchens employees, goal setting, strategy development and implementation for each kitchen, and end point data collection......IntroductionThis conversion project was conducted in 2015-16 as part of the Danish Organic Action Plan 2020. The objective of this study was to measure the effect of an organic cost neutral food conversion on the percentage of organic food used in Danish public kitchens and to gain knowledge.......Setting174 public kitchens from 10 municipalities participated in an organic conversion project performed by a consultant corporation. Three types of public kitchen were included: childcare (n=52), worksite canteens (N=14) and elderly care (n=108).ResultsSignificant increases in organic food percentage from...

  6. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  7. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  8. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  9. Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles

    Science.gov (United States)

    Viieru, Dragos

    Lately, micro air vehicles (MAVs), with a maximum dimension of 15 cm and nominal flight speed around 10m/s, have attracted interest from scientific and engineering communities due to their potential to perform desirable flight missions and exhibit unconventional aerodynamics, control, and structural characteristics, compared to larger flight vehicles. Since MAVs operate at a Reynolds number of 105 or lower, the lift-to-drag ratio is noticeably lower than the larger manned flight vehicles. The light weight and low flight speed cause MAVs to be sensitive to wind gusts. The MAV's small overall dimensions result in low aspect ratio wings with strong wing tip vortices that further complicate the aerodynamics of such vehicles. In this work, two vehicle concepts are considered, namely, fixed wings with flexible structure aimed at passive shape control, and flapping wings aimed at enhancing aerodynamic performance using unsteady flow fields. A finite volume, pressure-based Navier-Stokes solver along with moving grid algorithms is employed to simulate the flow field. The coupled fluid-structural dynamics of the flexible wing is treated using a hyperelastic finite element structural model, the above-mentioned fluid solver via the moving grid technique, and the geometric conservation law. Three dimensional aerodynamics around a low aspect ratio wing for both rigid and flexible structures and fluid-structure interactions for flexible structures have been investigated. In the Reynolds numbers range of 7x10 4 to 9x104, the flexible wing exhibits self-initiated vibrations even in steady free-stream, and is found to have a similar performance to the identical rigid wing for modest angles of attack. For flapping wings, efforts are made to improve our understanding of the unsteady fluid physics related to the lift generation mechanism at low Reynolds numbers (75 to 1,700). Alternative moving grid algorithms, capable of handling the large movements of the boundaries (characteristic

  10. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  11. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae

    Directory of Open Access Journals (Sweden)

    Rhea Von Busse

    2012-10-01

    The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0–7 m/s, to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, Std, is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The Std is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance.

  12. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    Directory of Open Access Journals (Sweden)

    T. Alexander Dececchi

    2016-07-01

    Full Text Available Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR, and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory

  13. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    Science.gov (United States)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant

  14. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    Science.gov (United States)

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  15. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Figure 12. Thin spline plate graphics for the species belonging to the genus Cerceris. Figure 13. Fore wing landmarks of the significant wing characteristics in the honeybee Apis mellifera. Linnaeus. stated as the traditional wing morphometry that enables the practical discrimination of the honeybee (Apis sp ...

  16. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  17. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  18. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  19. [Interactive Knowledge to Action in Health Promotion: The GESTALT Project. Initial Results of a Pilot Study on Sustainable Implementation of an Evidence-Based Programme].

    Science.gov (United States)

    Rütten, A; Wolff, A; Streber, A

    2016-06-01

    The present article outlines a pilot study to demonstrate the concept of the interactive knowledge to action approach in order to foster sustainable implementation of an evidence-based physical activity programme for dementia prevention into practice. The approach and procedures will be introduced, and initial results of the pilot study "GESTALT", with special regard to the interplay of science, politics and prevention practice, will be outlined. In the GESTALT project (2011-2014) the concept of interactive knowledge to action was realised through a cooperative planning approach that systematically engaged and involved stakeholders from science, politics and practice. Evaluation of the project's sustainability focused on 3 dimensions: target group, organisations and context. Target group analysis included assessment of changes in physical activity behaviour (n=75). Organisational and context evaluations included an analysis of relevant documentation of cooperative planning meetings, conduction of the programme, bilateral talks and further meetings. In relation to the target group, the majority of participants (60%) were committed to an active lifestyle 6 months after completion of the GESTALT programme. Regarding organisations and context, 14 partner organisations maintained active engagement in cooperative planning processes. After adapting the GESTALT programme to the context and needs of the organisations and participants, 5 organisations were able to implement it. These same organisations also continued to provide exercise classes for ex-participants of the initial GESTALT programme. Through developing partnerships, increasing publicity and attracting policy makers, resources for the sustainable implementation of the GESTALT project were obtained. The pilot study GESTALT shows that the concept of interactive knowledge to action has substantially contributed to the sustainability of a physical activity programme in the field of dementia prevention. For this

  20. Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results.

    Science.gov (United States)

    Bersudsky, Yuly; Shaldubina, Alona; Kozlovsky, Nitzan; Woodgett, James R; Agam, Galila; Belmaker, R H

    2008-05-01

    In mice glycogen synthase kinase (GSK)-3beta heterozygote knockout status was reported to cause reduced immobility in the Porsolt forced swim test and reduced amphetamine-induced hyperactivity, behaviors that mimic the effects of lithium. GSK-3beta protein and mRNA level and activity have been reported to be reduced in the postmortem brain of schizophrenia patients and this could suggest the involvement of GSK-3beta in the etiology of schizophrenia. However, apomorphine-induced stereotyping was reported to be unchanged in GSK-3beta heterozygote (HZ) knockout (KO) mice. As such behaviors are not always robust, study in another laboratory seemed indicated. Motor activity and coordination were assessed in the rotarod test. Behavior was studied in the following tests: pilocarpine-induced seizures model for lithium action, Porsolt forced swim test, tail suspension test, elevated plus-maze, large open field, startle response and prepulse inhibition of acoustic startle response, amphetamine-induced hyperactivity, and apomorphine-induced stereotypic climbing. We could not confirm the report that GSK-3beta HZ KO mice exhibit reduced immobility in the Porsolt forced swim or reduced amphetamine-induced hyperactivity in a manner mimicking the behavioral effects of lithium. We did not find increased apomorphine-induced stereotypic climbing or disruption of prepulse inhibition, suggesting that human postmortem findings regarding GSK-3beta in schizophrenia are not mediated by changes in dopamine receptors and are not the cause of prepulse inhibition deficits in schizophrenia. These data do not support the role of GSK-3beta in schizophrenia or in the mechanism of therapeutic action of lithium. Although differences in the genetic background of the GSK-3beta HZ KOs used in the present study compared with that of the previous study could be responsible, such results could suggest that the previously reported effects of GSK-3beta knockout on behavior are not robust.

  1. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity.

    Science.gov (United States)

    de Bézenac, Christophe E; Sluming, Vanessa; Gouws, André; Corcoran, Rhiannon

    2016-09-01

    In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Road map to scaling-up: translating operations research study's results into actions for expanding medical abortion services in rural health facilities in Nepal.

    Science.gov (United States)

    Puri, Mahesh; Regmi, Shophika; Tamang, Anand; Shrestha, Prabhakar

    2014-05-13

    Identifying unsafe abortion among the major causes of maternal deaths and respecting the rights to health of women, in 2002, the Nepali parliament liberalized abortion up to 12 weeks of pregnancy on request. However, enhancing women's awareness on and access to safe and legal abortion services, particularly in rural areas, remains a challenge in Nepal despite a decade of the initiation of safe abortion services. Between January 2011 and December 2012, an operations research study was carried out using quasi-experimental design to determine the effectiveness of engaging female community health volunteers, auxiliary nurse midwives, and nurses to provide medical abortion services from outreach health facilities to increase the accessibility and acceptability of women to medical abortion. This paper describes key components of the operations research study, key research findings, and follow-up actions that contributed to create a conducive environment and evidence in scaling up medical abortion services in rural areas of Nepal. It was found that careful planning and implementation, continuous advocacy, and engagement of key stakeholders, including key government officials, from the planning stage of study is not only crucial for successful completion of the project but also instrumental for translating research results into action and policy change. While challenges remained at different levels, medical abortion services delivered by nurses and auxiliary nurse midwives working at rural outreach health facilities without oversight of physicians was perceived to be accessible, effective, and of good quality by the service providers and the women who received medical abortion services from these rural health facilities. This research provided further evidence and a road-map for expanding medical abortion services to rural areas by mid-level service providers in minimum clinical settings without the oversight of physicians, thus reducing complications and deaths due to

  3. Air Base Wing and Air Mobility Wing Consolidating on AMC-LED Joint Bases: A Delphi Study

    Science.gov (United States)

    2014-06-13

    AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY GRADUATE RESEARCH PAPER Mason E. MacGarvey... DELPHI STUDY GRADUATE RESEARCH PAPER Presented to the Faculty Graduate School of Engineering Management Air Force Institute of Technology...iv AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY Mason E. MacGarvey, BS, MBA

  4. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    National Research Council Canada - National Science Library

    Young, L. A; Lillie, D; McCluer, M; Yamauchi, G. K; Derby, M. R

    2002-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics...

  5. A CFD-informed quasi-steady model of flapping wing aerodynamics.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J

    2015-11-01

    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.

  6. Survival, fidelity, and recovery rates of white-winged doves in Texas

    KAUST Repository

    Collier, Bret A.

    2012-03-12

    Management of migratory birds at the national level has historically relied on regulatory boundaries for definition of harvest restrictions and estimation of demographic parameters. Most species of migratory game birds are not expanding their ranges, so migratory corridors are approximately fixed. White-winged doves (Zenaida asiatica), however, have undergone significant variation in population structure with marked range expansion occurring in Texas, and range contraction in Arizona, during the last 30 years. Because >85% of white-winged dove harvest in the United States (approx. 1.3 million annually) now occurs in Texas, information on vital rates of expanding white-winged dove populations is necessary for informed management. We used band recovery and mark-recapture data to investigate variation in survival and harvest across 3 geographic strata for white-winged doves banded in the pre-hunting season in Texas during 2007-2010. We banded 60,742 white-winged doves, recovered 2,458 bands via harvest reporting, and recaptured 455 known-age birds between 2007 and 2010. The best supporting model found some evidence for geographic differences in survival rates among strata (A-C) in both hatch-year (juvenile; A = 0.205 [SE = 0.0476], B = 0.213 [SE = 0.0278], C = 0.364 [SE = 0.0254]) and after-hatch year (adult; A = 0.483 [SE = 0.0775], B = 0.465 [SE = 0.0366], C = 0.538 [SE = 0.251]) birds. White-winged doves had a low probability of moving among strata (0.009) or being recaptured (0.002) across all strata. Harvest recovery rates were concordant with estimates for other dove species, but were variable across geographic strata. Based on our results, harvest management strategies for white-winged doves in Texas and elsewhere should consider differences in population vital rates among geographic strata. © 2012 The Wildlife Society.

  7. Effect of canard position on the longitudinal aerodynamic characteristics of a close-coupled canard-wing-body configuration

    Science.gov (United States)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved numerically to investigate the effects of canard vertical position on a close-coupled canard-wing-body configuration at a transonic Mach number of 0.90 and angles of attack ranging from -2 to 12 degrees. Canard-wing interactions are investigated for high-, mid- and low-canard positions. The computational results show favorable canard-wing interactions for the high- and mid-canard configurations. The unfavorable lift and drag characteristics for the low-canard configuration are examined by analyses of the low-canard flowfield structure.

  8. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    Science.gov (United States)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  9. Investigation of carbon rod stiffeners for wing flutter mitigation on a supersonic business jet

    Science.gov (United States)

    Simmons, Frank, III

    torsional stiffness was maximized. Vibration testing was performed on each of the test articles. First bending and first torsion natural frequencies for each test article were determined. Both vibration dwell testing and "rap" vibration tests were performed. Rap testing also determined the decay of the vibration from which the vibration damping constant was determined. The natural frequencies of each article were scaled to the full size wing. Finite element models of each wing configuration were tuned in stiffness and mass to provide the correct mode shapes. Flutter analysis was performed for each wing configuration and compared to a baseline conventional aluminum wing design. Results indicted the angled carbon stringer design had higher critical flutter speeds followed by the conventional aluminum design and the design with the carbon rod stringers parallel to the rear spar, respectively. Weight comparisons determined the conventional design to be significantly heavier as compared to each carbon rod design.

  10. Overview of recent progress on the DARPA/USAF Wright Laboratory Smart Materials and Structures Development--Smart Wing program

    Science.gov (United States)

    Kudva, Jayanth N.; Appa, Kari; Jardine, A. Peter; Martin, Christopher A.; Carpenter, Bernie F.

    1997-05-01

    The concept of an adaptive aircraft wing, i.e., whose shape parameters such as camber, span-wise twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied by numerous researchers. While the aerodynamic benefits (in terms of increased lift/drag ratios, improved maneuverability, and delayed flow separation) have been analytically and experimentally established, the complexity and weight penalty of the designs and actuation using smart materials could potentially alleviate the shortcomings of prior designs, leading the way to a more practical `smart' adaptive wing which responds to changes in flight and environmental conditions by optimally modifying its shape. A summary of recent work in the area of adaptive wing concepts incorporating smart structures technologies is presented. Emphasis is placed on continuing research at Northrop Grumman under a United States Defense Advanced Research Projects Agency contract entitled `Smart Structures and Materials Development-Smart Wing,'. Limitations and potential benefits of adaptive wing designs, applications and advantages of smart material actuators and sensors, and results of recent tests are discussed. Recommendations for future work required to develop an operational smart adaptive wing are also outlined.

  11. Mourning dove ( Zenaida macroura) wing-whistles may contain threat-related information for con- and hetero-specifics

    Science.gov (United States)

    Coleman, Seth W.

    2008-10-01

    Distinct acoustic whistles are associated with the wing-beats of many doves, and are especially noticeable when doves ascend from the ground when startled. I thus hypothesized that these sounds may be used by flock-mates as cues of potential danger. To test this hypothesis, I compared the responses of mourning doves ( Zenaida macroura), northern cardinals ( Cardinalis cardinalis), and house sparrows ( Passer domesticus) to audio playbacks of dove ‘startle wing-whistles’, cardinal alarm calls, dove ‘nonstartle wing-whistles’, and sparrow ‘social chatter’. Following playbacks of startle wing-whistles and alarm calls, conspecifics and heterospecifics startled and increased vigilance more than after playbacks of other sounds. Also, the latency to return to feeding was greater following playbacks of startle wing-whistles and alarm calls than following playbacks of other sounds. These results suggest that both conspecifics and heterospecifics may attend to dove wing-whistles in decisions related to antipredator behaviors. Whether the sounds of dove wing-whistles are intentionally produced signals warrants further testing.

  12. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  13. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  14. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  15. Chemical evaluation of winged beans ( Psophocarpus ...

    African Journals Online (AJOL)

    Chemical evaluation of winged beans ( Psophocarpus Tetragonolobus ), Pitanga cherries ( Eugenia uniflora) and orchid fruit ( Orchid fruit myristic a) ... The acid value ranged between 0.71 and 2.82 mg/KOH/g while iodine value ranged between 91.15 and 144.57. The refractive index ranged between 1.465 and 1.474 in all ...

  16. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  17. Developing networks between residential aged care facilities as a result of engagement in a falls prevention project: an action research study.

    Science.gov (United States)

    Lea, Emma; Andrews, Sharon; Haines, Terry; Nitz, Jennifer; Haralambous, Betty; Moore, Kirsten; Hill, Keith; Robinson, Andrew

    2016-01-01

    Residential aged care facility (RACF) staff often operate in isolation. Research is lacking on networking between facilities. To explore outcomes associated with network formation between two RACFs as part of an action research approach to reducing falls. Action research approach with qualitative data collected. Twelve RACF staff from two facilities in regional Tasmania, Australia, formed a falls prevention action research group. Thematic analysis was undertaken of 22 audio-recorded fortnightly group meetings. This was the first opportunity for participants to meet colleagues from another facility in a professional context. The formation of an inter-facility network enabled the sharing of ideas and systems related to evidence-based falls prevention activities and other issues and galvanised a collaborative focus for action. An action research process can be used to create an inter-facility network. Such networks can decrease staff isolation and facilitate best resident care.

  18. Programa de saúde vocal para educadores: ações e resultados Vocal health program for educators: actions and results

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Oliveira Suzigan Dragone

    2011-12-01

    vocal health programs and their results. PROCEDURES: describe a Vocal Health Program of Educators from public schools (kinder garden and elementary schools from the countryside of São Paulo inland, developed from 2002 to 2005, that was made up by basic voice group to offer essential theoretical and practical knowledge about vocal care, including the participants' vocal screening; advanced voice group to reorganize the phonation process and the voice use in classroom. RESULTS: the average of 56% of total enrolment participated in the actions; 62.9% of voice disturbance is the result of vocal screening, most of it with discreet vocal deviation; 100% of participants referred 3 or more voice symptoms at the beginning of advanced voice group, and after the group had finished, 45% still had 4 to 13 symptoms; data about vocal self-perception show low scores in vocal impact in professional activities. CONCLUSION: the description showed the need for constant regulation of the program in order to reach its goals. The low participation in actions might be related to the discreet impact of voice in professional activities, although this fact requires further investigation. The highest measured benefit of the participation in the advanced vocal groups was the reduction in the volume e of vocal symptoms.

  19. Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings

    Science.gov (United States)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.

  20. Wake characterization methods of a circulation control wing

    Science.gov (United States)

    El Sayed Mohamed, Y.; Semaan, R.; Sattler, S.; Radespiel, R.

    2017-10-01

    We propose a three-pronged methodology to characterise the wake behind a circulation control wing. The study relies on time-resolved particle image velocimetry (TR-PIV) measurements in a water tunnel for a range of blowing intensities. The first method is the well-known proper orthogonal decomposition (POD). The second tool is a new implementation of the power spectrum. Finally, a modified Q-criterion vortex detection and quantification method is presented. The results show the complementary advantage of the three methods in analysing wake flows with varying conditions.

  1. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  2. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing

    Science.gov (United States)

    Wissa, Aimy A.

    compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using ViconRTM motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. +/-4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.

  3. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  4. Distribution and derivation of white-winged dove harvests in Texas

    KAUST Repository

    Collier, Bret A.

    2012-04-25

    Band recoveries provide requisite data for evaluating the spatial distribution of harvest relative to the distribution of breeding stocks for a wide variety of migratory species. We used direct and indirect band-recovery data to evaluate the distribution and derivation of harvest of white-winged doves (Zenaida asiatica) banded before hunting season in 3 distinct strata in Texas, USA, during 2007-2010. We banded 60,742 white-winged doves during 2007-2010, and based on 2,458 harvest recoveries, the majority (>95%) of white-winged dove harvest occurred during the first 2 months of the hunting season (Sep-Oct). Juvenile white-winged doves represented a greater percentage of the direct recoveries than adults across all strata (north = 80%, central = 69%, south = 82%) and the majority of direct band recoveries (north = 75%, central = 90%, south = 78%) occurred within the original banding strata. Age-specific weighting factors and harvest derivation indicated that both juvenile and adult harvest were highest within the strata of original banding. Harvest distribution data corrected for band-reporting rates indicated high fidelity of white-winged doves to specific geographic strata, with little interplay between strata. Our results suggest that population vital-rate estimates for survival and harvest for use in future Adaptive Harvest Management should focus on stock-specific levels. © 2012 The Wildlife Society.

  5. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  6. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    Science.gov (United States)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  7. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  8. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    Science.gov (United States)

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  10. Can body traits, other than wings, reflect the flight ability of Triatominae bugs?

    Directory of Open Access Journals (Sweden)

    María Laura Hernández

    2015-12-01

    Full Text Available Abstract: INTRODUCTION : Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? METHODS : The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. RESULTS : Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. CONCLUSIONS: We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.

  11. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  12. Study of nano-architecture of the wings of Paris Peacock butterfly

    Science.gov (United States)

    Ghate, Ekata; Bhoraskar, S. V.; Kulkarni, G. R.

    Butterflies are one of the most colorful creatures in animal Kingdom. Wings of the male butterfly are brilliantly colored to attract females. Color of the wings plays an important role in camouflage. Study of structural colors in case of insects and butterflies are important for their biomimic and biophotonic applications. Structural color is the color which is produced by physical structures and their interaction with light. Paris Peacock or Papilio paris butterfly belongs to the family Papilionidae. The basis of structural color of this butterfly is investigated in the present study. The upper surface of the wings in this butterfly is covered with blue, green and brown colored scales. Nano-architecture of these scales was investigated with scanning electron microscope (SEM) and environmental scanning electron microscope (ESEM). Photomicrographs were analyzed using image analysis software. Goniometric color or iridescence in blue and green colored scales of this butterfly was observed and studied with the help of gonio spectrophotometer in the visible range. No iridescence was observed in brown colored scales of the butterfly. Hues of the blue and green color were measured with spectrophotometer and were correlated with nano-architecture of the wing. Results of electron microscopy and reflection spectroscopy are used to explain the iridescent nature of blue and green scales. Sinusoidal grating like structures of these scales were prominently seen in the blue scales. It is possible that the structure of these wings can act as a template for the fabrication of sinusoidal gratings using nano-imprint technology.

  13. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions.

    Directory of Open Access Journals (Sweden)

    Eduardo Hatano

    2010-06-01

    Full Text Available The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae releases the volatile sesquiterpene (E-beta-farnesene (EBF when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF and tested in two different environmental conditions (field and laboratory. As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84+/-0.98% compared to the hexane control (1.54+/-0.25%. In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1+/-5.5% than in the control (66.9+/-4.6%, in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions.

  14. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  15. The role of wing geometric morphometrics in the identification of sandflies within the subgenus Lutzomyia.

    Science.gov (United States)

    Giordani, B F; Andrade, A J; Galati, E A B; Gurgel-Gonçalves, R

    2017-12-01

    The Lutzomyia subgenus (Diptera: Psychodidae) includes sibling species with morphologically indistinguishable females. The aims of this study were to analyse variations in the size and shape of wings of species within the Lutzomyia subgenus and to assess whether these analyses might be useful in their identification. Wings (n = 733) of 18 species deposited in Brazilian collections were analysed by geometric morphometrics, using other genera and subgenera as outgroups. Shape variation was summarized in multivariate analyses and differences in wing size among species were tested by analysis of variance. The results showed significant variation in the sizes and shapes of wings of different Lutzomyia species. Two clusters within the Lutzomyia subgenus were distinguished in analyses of both males and females. In Cluster 1 (Lutzomyia ischnacantha, Lutzomyia cavernicola, Lutzomyia almerioi, Lutzomyia forattinii, Lutzomyia renei and Lutzomyia battistinii), scores for correct reclassification were high (females, kappa = 0.91; males, kappa = 0.90), whereas in Cluster 2 (Lutzomyia alencari, Lutzomyia ischyracantha, Lutzomyia cruzi, Lutzomyia longipalpis, Lutzomyia gaminarai and Lutzomyia lichyi), scores for correct reclassification were low (females, kappa = 0.42; males, kappa = 0.48). Wing geometry was useful in the identification of some species of the Lutzomyia subgenus, but did not allow the identification of sibling species such as L. longipalpis and L. cruzi. © 2017 The Royal Entomological Society.

  16. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    Science.gov (United States)

    de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A

    2007-12-01

    Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.

  17. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  18. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Haley Johnson

    Full Text Available In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus, a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width, which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%. Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  19. Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function.

    Science.gov (United States)

    Schaefer, Laura V; Bittmann, Frank N

    2017-01-01

    , looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies.

  20. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  1. Glargine and protamine zinc insulin have a longer duration of action and result in lower mean daily glucose concentrations than lente insulin in healthy cats.

    Science.gov (United States)

    Marshall, R D; Rand, J S; Morton, J M

    2008-06-01

    The pharmacological effects of glargine, protamine zinc (PZI), and lente insulins were evaluated in nine healthy cats. A 3-way crossover study was performed and plasma concentrations of insulin and glucose were determined for 24 h after a single subcutaneous injection of each insulin at 3-day intervals. Time to onset of action did not differ between insulins. Mean time to first nadir glucose was longer for glargine (14 h) relative to PZI (4 h) and lente (5 h). PZI was biphasic in action with nadirs at 4 and 14 h with the second nadir occurring at a similar time to glargine. Nadir glucose did not differ significantly between insulin types. The duration of action was similar for glargine and PZI and was longer than that for lente insulin. Mean daily glucose after glargine and PZI were also similar and were lower than after lente insulin. Time to reach peak insulin did not differ between insulin types. Time to return to baseline insulin level for PZI was longer than glargine but did not differ significantly from lente. In conclusion, healthy cats injected subcutaneously with glargine, compared to those injected with lente insulin, have a later glucose nadir and longer duration of action. Glargine and PZI had similar durations of action in study cats but a larger study is required to obtain precise comparisons of duration of action.

  2. Aerodynamic study on wing and tail small UAV without runways

    Science.gov (United States)

    Soetanto, Maria F.; R., Randy; Alfan M., R.; Dzaldi

    2016-06-01

    This paper consists of the design and analysis of the aerodynamics of the profiles of wing and tail of a Small Unmanned Aerial Vehicle (UAV). UAV is a remote-controlled aircraft that can carry cameras, sensors and even weapons on an area that needed aerial photography or aerial video [1]. The aim of this small UAV is for used in situations where manned flight is considered too risky or difficult, such as fire fighting or surveillance, while the term 'small means the design of this UAV has to be relatively small and portable so that peoples are able to carry it during their operations [CASR Part 101.240: it is a UAV which is has a launch mass greater than 100 grams but less than 100 kilograms] [2]. Computational Fluid Dynamic (CFD) method was used to analyze the fluid flow characteristics around the aerofoil's profiles, such as the lift generation for each angle of attack and longitudinal stability caused by vortex generation on trailing edge. Based on the analysis and calculation process, Clark-Y MOD with aspect ratio, AR = 4.28 and taper ratio, λ = 0.65 was chosen as the wing aerofoil and SD 8020 with AR = 4.8 and λ = 0.5 was chosen as the horizontal tail, while SD 8020 with AR = 1.58 and λ = 0.5 was chosen as the vertical tail. The lift and drag forces generated for wing and tail surfaces can be determined from the Fluent 6.3 simulation. Results showed that until angle of attack of 6 degrees, the formation of flow separation is still going on behind the trailing edge, and the stall condition occurs at 14 degrees angle of attack which is characterized by the occurrence of flow separation at leading edge, with a maximum lift coefficient (Cl) obtained = 1.56. The results of flight tests show that this small UAV has successfully maneuvered to fly, such as take off, some acrobatics when cruising and landing smoothly, which means that the calculation and analysis of aerodynamic aerofoil's profile used on the wing and tail of the Small UAV were able to be validated.

  3. Wind-tunnel evaluation of NASA developed control laws for flutter suppression on a DC-10 derivative wing

    Science.gov (United States)

    Abel, I.; Newsom, J. R.

    1981-01-01

    Two flutter suppression control laws were synthesized, implemented, and tested on a low speed aeroelastic wing model of a DC-10 derivative. The methodology used to design the control laws is described. Both control laws demonstrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. The effect of variations in gain and phase on the closed loop performance was measured and compared with analytical predictions. The analytical results are in good agreement with experimental data.

  4. Survival of Trichomonas gallinae in white-winged dove carcasses.

    Science.gov (United States)

    Erwin, K G; Kloss, C; Lyles, J; Felderhoff, J; Fedynich, A M; Henke, S E; Roberson, J A

    2000-07-01

    Survival of Trichomonas gallinae was examined in white-winged dove (Zenaida asiatica) carcasses to assess whether birds that have been dead up to 8 hr can be sampled reliably for this protozoan. Carcasses of 100 T. gallinae-positive white-winged doves were separated into four groups of 25 birds, representing 2, 4, 6, and 8 hr post mortem sampling intervals and placed into an environmental chamber maintained at 27 C and 75% relative humidity. Live T. gallinae were isolated in 96, 100, 100, and 92% of the carcasses at each of the respective post mortem intervals. The experiment was repeated with another 100 carcasses of T. gallinae-positive white-winged doves placed in the environmental chamber, this time maintained at 27 C and 40% relative humidity. Live T. gallinae occurred in 96, 100, 96, and 100% of the carcasses at each of the respective post mortem intervals. Across both trials, the overall ability to detect positive birds from sampling carcasses up to 8 hrs post mortem was 97%. An a posteriori experiment was conducted in which 23 and 18 carcasses from the second trial were maintained in the environmental chamber at 27 C and 40% relative humidity and resampled at 24 and 48 hr post mortem, respectively. Live trichomonads were isolated from 91 and 44% of the carcasses at 24 and 48 hr, respectively. Results suggest live T. gallinae can be obtained from dove carcasses reliably up to 8 hr and possibly up to 24 hr after host death. The ability for T. gallinae to survive within this time interval can aid wildlife personnel in monitoring this protozoan at hunter check stations or obtaining samples from recently killed birds.

  5. Is the cultural transmission of irrelevant tool actions in adult humans (Homo sapiens) best explained as the result of an evolved conformist bias?

    Science.gov (United States)

    McGuigan, Nicola; Gladstone, Daryl; Cook, Lisa

    2012-01-01

    Recent studies of social learning have revealed that adult humans are "over-imitators" who frequently reproduce a model's causally irrelevant tool actions to the detriment of task efficiency. At present our knowledge of adult over-imitation is limited to the fact that adults do over-imitate, we know very little about the causes of this behavior. The current study aimed to provide novel insights into adult over-imitation by extending a paradigm recently used with human children to explore social aspects of over-imitation. In the child study observers saw two models demonstrate a tool-use task using the same inefficient approach, or two models demonstrate different approaches to the task (one inefficient and one efficient). The manipulation of social influence came in the testing phase where the observer completed the task in the presence of either an inefficient model or an efficient model. We adapted the paradigm used in the child study to provide the first systematic exploration of factors which may lead to adult over-imitation including: 1) the presence of the model(s) during testing, 2) the presence of a competing efficient task demonstration, 3) the presence of a majority displaying the inefficient approach, and 4) the 'removal' of the experimental context during task completion. We show that the adult participants only over-imitated in conditions where the inefficient strategy was the majority approach witnessed. This tendency towards over-imitation was almost entirely eliminated when the participants interacted with the task when they believed the experiment to be complete. Our results suggest that adult over-imitation is best explained as a result of an evolved 'conformist bias' argued to be crucial to the transmission of human cultural behavior and one which may be unique in the animal kingdom.

  6. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    Science.gov (United States)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  7. ‘Betrayed Believers’: The Target of Influence of Extreme Right-Wing Minorities

    Directory of Open Access Journals (Sweden)

    Xenia Chryssochoou

    2018-01-01

    Full Text Available Informed by Mugny’s theorization on minority influence (Mugny, 1982; Mugny & Perez, 1991; Papastamou & Mugny, 1983, this paper discusses the ideological profile of the target of influence of a minority that does not challenge the system (such as extreme right-wing minorities, but confronts those held responsible for its disintegration. It is argued and empirically verified in a study with Greek participants (N = 333 that, in times of crisis and instability of the social order, people who believe in the core values of the system and who are frustrated by its disintegration support more extreme right-wing beliefs and violent practices than those who challenge the system or who are supporting it. The results highlight the ideological heterogeneity of the population to whom minority influence is addressed, which are discussed in the context of the rise of extreme right-wing beliefs in Greece and in Europe.

  8. Aerodynamic and aeroelastic characteristics of the DARPA Smart Wing Phase II wind tunnel model

    Science.gov (United States)

    Sanders, Brian P.; Martin, Christopher A.; Cowan, David L.

    2001-06-01

    A wind tunnel demonstration was conducted on a scale model of an unmanned combat air vehicle (UCAV). The model was configured with traditional hinged control surfaces and control surfaces manufactured with embedded shape memory alloys. Control surfaces constructed with SMA wires enable a smooth and continuous deformation in both the spanwise and cordwise directions. This continuous shape results in some unique aerodynamic effects. Additionally, the stiffness distribution of the model was selected to understand the aeroelastic behavior of a wing designed with these control surfaces. The wind tunnel experiments showed that the aerodynamic performance of a wing constructed with these control surfaces is significantly improved. However, care must be taken when aeroelastic effects are considered since the wing will show a more rapid reduction in the roll moment due to increased moment arm about the elastic axis. It is shown, experimentally, that this adverse effect is easily counteracted using leading edge control surfaces.

  9. Altitudinal Variability in Wing Patterns of Phyllonorycter salictella (Zeller, 1846 (Lepidoptera: Gracillariidae

    Directory of Open Access Journals (Sweden)

    František Gregor

    2017-01-01

    Full Text Available Individual variability of wing patterns is not frequent in European species of the genus Phyllonorycter Hübner, 1822. It is unusually distinct in Phyllonorycter salictella (Zeller, 1846 which causes some taxonomic ambiguities and oversights. We found on numerous material of adults reared from overwintering pupae collected in the Czech and Slovak Republics since 1950 that this variability is related with altitude (temperature. Adults with the distinct generotypic (plesiomorphic wing patterns dominated in submountain populations while individuals with the strongly reduced (apomorphic wing drawings were represented quite negligibly. This ratio was reversed in lowland populations. The observed variability is continuous between extreme variants, it is regionally and trophic unaffected, and more pronounced in males than in females. The results support the view that the questionable taxa such as Phyllonorycter viminiella (Sircom, 1848 and P. heringiella (Grønlien, 1932 represent only individual (local or regional forms of the above species.

  10. Wing geometry of Anopheles darlingi Root (Diptera: Culicidae) in five major Brazilian ecoregions.

    Science.gov (United States)

    Motoki, Maysa Tiemi; Suesdek, Lincoln; Bergo, Eduardo Sterlino; Sallum, Maria Anice Mureb

    2012-08-01

    We undertook geometric morphometric analysis of wing venation to assess this character's ability to distinguish Anopheles darlingi Root populations and to test the hypothesis that populations from coastal areas of the Brazilian Atlantic Forest differ from those of the interior Atlantic Forest, Cerrado, and the regions South and North of the Amazon River. Results suggest that populations from the coastal and interior Atlantic Forest are more similar to each other than to any of the other regional populations. Notably, the Cerrado population was more similar to that from north of the Amazon River than to that collected of south of the River, thus showing no correlation with geographical distances. We hypothesize that environmental and ecological factors may affect wing evolution in An. darlingi. Although it is premature to associate environmental and ecological determinants with wing features and evolution of the species, investigations on this field are promising. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae).

    Science.gov (United States)

    Kunert, G; Schmoock-Ortlepp, K; Reissmann, U; Creutzburg, S; Weisser, W W

    2008-02-01

    Previous studies have shown that the aphid species, Aphis fabae Scopoli and Megoura viciae Buckton, do not produce winged offspring in the presence of natural enemies, in contrast to results for the pea aphid (Acyrthosiphon pisum (Harris)) and the cotton aphid (Aphis gossypii Glover); but these studies did not involve exposing aphids directly to natural enemies. We exposed colonies of both A. fabae and M. viciae to foraging lacewing (Chrysoperla carnea (Stephens)) larvae and found that the predators did not induce winged morphs among offspring compared to unexposed controls. Colonies of A. fabae responded to an increase in aphid density with increasing winged morph production, while such response was not found for M. viciae. We suggest that different aphid species differ in their susceptibility to natural enemy attack, as well as in their sensitivity to contact.

  12. Circuit Implementation, Synchronization of Multistability, and Image Encryption of a Four-Wing Memristive Chaotic System

    Directory of Open Access Journals (Sweden)

    Guangya Peng

    2018-01-01

    Full Text Available The four-wing memristive chaotic system used in synchronization is applied to secure communication which can increase the difficulty of deciphering effectively and enhance the security of information. In this paper, a novel four-wing memristive chaotic system with an active cubic flux-controlled memristor is proposed based on a Lorenz-like circuit. Dynamical behaviors of the memristive system are illustrated in terms of Lyapunov exponents, bifurcation diagrams, coexistence Poincaré maps, coexistence phase diagrams, and attraction basins. Besides, the modular equivalent circuit of four-wing memristive system is designed and the corresponding results are observed to verify its accuracy and rationality. A nonlinear synchronization controller with exponential function is devised to realize synchronization of the coexistence of multiple attractors, and the synchronization control scheme is applied to image encryption to improve secret key space. More interestingly, considering different influence of multistability on encryption, the appropriate key is achieved to enhance the antideciphering ability.

  13. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  14. Root Locus Based Autopilot PID’s Parameters Tuning for a Flying Wing Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Fendy Santoso

    2008-05-01

    Full Text Available This paper depicts the applications of classical root locus based PID control to the longitudinal flight dynamics of a Flying Wing Unmanned Aerial Vehicle, P15035, developed by Monash Aerobotics Research Group in the Department of Electrical and Computer Systems Engineering, Monash University, Australia. The challenge associated with our UAV is related to the fact that all of its motions and attitude variables are controlled by two independently actuated ailerons, namely elevons, as its primary control surfaces along with throttle, in contrast to most conventional aircraft which have rudder, aileron and elevator. The reason to choose PID control is mainly due to its simplicity and availability. Since our current autopilot, MP2028, only provides PID control law for its flight control, our design result can be implemented straight away for PID parameters’ tuning and practical flight controls. Simulations indicate that a well-tuned PID autopilot has successfully demonstrated acceptable closed loop performances for both pitch and altitude loops. In general, full PID control configuration is the recommended control mode to overcome the adverse impact of disturbances. Moreover, by utilising this control scheme, overshoots have been successfully suppressed into a certain reasonable level. Furthermore, it has been proven that exact pole-zero cancellations by employing Derivative control configuration in both pitch and altitude loop to eliminate the effects of integral action contributed by open loop transfer function of elevon-average-to- pitch as well as pitch- to- pitch- rate is impractical.

  15. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Q T; Nguyen, Q V; Park, H C; Goo, N S [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Truong, V T; Byun, D Y, E-mail: hcpark@konkuk.ac.kr [National Research Laboratory for Biomimetics and Intelligent Microsystems, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2011-09-15

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.

  16. Adjoint-based optimization for flapping wings

    Science.gov (United States)

    Xu, Min; Wei, Mingjun

    2012-11-01

    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  17. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  18. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  19. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    Science.gov (United States)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  20. Nonlinear Large Deflection Theory with Modified Aeroelastic Lifting Line Aerodynamics for a High Aspect Ratio Flexible Wing

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel

    2017-01-01

    This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.

  1. Essential actions for caterers to promote healthy eating out among European consumers: results from a participatory stakeholder analysis in the HECTOR project.

    Science.gov (United States)

    Lachat, Carl; Naska, Androniki; Trichopoulou, Antonia; Engeset, Dagrun; Fairgrieve, Alastair; Marques, Helena Ávila; Kolsteren, Patrick

    2011-02-01

    To identify and assess actions by which the catering sector could be engaged in strategies for healthier eating out in Europe. A SWOT analysis was used to assess the participation of the catering sector in actions for healthier eating out. Caterers subsequently shortlisted essential actions to overcome threats and weaknesses the sector may face when engaging in implementing these actions. Analysis undertaken in the European Union-supported HECTOR project on 'Eating Out: Habits, Determinants and Recommendations for Consumers and the European Catering Sector'. Thirty-eight participants from sixteen European countries reflecting a broad multi-stakeholder panel on eating out in Europe. The catering sector possesses strengths that allow direct involvement in health promotion strategies and could well capitalise on the opportunities offered. A focus on healthy eating may necessitate business re-orientations. The sector was perceived as being relatively weak in terms of its dependency on the supply of ingredients and lack of financial means, technical capacity, know-how and human resources. To foster participation in strategies for healthier eating out, caterers noted that guidelines should be simple, food-based and tailored to local culture. The focus could be on seasonal foods, traditional options and alternative dishes rather than just on 'healthy eating'. Small-to-medium-sized enterprises have specific concerns and needs that should be considered in the implementation of such strategies. The study highlights a number of possible policy actions that could be instrumental in improving dietary intake in Europe through healthier eating out.

  2. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  3. Comparative insights into questions of lepidopteran wing pattern homology

    Directory of Open Access Journals (Sweden)

    Stockslager Steven

    2006-11-01

    Full Text Available Abstract Background Butterfly and moth eyespots can share a similar appearance, involving multiple concentric rings of colored scales, but usually occuring in non-homologous positions on the wing. Within the butterflies, on the other hand, spots that share the same homologous position may not share the concentric ring structure; and, in butterfly species that have eyespots with concentric rings, ectopic eyespots with a similar ring structure can be induced by means of a simple epidermal wound. The extent to which all these eyespots, natural or induced, share similar genes and developmental mechanisms is investigated here by means of protein in-situ localizations in selected butterfly and moth species. In addition to looking at some of the transcription factors previously identified as being involved in eyespot formation, we also tested the involvement of candidate genes from the Wingless and TGF-β signaling pathways as putative morphogens for eyespot development. Results Saturniid moth and nymphalid butterfly eyespots with concentric rings of color express at least two transcription factors, Distal-less and Engrailed, in the center of the future pattern. Nymphalid eyespots centers also express the ligand Wingless and an activated signal transducer, a phosphorylated Smad protein, but neither these proteins nor the previous two proteins are found in pierid spot centers, which consist of a single patch of color. Both butterfly wing patterns, however, express a third transcription factor, Spalt, a portion of whose expression domain maps to the black scales on the adult wing. Wounding a nymphalid wing, on the other hand, leads to upregulation of Distal-less, engrailed and spalt in subsets of cells around the wounding site, mimicking concentric eyespot development. Conclusion Wingless and TGF-β ligands are both candidate morphogens involved in nymphalid butterfly eyespot formation. These eyespots, as well as saturniid moth eyespots with concentric

  4. Irradiated cocoa tested in the wing spot assay in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zimmering, S.; Olvera, O.; Cruces, M.P.; Pimentel, E.; Arceo, C.; Rosa, M.E. de la; Guzman, J.

    1992-01-01

    The result of treatment of Drosophila melanogaster with irradiated cocoa as scored in the somatic wing spot test is described. The test has been used previously in the evaluation of irradiated food and has registrated a significantly greater number of positives among chemicals tested than germ line counterparts. Irradiated cocoa has thus far been reported negative in other mutagenicity assays including those employing salmonella and Drosophila germ cells and mammalian cells. The wing spot test as described in Graf et al. was employed. Females of the genotype mwh were mated with flr 3 /TM3; Ser males. (author). 9 refs.; 1 tab

  5. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    Science.gov (United States)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  6. Logistics Supply of the Distributed Air Wing

    Science.gov (United States)

    2014-09-01

    Event Graph The Consumption Process first instantiates the variables . The model follows a conveyor belt pattern, whereby after processing an event...to any part of the world. A capstone project, conducted by the system engineering curriculum, proposed to distribute the air assets from the aircraft...SUBJECT TERMS distributed air wing, logistics, supply, unmanned air systems , cargo UAS, unmanned systems , discrete event simulation, vehicle routing

  7. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  8. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    can combine the advantages of a variable stiffness design with- out the use of actuators. Curved beams, which couple torsion and bending , counteract... torsional deflection, control natural frequency, exploit coupling of bending and tor- sion to control flutter, reduce thickness to chord ratios due to...disregarded any bending or torsional effects caused by displacement of the wing, and was thus not considered. Therefore, the initial design analysis

  9. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  10. Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section

    Science.gov (United States)

    Caster, Raymond S.

    2010-01-01

    NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.

  11. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  13. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.

    Science.gov (United States)

    Jankauski, Mark; Daniel, T L; Shen, I Y

    2017-06-08

    Maneuvering in both natural and artificial miniature flying systems is assumed to be dominated by aerodynamic phenomena. To explore this, we develop a flapping wing model integrating aero and inertial dynamics. The model is applied to an elliptical wing similar to the forewing of the Hawkmoth Manduca sexta and realistic kinematics are prescribed. We scrutinize the stroke deviation phase, as it relates to firing latency in airborne insect steering muscles which has been correlated to various aerial maneuvers. We show that the average resultant force production acting on the body largely arises from wing pitch and roll and is insensitive to the phase and amplitude of stroke deviation. Inclusion of stroke deviation can generate significant averaged aerodynamic torques at steady-state and adjustment of its phase can facilitate body attitude control. Moreover, averaged wing angular momentum varies with stroke deviation phase, implying a non-zero impulse during a time-dependent phase shift. Simulations show wing inertial and aerodynamic impulses are of similar magnitude during short transients whereas aerodynamic impulses dominate during longer transients. Additionally, inertial effects become less significant for smaller flying insects. Body yaw rates arising from these impulses are consistent with biologically measured values. Thus, we conclude (1) modest changes in stroke deviation can significantly affect steering and (2) both aerodynamic and inertial torques are critical to maneuverability, the latter of which has not widely been considered. Therefore, the addition of a control actuator modulating stroke deviation may decouple lift/thrust production from steering mechanisms in flapping wing micro aerial vehicles and increase vehicle dexterity through inertial trajectory shaping.

  15. Effects of Longitudinal Glucose Exposure on Cognitive and Physical Function: Results from the Action for Health in Diabetes Movement and Memory Study.

    Science.gov (United States)

    Beavers, Kristen M; Leng, Iris; Rapp, Stephen R; Miller, Michael E; Houston, Denise K; Marsh, Anthony P; Hire, Don G; Baker, Laura D; Bray, George A; Blackburn, George L; Hergenroeder, Andrea L; Jakicic, John M; Johnson, Karen C; Korytkowski, Mary T; Dorsten, Brent Van; Kritchevsky, Stephen B

    2017-01-01

    To test whether average long-term glucose exposure is associated with cognitive and physical function in middle-aged and younger-old adults with type 2 diabetes mellitus. Prospective cohort study. Data obtained as part of the Action for Health in Diabetes (Look AHEAD) trial (NCT00017953) and Look AHEAD Movement and Memory ancillary study (NCT01410097). Overweight and obese individuals with type 2 diabetes mellitus aged 45 to 76 at baseline (N = 879). Glycosylated hemoglobin (HbA1c) was measured at regular intervals over 7 years, and objective measures of cognitive function (Trail-Making Test, Modified Stroop Color-Word Test, Digit Symbol-Coding, Rey Auditory Verbal Learning Test, Modified Mini-Mental State Examination) and physical function (Short Physical Performance Battery, expanded Physical Performance Battery, 400-m and 20-m gait speed) and strength (grip and knee extensor strength) were assessed at the Year 8 or 9 follow-up examination. Average HbA1c exposure was 7.0 ± 1.1% (53 ± 11.6 mmol/mol), with 57% of participants classified as having HbA1c levels of less than 7% (64 mmol/mol). After adjustment for age, sex, race, education, smoking status, alcohol intake, knee pain, physical fitness, body mass index, diabetes mellitus medication and statin use, ancillary year visit, and study arm and site, higher HbA1c was associated with worse physical but not cognitive function. Further adjustment for prevalent diabetes mellitus-related comorbidities made all associations nonsignificant. Results did not differ when stratified according to participant baseline age (<60 vs ≥ 60). Results