WorldWideScience

Sample records for winemaking conditions electronic

  1. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    Science.gov (United States)

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  2. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions

    Directory of Open Access Journals (Sweden)

    Orozco Helena

    2012-08-01

    Full Text Available Abstract Background Viability in a non dividing state is referred to as chronological life span (CLS. Most grape juice fermentation happens when Saccharomyces cerevisiae yeast cells have stopped dividing; therefore, CLS is an important factor toward winemaking success. Results We have studied both the physical and chemical determinants influencing yeast CLS. Low pH and heat shorten the maximum wine yeast life span, while hyperosmotic shock extends it. Ethanol plays an important negative role in aging under winemaking conditions, but additional metabolites produced by fermentative metabolism, such as acetaldehyde and acetate, have also a strong impact on longevity. Grape polyphenols quercetin and resveratrol have negative impacts on CLS under winemaking conditions, an unexpected behavior for these potential anti-oxidants. We observed that quercetin inhibits alcohol and aldehyde dehydrogenase activities, and that resveratrol performs a pro-oxidant role during grape juice fermentation. Vitamins nicotinic acid and nicotinamide are precursors of NAD+, and their addition reduces mean longevity during fermentation, suggesting a metabolic unbalance negative for CLS. Moreover, vitamin mix supplementation at the end of fermentation shortens CLS and enhances cell lysis, while amino acids increase life span. Conclusions Wine S. cerevisiae strains are able to sense changes in the environmental conditions and adapt their longevity to them. Yeast death is influenced by the conditions present at the end of wine fermentation, particularly by the concentration of two-carbon metabolites produced by the fermentative metabolism, such as ethanol, acetic acid and acetaldehyde, and also by the grape juice composition, particularly its vitamin content.

  3. How to adapt winemaking practices to modified grape composition under climate change conditions

    Directory of Open Access Journals (Sweden)

    Sylvie Dequin

    2017-05-01

    Full Text Available Aim: In the context of climate change, adaptation of enological practices and implementation of novel techniques are major challenges for winemakers. The potential interventions are linked in particular with the alcohol content and the global acidity of wine. Here, we review current microbiological and technological strategies to overcome such issues. Methods and results: Reducing ethanol concentration poses a number of technical and scientific challenges, in particular looking for specific yeast strains with lower alcohol yield. Several non-genetically modified organism (GMO strains – S. cerevisiae or interspecific hybrids of the Saccharomyces genus – have yet been developed using different strategies, and some of them allow decreasing the final ethanol concentration by up to 1%. Several membrane-based technologies have also been developed not only to reduce the ethanol content of wines but also to increase the acidity and more generally to control the wine pH. New strategies are also proposed to improve the control of winemaking, especially the management of alcoholic fermentation of sugar-rich musts and the control of oxidation during the process. Conclusion: Reducing ethanol of wines  and increasing their acidity are good examples of novel techniques  of interest in the context of climate change. Other strategies are still under study to adapt winemaking practices to changes in grape composition. Significance and impact of the study: [Membrane-based technologies can be used to reduce the ethanol content of wines or to increase the acidity.  Microbiological strategies will also be soon available for winemakers.

  4. Effect of commercial enzymes on berry cell wall deconstruction in the context of intravineyard ripeness variation under winemaking conditions

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking...... positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations....

  5. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions.

    Directory of Open Access Journals (Sweden)

    Telma da Silva

    Full Text Available Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.

  6. Ecology of Indigenous Lactic Acid Bacteria along Different Winemaking Processes of Tempranillo Red Wine from La Rioja (Spain

    Directory of Open Access Journals (Sweden)

    Lucía González-Arenzana

    2012-01-01

    Full Text Available Ecology of the lactic acid bacteria (LAB during alcoholic fermentation (AF and spontaneous malolactic fermentation (MLF of Tempranillo wines from four wineries of La Rioja has been studied analyzing the influence of the winemaking method, processing conditions, and geographical origin. Five different LAB species were isolated during AF, while, during MLF, only Oenococcus oeni was detected. Although the clonal diversity of O. oeni strains was moderate, mixed populations were observed, becoming at least one strain with distinct PFGE profile the main responsible for MLF. Neither the winemaking method nor the cellar situation was correlated with the LAB diversity. However, processing conditions influenced the total number of isolates and the percentage of each isolated species and strains. The winemaking method could cause that genotypes found in semicarbonic maceration did not appear in other wineries. Four genotypes of O. oeni were isolated in more than one of the rest wineries. These four together with other dominant strains might be included in a future selection process.

  7. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    Science.gov (United States)

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  8. Distinctive characteristics of Madeira wine regarding its traditional winemaking and modern analytical methodologies.

    Science.gov (United States)

    Perestrelo, Rosa; Albuquerque, Francisco; Rocha, Sílvia M; Câmara, José S

    2011-01-01

    Madeira wine, a fortified wine produced in Madeira Island, is a special wine among all types of wine due its specific winemaking process. The aim of this chapter is to describe important aspects of Madeira winemaking and some scientific research currently carried out in these particular kinds of wines. The first part of the chapter concerns the most important aspects of winemaking technology used in Madeira wine production. The second part, the more extensive, deals with the different groups of compounds and how these are modified during the various steps of the production process, namely the aging period. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions.

    Science.gov (United States)

    Gamero, Amparo; Belloch, Carmela; Querol, Amparo

    2015-09-04

    Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.

  10. Intensity of rivalry among existing competitors in the wine-making branch

    OpenAIRE

    Radka Šperková; Helena Hejmalová

    2012-01-01

    The analysis of the rivalry among existing competitors in the wine-making branch is the aim of this paper. On the whole, the rivalry among existing companies in the wine-making branch may be described as intensive. When evaluating the level of intensity of rivalry among existing businesses in the branch, it is necessary to take into consideration their size and market share. Among first ten most significant companies on the market (84% market share) there is intensive competing. Individual co...

  11. Enantioselective behaviour of tetraconazole during strawberry wine-making process.

    Science.gov (United States)

    Liu, Na; Pan, Xinglu; Zhang, Shuang; Ji, Mingshan; Zhang, Zhihong

    2018-05-01

    The fate of tetraconazole enantiomers in strawberries during wine-making process was studied. The residues were determined by ultra-performance convergence chromatography tandem triple quadrupole mass spectrometry after each process steps. Results indicated that there was significant enantioselective dissipation of tetraconazole enantiomers during the fermentation process. And (-)-tetraconazole degraded faster than (+)-tetraconazole. The half-lives of (-)-tetraconazole and (+)-tetraconazole were 3.12, 3.76 days with washing procedure and 3.18, 4.05 days without washing procedure. The processing factors of strawberry wine samples after each step were generally less than 1. In particular, the processing factors of the fermentation process were the lowest. The results could help facilitate more accurate risk assessments of tetraconazole during wine-making process. © 2018 Wiley Periodicals, Inc.

  12. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines.

    Science.gov (United States)

    Mattivi, Fulvio; Fedrizzi, Bruno; Zenato, Alberto; Tiefenthaler, Paolo; Tempesta, Silvano; Perenzoni, Daniele; Cantarella, Paolo; Simeoni, Federico; Vrhovsek, Urska

    2012-06-30

    This paper presents methods for the definition of important analytical tools, such as the development of sensitive and rapid methods for analysing reduced and oxidised glutathione (GSH and GSSG), hydroxycinnamic acids (HCA), bound thiols (GSH-3MH and Cys-3MH) and free thiols (3MH and 3MHA), and their first application to evaluate the effect of reductive winemaking on the composition of Lugana juices and wines. Lugana is a traditional white wine from the Lake Garda region (Italy), produced using a local grape variety, Trebbiano di Lugana. An innovative winemaking procedure based on preliminary cooling of grape berries followed by crushing in an inert environment was implemented and explored on a winery scale. The effects of these procedures on hydroxycinnamic acids, GSH, GSSG, free and bound thiols and flavanols content were investigated. The juices and wines produced using different protocols were examined. Moreover, wines aged in tanks for 1, 2 and 3 months were analysed. The high level of GSH found in Lugana grapes, which can act as a natural antioxidant and be preserved in must and young wines, thus reducing the need of exogenous antioxidants, was particularly interesting. Moreover, it was clear that polyphenol concentrations (hydroxycinnamic acids and catechins) were strongly influenced by winemaking and pressing conditions, which required fine tuning of pressing. Above-threshold levels of 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) were found in the wines and changed according to the winemaking procedure applied. Interestingly, the evolution during the first three months also varied depending on the procedure adopted. Organic synthesis of cysteine and glutathione conjugates was carried out and juices and wines were subjected to LC-MS/MS analysis. These two molecules appeared to be strongly affected by the winemaking procedure, but did not show any significant change during the first 3 months of post-bottling ageing. This supports the theory

  13. European wine policy and perceptions of Moravian winemakers: a pilot study in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Petr Koráb

    2012-01-01

    Full Text Available European wine policy is a significant factor influencing winemakers in the European Union. This paper examines perception of this policy by winemakers and other persons working in Czech wine sector on the sample of respondents. Methodological triangulation consisting of non-structured interview and semantic differential was chosen. Field research was carried out, therefore the study uses primary data. Application of the methodology along with the method of evaluation of data creates an original approach which may be applied on several other research questions. General perception of European Wine Policy is complemented with its impact on competitiveness, practical running of vineyards and winery and on future development of winery. Data is statistically evaluated within categories of respondents. Special emphasis is placed on direct payments as a controversial factor of the policy. The policy is perceived as bureaucratic (“all respondents” x = 4.56, and among micro winemakers discriminating (x = 4.5, selfish (x = 4.5 and malfunctioning (x = 3.5. “Professional” winemakers perceive the impact on competitiveness in the Czech market as rather positive (x = 2.67. This study represents pilot research on perception of European Wine Policy by owners of wineries, viticulturists, micro winemakers, a sommelier and a representative of marketing-supporting institution, conducted in the Czech Republic. The author also outlines further direction of research, as the topic is not paid enough scientific attention.

  14. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  15. Consumers’ knowledge of and attitudes toward the role of oak in winemaking

    Directory of Open Access Journals (Sweden)

    Crump AM

    2014-10-01

    Full Text Available Anna M Crump,1 Trent E Johnson,1 Susan EP Bastian,1 Johan Bruwer,1,2 Kerry L Wilkinson1 1School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia; 2Ehrenberg-Bass Institute, The University of South Australia, Adelaide, SA, Australia Abstract: Oak plays an important role in the production of some white wines and most red wines. Yet, consumers’ knowledge of the use of oak in winemaking and their preference for oak-related sensory attributes remains unclear. This study examined the knowledge and attitudes of 1,015 Australian wine consumers toward the use of oak in winemaking. Consumers who indicated a liking of oak-aged wines (n=847 were segmented according to their knowledge of the role of oak in wine production. Four distinct consumer clusters were identified, with significantly different preferences for wine sensory attributes and opinions regarding the use of oak alternatives for wine maturation. One segment comprised more knowledgeable consumers, who appreciate and value traditional oak maturation regimes, for which they are willing to pay a premium price. However, a segment comprising less knowledgeable wine consumers was accepting of the use of oak chips, provided wine quality was not compromised. Winemakers can therefore justify the use of oak alternatives to achieve oak-aged wines at lower price points. The outcomes of this study can be used by winemakers to better tailor their wines to the specific needs and expectations of consumers within different segments of the market. Keywords: maturation, segmentation, wine, wine consumers

  16. Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking.

    Science.gov (United States)

    Gao, Yu; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A; Moore, John P

    2016-11-05

    The effectiveness of enzyme-mediated-maceration in red winemaking relies on the use of an optimum combination of specific enzymes. A lack of information on the relevant enzyme activities and the corresponding polysaccharide-rich berry cell wall structure is a major limitation. This study used different combinations of purified recombinant pectinases with cell wall profiling tools to follow the deconstruction process during winemaking. Multivariate data analysis of the glycan microarray (CoMPP) and gas chromatography (GC) results revealed that pectin lyase performed almost as effectively in de-pectination as certain commercial enzyme mixtures. Surprisingly the combination of endo-polygalacturonase and pectin-methyl-esterase only unraveled the cell walls without de-pectination. Datasets from the various combinations used confirmed pectin-rich and xyloglucan-rich layers within the grape pomace. These data support a proposed grape cell wall model which can serve as a foundation to evaluate testable hypotheses in future studies aimed at developing tailor-made enzymes for winemaking scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Innovative materials in winemaking

    Directory of Open Access Journals (Sweden)

    Luchian Camelia Elena

    2015-01-01

    Full Text Available Wineries have been trying to reduce metallic content of wines by adding various substances. The most used treatment with potassium ferrocyanide causes the elimination of the majority of iron content, together with a significant reduction in the content of other metals. Potassium ferrocyanide also leads to the formation of undesirable hazes. White wines composition and organoleptic properties are influenced by many and diverse factors corresponding to the specific production area, such as grape variety, soil and climate, culture, yeast, winemaking practices and storage. The aim of this research was to investigate variations in metals and volatiles content of Feteasca regală wine samples treated with SBA-15, AlMCM-41, KIT-6 and Clinoptilolite materials with GS-MS and MP-AES.

  18. Phenolics from Winemaking By-Products Better Decrease VLDL-Cholesterol and Triacylglycerol Levels than Those of Red Wine in Wistar Rats.

    Science.gov (United States)

    de Oliveira, Walkia Polliana; Biasoto, Aline Camarão Telles; Marques, Valquíria Fernanda; Dos Santos, Ieda Maria; Magalhães, Kedma; Correa, Luiz Claudio; Negro-Dellacqua, Melissa; Miranda, Maria Spínola; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2017-10-01

    Winemaking by-products account for more than 30% of the grape production, but this inexpensive feedstock has not yet been fully exploited. Accordingly, we evaluated the potential biological activity of winemaking by-products produced with Syrah grapes in comparison with those of the wine produced using the same grape cultivar. Winemaking by-products showed higher contents of total anthocyanins, flavonols, stilbenes, and flavanols than red wine as evaluated by HPLC-DAD-FD (on a dry weight basis). In contrast, red wine was a better source of phenolic acids. However, the contribution of phenolic acids was minor for both samples. Furthermore, equivalent concentration of winemaking by-products (100 mg/kg/d) showed greater biological activity by than that of red wine by decreasing the levels of VLDL-cholesterol and triacylglycerols in Wistar rats. Therefore, this study supports the use of winemaking by-products as an economical source of bioactive phenolics with potential use in the food and nutraceutical industries. © 2017 Institute of Food Technologists®.

  19. Decrease of radioactive contamination by official wine-making procedures

    International Nuclear Information System (INIS)

    Foerstel, H.; Steffens, W.

    1993-01-01

    A contamination with strontium may be lowered by precipitation as tartaric acid complex, a contamination with cesium or cobalt by precipitation of hexacyanoferrates, both accepted wine-making techniques. Contaminated must was obtained both by addition of nuclides to products from the wine harvest or better by growing wine plants on contaminated soils. (orig.) [de

  20. 75 FR 67666 - Use of Various Winemaking Terms on Wine Labels and in Advertisements; Request for Public Comment

    Science.gov (United States)

    2010-11-03

    ...The Alcohol and Tobacco Tax and Trade Bureau is considering amending the regulations concerning various winemaking terms commonly used on labels and in advertisements to provide consumers with information about the growing or bottling conditions of wine. We invite comments from industry members, consumers, and other interested parties as to whether and to what extent we should propose specific regulatory amendments for further public comment.

  1. Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids during low temperature winemaking [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jordi Tronchoni

    2017-09-01

    Full Text Available Background: Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. Methods: In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. Results: The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. Conclusions: This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phenotype.

  2. BIOGENIC AMINES CONTENT IN SELECTED WINES DURING WINEMAKING

    Directory of Open Access Journals (Sweden)

    Radka Flasarová

    2012-02-01

    Full Text Available The aim of this study was to describe the development of selected biogenic amines (histamine; tyramine; phenylethylamine; putrescine; agmatine; and cadaverine during the winemaking in 10 selected species grown in Central Europe in 2008. The analysis was performed using ion-exchange chromatography by the sodium-citrate buffers with the post-column ninhydrin derivatization and photometric detection. A comparison of the content of biogenic amines in red and wine varieties showed that red wines have higher concentrations of biogenic amines.

  3. Intuition as an Expression of Procedural Knowledge and its Association With Sense-Impressions: Illustrations From Winemaking Practice

    Directory of Open Access Journals (Sweden)

    Nelius Boshoff

    2015-12-01

    Full Text Available The article explores the intuitive element of procedural knowledge in winemaking. It presents data on winemakers’ interpretation of intuition, specifically its relationship with sense-impressions and experience. Interviews were conducted with six winemakers and two winemaking consultants in South Africa. Four insights on intuition emerged from the interviews. According to the first, intuition is similar to artistic inspiration, the unique and subconscious flow of ideas and approaches that characterize creative instinct. The second insight emphasizes the role of the senses in knowing intuitively, and calls for an examination of the relation between intuition and the senses. The third insight views intuition as immediate knowledge that springs from a link between past experiences and current events. In the last, intuition is seen to occur when all the facts of a matter are considered and the missing pieces of the puzzle are filled in by sensory assessments.

  4. Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    different combinations of purified recombinant pectinases with cell wall profiling tools to follow the deconstruction process during winemaking. Multivariate data analysis of the glycan microarray (CoMPP) and gas chromatography (GC) results revealed that pectin lyase performed almost as effectively in de......The effectiveness of enzyme-mediated-maceration in red winemaking relies on the use of an optimum combination of specific enzymes. A lack of information on the relevant enzyme activities and the corresponding polysaccharide-rich berry cell wall structure is a major limitation. This study used......-pectination as certain commercial enzyme mixtures. Surprisingly the combination of endo-polygalacturonase and pectin-methyl-esterase only unraveled the cell walls without de-pectination. Datasets from the various combinations used confirmed pectin-rich and xyloglucan-rich layers within the grape pomace. These data...

  5. The fate and enantioselective behavior of zoxamide during wine-making process.

    Science.gov (United States)

    Pan, Xinglu; Dong, Fengshou; Liu, Na; Cheng, Youpu; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Zheng, Yongquan

    2018-05-15

    The fate of zoxamide and its enantiomers were evaluated in detail during wine-making process. The enantiomers of zoxamide were separated and determined by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) after each processing procedure including washing, peeling, fermentation and clarification. Significant enantioselectivity was observed in all three treatments with the half-lives of R-zoxamide and S-zoxamide estimated to be 45.6 and 52.9 h in Group A, 45.0 and 52.1 h in Group B, 56.8 and 70.7 h in Group C, respectively. The results indicated that R-zoxamide degraded faster than S-zoxamide during the fermentation process. The processing factors (PFs) of each procedure were generally less than 1, and the PF of the overall process ranged from 0.019 to 0.051, which indicated that the whole process can reduce the zoxamide residue in red and white wine obviously. The results could help facilitate more accurate risk assessments of zoxamide during wine-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. "IREP EN KEMET" Wine of Ancient Egypt: Documenting the Viticulture and Winemaking Scenes in the Egyptian Tombs

    Science.gov (United States)

    Guasch-Jané, M. R.; Fonseca, S.; Ibrahim, M.

    2013-07-01

    Presented are the research objectives of the project "Irep en Kemet", Wine of Ancient Egypt, and the content of the project's website. This research aims at documenting the complete corpus of wine in ancient Egypt and analysing the data (iconography, textual sources and artefacts) to unveil the importance of the ancient Egyptian wine culture legacy in the Mediterranean region. At this stage, a bibliographical researchable database relevant to wine, viticulture and winemaking in the ancient Egypt has been completed, with 197 entries including articles, books, chapters in book, academic thesis (PhD and MA), essay, abstracts, on-line articles and websites. Moreover, a scene-detail database for the viticulture and winemaking scenes in the Egyptian private tombs has been recorded with 97 entries, some of them unpublished, and the collected data is under study. The titles of the tombs' owners and the texts related to the scenes will be also recorded. A photographic survey of the graves containing images related with viticulture and winemaking will be carried out in order to have the most accurate information on the location and stage of conservation of those images. Our main goal is to provide scholars with a complete, comprehensive archaeological and bibliographical database for the scenes of viticulture and winemaking depicted in the Egyptian private tombs throughout the ancient Egyptian history. The project's website (http://www.wineofancientegypt.com) will include all the collected data, the study and analysis, the project's history and team members, publications as well as the results of our research.

  7. Intensity of rivalry among existing competitors in the wine-making branch

    Directory of Open Access Journals (Sweden)

    Radka Šperková

    2012-01-01

    Full Text Available The analysis of the rivalry among existing competitors in the wine-making branch is the aim of this paper. On the whole, the rivalry among existing companies in the wine-making branch may be described as intensive. When evaluating the level of intensity of rivalry among existing businesses in the branch, it is necessary to take into consideration their size and market share. Among first ten most significant companies on the market (84% market share there is intensive competing. Individual companies use all their tangible and intangible means in order to extend their share and attract new clients. The aim of this competing is to strengthen the clients’ trust in given brands, and it is about efforts to obtain the best positions possible for negotiations of wine distribution, mainly to chain stores, which requires favorable price quotes. The other group of subjects operating in this branch is formed mainly by small producers (16% market share. Given their small size, they are unable to effectively use the economy of scale, they do not make too big profit, and so they do not have enough finances for intensive competing.

  8. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process.

    Science.gov (United States)

    Ginjom, Irine R; D'Arcy, Bruce R; Caffin, Nola A; Gidley, Michael J

    2010-09-22

    Three Australian red wine types (Shiraz, Cabernet Sauvignon, and Merlot) were analyzed for antioxidant activity and a range of phenolic component contents using various spectral methods. More than half of the total phenolic compounds were tannins, whereas monomeric anthocyanins and flavonols were present in much lesser amounts (wine samples from all stages of winemaking showed progressive changes toward those of commercial wines. The antioxidant activity of the wines in DPPH and ABTS assays was positively correlated with total phenolic contents and tannins. Comparisons of the three wine varieties based on their individual phenolic component groups and antioxidant activities showed limited differences between the different varieties. However, when all of the variables were combined in a principal component analysis, variety differentiation was observed. The three varieties of red wines all contained similar and high concentrations of antioxidants despite differences in grape variety/maturity and winemaking process, suggesting that related health benefits would accrue from all of the red wines studied.

  9. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin.

    Science.gov (United States)

    Li, Yuan; Ma, Ruijing; Xu, Zhenzhen; Wang, Junhan; Chen, Tong; Chen, Fang; Wang, Zhengfu

    2013-04-01

    The anthocyanins of Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin were identified and quantified by high-performance liquid chromatography-tandem mass spectrometry, and the influence of processing on the anthocyanin profiles was investigated. Twenty-three and 16 anthocyanins were found in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. Malvidin 3-(trans)-coumaroyl-5-diglucoside and malvidin 3-glucoside were the most abundant anthocyanin in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. The cis and trans isomers of malvidin 3-coumaroyl-5-diglucoside are reported in Kyoho grape for the first time. In addition, the anthocyanin content of juice-making pomace of Kyoho grapes and winemaking pomace of Cabernet Sauvignon grapes was significantly lower than the fresh skin samples (p < 0.05). The percentage variation of non-acylated anthocyanins was lower than that of acylated anthocyanins in all pomace samples. Kyoho grape and Cabernet Sauvignon grape showed distinctive anthocyanin profiles. Juice-making pomace is a better source of anthocyanins for use in functional foods than winemaking pomace. © 2012 Society of Chemical Industry.

  10. THE NEED OF DEVELOPING THE INVESTMENT OF WINE-MAKING IN THE REPUBLIC OF MOLDOVA IN ORDER TO ENTER THE EUROPEAN MARKET

    Directory of Open Access Journals (Sweden)

    Angela ŞESTACOVSCAIA

    2013-01-01

    Full Text Available Wine-making in the Republic of Moldova is an industrial sector with high growth potential. But in recent years the sector has undergone drastic changes. In order to harness the potential of the wine-making we need to invest in improving the quality of wine products, to develop new products, to enter new markets. In order to achieve these objectives in the country it is developed the restructuring program of the wine sector with financial support of the European Investment Bank.

  11. Electronic signal conditioning

    CERN Document Server

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  12. STUDY ON THE EVOLUTION OF MICRO- AND MACROELEMENTS DURING THE WINEMAKING STAGES: THE IMPORTANCE OF COPPER AND IRON QUANTIFICATION

    Directory of Open Access Journals (Sweden)

    Liliana NOROCEL

    2017-03-01

    Full Text Available Knowledge of the concentration of mineral elements from winemaking products, particularly from the final product is important because of their influence on wine quality. Some metal ions such as iron and copper can induce haze formation and changes in the sensory proprieties of wine. The presence of heavy metals in wine is due to different factors including vineyard soil, agricultural practices (the use of fertilizers and pesticides, and can be at the same time a result of environmental pollution. In addition, the acidity of wine and grape must (freshly pressed grape juice can dissolve Cr, Cu, Ni, and Zn from winemaking equipment like pumps and taps. As wine is the most widely consumed alcoholic beverage, analytical control of mineral elements content is required during the whole process of wine production, from the grapes used to the final product. In this study the content of micro- and macroelements in grape pomace, yeast sediment, grape must and wine was determined by inductively coupled plasma-mass spectrometry (ICP-MS. Samples of winemaking products originating from five grape varieties were analyzed in four forms in order to determine to what measure the values varied the PCA (Principal component analysis. The obtained results using PCA highlighted major differences in the content in trace elements between samples.

  13. 75 FR 81948 - Use of Various Winemaking Terms on Wine Labels and in Advertisements; Comment Period Extension

    Science.gov (United States)

    2010-12-29

    ...In response to a request made on behalf of a wine industry association, TTB is extending for an additional 60 days the comment period prescribed in Notice No. 109, Use of Various Winemaking Terms on Wine Labels and in Advertisements; Request for Public Comment, an advance notice of proposed rulemaking published in the Federal Register on November 3, 2010.

  14. Electron Conditioning of Technical Aluminium Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  15. Effect of Winemaking on the Composition of Red Wine as a Source of Polyphenols for Anti-Infective Biomaterials

    Directory of Open Access Journals (Sweden)

    Arianna Di Lorenzo

    2016-04-01

    Full Text Available Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral infections and related bone (osteoarthritis, osteomyelitis, periprosthetic joint infections and cardiovascular diseases. In this study, fifteen red wine samples derived from grapes native to the Oltrepò Pavese region (Italy, obtained from the winemaking processes of “Bonarda dell’Oltrepò Pavese” red wine, were analyzed alongside three samples obtained from marc pressing. Total polyphenol and monomeric anthocyanin contents were determined and metabolite profiling was conducted by means of a chromatographic analysis. Antibacterial activity of wine samples was evaluated against Streptococcus mutans, responsible for dental caries, Streptococcus salivarius, and Streptococcus pyogenes, two oral bacterial pathogens. Results highlighted the winemaking stages in which samples exhibit the highest content of polyphenols and the greatest antibacterial activity. Considering the global need for new weapons against bacterial infections and alternatives to conventional antibiotics, as well as the favorable bioactivities of polyphenols, results point to red wine as a source of antibacterial substances for developing new anti-infective biomaterials and coatings for biomedical devices.

  16. Residue-free wines: fate of some quinone outside inhibitor (QoI) fungicides in the winemaking process.

    Science.gov (United States)

    Garau, Vincenzo Luigi; De Melo Abreu, Susana; Caboni, Pierluigi; Angioni, Alberto; Alves, Arminda; Cabras, Paolo

    2009-03-25

    The fate of three fungicide residues (fenamidone, pyraclostrobin, and trifloxystrobin) from vine to wine was studied to evaluate the decay ratio and the influence of the technological process. The aim of this work was to identify pesticides that can degrade rapidly or be eliminated together with byproduct (lees and cake) of the winemaking process to obtain wine free of residues. The disappearance rate on grapes was calculated as pseudo-first-order kinetics, and the half-life (t(1/2)) was in the range from 5.4 +/- 1.9 to 12.2 +/- 1.2 days. The mechanism of dissipation of the three quinone outside inhibitor (QoI) fungicides was studied using different model systems. It was observed that the main mechanism responsible for disappearance was photodegradation. For active ingredients (ai) the half-lives of fenamidone, pyraclostrobin, and trifloxystrobin were 10.2 +/- 0.8, 20.1 +/- 0.1, and 8.6 +/- 1.0 h, respectively, whereas for formulation higher half-lives were observed when epicuticular waxes were present (from 13.8 +/- 0.2 to 26.6 +/- 0.1 h). After winemaking, fenamidone, pyraclostrobin, and trifloxystrobin residues were not detected in the wine, but they were present in the cake and lees. This was due to the adsorption of pesticide residues to the solid parts, which are always eliminated at the end of the alcoholic fermentation. The data obtained in these experiments suggest that these three active ingredients could be used in a planning process to obtain residue-free wines.

  17. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    Directory of Open Access Journals (Sweden)

    Alessia Viel

    2017-08-01

    Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  18. Electron Conditioning of Technical Aluminium Surfaces: Effect on the Secondary Electron Yield

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F.

    2004-12-13

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (< 1.3, value of many pure elements [1] ), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  19. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    Science.gov (United States)

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Influence of the liquid or gazeous nature of the grape berries environment on rheological properties and on colour and nitrogen extractabilities during conditions simulating the Beaujolais wine-making process

    Directory of Open Access Journals (Sweden)

    Philippe Abbal

    1999-06-01

    Full Text Available This study concerns the evolutions of some physicochemical characteristics of berries during conditions simulating the beaujolais wine-making process. In this process, a large number of intact berries is kept in a CO2 atmosphere which is produced by ethanolic fermentation of the must in the bottom of the tank. To simulate this, two equivalent samples of ripe Gamay or Carignane berries were placed in the same jar and subjected to carbonic anaerobiosis. One sample was maintained in the gaseous atmosphere and the other submerged in the liquid which was either an aqueous solution of 6 p. cent ethanol (v/v, the same solution with 1 M sorbitol, or grape must obtained from crushed berries. The aim of these experiments was to study, in both submerged and non-submerged samples, the effects of ethanol on rheological properties of berries and on potential extractabilities of colour and soluble nitrogen from skin and berry flesh. Whatever the model, ethanol had a deleterious effect on berries, especially on those which were immersed. For those, the development of anaerobic metabolism was drastically reduced, but nitrogeneous and colouring compounds extractabilities were significantly increased. The anthocyanins and their copigments seem to be preferentially extracted when berries were immersed. The rheological properties were related to the osmotical strength of the submerging liquid. It was assumed that hydratation or dehydratation phenomenons of cell-wall polysaccharides could explained the differences observed in the rheological behaviour of berries and in particular the modifications of their pellicular elasticity.

  1. Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions.

    Directory of Open Access Journals (Sweden)

    Cecilia Picazo

    Full Text Available Saccharomyces cerevisiae chronological life span (CLS is determined by a wide variety of environmental and genetic factors. Nutrient limitation without malnutrition, i.e. dietary restriction, expands CLS through the control of nutrient signaling pathways, of which TOR/Sch9 has proven to be the most relevant, particularly under nitrogen deprivation. The use of prototrophic wine yeast allows a better understanding of the role of nitrogen in longevity in natural and more demanding environments, such as grape juice fermentation. We previously showed that acetyltransferase Gcn5, a member of the SAGA complex, has opposite effects on CLS under laboratory and winemaking conditions, and is detrimental under the latter. Here we demonstrate that integrity of the SAGA complex is necessary for prolonged longevity, as its dismantling by SPT20 deletion causes a drop in CLS under both laboratory and winemaking conditions. The sch9Δ mutant is long-lived in synthetic SC medium, as expected, and the combined deletion of GCN5 partially suppresses this phenotype. However it is short-lived in grape juice, likely due to its low nitrogen/carbon ratio. Therefore, unbalance of nutrients can be more relevant for life span than total amounts of them. Deletion of RTG2, which codes for a protein associated with Gcn5 and is a component of the mitochondrial retrograde signal, and which communicates mitochondrial dysfunction to the nucleus, is detrimental under laboratory, but not under winemaking conditions, where respiration seems not so relevant for longevity. Transcription factor Rgm1 was found to be a novel CLS regulator Sch9-dependently.

  2. Conditions for formation of electron pairs in a metal

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  3. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.

    Science.gov (United States)

    Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong

    2011-05-11

    Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.

  4. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking.

    Science.gov (United States)

    Verspohl, Alexandra; Solieri, Lisa; Giudici, Paolo

    2017-03-01

    The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  5. Moisture ingress into electronics enclosures under isothermal conditions

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based......The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture...

  6. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking.

    Science.gov (United States)

    Sun, Wei-Xuan; Hu, Kai; Zhang, Jun-Xiang; Zhu, Xiao-Lin; Tao, Yong-Sheng

    2018-04-15

    Cabernet Gernischt (CG) is a famous Chinese wine grape cultivar, the red wine of which is known for its green trait, especially when produced from grapes cultivated in regions with monsoon climate. To modify CG wine aroma, three enzyme preparations (H. uvarum extracellular enzyme, AR2000, and pectinase) were introduced in different winemaking stages with Saccharomyces cerevisiae. Free and bound aroma compounds in young wines were detected using headspace solid-phase micro-extraction and gas chromatography-mass spectrometry, and aroma characteristics were quantified by trained panelists. Results showed that simultaneous inoculation of enzymes and yeasts improved wine aroma. Partial least-squares regression revealed that the green trait was due mainly to varietal compounds, especially C 6 compounds, and could be partly weakened by fermentative compounds. Moreover, H. uvarum enzyme treatments enriched the acid fruit note of CG wine by enhancing the synergistic effect of varietal volatiles and certain fermentative compounds, such as esters and phenylethyls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparison of the performances of Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking

    Directory of Open Access Journals (Sweden)

    Jessica eLleixa

    2016-03-01

    Full Text Available Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts.In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, qPCR, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

  8. Selection of the optimum condition for electron capture detector operation

    International Nuclear Information System (INIS)

    Lasa, J.; Korus, A.

    1974-01-01

    A method of determination of the optimal work conditions for the electron capture detector is presented in the paper. Physical phenomena which occur in the detector, as well as the energetic dependence of the electron attachment process are taken into consideration. The influence of the kind of carrier gas, temperature, and the parameters of the supplied voltage in both direct and pulse methods on average values of electron energy is described. Dependence of the sensitivity of the electron capture detector on the carrier gas and the polarizing voltage is illustrated for the Model DNW-300 electron capture detector produced in Poland. Practical indications for selecting optimal conditions of electron capture detector operation are given at the end of the paper. (author)

  9. Use of Winemaking Supplements To Modify the Composition and Sensory Properties of Shiraz Wine.

    Science.gov (United States)

    Li, Sijing; Bindon, Keren; Bastian, Susan E P; Jiranek, Vladimir; Wilkinson, Kerry L

    2017-02-22

    Wine quality can be significantly affected by tannin and polysaccharide composition, which can in turn be influenced by grape maturity and winemaking practices. This study explored the impact of three commercial wine additives, a maceration enzyme, an enotannin, and a mannoprotein, on the composition and sensory properties of red wine, in particular, in mimicking the mouthfeel associated with wines made from riper grapes. Shiraz grapes were harvested at 24 and 28 °Brix and the former vinified with commercial additives introduced either individually or in combination. Compositional analyses of finished wines included tannin and polysaccharide concentration, composition and size distribution by high-performance liquid chromatography, whereas the sensory profiles of wines were assessed by descriptive analysis. As expected, wines made from riper grapes were naturally higher in tannin and mannoprotein than wines made from grapes harvested earlier. Enzyme addition resulted in a significantly higher concentration and average molecular mass of wine tannin, which increased wine astringency. Conversely, mannoprotein addition reduced tannin concentration and astringency. Addition of enotannin did not meaningfully influence wine composition or sensory properties.

  10. Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications

    Science.gov (United States)

    Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.

    2015-05-01

    The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.

  11. Influence of fenamidone, indoxacarb, pyraclostrobin, and deltamethrin on the population of natural yeast microflora during winemaking of two sardinian grape cultivars.

    Science.gov (United States)

    Zara, Severino; Caboni, Pierluigi; Orro, Davide; Farris, Giovanni Antonio; Pirisi, Filippo; Angioni, Alberto

    2011-01-01

    The influence of fenamidone ((S)-1-anilino-4-methyl-2-methylthio-4-phenylimidazolin-5-one), pyraclostrobin (methyl 2-[1-(4-chlorophenyl)pyrazol-3-yloxymethyl]-N-methoxycarbanilate), indoxacarb (methyl 7-Chloro-2,5-dihydro-2-[[(methoxycarbonyl) [4- (trifluoromethoxy) phenyl] amino] carbonyl] indeno[1,2-e][1,3,4] oxadiazine-4a(3H)-carboxylate), and deltamethrin ([cyano-[3-(phenoxy)phenyl]methyl] 3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate) on spontaneous fermentation carried out by natural yeast grapes microflora, was studied during the wine-making process. Aliquots of pesticide standard solutions were added to the grapes before crushing, to reach a concentration equal or half the maximum residue limit (MRL). Vinifications were performed, with maceration (R), or without maceration (W). During the wine-making process, samples were taken at the beginning (one hour after grapes crushing), at the middle and at the end of the spontaneous fermentation process. At half the MRL concentration, deltamethrin affected Pichia sp. population with a decrease of almost 50 %, while fenamidone decreased Candida sp., Candida stellata at 83, and 36%, respectively. Metschnikowia pulcherrima population decreased in all samples when compared to the control. Experiments at MRL levels showed a strong reduction for all non-Saccharomyces yeast species, when grapes had been treated with pyraclostrobin, fenamidone, and deltamethrine, except for Candida sp. which was found to have been affected only by fenamidone residues. Growth zone inhibition test showed only an in vitro activity of pyraclostrobin over Kloeckera spp., C. stellata, and M. pulcherrima. Microvinification experiments produced wines with no differences concerning S. cerevisiae population as well as production of ethanol and residual sugars. Experiments showed that at the end of the fermentation process pesticides were adsorbed by the lees and grape skins, and no pesticides residue was detectable in wine.

  12. Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions

    DEFF Research Database (Denmark)

    Conseil, Helene; Staliulionis, Zygimantas; Jellesen, Morten Stendahl

    2017-01-01

    Electronic components and devices are exposed to a wide variety of climatic conditions, therefore the protection of electronic devices from humidity is becoming a critical factor in the system design. The ingress of moisture into typical electronic enclosures has been studied with defined paramet....... The moisture buildup inside the enclosure has been simulated using an equivalent RC circuit consisting of variables like controlled resistors and capacitors to describe the diffusivity, permeability, and storage in polymers....

  13. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering

    Directory of Open Access Journals (Sweden)

    Warren eAlbertin

    2016-01-01

    Full Text Available Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation which is usually performed by Saccharomyces species. The aim of this study was to characterise the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analysed using 11 microsatellite markers and a subset of 47 strains were analysed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localisation as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of Hanseniaspora uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia and copper addition on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed.

  14. Moisture ingress into electronics enclosures under isothermal conditions

    International Nuclear Information System (INIS)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    2016-01-01

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. This QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.

  15. Sensory description of sweet wines obtained by the winemaking procedures of raisining, botrytisation and fortification.

    Science.gov (United States)

    González-Álvarez, Mariana; Noguerol-Pato, Raquel; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2014-02-15

    The effect of winemaking procedures on the sensory modification of sweet wines was investigated. Garnacha Tintorera-based sweet wines were obtained by two different processes: by using raisins for vinification to obtain a naturally sweet wine and by using freshly harvested grapes with the stoppage of the fermentation by the addition of alcohol. Eight international sweet wines were also subjected to sensory analysis for comparative description purposes. Wines were described with a sensory profile by 12 trained panellists on 70 sensory attributes by employing the frequency of citation method. Analysis of variance of the descriptive data confirmed the existence of subtle sensory differences among Garnacha Tintorera-based sweet wines depending on the procedure used for their production. Cluster analysis emphasised discriminated attributes between the Garnacha Tintorera-based and the commercial groups of sweet wines for both those obtained by raisining and by fortification. Several kinds of discriminant functions were used to separate groups of sweet wines--obtained by botrytisation, raisining and fortification--to show the key descriptors that contribute to their separation and define the sensory perception of each type of wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  17. Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking.

    Science.gov (United States)

    Magalhães, Frederico; Krogerus, Kristoffer; Castillo, Sandra; Ortiz-Julien, Anne; Dequin, Sylvie; Gibson, Brian

    2017-08-01

    Yeast cryotolerance brings some advantages for wine fermentations, including the improved aromatic complexity of white wines. Naturally cold-tolerant strains are generally less adept at wine fermentation but fermentative fitness can potentially be improved through hybridization. Here we studied the potential of using hybrids involving Saccharomyces eubayanus and a S. cerevisiae wine strain for low-temperature winemaking. Through screening the performance in response to variable concentrations of sugar, nitrogen and temperature, we isolated one hybrid strain that exhibited the superior performance. This hybrid strain was propagated and dried in pilot scale and tested for the fermentation of Macabeu and Sauvignon blanc grape musts. We obtained highly viable active dry yeast, which was able to efficiently ferment the grape musts with superior production of aroma active volatiles, in particular, 2-phenylethanol. The genome sequences of the hybrid strains revealed variable chromosome inheritance among hybrids, particularly within the S. cerevisiae subgenome. With the present paper, we expand the knowledge on the potentialities of using S. eubayanus hybrids in industrial fermentation at beverages other than lager beer. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Recent Advances and Applications of Pulsed Electric Fields (PEF to Improve Polyphenol Extraction and Color Release during Red Winemaking

    Directory of Open Access Journals (Sweden)

    Arianna Ricci

    2018-03-01

    Full Text Available Pulsed electric fields (PEF technology is an innovative food processing system and it has been introduced in relatively recent times as a pre-treatment of liquid and semi-solid food. Low cost-equipment and short processing time, coupled to the effectiveness in assisting the extraction of valuable compounds from vegetable tissues, makes PEF a challenging solution for the industrial red winemaking; a tailored PEF-assisted maceration was demonstrated to promote an increase in wine color quality and an improvement in the polyphenolic profile. Despite the application of PEF has been studied and the positive effects in selected wine varieties were demonstrated on batch and pilot-scale systems, there is a need for a more detailed characterization of the impact in different grapes, and for a better understanding of potential undesirable side-effects. This review aims to summarize the state of the art in view of a detailed feasibility study, to promote the introduction of PEF technology in the oenological industry.

  19. Electrochemical migration in electronics: effect of contamination and bias conditions

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    A number of reliability issues are caused by mechanisms different from the conventional corrosion due to specific aspects of the printed circuit board assembly (PCBA). The size of the components and the distance between them, combinations of dissimilar metals, voltage and temperature gradients...... – all together influence susceptibility of electronic PCBA to corrosion. When electronics is operating under humid conditions, the cleanliness of the PCBA becomes essential, since corrosion related failures in electronics can occur at extremely low levels of moisture and contamination. A synergetic...... effect of the aspects mentioned above makes it challenging to predict the lifetime of electronic device. The aim of this work is to investigate corrosion influencing factors, which at a later stage improve capabilities of predicting the functioning and herewith reliability of electronics under certain...

  20. Relation between parameters of self-sustaining magnetically confined electron cloud and external conditions

    International Nuclear Information System (INIS)

    Yu Qingchang

    1991-01-01

    On the basis of the fluid theory of the axisymmetrical self-sustaining magnetically confined electron clouds an approximate analytical method is developed. By means of this method the relations between the parameters of this type of electron cloud and external conditions are studied. The parameters include electron density, electron temperature, drift angular frequency of electrons, radius of the electron cloud and electric potential at the centre of the electron cloud. They depend on the voltage, magnetic induction, pressure, electromagnetic field distribution in the confinement device and parameters of electron-atom collisions

  1. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  2. Conditions for electron runaway under leader breakdown of long gaps

    International Nuclear Information System (INIS)

    Ul'yanov, K. N.

    2008-01-01

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined

  3. A numerical investigation of the effect of ambient conditions on natural convection cooling of electronics

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Hattel, Jesper Henri

    2017-01-01

    Thermal management is a serious concern in electronic industry. It is important to understand the effects of ambient conditions on cooling of electronics. In this work, the effect of ambient conditions on the thermophysical properties of humid air is estimated in five cities (Copenhagen, Mashhad...

  4. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  5. Organic viticulture and wine-making: development of environment and consumer friendly technologies for organic wine quality improvement and scientifically based legislative framework. Deliverable: D 2.7 Public report about first round qualitative consumer research and market needs

    OpenAIRE

    Stolz, Hanna; Schmid, Otto

    2007-01-01

    This survey of consumers’ perceptions and expectations regarding organic wine and viticulture in the selected case study countries of Italy (IT), France (FR), Germany (DE) and Switzerland (CH) was conducted within the framework of the EU research project ORWINE (Organic viticulture and wine-making: development of environment and consumer friendly technologies for organic wine quality improvement and scientifically based legislative framework). The objectives of the study were to investigat...

  6. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Capacitor is one of the reliability critical components in power electronic systems. In the last two decades, many efforts in the academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications demand more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify....... Therefore, this paper firstly classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution from 1993 to 2015 is summarized. Remarks on the state-of-the-art research and the future opportunities targeting for practical industry applications are given....

  7. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    Capacitors are one type of reliability-critical components in power electronic systems. In the last two decades, many efforts in academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications are demanding more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost, and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify......, this paper first classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution in the last two decades is summarized. Finally, the state-of-the-art research and the future opportunities targeting for industry applications are given....

  8. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    Science.gov (United States)

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  9. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space.

    Directory of Open Access Journals (Sweden)

    Marinella Marzano

    Full Text Available Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.

  10. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space.

    Science.gov (United States)

    Marzano, Marinella; Fosso, Bruno; Manzari, Caterina; Grieco, Francesco; Intranuovo, Marianna; Cozzi, Giuseppe; Mulè, Giuseppina; Scioscia, Gaetano; Valiente, Gabriel; Tullo, Apollonia; Sbisà, Elisabetta; Pesole, Graziano; Santamaria, Monica

    2016-01-01

    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.

  11. The electron localization as the information content of the conditional pair density

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, Andres S.; Torres, F. Javier [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Rincon, Luis, E-mail: lrincon@usfq.edu.ec, E-mail: lrincon@ula.ve [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), La Hechicera, Mérida-5101 (Venezuela, Bolivarian Republic of)

    2016-06-28

    In the present work, the information gained by an electron for “knowing” about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (D{sub KL}) between the same-spin conditional pair probability density and the marginal probability. D{sub KL} is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of D{sub KL} with the number of σ-spin electrons of a system (N{sup σ}), the quantity χ = (N{sup σ} − 1) D{sub KL}f{sub cut} is introduced as a general descriptor that allows the quantification of the electron localization in the space. f{sub cut} is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

  12. Electronic apex locator: A comprehensive literature review — Part II: Effect of different clinical and technical conditions on electronic apex locator′s accuracy

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2014-01-01

    Full Text Available Introduction: To investigate the effects of different clinical and technical conditions on the accuracy of electronic apex locators (EALs. Materials and Methods: "Tooth apex," "dental instrument," "odontometry," "electronic medical," and "electronic apex locator" were searched as primary identifiers via Medline/PubMed, Cochrane library, and Scopus data base up to 30 July 2013. Original articles that fulfilled the inclusion criteria were selected and reviewed. Results: Out of 402 relevant studies, 183 were selected based on the inclusion criteria. In this part, 75 studies are presented. Pulp vitality conditions and root resorption, types of files and irrigating materials do not affect an EAL′s accuracy; however, the file size and foramen diameter can affect its accuracy. Conclusions: Various clinical conditions such as the file size and foramen diameter may affect EALs′ accuracy. However, more randomized clinical trials are needed for definitive conclusion.

  13. Dynamic sensory description of Rioja Alavesa red wines made by different winemaking practices by using Temporal Dominance of Sensations.

    Science.gov (United States)

    Etaio, Iñaki; Meillon, Sophie; Pérez-Elortondo, Francisco J; Schlich, Pascal

    2016-08-01

    Although sensory description of wines in scientific literature is very large, there is an evident lack of studies describing wines from a dynamic approach. The objective of this study was to describe the evolution of the sensations perceived in red wines from Rioja Alavesa by using Temporal Dominance of Sensations (TDS) and also to compare wines made with the two winemaking procedures used in Rioja Alavesa: carbonic maceration (CM) and destemming (DS). Ten sensory attributes were evaluated in eight wines (four CM and four DS wines) in triplicate by a panel of 16 trained assessors. Red/black berry and woody aromas were dominant firstly, whereas heat, astringent, bitter and pungent sensations were dominant later. CM wines showed higher dominance for woody, spicy, pungent and acid sensations and lower dominance for red/black berry aroma and astringency than DS wines. This study is the first to describe Rioja wines from a dynamic approach and it also provides information about the dynamic sensory differences between wines made by CM or by DS. In this sense, this work shows the usefulness of TDS to describe and differentiate wines and to provide additional information to the conventional static descriptive analysis. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions.

    Science.gov (United States)

    Mendive-Tapia, David; Mangaud, Etienne; Firmino, Thiago; de la Lande, Aurélien; Desouter-Lecomte, Michèle; Meyer, Hans-Dieter; Gatti, Fabien

    2018-01-11

    A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.

  15. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    Science.gov (United States)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  16. Potential of high pressure homogenization to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Palacios Paz, Anthony Efrain; Zironi, Roberto

    2015-10-15

    High pressure homogenization (HPH) was tested for inducing autolysis in a commercial strain of Saccharomyces bayanus for winemaking. The effects on cell viability, the release of soluble proteins, glucidic colloids and amino acids in wine-like medium and the volatile composition of the autolysates were investigated after processing, in comparison with thermolysis. HPH seemed a promising technique for inducing autolysis of wine yeasts. One pass at 150 MPa was the best operating conditions. Soluble colloids, proteins and free amino acids were similar after HPH and thermolysis, but the former gave a more interesting volatile composition after processing, with higher concentrations of ethyl esters (fruity odors) and lower fatty acids (potential off-flavors). This might allow different winemaking applications for HPH, such as the production of yeast derivatives for wine ageing. In the conditions tested, HPH did not allow the complete inactivation of yeast cells; the treatment shall be optimized before winemaking use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hylleraas-like functions with the correct cusp conditions: K-shell electrons for the neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, K.V. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)], E-mail: krodri@criba.edu.ar; Gasaneo, G. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Mitnik, D.M.; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio and Universidad de Buenos Aires (Argentina)

    2007-10-15

    We present simple correlated wavefunctions for the two K-shell electrons of neutral atoms. A variational method was chosen to calculate the mean energy of the ground state, in which the electrons are subject to a local Hartree potential representing the presence of the outer shell electrons. The functions are constructed in terms of exponential and power series, where special care has been taken in order to fulfill the exact behavior at the electron-electron and electron-nucleus coalescence points (Kato cusp conditions). Global properties, such as the energies and virial coefficients, as well as local properties, such as spatial mean values, are also analyzed.

  18. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  19. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  20. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2013-02-19

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  1. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2012-11-26

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR... Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  2. Photodouble ionization differential cross sections for D2 with various electron energy sharing conditions

    International Nuclear Information System (INIS)

    Seccombe, D.P.; Collins, S.A.; Reddish, T.J.; Selles, P.; Malegat, L.; Huetz, A.; Kazansky, A.K.

    2002-01-01

    The mutual angular distributions of the two ejected electrons following direct photodouble ionization have been measured for D 2 at an excess energy (E) of 25 eV using linearly polarized light. These (γ, 2e) 'triple' differential cross sections (TDCSs) were obtained for asymmetric electron energy conditions with energy sharing ratios (R=E 2 /E 1 ) of R=24, 11.5, 4 and 2.57. In all cases the 'reference' electron (energy = E 1 ) was oriented along the direction of the electric field vector (ε) and detected in coincidence with a second electron (energy = E 2 ) coplanar with ε and the photon beam direction (kγ). For comparison, helium TDCSs were obtained for the same E and R values under nearly identical spectrometer conditions. These show very good agreement with the results of hyperspherical-R-matrix with semi-classical outgoing waves calculations, thus providing even more confidence in the D 2 TDCSs where there is as yet no accurate ab initio theory. The similarities and differences between the experimental results associated with the two targets are qualitatively discussed in terms of Feagin's model (Feagin J M 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L729). (author)

  3. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies.

    Science.gov (United States)

    Baiano, A; Terracone, C; Gambacorta, G; La Notte, E

    2009-04-01

    The aim of this study was to assess the influence of 9 winemaking technologies (traditional, delestage, saignée, delayed punching-down, addition of grape seed tannins, addition of ellagic-skin-seed tannins, heating of must-wine, cryo-maceration, and prolonged maceration) on the phenolic content and antioxidant activity of Primitivo musts and wines. Three methods for the determination of the antioxidant activity were compared: DPPH, beta-carotene bleaching assay, and ABTS. Oenological parameters and composition of the phenolic fraction of 1-y-aged wines was also determined. The addition of tannins allowed the increase of the phenolic content of musts and wines in a greater amount than the other technologies. The results concerning the antioxidant activity depended on the method applied. Concerning musts, the DPPH assay did not highlight great differences among technologies, whereas the addition of tannins allowed the obtainment of the highest antioxidant activity according to beta-carotene and ABTS assays. The wine aging determined an increase of the antioxidant activity, independently on the method applied. Wine obtained through traditional technology, saignée, and addition of tannins showed the highest antioxidant activities according to DPPH and beta-carotene. The highest correlation coefficients (0.961 and 0.932) were calculated between phenolic content and ABTS values of musts whereas the lowest values (0.413 and 0.517) were calculated between phenolic content and ABTS values of wines. Wines produced through traditional technology were the richest in anthocyanins. The addition of tannins allowed to obtain high content in monomeric anthocyanins, flavonoids, flavans reactive to vanillin, and coumaroylated malvidin and a low content in acetylated malvidin. Practical Applications: It is well known that a moderate consumption (equivalent to 2 glasses per day) of red wine is actually recommended since it appears associated with a decreased incidence of

  4. THE CONTENT OF OCHRATOXIN A IN MOLDAVIAN WINE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Boris Găină

    2009-12-01

    Full Text Available The basic objective of this work is studying the content of ochratoxin A (OTA in grapes, grape juice, and wine. This is an analysis of their origin, the conditions of contamination and ways decontamination, toxiconogenes mushrooms, toxicity, world and European regulations. It was estimated the methods of detection of mycotoxins in wine products. It has examined the contents of OTA in the Moldavian juice/wine from different varietals at different stages of winemaking and obtained by different proceeds winemaking.

  5. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  6. Development of D-region electron and ion densities under various auroral conditions during the Energy Budget Campaign (EBC)

    International Nuclear Information System (INIS)

    Brekke, A.; Holt, O.; Friedrich, M.; Hansen, T.; Stauning, P.; Thrane, E.V.

    1985-01-01

    D-region electron density profiles and time variations were obtained during the Energy Budget Campaign 1980 by a partial reflection radar at Ramfjordmoen, Tromso, located between the rocket ranges at Andoya and Kiruna. The observations were made under various geophysical conditions which are illustrated by riometer observations. The partial reflection measurements indicate that the rockets were launched into a relatively stable D-region on two occasions, while it was somewhat more disturbed on the third. A comparison between the electron density profiles derived by the partial reflection technique and rocket borne probes and Faraday rotation experiments does indicate fair agreement during the quiet conditions, but relatively large discrepancies during disturbed conditions. Simultaneously derived electron density profiles, by use of the Faraday technique, and ion density profiles, by gridded electrostatic spheres mounted on the rocket payload, have made it possible to estimate the negative ion to electron density ratio lambda versus height. These values of lambda are within the range of model calculations. (author)

  7. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  8. Major phenolic and volatile compounds and their influence on sensorial aspects in stem-contact fermentation winemaking of Primitivo red wines.

    Science.gov (United States)

    Suriano, S; Alba, V; Di Gennaro, D; Basile, T; Tamborra, M; Tarricone, L

    2016-08-01

    In red winemaking de-stemming is crucial since the stems contain polymeric phenolic compounds responsible for the astringency of wine. Wine such as Primitivo has low phenolic constituents and tannins and stems affect aroma, taste body and olfactory characteristics. The aim of the study was to evaluate the effects of presence of stems during fermentation on polyphenolic, volatile compounds and sensory characteristics of wine. Primitivo grapes vinified in presence of different percentage of stems: 100 % de-stemmed (D100), 75 % de-stemmed (D75) and 50 % de-stemmed (D50). Results confirmed that the wines vinified in presence of stems were higher in tannins, flavans, to vanillin and proanthocyanidins, colour intensity with lower anthocyanins. The presence of stems during fermentation conferred more structure and flavour to wines. They facilitated must aeration thus promoting synthesis of higher alcohols and ethyl esters by yeast. In particular, a higher content of hexan-1-ol, hex-3-en-1-ol and 2-phenyl ethanol in D50 and D75 gave the wines that suggest green grass, herb and floral. Wine from D75 seemed to be better than D50 in terms of volatile compounds as well as fruity, floral and balsamic components preserved, without any unpleasant taste of long chain fatty acids found in D50.

  9. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  10. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  11. Effect of storage conditions on graft of polypropylene non-woven fabric induced by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Young; Jeun, Joon Pyo; Kang, Phil Hyun [Radiation Research Dvision for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-05-15

    In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: 60 degrees Celcius, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

  12. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  13. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  14. Double-wall IFR cell for conditioning intense relativistic electron beams

    International Nuclear Information System (INIS)

    Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.

    1994-01-01

    An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation

  15. Time-resolved Shielded-Pickup Measurements and Modeling of Beam Conditioning Effects on Electron Cloud Buildup at CesrTA

    CERN Document Server

    Crittenden, J A; Liu, X; Palmer, M A; Santos, S; Sikora, J P; Kato, S; Calatroni, S; Rumolo, G

    2012-01-01

    The Cornell Electron Storage Ring Test Accelerator program includes investigations into electron cloud buildup in vacuum chambers with various coatings. Two 1.1-mlong sections located symmetrically in the east and west arc regions are equipped with BPM-like pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of 0.76 mm-diameter holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. We present new measurements of the effect of beam conditioning on a newly-installed amorphous carbon coated chamber, as well as on an extensively conditioned chamber with a diamond-like carbon coating. The ECLOUD modeling code is used to quantify the sensitivity of these measurements to model parameters, differentiating between photoelectron and secondary-electron production processes.

  16. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  17. Thermal boundary conditions for electrons in a weakly ionized gas near a catalytic wall

    International Nuclear Information System (INIS)

    Chekmarev, I.

    1981-01-01

    A technique of matched asymptotic expansions is used to examine the derivation of hydrodynamic transport equations for the external region of a weakly ionized multitemperature gas near an absorbing and conducting wall. An approximate moment solution is constructed for the Knudsen boundary layer. The conditions for the matching of the external and internal expansions lead to a new form of the hydrodynamic boundary conditions, from which the singular behavior of the energy equation for electrons near the wall has been eliminated

  18. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    Science.gov (United States)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  19. The use of dextrose in winemaking

    OpenAIRE

    Schmitt Matthias; Christmann Monika

    2016-01-01

    In this work the benefit of using dextrose instead of sucrose was investigated. Trials with stuck fermentation could show the potential of compensating glucose / fructose imbalances by adding dextrose. Trials on sparkling wine production showed that under stressful conditions the second fermentation started earlier and finished more complete, when dextrose was used instead of sucrose in the tirage liqueur. In general the sensory property of the later product was not changed when dextrose was ...

  20. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  1. Conditioning of mealybug (Hemiptera: Pseudococcidae) by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Palma-Jimenez, Melissa; Blanco-Meneses, Monica

    2015-01-01

    The cleaning and correct observation of the mealybug specimens was determined by the conditioning methodology. The research was done in the Laboratorio del Centro de Investigacion en Estructuras Microscopicas (CIEMIC) of the Universidad de Costa Rica during the year 2012. A gradual improvement for the observation of the ultrastructures through the Scanning Electron Microscope was evidenced by the implementation of four types of methodologies. Each process was described in detail. The incorporation of 10% xylene (in some cases have been viable using ethanol at 95-100% ) was allowed to remove the wax from the body of the insect, to avoid this the collapse and to observe specific ultrastructures of the individual, they were the best results. The methodology used has reduced the time and costs in future taxonomic research of mealybug. (author) [es

  2. The experimental electron mean-free-path in Si under typical (S)TEM conditions

    International Nuclear Information System (INIS)

    Potapov, P.L.

    2014-01-01

    The electron mean-free-path in Si was measured by EELS using the test structure with the certified dimensions as a calibration standard. In a good agreement with the previous CBED measurements, the mean-free-path is 150 nm for 200 keV and 179 nm for 300 keV energy of primary electrons at large collection angles. These values are accurately predicted by the model of Iakoubovskii et al. while the model of Malis et al. incorporated in common microscopy software underestimates the mean-free-path by 15% at least. Correspondingly, the thickness of TEM samples reported in many studies of the Si-based materials last decades might be noticeably underestimated. - Highlights: • The electron inelastic mean-free-path in Si is measured for the typical (S)TEM conditions. • These reference values allow for accurate determination of the lamella thickness by EELS. • The theoretical model by Malis et al. underestimates the mean-free-path values

  3. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  4. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  5. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E.; Hatzinger, Paul B.; Condee, Charles W.; Chu, Kung-Hui

    2015-01-01

    Highlights: • SIP characterized RDX-degrading communities under different e-accepting conditions. • Dominant RDX degradation pathways differed under different e-accepting conditions. • More complete detoxification of RDX occurred under methanogenic and sulfate-reducing conditions than under manganese(IV) and iron(III)-reducing conditions. - Abstract: This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using 13 C and 15 N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with 13 C 3 - or ring- 15 N 3 -, nitro- 15 N 3 -, or fully-labeled 15 N 6 -RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the 13 C-DNA fractions. A total of twenty seven sequences were derived from different 15 N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled 13 C or 15 N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that 13 C- and 15 N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions

  6. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  7. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  8. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  9. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: its application potential in wine aroma enhancement.

    Science.gov (United States)

    Hu, K; Zhu, X L; Mu, H; Ma, Y; Ullah, N; Tao, Y S

    2016-02-01

    The aim of the work was to evaluate the application potential of a glycosidase extract of one indigenous non-Saccharomyces strain in wine aroma enhancement. The isolate was selected from a local winemaking region in China for its high β-glucosidase level and was identified as Rhodotorula mucilaginosa. The tolerance of the glycosidase extract to the typical winemaking conditions was assessed using the activity of its β-glucosidase. After that, the hydrolysis capacity of R. mucilaginosa glycosidase for liberation of grape aroma glycosides was characterized in comparison to commercial enzyme preparations. Results of this work revealed that glycosidase extract from R. mucilaginosa proved to be active in the presence of 0-20% (w/v) glucose, 0-20% (v/v) ethanol and at pH 3·0-5·0. In the hydrolysis of aroma precursors, enzymes obtained from different origins possessed various levels of specificity and activity, showing high origin dependence (α = 0·05). Compared to commercial enzymes, the indigenous R. mucilaginosa glycosidase extract presented better catalytic preference for the 'fruity and floral' glycosides of benzenic compounds and C13 -norisoprenoids, but less sensitivity to the glycosides of C6 compounds and volatile phenols. This work presents a novel extracellular glycosidase preparation from an indigenous Rhodotorula mucilaginosa strain selected from a local winemaking region in China. This enzyme extract exhibits strong tolerance towards winemaking conditions. It shows hydrolysis specificity for glycosides of benzenic compounds and C13 -norisoprenoids, proving a potential candidate for improving floral and fruity aroma characteristics of wine. © 2015 The Society for Applied Microbiology.

  10. The use of dextrose in winemaking

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias

    2016-01-01

    Full Text Available In this work the benefit of using dextrose instead of sucrose was investigated. Trials with stuck fermentation could show the potential of compensating glucose / fructose imbalances by adding dextrose. Trials on sparkling wine production showed that under stressful conditions the second fermentation started earlier and finished more complete, when dextrose was used instead of sucrose in the tirage liqueur. In general the sensory property of the later product was not changed when dextrose was used as alternative to sucrose. Several trials on must chaptalization showed in general no clear differences in terms of fermentation kinetics. The aroma analysis showed as well, that the fermentation aroma was not clearly different when dextrose used as sugar source.

  11. 77 FR 57039 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Science.gov (United States)

    2012-09-17

    ... Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation... a fly-by-wire electronic flight control system and no direct coupling from the flightdeck controller... nuisance alerting. This special condition also addresses flight control system mode annunciation. It...

  12. Influence of Experimental Conditions on Electronic Tongue Results—Case of Valsartan Minitablets Dissolution

    Directory of Open Access Journals (Sweden)

    Małgorzata Wesoły

    2016-08-01

    Full Text Available A potentiometric electronic tongue was applied to study the release of valsartan from pharmaceutical formulations, i.e., minitablets uncoated and coated with Eudragit E. Special attention was paid to evaluate the influence of medium temperature and composition, as well as to compare the performances of the sensor arrays working in various hydrodynamic conditions. The drug dissolution profiles registered with the ion-sensitive electrodes were compared with standard dissolution tests performed with USP Apparatus 2 (paddle. Moreover, the signal changes of all sensors were processed by principal component analysis to visualize the release modifications, related to the presence of the coating agent. Finally, the importance and influence of the experimental conditions on the results obtained using potentiometric sensor arrays were discussed.

  13. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  14. Nanoscale Electronic Conditioning for Improvement of Nanowire Light-Emitting-Diode Efficiency.

    Science.gov (United States)

    May, Brelon J; Belz, Matthew R; Ahamed, Arshad; Sarwar, A T M G; Selcu, Camelia M; Myers, Roberto C

    2018-04-24

    Commercial III-Nitride LEDs and lasers spanning visible and ultraviolet wavelengths are based on epitaxial films. Alternatively, nanowire-based III-Nitride optoelectronics offer the advantage of strain compliance and high crystalline quality growth on a variety of inexpensive substrates. However, nanowire LEDs exhibit an inherent property distribution, resulting in uneven current spreading through macroscopic devices that consist of millions of individual nanowire diodes connected in parallel. Despite being electrically connected, only a small fraction of nanowires, sometimes current in the ensemble devices. Burn-in electronic conditioning is performed by applying a short-term overload voltage; the nanoshorts experience very high current density, sufficient to render them open circuits, thereby forcing a new current path through more nanowire LEDs in an ensemble device. Current-voltage measurements of individual nanowires are acquired using conductive atomic force microscopy to observe the removal of nanoshorts using burn-in. In macroscopic devices, this results in a 33× increase in peak EL and reduced leakage current. Burn-in conditioning of nanowire ensembles therefore provides a straightforward method to mitigate nonuniformities inherent to nanowire devices.

  15. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages

    Directory of Open Access Journals (Sweden)

    Marjaana eSuorsa

    2015-09-01

    Full Text Available Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF, electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PGR5-PGRL1–and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.

  16. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

    Science.gov (United States)

    Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2013-01-02

    Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the

  17. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Zakir, U. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan); Department of Physics, University of Malakand, Khyber Pakhtun Khwa 18800 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan)

    2015-12-15

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of η{sub e}-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  18. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Science.gov (United States)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  19. Potential of Glycosidase from Non-Saccharomyces Isolates for Enhancement of Wine Aroma.

    Science.gov (United States)

    Hu, Kai; Qin, Yi; Tao, Yong-Sheng; Zhu, Xiao-Lin; Peng, Chuan-Tao; Ullah, Niamat

    2016-04-01

    The aim of this work was to rapidly screen indigenous yeasts with high levels of β-glucosidase activity and assess the potential of glycosidase extracts for aroma enhancement in winemaking. A semiquantitative colorimetric assay was applied using 96-well plates to screen yeasts from 3 different regions of China. Isolates with high β-glucosidase activity were confirmed by the commonly used pNP assay. Among 493 non-Saccharomyces isolates belonging to 8 generas, 3 isolates were selected for their high levels of β-glucosidase activity and were identified as Hanseniaspora uvarum, Pichia membranifaciens, and Rhodotorula mucilaginosa by sequence analysis of the 26S rDNA D1/D2 domain. β-Glucosidase in the glycosidase extract from H. uvarum strain showed the highest activity in winemaking conditions among the selected isolates. For aroma enhancement in winemaking, the glycosidase extract from H. uvarum strain exhibited catalytic specificity for aromatic glycosides of C13 -norisoprenoids and some terpenes, enhancing fresh floral, sweet, berry, and nutty aroma characteristics in wine. © 2016 Institute of Food Technologists®

  20. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  1. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    Science.gov (United States)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  2. Evaluation of high-energy electron detectors for probing the inner magnetosphere under high-counting condition

    International Nuclear Information System (INIS)

    Tamada, Yukihiro; Takashima, Takeshi; Mitani, Takefumi; Miyake, Wataru

    2013-01-01

    An ERG (Energization and Radiation in Geospace) satellite will be launched to study the acceleration processes of energetic particles in the radiation belt surrounding the earth. It is very important to reveal the acceleration process of high-energy particles for both science and the application to space weather forecast. Drastic increases of high-energy electrons in the radiation belt is sometimes observed during a geomagnetic storm. When a large magnetic storm occurs, energetic electron count rates may exceed flux limits expected in the nominal design and large number of incident electrons leading to detection loss. The purpose of this study is to demonstrate that the count rate range of a single detection on board ERG satellite can be expanded by means of reading circuit operations to decrease an area of detection. In our ground experiment, we also found an unexpected result that count peaks shift to the higher energy side under high counting conditions. (author)

  3. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  4. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  5. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  6. Thermalization of secondary electrons under AMSGEMP conditions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.; Pine, V.W.

    1984-01-01

    A Monte Carlo algorithm is used to determine the time behavior of source secondary electrons for ranges of the electric field to pressure ratio E/p of interest in AMSGEMP. The algorithm contains a very detailed cross section set describing electron interactions with the background gas. The authors show that the delay in the attainment of the peak time independent ionization frequency (or ionization coefficient) may result in negligible ionization over times of interest. In any case the behavior is shown to behave much differently than in examples where limited cross section sets, common in currently employed predictive codes, are employed. In particular, the importance of momentum transfer is indicated. A critique of the scaling implications of the phenomena is made

  7. Use of Electronic Health Records and Administrative Data for Public Health Surveillance of Eye Health and Vision-Related Conditions

    Science.gov (United States)

    Elliott, Amanda; Davidson, Arthur; Lum, Flora; Chiang, Michael; Saaddine, Jinan B; Zhang, Xinzhi; Crews, John E.; Chou, Chiu-Fang

    2014-01-01

    Purpose To discuss the current trend toward greater use of electronic health records and how these records could enhance public health surveillance of eye health and vision-related conditions. Methods We describe three currently available sources of electronic health data (Kaiser Permanente, the Veterans Health Administration, and the Centers for Medicare & Medicaid Services) and how these sources can contribute to a comprehensive vision and eye health surveillance system. Results Each of the three sources of electronic health data can contribute meaningfully to a comprehensive vision and eye health surveillance system, but none currently provide all the information required. The use of electronic health records for vision and eye health surveillance has both advantages and disadvantages. Conclusions Electronic health records may provide additional information needed to create a comprehensive vision and eye health surveillance system. Recommendations for incorporating electronic health records into such a system are presented. PMID:23158225

  8. Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine

    Directory of Open Access Journals (Sweden)

    Alexandre eBastard

    2016-04-01

    Full Text Available The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation. The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol The results indicated that the biofilm culture of O. oeni conferred (i increased tolerance to wine stress, and (ii functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance.As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during malolactic fermentation and aging by decreasing furfural, gaiacol and eugenol in

  9. Cell inactivation studies on yeast cells under euoxic and hypoxic condition using electron beam from microtron accelerator

    International Nuclear Information System (INIS)

    Praveen Joseph; Santhosh Acharya; Ganesh Sanjeev; Narayana, Y.; Bhat, N.N.

    2011-01-01

    In the case of sparsely ionizing radiation such as electron, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, the differences in the cell survival efficiency and dose rate effect in diploid yeast strains Saccharomyces cerevisiae X2180 and Saccharomyces cerevisiae D7 under euoxic and hypoxic condition have been quantified. Irradiation was carried out using 8 MeV pulsed electron beam from Microtron accelerator. The dose per pulse and pulse width of the beam used was 0.6 Gy and 2.3 μs, respectively, which correspond to an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . For survival studies doses were delivered at a rate of 50 pulses per second (an average dose rate of 1,800 Gy s -1 ). Fricke and alanine dosimeters were used to measure the dose delivered to the sample. A significant difference in the dose response has been observed under euoxic and hypoxic condition. Dose rate effect has been studied by changing the pulse repetition rate of the Microtron and the dose rate used was from 180 to 1800 Gy min -1 . A significant dose rate effect was observed under euoxic condition for Saccharomyces cerevisiae X2180 but the same was absent under hypoxic condition. The dose rate effect was absent for Saccharomyces cerevisiae D7 under both irradiation condition. The survival curves are found to be sigmoidal in shape under both condition but with a wider shoulder under hypoxic condition. The D 0 value and the Oxygen Enhancement Ratio (OER) at that point have been derived. (author)

  10. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Lavaud, Johann; Wilhelm, Christian

    2016-05-01

    Alternative electron sinks are an important regulatory mechanism to dissipate excessively absorbed light energy particularly under fast changing dynamic light conditions. In diatoms, the cyclic electron transport (CET) around Photosystem II (PS II) is an alternative electron transport pathway (AET) that contributes to avoidance of overexcitation under high light illumination. The combination of nitrogen limitation and high-intensity irradiance regularly occurs under natural conditions and is expected to force the imbalance between light absorption and the metabolic use of light energy. The present study demonstrates that under N limitation, the amount of AET and the activity of CETPSII in the diatom Phaeodactylum tricornutum were increased. Thereby, the activity of CETPSII was linearly correlated with the amount of AET rates. It is concluded that CETPSII significantly contributes to AET in P. tricornutum. Surprisingly, CETPSII was found to be activated already at the end of the dark period under N-limited conditions. This coincided with a significantly increased degree of reduction of the plastoquinone (PQ) pool. The analysis of the macromolecular composition of cells of P. tricornutum under N-limited conditions revealed a carbon allocation in favor of carbohydrates during the light period and their degradation during the dark phase. A possible linkage between the activity of CETPSII and degree of reduction of the PQ pool on the one side and the macromolecular changes on the other is discussed.

  11. Versatile 0.5 TW electron beam facility for power conditioning studies of large rare-gas/halide lasers

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1980-01-01

    Rare-gas/halide lasers which are being developed for Inertial Confinement Fusion will require large area, low impedance electron beam drivers. A wide range of electron beam parameters are being considered for future systems in an effort to optimize the overall system design. A number of power conditioning issues must be investigated in order to obtain a better understanding of the various trade-offs involved in making such optimizations. The RAYITO electron beam accelerator is being designed and built at Sandia National Laboratories and will be used for such investigations. It will be capable of operating in either a 2 or 4 ohm configuration at 1 MV, 50 ns or 0.8 MV, 200 ns. Design details for RAYITO are presented in this paper. Experiments planned for this facility are also discussed

  12. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking

    Directory of Open Access Journals (Sweden)

    Orozco Helena

    2013-01-01

    Full Text Available Abstract Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS, while glycerol extends it. Results Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Conclusions Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins and posttranscriptional (i.e., mRNA binding protein Pub1 levels allows to modulate yeast life span during its biotechnological use. Due to

  13. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  14. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  15. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  16. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  17. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Silicon passivation study under low energy electron irradiation conditions

    International Nuclear Information System (INIS)

    Cluzel, R.

    2010-01-01

    Backside illuminated thinned CMOS (Complementary Metal Oxide Semiconductor) imaging system is a technology developed to increase the signal to noise ratio and the sensibility of such sensors. This configuration is adapted to the electrons detection from the energy range of [1 - 12 keV]. The impinging electron creates by multiplication several hundreds of secondary electrons close to the surface. A P ++ highly-doped passivation layer of the rear face is required to reduce the secondary electron surface recombination rate. Thanks to the potential barrier induced by the P ++ layer, the passivation layer increases the collected charges number and so the sensor collection gain. The goal of this study is to develop some experimental methods in order to determine the effect of six different passivation processes on the collection gain. Beforehand, the energy profile deposited by an incident electron is studied with the combination of Monte-Carlo simulations and some analytical calculations. The final collection gain model shows that the mirror effect from the passivation layer is a key factor at high energies whereas the passivation layer has to be as thin as possible at low energies. A first experimental setup which consists in irradiating P ++ /N large diodes allows to study the passivation process impacts on the surface recombinations. Thanks to a second setup based on a single event upset directly on thinned CMOS sensor, passivation techniques are discriminated in term of mirror effect and the implied spreading charges. The doping atoms activation laser annealing is turn out to be a multiplication gain inhomogeneity source impacting directly the matrix uniformity. (author)

  19. Performance of the Fuel Conditioning Facility electronic in-cell mass balances

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1996-01-01

    An approach to error estimation and measurement control in the analysis of the balance measurements of mass standards on the in-cell electronic mass balances of the Fuel Conditioning Facility is presented. In light of measurement data from one year of operation, the algorithms proposed are evaluated. The need to take into account the effects of facility operations on the estimates of measurement uncertainty is demonstrated. In the case of a newly installed balance, where no historical data exists, an ad hoc procedure of adding a term which takes into account the operational variability is proposed. This procedure allows a sufficiently long operation so as to collect data for the estimate of the contribution of operational effects to the uncertainty estimate. An algorithm for systematically taking into account historical data is developed and demonstrated for two balances over two calibration periods. The algorithm, both asymptotically and in the two samples cases, has the necessary desirable properties for estimating the uncertainty in the measurements of the balances

  20. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    Science.gov (United States)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  1. Investment in Electronic Commerce: Financial Perspectives and Profit Conditions

    OpenAIRE

    Bergendahl, Göran

    2002-01-01

    Electronic Commerce ("eCommerce") is a concept for trade based upon products and services that are being marketed, contracted, and paid for over the Internet. Consequently, electronic commerce demands for the investment in computer systems, marketing, logistics and payments. This paper will focus on the profitability of investments in eCommerce with a special focus on outlays for information technology systems and sales management. If the services are made more standardized, if they do not ch...

  2. Regional innovative and investment processes analysis and their impact on food-industry wine-producing enterprises development in Odessa region

    Directory of Open Access Journals (Sweden)

    Bondarenko Svitlana Аnatoliyivna

    2016-02-01

    Full Text Available The article deals with the study of state of winemaking sector, trends of innovative development of industrial enterprises of Ukraine and Odessa region are analyzed and based on this the characteristic patterns and main shortcomings are identified. The regional innovation and investment processes are anylyzed, the nature of its influence on development of wineries in food industry of Odessa region is identified. It is proved that the regulatory impact on development of viticulture and wine-making should focus on conditions and behavior of industry enterprises and directly or indirectly affect the efficiency of its business processes. One of management tools of socio-economic development of regions is regulation of innovation and investment processes, strict control over the use of targeted funds for program solving of region develoment priorities.

  3. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  4. STRATEGIC DIRECTIONS IMPROVING THE MANAGEMENT OF MARKETING IN WINERIES OF CRIMEAN REGION

    Directory of Open Access Journals (Sweden)

    Michael Dementiev

    2015-10-01

    Full Text Available The article considers the issues of analyzing market environment and assess the current and strategic competitiveness of winemaking enterprises of Crimea region. On the basis of the conducted analysis, the grouping of winemaking enterprises on the level of potential use of the capabilities of the environment, as well as the proposed strategy for the development of wine-making enterprises of the Crimean region-based matching to realize the potential of market environment and competitive advantages of regional production.

  5. Maturation curves of ‘Tannat’ grape (Vitis vinifera L. for red winemaking/ Curvas de maturação da uva ‘Tannat’ (Vitis vinifera L. para a elaboração de vinho tinto

    Directory of Open Access Journals (Sweden)

    Werner Genta

    2004-05-01

    Full Text Available The objetive of this research was to characterize the maturation of ‘Tannat’ grape (Vitis vinifera L. produced in the northwest of Parana state, for red winemaking. The experimental area was established in a commercial vineyard of Vinícola Intervin®, Maringá, PR. The vineyard was planted in August of 2000 and the vines were trained in a pergola system, in a 4.0 x 1.0 m spacing, budded on ‘IAC 766 Campinas’ rootstock. The evaluations started from the winter pruning of 2003. The random design was used as the statistical model with 20 replications and each plot was composed by one tree. The maturation curves of ‘Tannat’ grape were determined through chemical characteristic analysis of berries, such as total soluble solids (TSS, titratable acidity (TA and maturation index (TSS/TA, which were evaluated weekly from early ripening to 7 days after harvest, processing 300 berries per sampling. Through regression analysis, the performance of these chemical characteristics was evaluated over time. It was possible to conclude that: the curves of TSS, TA and TSS/TA were well-fitted to the cubic model and; the ‘Tannat’ grape reached 21.20 oBrix, 1.04% of tartaric acid and 20.38 of maturation index during harvest, what indicates a good performance of this cultivar for red winemaking at the local condition.O trabalho teve como objetivo caracterizar a maturação da videira ‘Tannat’ (Vitis vinifera L. cultivada no norte do Estado do Paraná para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, no município de Maringá, PR. O vinhedo foi estabelecido em agosto de 2000 e as plantas foram conduzidas no sistema latada no espaçamento de 4,0 m x 1,5 m, enxertadas sobre o porta-enxerto ‘IAC 766 Campinas’. As avaliações tiveram início a partir da poda de produção, realizada no fim do inverno de 2003. O delineamento experimental foi o inteiramente

  6. Formation conditions for electron internal transport barriers in JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Fukuda, T [Osaka University, Suita, Osaka 565-0871 (Japan); Sakamoto, Y [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ide, S [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Suzuki, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Takenaga, H [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ida, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Idei, H [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shimozuma, T [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fujisawa, A [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohdachi, S [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Toi, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2004-05-01

    The formation of electron internal transport barriers (ITBs) was studied using electron cyclotron (EC) heating in JT-60U positive shear (PS) and reversed shear (RS) plasmas with scan of neutral beam (NB) power. With no or low values of NB power and with a small radial electric field (E{sub r}) gradient, a strong, box-type electron ITB was formed in RS plasmas while a peaked profile with no strong electron ITBs was observed in PS plasmas within the available EC power. When the NB power and the E{sub r} gradient were increased, the electron transport in strong electron ITBs with EC heating in RS plasmas was not affected, while electron thermal diffusivity was reduced in conjunction with the reduction of ion thermal diffusivity, and strong electron and ion ITBs were formed in PS plasmas.

  7. Screening conditions in a magnetized plasma with electron beam, with application to ripple trapped electron losses

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E.; Heuraux, S. [Nancy-1 Univ. Henri Poincare, LPMIA, UMR CNRS 7040, 54 (France); Colas, L.; Saint-Laurent, F.; Martin, G.; Basiuk, V. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    In Tore Supra, electrons are accelerated by lower hybrid waves in the direction parallel to the confinement magnetic field, in order to drive non-inductive current. But electrons have also on increase of their perpendicular velocity, then 10% of the most energetic electrons get trapped in the magnetic ripple between 2 adjacent toroidal coils, thus forming a beam. The electron beam follows a banana trajectory, the 20 mm wide protection represented by a cooled copper tube is assumed to protect the VP entrance from this energetic flux. Nevertheless, this beam is able to go beyond the copper tube and creates a hot spot on the steel panel edge able to melt the metal. Heat fluxes deposition on the vertical port (VP) can be understood with a beam+sheath theory including the fact that the sheaths can be obstructed when their length becomes greater than flux tube length. By this way, we identify 4 deposition regimes: 2 free sheath regimes and 2 obstructed sheath regimes. Beam flux deposits either at the entrance of the VP along first 2 cm behind the copper tube or until the end of the VP when beam flux is high and for free sheath. Obstructed sheaths make the repulsive, potential for electrons decrease and so accelerate the flux deposition. (authors)

  8. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

    Science.gov (United States)

    Vallejo, Beatriz; Picazo, Cecilia; Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2017-09-29

    Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, which may explain these phenotypes. The GCN2 kinase mutant is hypersensitive to GA. Hence the control of translation and amino acid biosynthesis is required to also deal with the damaging effects of this pesticide. A global metabolomics analysis under winemaking conditions indicated that an increase in amino acid and in polyamines occurred. In conclusion, GA affects many different biochemical processes during winemaking, which provides us with some insights into both the effect of this herbicide on yeast physiology and into the relevance of the metabolic step for connecting nitrogen and carbon metabolism.

  9. 27 CFR 24.125 - Change in proprietorship.

    Science.gov (United States)

    2010-04-01

    ... provided in § 24.127, adopt the approved formulas of the outgoing proprietor. Wine, spirits, and winemaking... wine and spirits on hand, including use of any cellar treatment necessary to put the wine in merchantable condition, who does not intend to produce wine, or use spirits, or receive wine in bond may be...

  10. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  11. Effect of beam condition in variable-shaped electron-beam direct writing for 0.25 μm and below

    International Nuclear Information System (INIS)

    Hirasawa, S.; Nakajima, K.; Tamura, T.; Aizaki, N.

    1993-01-01

    The effect of incident electron-beam conditions, which are acceleration voltage and beam blur of variable-shaped electron-beam direct writing, is investigated using the deposited energy distribution to realize a fine pattern of ≤0.25 μm in trilayer resist process. The deposited energy distribution is calculated using a three-dimensional Monte Carlo method. In a trilayer resist system, a thin bottom resist layer can be used, because the contrast value derived from the Monte Carlo calculation is independent of the bottom layer thickness. The beam blur of 0.05 μm does not degrade 0.25 μm line-and-space (L/S) patterns, but seriously degrades 0.1 μm L/S patterns. Higher acceleration voltage is effective for improving the contrast. At lower acceleration voltage, the slope of the deposited energy profile defined at the resist bottom is mainly influenced by electron scattering. On the other hand, at higher acceleration voltage, the slope of deposited energy profile mainly depends on the beam blur. The 0.1 μm L/S patterns are expected to be resolved at 30 kV when there is less than 0.02 μm beam blur with trilayer resist system. The possibility of using a single layer resist process for 0.1 μm L/S pattern will be barely realized at the conditions of 50 kV and 0.02 μm beam blur

  12. Electron beam effects on VLSI MOS conditions for testing and reconfiguration

    International Nuclear Information System (INIS)

    Girard, P.; Roche, F.M.; Pistoulet, B.

    1986-01-01

    Wafer scale integrated-MOS circuits problems related to test and reconfiguration by electron beams are analyzed. First of all the alterations in characteristics of MOS circuits submitted to an electron beam testing are considered. Then the capabilities of reconfiguration by an electron beam bombardment are discussed. The various phenomena involved are reviewed. Experimental data are reported and discussed on the light of data of the literature. (Auth.)

  13. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    International Nuclear Information System (INIS)

    Wei Wei; Ding Bo-Jiang; Li Miao-Hui; Zhang Xin-Jun; Wang Xiao-Jie; Peysson, Y; Decker, J; Zhang Lei

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N ∥ ) are presented and discussed. (paper)

  14. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    Science.gov (United States)

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.

  15. Comparison between particulate matter and ultrafine particle emission by electronic and normal cigarettes in real-life conditions.

    Science.gov (United States)

    Ruprecht, Ario Alberto; De Marco, Cinzia; Pozzi, Paolo; Munarini, Elena; Mazza, Roberto; Angellotti, Giorgia; Turla, Francesca; Boffi, Roberto

    2014-01-01

    Electronic cigarettes may be safer than conventional cigarettes as they generate less indoor pollution in terms of particulate matter (PM); however, recent findings in experimental conditions demonstrated that secondhand exposure to PM may be expected from e-cigarette smoking. The aim of the present study was to investigate the emission of PM generated by e-cigarettes and normal cigarettes under real-life conditions. Real-time measurement and comparison of PM and ultrafine particles (UFP) generated by electronic cigarettes with and without nicotine and by normal cigarettes in a 50 m3 office of an Italian comprehensive cancer center was performed. PM mass as PM1, PM2.5, PM7, PM10, total suspended particles (TSP) in μg/m³ and UFP in number of particles per cubic centimeter from 10 to 1,000 nanometers were measured. Outdoor concentrations were measured contemporaneously to compensate for urban background changes. Regardless of their nicotine content, e-cigarettes generated lower PM levels than conventional cigarettes. Notably, nicotine-enriched e-cigarettes produced lower PM levels than their nicotine-free counterparts. E-cigarettes appear to generate less indoor pollution than normal cigarettes and may therefore be safer. Further studies are required to investigate the long-term health-related effects of secondhand e-cigarette exposure.

  16. Basic Conditions of Validity of Electronic Contracts in Iran and UNCITRAL Model Law

    Directory of Open Access Journals (Sweden)

    Abbas Karimi

    2017-02-01

    Full Text Available Diverse activities such as electronic exchange of goods and services, instant digital content delivery, electronic funds transfer, electronic stock exchange, electronic bill of lading, commercial projects, common engineering and design, sourcing, government purchase, direct marketing and post-sales services included in e-commerce field.  Due to the increasing spread of the electronic world in all aspects, electronic contracts, in turn, was of great importance and made significant contributions in business contracts. The present study aims to investigate the concept, fundamentals and history of electronic contracts referring to UNCITRAL Model Law on Electronic Commerce and Electronic Commerce Act (1996. The results indicate that in terms of the conclusion and obligations of the parties, contract in cyberspace in general is similar to the contract in the real world and in this respect, there is no major difference between these two contexts. Potential electronic contracts considered as written ones and Electronic signatures recognized as valid as the basis of the validity of the will in electronic trading.

  17. Asymptotic coulombic conditions in the electron capture process

    International Nuclear Information System (INIS)

    Corchs, S.E.; Maidagan, J.M.; Rivarola, R.D.

    1990-01-01

    Several first order perturbative approximations of the transition amplitude for electronic capture are studied. Different models in which the long range Coulomb potential is represented by different internuclear dependent phases, in the initial and final wave functions, are analysed and compared. (Author). 8 refs., 2 figs

  18. Using Electronic Health Record Data to Measure Care Quality for Individuals with Multiple Chronic Medical Conditions.

    Science.gov (United States)

    Bayliss, Elizabeth A; McQuillan, Deanna B; Ellis, Jennifer L; Maciejewski, Matthew L; Zeng, Chan; Barton, Mary B; Boyd, Cynthia M; Fortin, Martin; Ling, Shari M; Tai-Seale, Ming; Ralston, James D; Ritchie, Christine S; Zulman, Donna M

    2016-09-01

    To inform the development of a data-driven measure of quality care for individuals with multiple chronic conditions (MCCs) derived from an electronic health record (EHR). Qualitative study using focus groups, interactive webinars, and a modified Delphi process. Research department within an integrated delivery system. The webinars and Delphi process included 17 experts in clinical geriatrics and primary care, health policy, quality assessment, health technology, and health system operations. The focus group included 10 individuals aged 70-87 with three to six chronic conditions selected from a random sample of individuals aged 65 and older with three or more chronic medical conditions. Through webinars and the focus group, input was solicited on constructs representing high-quality care for individuals with MCCs. A working list was created of potential measures representing these constructs. Using a modified Delphi process, experts rated the importance of each possible measure and the feasibility of implementing each measure using EHR data. High-priority constructs reflected processes rather than outcomes of care. High-priority constructs that were potentially feasible to measure included assessing physical function, depression screening, medication reconciliation, annual influenza vaccination, outreach after hospital admission, and documented advance directives. High-priority constructs that were less feasible to measure included goal setting and shared decision-making, identifying drug-drug interactions, assessing social support, timely communication with patients, and other aspects of good customer service. Lower-priority domains included pain assessment, continuity of care, and overuse of screening or laboratory testing. High-quality MCC care should be measured using meaningful process measures rather than outcomes. Although some care processes are currently extractable from electronic data, capturing others will require adapting and applying technology to

  19. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  20. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace

    DEFF Research Database (Denmark)

    Zietsman, Anscha J.J.; Moore, John P.; Fangel, Jonatan Ulrik

    2017-01-01

    Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall...... to a working model of the hitherto, poorly understood innermost xyloglucan-rich hemicellulose layers of unfermented grape pomace....

  1. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  2. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons.

    Science.gov (United States)

    Ballester, Facundo; Granero, Domingo; Pérez-Calatayud, José; Melhus, Christopher S; Rivard, Mark J

    2009-09-01

    The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides (60Co, 137CS, 192Ir, and 169Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source beta-, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the 192Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Electronic equilibrium within 1% is reached for 60Co, 137CS, 192Ir, and 169Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for 60Co and 192Ir, respectively. Electron emissions become important (i.e., > 0.5%) within 3.3 mm of 60Co and 1.7 mm of 192Ir sources, yet are negligible over all distances for 137Cs and 169Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  3. Use of electronic health records and administrative data for public health surveillance of eye health and vision-related conditions in the United States.

    Science.gov (United States)

    Elliott, Amanda F; Davidson, Arthur; Lum, Flora; Chiang, Michael F; Saaddine, Jinan B; Zhang, Xinzhi; Crews, John E; Chou, Chiu-Fang

    2012-12-01

    To discuss the current trend toward greater use of electronic health records and how these records could enhance public health surveillance of eye health and vision-related conditions. Perspective, comparing systems. We describe 3 currently available sources of electronic health data (Kaiser Permanente, the Veterans Health Administration, and the Centers for Medicare & Medicaid Services) and how these sources can contribute to a comprehensive vision and eye health surveillance system. Each of the 3 sources of electronic health data can contribute meaningfully to a comprehensive vision and eye health surveillance system, but none currently provide all the information required. The use of electronic health records for vision and eye health surveillance has both advantages and disadvantages. Electronic health records may provide additional information needed to create a comprehensive vision and eye health surveillance system. Recommendations for incorporating electronic health records into such a system are presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  5. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  6. Electronic Science Seminar

    Directory of Open Access Journals (Sweden)

    Geidarov P.Sh.

    2015-09-01

    Full Text Available The structure of electronic scientific seminar, which provides a high level of quality of the objectivity in the evaluation of scientific papers, including dissertations, is described. Conditions for the implementation of electronic scientific seminar are also considered.

  7. The study of optimal conditions of electrochemical etching of tunnel electron microscopy tungsten tips

    International Nuclear Information System (INIS)

    Anguiano, E.; Aguilar, M.; Olivar, A.I.

    1996-01-01

    We present the experimental results obtained during the study made in the electrochemical etching of tunneling electron microscopy tungsten tips. The experiments was made using DC and two usual electrolytes: KOH and NaOH. For the tip preparation we used a electrochemical cell with stainless steel cathode and the tungsten wire as anode. the electrodes was introduced in a glass recipient containing the electrolytic solution. We study the effects of applied voltage, polish time, tip length and electrolyte concentration as process relevant parameters. The best condition for tip preparation was obtained with a metallurgical microscope and with a SEM.EDX and Auger analysis was made. The results shown the better tips was made with KOH as electrolyte with a limited concentration range (2-4 normal) and applied voltage (2-6 volts) (Author) 20 refs

  8. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  9. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions

    Science.gov (United States)

    Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki

    2018-04-01

    In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.

  10. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    Science.gov (United States)

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  11. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  12. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  13. Electron sputtering in the analytical electron microscope: Calculations and experimental data

    International Nuclear Information System (INIS)

    Zaluzec, N.J.; Mansfield, J.F.

    1987-03-01

    The environment of the electron microscope is particularly severe when one considers the energy deposited in a specimen during typical experimental conditions. Conventional imaging experiments tend to employ electron current densities ranging from ∼0.1 to 1 A/cm 2 while during microanalysis conditions probe current densities can range from 10 to values as high as 10 5 A/cm 2 . At 100 kV this corresponds to power densities from 100 Kilowatts/cm 2 to 10 4 Megawatts/cm 2 . These energy deposition rates can result in electron irradiation damage which can substantially alter the structure and composition of a specimen through either ionization damage in organics or by displacement damage in inorganics and/or combinations thereof. For the most part materials scientists operating an analytical electron microscope (AEM) in the 100 to 200 kV regime studying metallic and/or ceramic specimens have been spared the need to consider either of these effects as their specimens have tended to be sufficiently resilient. However, the advent of the new medium voltage microscopes operating in the 300 to 400 kV regime with high brightness guns and clean or ultrahigh vacuum systems has necessitated a reevaluation of the effects of higher voltage operation in light of the destructive nature of the electron beam particularly under microanalysis conditions

  14. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  15. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Ruiz, J.; Cantarero, A. [Materials Science Institute, University of Valencia (Spain); Garro, N. [Materials Science Institute, University of Valencia (Spain); Fundacio General de la Universitat de Valencia, Valencia (Spain); Iikawa, F. [Instituto de Fisica ' ' Gleb Wataghin' ' , UNICAMP, Campinas-SP (Brazil); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany)

    2009-06-15

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    International Nuclear Information System (INIS)

    Segura-Ruiz, J.; Cantarero, A.; Garro, N.; Iikawa, F.; Denker, C.; Malindretos, J.; Rizzi, A.

    2009-01-01

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  18. Modelling Conditions and Health Care Processes in Electronic Health Records: An Application to Severe Mental Illness with the Clinical Practice Research Datalink.

    Science.gov (United States)

    Olier, Ivan; Springate, David A; Ashcroft, Darren M; Doran, Tim; Reeves, David; Planner, Claire; Reilly, Siobhan; Kontopantelis, Evangelos

    2016-01-01

    The use of Electronic Health Records databases for medical research has become mainstream. In the UK, increasing use of Primary Care Databases is largely driven by almost complete computerisation and uniform standards within the National Health Service. Electronic Health Records research often begins with the development of a list of clinical codes with which to identify cases with a specific condition. We present a methodology and accompanying Stata and R commands (pcdsearch/Rpcdsearch) to help researchers in this task. We present severe mental illness as an example. We used the Clinical Practice Research Datalink, a UK Primary Care Database in which clinical information is largely organised using Read codes, a hierarchical clinical coding system. Pcdsearch is used to identify potentially relevant clinical codes and/or product codes from word-stubs and code-stubs suggested by clinicians. The returned code-lists are reviewed and codes relevant to the condition of interest are selected. The final code-list is then used to identify patients. We identified 270 Read codes linked to SMI and used them to identify cases in the database. We observed that our approach identified cases that would have been missed with a simpler approach using SMI registers defined within the UK Quality and Outcomes Framework. We described a framework for researchers of Electronic Health Records databases, for identifying patients with a particular condition or matching certain clinical criteria. The method is invariant to coding system or database and can be used with SNOMED CT, ICD or other medical classification code-lists.

  19. Comparison of visual and electronic devices for individual identification of dromedary camels under different farming conditions.

    Science.gov (United States)

    Caja, G; Díaz-Medina, E; Salama, A A K; Salama, O A E; El-Shafie, M H; El-Metwaly, H A; Ayadi, M; Aljumaah, R S; Alshaikh, M A; Yahyahoui, M H; Seddik, M M; Hammadi, M; Khorchani, T; Amann, O; Cabrera, S

    2016-08-01

    The camel industry uses traditional (i.e., iron brands and ear tags) and modern (i.e., microchips) identification (ID) systems without having performance results of reference. Previously iron-branded ( = 45; 1 yr) and microchipped ( = 59; 7 yr) camels showed problems of healing (8.6% of brands) and reading (only 42.9% of brands and 69.5% of microchips were readable), which made their use inadvisable. With the aim of proposing suitable ID systems for different farming conditions, an on-field study was performed using a total of 528 dromedaries at 4 different locations (Egypt, = 83; Spain, = 304; Saudi Arabia, = 90; and Tunisia, = 51). The ID devices tested were visual (button ear tags, 28.5 mm diameter, = 178; double flag ear tags, 50 by 15 mm, = 83; both made of polyurethane) and electronic (ear tags, = 90, and rumen boluses, = 555). Electronic ear tags were polyurethane-loop type (75 by 9 mm) with a container in which a 22-mm transponder of full-duplex technology was lodged. Electronic boluses of 7 types, varying in dimensions (50 to 76 mm length, 11 to 21 mm width, and 12.7 to 82.1 g weight) and specific gravity (SG; 1.49 to 3.86) and each of them containing a 31-mm transponder of half-duplex technology, were all administered to the dromedaries at the beginning of the study. When a low-SG bolus was lost, a high-SG bolus was readministered. Readability rates of each ID system were evaluated during 1 to 3 yr, according to device and location, and yearly values were estimated for comparison. On a yearly basis, visual ear tag readability was not fully satisfactory; it was lower for rectangular ear tags (66.3%) than for button ear tags (80.9%). Yearly readability of electronic ear tags was 93.7%. Bolus readability dramatically varied according to their SG; the SG 3.0 boluses were efficiently retained (99.6 to 100%) at all locations. In conclusion, according to the expected long lifespan of camels, low ID performances were observed for iron brands, injectable

  20. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  1. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  2. “Terms and conditions of use” for journal articles and scholarly journals : A survey on the licensing processes associated with electronic scholarly materials

    Science.gov (United States)

    Hidaka, Masako

    Copyright policies and terms directly affect the approach taken by journal editors, authors and readers regarding dealing with of articles and/or copyrighted materials. However Japanese academic society publishers have some trouble in licensing processes for copyrighted materials as previous studies pointed out. In 2011 we conducted a survey on “terms and conditions of use” of electronic journal and the licensing practices associated with electronic scholarly materials. The survey showed commercial publishers have enough announcements on reuse of copyrighted materials for readers. On the other hand Japanese academic societies' cares for readers tend to not enough. They publish journals both in Japanese and in English. Subsequently, English and Japanese templates of “terms and conditions of use” for Japanese academic society publishers were proposed. The templates were developed based on an understanding of the International Association of Scientific, Technical and Medical Publishers' “STM Permissions Guidelines,” which were designed to establish a standard and reasonable approach to granting permission for republication to all signatory publishers.The survey showed that Japanese academic society publishers and commercial publishers are facing the same issues regarding acceptable use of electronic supplemental materials for journal articles. This issue remains to be solved.

  3. New Electron Cyclotron Emission Diagnostic Based Upon the Electron Bernstein Wave

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Hosea, J.C.; Kaita, R.; Majeski, R.; Taylor, G.

    1999-01-01

    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices

  4. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine.

    Science.gov (United States)

    Lorenzo, C; Bordiga, M; Pérez-Álvarez, E P; Travaglia, F; Arlorio, M; Salinas, M R; Coïsson, J D; Garde-Cerdán, T

    2017-09-01

    The aim was to study how factors such as temperature, alcoholic degree, and amino acids supplementation are able to influence the content of tyramine, histamine, 2-phenylethylamine, tryptamine and their precursor amino acids in winemaking process. Biogenic amines and amino acids were quantified at the beginning, middle and end of alcoholic fermentation, and at the end of malolactic fermentation. In general, samples produced with amino acid supplementation did not show the highest concentrations of biogenic amines, except for histamine, which content increased with the addition of the four amino acids. The synthesis of tyramine was mainly affected by the temperature and alcoholic degree, the formation of phenylethylamine was largely influenced by alcoholic degree, and tryptamine synthesis principally depended on temperature. Interestingly, there was interaction between these three factors for the biogenic amines studied. In conclusion, winemaking conditions should be established depending on the biogenic amine which synthesis is required to be controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.

    Science.gov (United States)

    Pérez-Través, Laura; Querol, Amparo; Pérez-Torrado, Roberto

    2016-11-21

    Several wine quality aspects are influenced by yeast mannoproteins on account of aroma compounds retention, lactic-acid bacterial growth stimulation, protection against protein haze and astringency reduction. Thus selecting a yeast strain that produces high levels of mannoproteins is important for the winemaking industry. In this work, we observed increased levels of mannoproteins in S. cerevisiae×S. kudriavzevii hybrids, compared to the S. cerevisiae strain, in wine fermentations. Furthermore, the expression of a key gene related to mannoproteins biosynthesis, PMT1, increased in the S. cerevisiae×S. kudriavzevii hybrid. We showed that artificially constructed S. cerevisiae×S. kudriavzevii hybrids also increased the levels of mannoproteins. This work demonstrates that either natural or artificial S. cerevisiae×S. kudriavzevii hybrids present mannoprotein overproducing capacity under winemaking conditions, a desirable physiological feature for this industry. These results suggest that genome interaction in hybrids generates a physiological environment that enhances the release of mannoproteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Production of accelerated electrons near an electron source in the plasma resonance region

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    1989-01-01

    Conditions of generation of plasma electrons accelerated and their characteristics in the vicinity of an electron source are determined. The electron source isolated electrically with infinitely conducting surface, being in unrestricted collisionless plasma ω 0 >>ν, where ω 0 - plasma frequency of nonperturbated plasma, ν - frequency of plasma electron collisions with other plasma particles, is considered. Spherically symmetric injection of electrons, which rates are simulated by ω frequency, occurs from the source surface. When describing phenomena in the vicinity of the electron source, one proceeds from the quasihydrodynamic equation set

  7. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  8. Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions

    NARCIS (Netherlands)

    Prater, R.; Farina, D.; Gribov, Y.; Harvey, R. W.; Ram, A. K.; Lin-Liu, Y. R.; Poli, E.; Smirnov, A. P.; Volpe, F.; Westerhof, E.; Zvonkovo, A.

    2008-01-01

    Optimal design and use of electron cyclotron heating requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories

  9. The effect of root surface conditioning on smear layer removal in periodontal regeneration (a scanning electron microscopic study)

    Science.gov (United States)

    Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.

    2017-08-01

    The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.

  10. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  11. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Science.gov (United States)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  12. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  13. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  14. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  15. Use of Electronic Nicotine Delivery Systems among Adults with Mental Health Conditions, 2015

    Directory of Open Access Journals (Sweden)

    Claire Adams Spears

    2016-12-01

    Full Text Available Adults with mental health conditions (MHC are especially likely to smoke and experience tobacco-related health disparities. Individuals with MHC may also use electronic nicotine delivery devices (ENDS at disproportionately high rates. However, there is a relative dearth of knowledge regarding ENDS use among individuals with MHC. In a large representative sample of U.S. adults (n = 6051, associations between self-reported MHC diagnoses and ENDS use and susceptibility were examined, stratified by smoking status. Participants with MHC were approximately 1.5 times more likely to have used ENDS in their lifetime and almost twice as likely to currently use ENDS as those without MHC. MHC status was most strongly linked to higher ENDS use among former smokers, and former smokers with MHC were more likely to report using ENDS during past smoking quit attempts than those without MHC. Among participants who had not tried ENDS, former smokers with MHC were especially susceptible to future ENDS use. The potential advantage of ENDS for cessation purposes should be balanced with the risk of attracting former smokers with MHC to ENDS.

  16. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    Science.gov (United States)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  17. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    Science.gov (United States)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  18. Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions

    DEFF Research Database (Denmark)

    Power, Stephen; Thomsen, Morten Rishøj; Jauho, Antti-Pekka

    2017-01-01

    exceptional control of electron behavior, but it is hindered by the requirement to maintain ballistic transport over large length scales. Recent experiments have overcome this obstacle and observed distinct magnetoresistance commensurability peaks for perforated graphene sheets (antidot lattices...

  19. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  20. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    International Nuclear Information System (INIS)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2014-01-01

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  1. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  2. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-02-17

    ...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...

  3. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  4. Dose-dependent high-resolution electron ptychography

    International Nuclear Information System (INIS)

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-01-01

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed

  5. Proton-coupled electron transfer promotes the reduction of ferrylmyoglobin by uric acid under physiological conditions

    DEFF Research Database (Denmark)

    de Zawadzki, Andressa; Cardoso, Daniel R.; Skibsted, Leif Horsfelt

    2017-01-01

    The hypervalent muscle pigment ferrylmyoglobin, MbFe(IV)]O, is not reduced by urate monoanions at physiological conditions despite a strong driving force of around 30 kJ mol1 while for low pH, uric acid was found to reduce protonated ferrylmyoglobin, MbFe(IV)]O,H+, efficiently in a bimolecular...... reaction with k1 ¼ 1.1 0.1 103 L mol1 s1, DH‡ ¼ 66.1 0.1 kJ mol1 and DS‡ ¼ 35.2 0.2 J mol1 K1. For intermediate pH, like for anaerobic muscles and for meat, proton-oupled electron transfer occurs in a transition state, {MbFe(IV)]O/H+/urate}‡, which is concluded to be formed from uric acid and Mb...... in uric acid concentration may serve as an inherent protection against radical formation by ferrylmyoglobin...

  6. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Science.gov (United States)

    2011-03-18

    ... electronic flight control system. The applicable airworthiness regulations do not contain adequate or...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This system provides an electronic interface between the pilot's flight controls and the flight control...

  7. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, M., E-mail: maria.hempel@desy.de [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); DESY, Zeuthen 15738 (Germany); Afanaciev, K. [NCPHEP, Minsk 220040 (Belarus); Burtowy, P.; Dabrowski, A. [CERN, Geneva 1211 (Switzerland); Henschel, H. [DESY, Zeuthen 15738 (Germany); Idzik, M. [AGH University of Science and Technology, Cracow 30-059 (Poland); Karacheban, O. [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); Lange, W.; Leonard, J. [DESY, Zeuthen 15738 (Germany); Levy, I. [Tel Aviv University, Tel Aviv 6997801 (Israel); Lohmann, W. [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); DESY, Zeuthen 15738 (Germany); Pollak, B. [Northwestern University, Evanston, IL 60208 (United States); Przyborowski, D. [AGH University of Science and Technology, Cracow 30-059 (Poland); Ryjov, V. [CERN, Geneva 1211 (Switzerland); Schuwalow, S. [DESY, Zeuthen 15738 (Germany); Stickland, D. [Princeton University, Princeton, NJ 08544 (United States); Walsh, R. [DESY, Zeuthen 15738 (Germany); Zagozdzinska, A. [CERN, Geneva 1211 (Switzerland)

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  8. Superconductivity and the magnetic electron bond

    International Nuclear Information System (INIS)

    Szurek, P.

    1989-01-01

    The concept of the magnetic electron bond as the fundamental characteristic of superconductivity was first introduced during a presentation at the 1988 Winter Annual Meeting of the American Society of Mechanical Engineers. Postulates describing the role of the electron and the magnetic bond were suggested to explain in a consistent manner known observations. What may becoming clear is that a boundary set of conditions may exist above and below the transition temperature at which a material superconducts. Prior to recent history, scientists have concentrated on postulating, experimenting, and learning about the set of conditions that exist above the transition temperature, which has set the standard for todays quantum theory. Above the transition temperature they have learned about the interrelationships that exist between the electron, a small magnetic and negatively charged body, and the nucleus, a large positively charged body. By grouping common general characteristics due to the interaction between the outer shell electrons and the nucleus of different elements, three bond types have been established, covalent, ionic, and metallic. They may now be in the process of determining those conditions that lie below the transition temperature, a realm where charge effects may no longer dominate magnetic effects. This may involve updating the quantum theory to reflect those conditions that exist above and below the transition temperature. The following discussion reviews, updates, and attempts to answer some preliminary questions regarding postulates that may define some of the conditions that lie below the transition temperature. As an introduction, figure 1 depicts what may occur to loosely held outer shell electrons below the transition temperature due to increased inner electron shielding. 7 refs., 9 figs

  9. Multidisciplinary investigation of identity of the “Areni” grape variety

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Nelli

    2015-01-01

    Full Text Available Having centuries-old tradition in viticulture and winemaking Armenia characterized with high ampelographic diversity of grape local autochthonous and modern cultivars. Meantime, the world's earliest known wine-making facility has been discovered during the excavation of Areni-1 cave dating back to 6000 years (the beginning of the IV Millennium BCE. In parallel, among huge diversity of wine grapes the so called “Areni” variety is one of the most famous, used for red wine production by majority of the winemaking companies and local farms nowadays. A combination of genetic, ampelographic and archaeological data allows us to come to preliminary conclusion that as a true to type “Sev (Black Areni” variety can be considered the one which is growing in old “Vankapatkan” vineyards of Vayots Dzor and in grape collection of the Scientific Center of Fruit Growing, Viticulture and Wine-making in Armenia (accession N42. The “Seyrak Areni” (70 should not be considered as a synonym of “Sev (Black Areni”. In this study we tried to highlight also the importance of combination of the generated data from ancient and modern grape multidisciplinary investigations.

  10. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  11. The electron-atom ionization problem

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1995-02-01

    Methods of calculating electron-atom ionization as a three-body problem with Coulomb boundary conditions are considered. In the absence of a fully-valid computational method for a time-independent experiment the approximation is made that the incident electron experiences a screened potential. Approximations involving a final state that obeys the three-body Coulomb boundary condition are compared with the distorted-wave Born approximation and the convergent close-coupling method. 24 refs., 6 figs

  12. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  13. Examining Big Brother's Purpose for Using Electronic Performance Monitoring

    Science.gov (United States)

    Bartels, Lynn K.; Nordstrom, Cynthia R.

    2012-01-01

    We examined whether the reason offered for electronic performance monitoring (EPM) influenced participants' performance, stress, motivation, and satisfaction. Participants performed a data-entry task in one of five experimental conditions. In one condition, participants were not electronically monitored. In the remaining conditions, participants…

  14. Classic romance in electronic arrangement

    Directory of Open Access Journals (Sweden)

    Kizin M.M.

    2017-03-01

    Full Text Available this article analyses the transformation of the performing arts of classical romance in the terms of electronic sound and performance via electronic sounds arrangements. The author focuses on the problem of synthesis of electronic sound arrangements and classical romance, offering to acquire the skills of the creative process in constantly changing conditions of live performances.

  15. Gastronomy and Wines in the Alentejo Portuguese Region: Motivation and Satisfaction of Tourists from Évora

    OpenAIRE

    Amaral, Rui; Saraiva, Margarida; Rocha, Susana

    2016-01-01

    Abstract: Food and winemaking are a recognized tangible and intangible cultural heritage of Portugal. From the relationship between these two components, a strategic product emerged with a considerable potential for tourism industry, which is not ignored by many of tourism organizations. This chapter intends to analyze food and winemaking from a tourism demand perspective. Particularly, this study describes visitors’ profile, including, their motivations, their knowledge about ...

  16. Effect of multipactor conditioning on technical electrode surfaces

    International Nuclear Information System (INIS)

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-01-01

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E 1 , the minimum energy for the secondary electron coefficient, δ>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  17. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  18. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. Copyright © 2014. Published by Elsevier B.V.

  19. A scanning electron microscopic study of the patterns of external root resorption under different conditions

    Directory of Open Access Journals (Sweden)

    Ravindran Sreeja

    2009-10-01

    Full Text Available OBJECTIVE: The aim of this study was to examine if there are qualitative differences in the appearance of external root resorption patterns of primary teeth undergoing physiologic resorption and permanent teeth undergoing pathological root resorption in different conditions. MATERIAL AND METHODS: A total of 40 teeth undergoing external root resorption in different conditions were divided into 4 groups and prepared for examination under scanning electron microscopy at magnifications ranging from 20x to 1000x. Group I: 10 primary molars exfoliated due to physiologic root resorption; Group II: 10 permanent teeth with periapical granulomas showing signs of resorption; Group III:10 permanent teeth therapeutically extracted during the course of orthodontic therapy with evidence of resorption, and Group IV: 10 permanent teeth associated with odontogenic tumors that showed evidence of resorption. RESULTS: In Group I, the primary teeth undergoing resorption showed smooth extensive and predominantly regular areas reflecting the slow ongoing physiologic process. In Group II, the teeth with periapical granulomas showed the resorption was localized to apex with a funnel shaped appearance in most cases. Teeth in Group III, which had been subjected to a short period of light orthodontic force, showed the presence of numerous resorption craters with adjoining areas of cemental repair in some cases. Teeth associated with odontogenic tumors in Group IV showed many variations in the patterns of resorption with extensive loss of root length and a sharp cut appearance of the root in most cases. CONCLUSION: Differences were observed in the patterns of external root resorption among the studied groups of primary and permanent teeth under physiologic and pathological conditions.

  20. Effect of cluster sun exposure on chemical composition and technological properties of grapes and wine from cultivars Cabernet sauvignon and mavrud

    International Nuclear Information System (INIS)

    Bambalov, V.; Rijchev, V.; Botyanski, P.

    2005-01-01

    A study was conducted on the effect of direct solar radiation on grape clusters of cvs Cabernet sauvignon and Mavrid, formed under four different microclimatic conditions: Vo- control; V1 - clusters exposed naturally to direct sunlight; V2 - clusters formed under natural shading; V3 - clusters formed under artificial shading.The positive impact of direct solar radiation on the formation of wine structure, character and body indicated the primary role of agrotechnical practices for ensuring better sunlight exposure of clusters and microclimatic conditions to enable the production of good wine-making materials

  1. Architecture of the upgraded BCM1F Backend Electronics for Beam Conditions and Luminosity measurement - hardware and firmware

    CERN Document Server

    Zagozdzinska, Agnieszka Anna; Przyborowski, D.; Leonard, J.L.; Pozniak, K.T.; Miraglia, M.; Walsh, R.; Lange, W.; Lohmann, W.; Ryjov, V.

    2015-01-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. Data in the form of histograms is transmitted to the DAQ. The system architecture and the signal processing algorithms will be presented.SummaryThe Fast Beam Conditions Monitor (BCM1F) detector is a part of the CMS Beam Radiation Instrumentation and Luminosity Project (BRIL). The increased performance expected of the LHC with energy of up to 14 TeV, higher luminosity and 25 ns bunch spacing is a challenge for the detector systems and increase the importance of real-time beam monitoring at ...

  2. Non-Maxwellian electron velocity distribution as a result of electron-attachment collisions in ionized gases

    International Nuclear Information System (INIS)

    Schmidt, R.; Stiller, W.

    1981-01-01

    The effects of electron-attachment collisions on the velocity distribution of electrons is studied on the basis of Boltzmann kinetic equations governing the energetic balance of electrons (e), atoms of a carrier gas (c), and SF 6 -molecules (m) capturing electrons. Under the assumption that 1) the densities of the particles fulfill the conditions nsub(e) << nsub(c), nsub(m), nsub(m) << nsub(c), and that 2) only the electron-attachment process is in competition with the elastic collision process between electrons and the atoms of the carrier gas, the time behaviour of the energetic balance of the electrons is investigated. The calculations lead to non-Maxwellian forms of the electron velocity distribution changing the mean electron energy. (author)

  3. Electron-molecule interactions and their applications

    CERN Document Server

    Christophorou, L G

    1984-01-01

    Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar proc

  4. THE CHEMICAL COMPOSITION ASSESSMENT OF THE FETEASCĂ NEAGRĂ GRAPE POMACE AND ITS FRACTIONS OBTAINED FROM WINE INDUSTRY IN DIFFERENT YEARS

    Directory of Open Access Journals (Sweden)

    Pascariu Mariana Silvia

    2015-12-01

    Full Text Available The aim of the hereby study was to analyze and to compare the chemical content of the grape pomace and its fractions: skins and seeds from the red grape variety Fetească neagră (from Iași area, obtained in different years 2013 and 2014 respectively, from the winemaking process. Measurements targeted the dry matter content (DM%, organic matter (OM%, crude ash (CA%, crude protein (CP%, crude fat (EE%, crude fiber (CF%, neazotate extractive substances (SEN%, total polyphenols (TP% and tannins (Ta%. The results obtained showed significant differences in the chemical composition in favour of the grape pomace obtained in the 2014 climatic conditions: in the case of the seed for the content of DM%, SEN%, TP% and Ta%, in the case of the skins for the content of DM%, OM%, CF%, TP%, Ta% and in the case of the grape pomace for the content of DM%, OM%, CF%, SEN%, TP%, and Ta%. Comparative analysis of the chemical composition showed an annual variation of the chemical components, which may be due to climatic conditions and winemaking process. Therefore, an annual chemical quality assessment of the grape pomace is necessary, for the efficient use in the animal feed.

  5. Overview of humidity driven reliability issues of electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together w...

  6. Real-space mapping of electronic orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, Stefan, E-mail: stefan.loeffler@tuwien.ac.at [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Bugnet, Matthieu; Gauquelin, Nicolas [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Lazar, Sorin [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Assmann, Elias; Held, Karsten [Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Botton, Gianluigi A. [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Schattschneider, Peter [University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria)

    2017-06-15

    Highlights: • Electronic orbitals in Rutile are mapped using STEM-EELS. • Inelastic scattering simulations are performed for the experimental conditions. • The experiments and the simulations are found to be in excellent agreement. - Abstract: Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO{sub 2}) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.

  7. Survey of conditions for artificial aurora experiments by the second electron gyro-harmonic at EISCAT Tromsø using dynasonde data

    Science.gov (United States)

    Tsuda, T. T.; Rietveld, M. T.; Kosch, M. J.; Oyama, S.; Ogawa, Y.; Hosokawa, K.; Nozawa, S.; Kawabata, T.; Mizuno, A.

    2018-06-01

    We report a brief survey of matching conditions for artificial aurora optical experiments utilizing the second electron gyro-harmonic (2.7-MHz frequency) in F region heating with O-mode at the EISCAT Tromsø site using dynasonde data from 2000 to 2017. Our survey indicates the following: The possible conditions for successful artificial aurora experiments are concentrated on twilight hours in both evening and morning, compared with late night hours; the possible conditions appear in fall, winter, and spring, while there is no chance in summer, and the month-to-month variation among fall, winter, and spring is not so clear; the year-to-year variation is well correlated with the solar activity. These characteristics in the case of 2.7-MHz frequency are basically similar to those previously reported in the case of 4-MHz frequency. However, the number of days meeting the possible condition in the case of 2.7-MHz frequency is obviously large, compared with that in the case of 4-MHz frequency. In particular, unlike the 4-MHz frequency operation, the 2.7-MHz frequency operation can provide many chances for successful artificial aurora experiments even during the solar minimum.

  8. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh.

    2012-01-01

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude ∼90 and ∼250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within ∼200 ps of a corona discharge at high rate of rise of the voltage (∼5 x 10 14 V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  9. Study of runaway electrons using the conditional average sampling method in the Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B., E-mail: bpourshahab@gmail.com [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies (Iran, Islamic Republic of); Sadighzadeh, A. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of); Abdi, M. R., E-mail: r.abdi@phys.ui.ac.ir [University of Isfahan, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Rasouli, C. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of)

    2017-03-15

    Some experiments for studying the runaway electron (RE) effects have been performed using the poloidal magnetic probes system installed around the plasma column in the Damavand tokamak. In these experiments, the so-called runaway-dominated discharges were considered in which the main part of the plasma current is carried by REs. The induced magnetic effects on the poloidal pickup coils signals are observed simultaneously with the Parail–Pogutse instability moments for REs and hard X-ray bursts. The output signals of all diagnostic systems enter the data acquisition system with 2 Msample/(s channel) sampling rate. The temporal evolution of the diagnostic signals is analyzed by the conditional average sampling (CAS) technique. The CASed profiles indicate RE collisions with the high-field-side plasma facing components at the instability moments. The investigation has been carried out for two discharge modes—low-toroidal-field (LTF) and high-toroidal-field (HTF) ones—related to both up and down limits of the toroidal magnetic field in the Damavand tokamak and their comparison has shown that the RE confinement is better in HTF discharges.

  10. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    Energy Technology Data Exchange (ETDEWEB)

    Shao Tao; Zhang Cheng; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh. [Institute of High Current Electronics, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-01-15

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude {approx}90 and {approx}250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within {approx}200 ps of a corona discharge at high rate of rise of the voltage ({approx}5 x 10{sup 14} V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  11. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  12. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  13. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past.

    Science.gov (United States)

    Jeandet, Philippe; Heinzmann, Silke S; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2015-05-12

    Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.

  14. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  15. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  16. Secondary electron emission anisotropy in oblique incidence of electrons on the (100) Mo

    International Nuclear Information System (INIS)

    Gomoyunova, M.V.; Zaslavskij, S.L.; Pronin, I.I.

    1978-01-01

    Studied was the influence of azimuthal plane of incidence of primary particles with energies of 0.5-1.5 keV on the secondary electron emission of the (100) Mo face at the constant polar angle of 45 deg. The measurements were carried out in vacuum of (2-4)x10 -10 torr by modulation technique. It is shown that anisotropy is peculiar to the secondary electron emission of all energies. The anisotropy of emission has two maxima; the high-energy maximum connected with reflected primary electrons and situated near the elastically reflected electrons and weaker pronounced the low-energy one which is found at energies of 100-200 eV and is conditioned by truly secondary electrons. It is shown that the anisotropy, characterizing secondary electrons responsible for the appearance of structure in spectrum, particularly the Auger electrons and the electrons suffering ionizing energy losses, exceeds the anisotropy of continuous spectrum electrons possessing the same energy. The electron diffraction dynamic theory, based on the conception of the united wave field of electrons, has been used to explain the regularities stated

  17. Effect of cofermentation of grape varieties on aroma profiles of la mancha red wines.

    Science.gov (United States)

    García-Carpintero, Eva Gómez; Sánchez-Palomo, Eva; Gómez Gallego, Manuel A; González-Viñas, Miguel A

    2011-10-01

    The effect of winemaking using blends of red grape varieties cultivated in La Mancha region (Spain) on the aroma profile of wines was researched by chemical characterization. Free and glycosidically bound aroma compounds were isolated by solid phase extraction using dichloromethane and ethyl acetate, respectively, as solvents in elution and then analyzed by gas chromatography-mass spectrometry. Free and bound volatile compounds were analyzed in Cencibel, Bobal, and Moravia Agria monovarietal wines, and in 3 wines obtained with the blending of grapes: Cencibel (50%) + Bobal (50%); Cencibel (50%) + Moravía Agria (50%); Cencibel (33%) + Bobal (33%) + Moravía Agria (33%). Aroma compounds were studied in terms of odor activity values (OAVs). Ninety free aroma compounds and sixty-five bound aroma compounds were identified and quantified. The odor activity values for the different compounds were classified into 7 odorant series. The fruity and sweet series contributed most strongly to the aroma profile of all wines, independently of the winemaking technique used. In general, co-winemaking wines present a more complex chemical profile than monovarietal wines. Practical Application: Some grape varieties could benefit from this process with the presence of other varieties that might have an excess of aroma compounds. In this study, the wines were elaborated by blending different grape varieties together; this process implies co-maceration and co-fermentation steps. The co-winemaking technique could benefit from additional molecules provided by the other varieties, which results in a more complex formation than in the case of monovarietal wines. This technique provides a viable alternative to traditional winemaking methods for improving and enhancing the sensory profile of elaborated wines. © 2011 Institute of Food Technologists®

  18. The cycles of Argentine wine exports / Los ciclos de las exportaciones de vino argentinas

    Directory of Open Access Journals (Sweden)

    Cerdá Juan Manuel

    2016-01-01

    Full Text Available This paper analyses the different episodes that the Argentina wine industry transited between the years 1980 to 2012, within a context of globalization of the wine-grape industry. In particular, we study the significance that some winemakers had in the process and the effect of the exchange rate and recipients of Argentine wine in the expansion of exports in recent years. The hypothesis of this article is that, from the 80 s, the winemakers observed in exports as a solution to face their most important crisis. This required a transformation of the industry to produce quality wines that could be sold on the international market. Thus, winemakers added to a century-old winemaking tradition new practices and strategies. On the other hand, over 30 years, various macroeconomic policies affect the overall industry growth, especially in exports. On balance, in this paper we propose to show that the growth of exports of Argentine wine was a sinuous and different path to the literature has been found for the “new world” exporters countries. The data was obtained from Instituto Nancional de Vitivinícultura (INV, Bolsa de Comercio de Mendoza and International Organisation of Vine and Wine (OIV as well as interviews collected on primary and secondary sources.

  19. Introduction to electronic engineering I

    International Nuclear Information System (INIS)

    Kim, Bong Ryeol; Park, Han Gue; Lee, Tae Won; Choi, Gap Seok

    1979-09-01

    It deals with basic element of electronic engineering, which are an electric network such as alternating current voltage, distributed self, energy and power of an AC circuit, matrix, Tie-set and Cut-set, Fourier Transform and Laplace Transform, electromagnetics with vector theory, dot product and cross product, gradient, divergence static electricity, dielectric substance and capacity, boundary condition, resistance, magnetic field, magnetic circuit and electromagnetic field, electronic circuit including power circuit, amplification circuit, modulation and digital circuit, physical electronic engineering about movement of electron, semiconductor and integrated circuit.

  20. Low emittance lattices for electron storage rings revisited

    International Nuclear Information System (INIS)

    Trbojevic, D.; Courant, E.

    1994-01-01

    Conditions for the lowest possible emittance of the lattice for electron storage rings are obtained by a simplified analytical approach. Examples of electron storage lattices with minimum emittances are presented. A simple graphical presentation in the normalized dispersion space (Floquet's transformation) is used to illustrate the conditions and results

  1. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  2. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  3. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    International Nuclear Information System (INIS)

    Slutskin, A.A.; Kovtun, H.A.; Pepper, M.

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted

  4. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  5. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  6. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    1994-01-01

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  7. Simulations of the ILC Electron Gun and Electron Bunching System

    International Nuclear Information System (INIS)

    Haakonsen, C.B.; McGill U.

    2006-01-01

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement

  8. 76 FR 10529 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Protection From...

    Science.gov (United States)

    2011-02-25

    ... Security Protection From Unauthorized External Access AGENCY: Federal Aviation Administration (FAA), DOT... electronic system security protection for the aircraft control domain and airline information domain from... identified and assessed, and that effective electronic system security protection strategies are implemented...

  9. 76 FR 36863 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Protection From...

    Science.gov (United States)

    2011-06-23

    ... Security Protection From Unauthorized External Access AGENCY: Federal Aviation Administration (FAA), DOT... for Gulfstream GVI airplanes. 1. The applicant must ensure electronic system security protection for... that effective electronic system security protection strategies are implemented to protect the airplane...

  10. Achromatic and isochronous electron beam transport for tunable free electron lasers

    International Nuclear Information System (INIS)

    Bengtsson, J.; Kim, K.J.

    1991-09-01

    We have continued the study of a suitable electron beam transport line, which is both isochronous and achromatic, for the free electron laser being designed at Lawrence Berkeley Laboratory. A refined version of the beam transport optics is discussed that accommodates two different modes of FEL wavelength tuning. For the fine tuning involving a small change of the electron beam energy, sextupoles are added to cancel the leading nonlinear dispersion. For the main tuning involving the change of the undulator gap, a practical solution of maintaining the beam matching condition is presented. Calculation of the higher order aberrations is facilitated by a newly developed code. 11 refs., 4 figs., 3 tabs

  11. Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma

    International Nuclear Information System (INIS)

    Kuzelev, M V; Rukhadze, A A

    2008-01-01

    Two fundamental mechanisms - the Cherenkov effect and anomalous Doppler effect - underlying the emission by an electron during its superluminal motion in medium are considered. Cherenkov emission induced by a single electron and a small electron bunch is spontaneous. In the course of spontaneous Cherenkov emission, the translational motion of an electron is slowed down and the radiation energy grows linearly with time. As the number of radiating electrons increases, Cherenkov emission becomes stimulated. Stimulated Cherenkov emission represents a resonance beam instability. This emission process is accompanied by longitudinal electron bunching in the beam or by the breaking of an electron bunch into smaller bunches, in which case the radiation energy grows exponentially with time. In terms of the longitudinal size L e of the electron bunch there is a transition region λ e 0 -1 between the spontaneous and stimulated Cherenkov effects, where λ is the average radiation wavelength, and δ 0 is the dimensionless (in units of the radiation frequency) growth rate of the Cherenkov beam instability. The range to the left of this region is dominated by spontaneous emission, whereas the range to the right of this region is dominated by stimulated emission. In contrast to the Vavilov-Cherenkov effect, the anomalous Doppler effect should always (even for a single electron) be considered as stimulated, because it can only be explained by accounting for the reverse action of the radiation field on the moving electron. During stimulated emission in conditions where anomalous Doppler effect shows itself, an electron is slowed down and spins up; in this case, the radiation energy grows exponentially with time. (reviews of topical problems)

  12. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  13. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: Influence of nitrogen compounds and grape variety

    OpenAIRE

    Martínez-Gil, A. M.; Garde-Cerdán, Teresa; Lorenzo, Cándida; Félix Lara, J.; Pardo, F.; Rosario Salinas, M.

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids...

  14. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger performance in Run 2 will be presented, including both the role of the ATLAS calorimeter in electron and photon identification and details of new techniques developed to maintain high performance even in high pile-up conditions.

  15. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  16. Electron acoustic-Langmuir solitons in a two-component electron plasma

    Science.gov (United States)

    McKenzie, J. F.

    2003-04-01

    We investigate the conditions under which ‘high-frequency’ electron acoustic Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary but not sufficient conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary

  17. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-06-01

    ... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... Design Features The Gulfstream Model GVI airplane has an electronic flight control system and no direct... impending control surface limiting, piloted or auto-flight system control of the airplane might be...

  18. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    Science.gov (United States)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  19. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  20. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  1. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  2. ORELA electron guns

    International Nuclear Information System (INIS)

    Christian, O.W.; Lewis, T.A.

    1981-09-01

    The most recent information concerning the production and performance of ORELA electron guns is presented. Included are descriptions of procedures for gun fabrication, cathode conditioning and high voltage processing. Highlights of the performance characteristics are also included

  3. Relationship between volatile profile and sensory characteristics of Malvasia Fina and Gouveio monovarietal wines from Douro Valley

    OpenAIRE

    Vilela, Alice; Teixeira, Sílvia; Fradique, Sofia; M. Nunes, Fernando; Cosme, Fernanda

    2014-01-01

    White wines are, in general, fruitier and fresher than red wines. These descriptors depend on the wine grapes varieties and, with no less importance, on the winemaking technology. Nowadays, the use of wood barrels in the elaboration of quality white wines becomes common in winemaking, and some studies showed the influence of wood compounds on the white wine volatile composition [1, 2]. Flavour notes that are common descriptions of wines exposed to oak include caramel, cream, smoke, spice and ...

  4. 'From graft to bottle'. Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey BT37 0QB, Northern Ireland (United Kingdom); Russell, J. [Appalachian State University, Boone, NC 28608 (United States)

    2009-10-15

    The practice of viticulture and winemaking is highly dependent upon the weather and climate. Any future changes in the seasons, their duration, local maximum, minimum and mean temperatures, frost occurrence and heat accumulation could have a major impact on the winegrowing areas of the world. Given that the winegrowing industry has substantial energy requirements and is directly influenced by any changes in climate, the industry should be at the forefront in promoting the case of energy efficiency and the adoption of renewable technologies. Solar renewables in the form of solar thermal and photovoltaics (PVs) offer a complimentary solution to many winegrowing processes. This paper examines the limited number of world wineries that have adopted solar renewables and presents a viable case for their wide scale integration into the industry. The paper presents a range of viticultural and winemaking processes where solar energy can be directly or indirectly applied and suggests the potential for solar energy in making substantial savings in both energy use and greenhouse gas emissions. In 2005, almost 8 million hectares were under vines producing 40.2 million tonnes of grapes for crushing. The total global energy use within the winemaking industry is estimated at over 105 PJ emitting nearly 16 million tonnes of CO{sub 2}. If ancillary industries, such as bottle making and transportation are included, the total carbon footprint of the industry is estimated at over 76 million tonnes of CO{sub 2}. This paper calculates that if the commercial winemaking establishments in the 'developed' wine producing regions of the world integrated a 'small' solar installation into their wineries, the potential savings are 18.3% or 19.24 PJ of the energy used in the global winemaking industry. (author)

  5. Electron cloud observations: a retrospective

    International Nuclear Information System (INIS)

    Harkay, K.

    2004-01-01

    A growing number of observations of electron cloud effects (ECEs) have been reported in positron and proton rings. Low-energy, background electrons ubiquitous in high-intensity particle accelerators. Amplification of electron cloud (EC) can occur under certain operating conditions, potentially giving rise to numerous effects that can seriously degrade accelerator performance. EC observations and diagnostics have contributed to a better understanding of ECEs, in particular, details of beam-induced multipacting and cloud saturation effects. Such experimental results can be used to provide realistic limits on key input parameters for modeling efforts and analytical calculations to improve prediction capability. Electron cloud effects are increasingly important phenomena in high luminosity, high brightness, or high intensity machines - Colliders, Storage rings, Damping rings, Heavy ion beams. EC generation and instability modeling increasingly complex and benchmarked against in situ data: (delta), (delta) 0 , photon reflectivity, and SE energy distributions important. Surface conditioning and use of solenoidal windings in field-free regions are successful cures: will they be enough? What are new observations and how do they contribute to body of work and understanding physics of EC?

  6. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  7. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures

    International Nuclear Information System (INIS)

    Zhou Shu-Xing; Qi Ming; Ai Li-Kun; Xu An-Huai; Wang Li-Dan; Ding Peng; Jin Zhi

    2015-01-01

    The InGaAs/InAlAs/InP high electron mobility transistor (HEMT) structures with lattice-matched and pseudomorphic channels are grown by gas source molecular beam epitaxy. Effects of Si δ-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si δ-doping concentration (N_d) is about 5.0 × 10"1"2 cm"−"2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission electron microscopy. An InGaAs/InAlAs/InP HEMT device with a gate length of 100 nm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits f_T = 249 GHz and f_m_a_x > 400 GHz. (paper)

  8. Status of electron cooling at the NAP-M

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Dikanskij, N.S.; Kudelajnen, V.I.; Lebedev, V.A.; Meshkov, I.N.; Parkhomchuk, V.V.; Pestrikov, D.V.; Skrinskij, A.N.; Sukhina, B.N.

    1983-01-01

    Experimental results on the study of thermalization processes in a magnetized electron beam are presented. The experiments are carried out on the NAP-M storage ring in which electron beam, formed by three-electrode gun, is transported in a longitudinal magnetic field with the intensity 1.4 kGf and, having passed a three meter drift space, entered the analyzer. Conclusion is made on the possibility of preservation of low level of electron beam longitudinal spread at high enough intensity and considerable cooling length. Magnetic field, accompanying electron beam, prevent energy transfer from transverse degrees of freedom to longitudinal one, having a very low energy as a result of electrostatic acceleration. Gradient of longitudinal velocity over electron beam cross section, conditioned by its electric field, is eliminated by ion compensation of electron space charge. Under conditions, characteristic for electron cooling, the compensated beam preserves stability at high intensities. At considerable homogeneity of magnetic field and precise matching of average particle velocities the low level of electron longitudinal temperature can be used for rapid cooling of heavy particle beams to rather low temperatures

  9. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    Science.gov (United States)

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  10. SU-F-T-318: Sensitivity and Stability of OSLDs with Filled Deep Electron/hole Traps Under Pre-Irradiation and Bleaching Conditions

    International Nuclear Information System (INIS)

    Kim, J; Park, S; Lee, H; Kim, H; Choi, C; Park, J

    2016-01-01

    Purpose: This work evaluated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps (OSLDfull) with the bleaching conditions according to the accumulated dose. Methods: The OSLDs were first pre-irradiated with a Co-60 gamma ray at more than 5 kGy, so as to fill the deep electron and hole traps. Using a 6-MV beam, the OSLDfull characteristics were investigated in terms of the full bleaching, fading, dose linearity, and dose sensitivity obtained in response to the accumulated dose values. To facilitate a comparison of the dose sensitivity, OSLDs with un-filled deep electron/hole traps (OSLDempty) were investigated in the same manner. A long-pass filter was used to exclude bleaching-source wavelengths of less than 520 nm. Various bleaching time and wavelength combinations were used in order to determine the optimal bleaching conditions for the OSLD full. Results: The fading for the OSLDfull exhibited stable signals after 8 min, for both 1- and 10-Gy. For 4-h bleaching time and an unfiltered bleaching device, the supralinear index values for the OSLDfull were 1.003, 1.002, 0.999, and 1.001 for doses of 2, 4, 7, and 10 Gy, respectively. For a 65-Gy accumulated dose with a 5-Gy fraction, no variation in dose sensitivity was obtained for the OSLDfull, within a standard deviation of 0.85%, whereas the OSLDempty dose sensitivity decreased by approximately 2.3% per 10 Gy. The filtered bleaching device yielded a highly stable sensitivity for OSLDfull, independent of bleaching time and within a standard deviation of 0.71%, whereas the OSLDempty dose sensitivity decreased by approximately 4.2% per 10 Gy for an accumulated dose of 25 Gy with a 5-Gy fraction. Conclusion: Under the bleaching conditions determined in this study, clinical dosimetry with OSLDfull is highly stable, having an accuracy of 1% with no change in dose sensitivity or linearity at clinical doses. This work was supported by a National Research

  11. Electronic trading system and returns volatility in the oil futures market

    International Nuclear Information System (INIS)

    Liao, Huei-Chu; Lee, Yi-Huey; Suen, Yu-Bo

    2008-01-01

    This paper uses daily Brent crude prices to investigate the employment of electronic trading on the returns conditional volatility in the oil futures market. After a suitable GARCH model is established, the conditional volatility series are found. The Bai and Perron model is then used to find two significant structural breaks for these conditional volatility series around two implementation dates of electronic trading. This result indicates that the change in the trading system has significant impacts on the returns volatility since our estimated second break date is very close to the all-electronic trade implementation date. Moreover, the conditional volatility in the all-electronic trading period is found to be more dominated by the temporal persistence rather than the volatility clustering effect. All these evidence can shed some light for explaining the high relationship between more volatile world oil price and the more popular electronic trade. (author)

  12. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  13. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  14. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Science.gov (United States)

    2013-06-25

    ...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) fuel. The J182T incorporates an engine controlled by an electronic engine [[Page 37959

  15. Electronic consultation system demonstrates educational benefit for primary care providers.

    Science.gov (United States)

    Kwok, Jonas; Olayiwola, J Nwando; Knox, Margae; Murphy, Elizabeth J; Tuot, Delphine S

    2017-01-01

    Background Electronic consultation systems allow primary care providers to receive timely speciality expertise via iterative electronic communication. The use of such systems is expanding across the USA with well-documented high levels of user satisfaction. We characterise the educational impact for primary care providers of a long-standing integrated electronic consultation and referral system. Methods Primary care providers' perceptions of the educational value inherent to electronic consultation system communication and the impact on their ability to manage common speciality clinical conditions and questions were examined by electronic survey using five-point Likert scales. Differences in primary care providers' perceptions were examined overall and by primary care providers' speciality, provider type and years of experience. Results Among 221 primary care provider participants (35% response rate), 83.9% agreed or strongly agreed that the integrated electronic consultation and referral system provided educational value. There were no significant differences in educational value reported by provider type (attending physician, mid-level provider, or trainee physician), primary care providers' speciality, or years of experience. Perceived benefit of the electronic consultation and referral system in clinical management appeared stronger for laboratory-based conditions (i.e. subclinical hypothyroidism) than more diffuse conditions (i.e. abdominal pain). Nurse practitioners/physician assistants and trainee physicians were more likely to report improved abilities to manage specific clinical conditions when using the electronic consultation and/or referral system than were attending physicians, as were primary care providers with ≤10 years experience, versus those with >20 years of experience. Conclusions Primary care providers report overwhelmingly positive perceptions of the educational value of an integrated electronic consultation and referral system. Nurse

  16. Comparison of experimental slant electron content and IRI model for moderate solar activity conditions

    International Nuclear Information System (INIS)

    Cabrera, M.A.; Ezquer, R.G.; Mosert, M.; Jadur, C.A.

    2002-01-01

    The International Reference Ionosphere model only gives the vertical electron content (VTEC). In this paper the slant electron content (SEC) for the ATS 6 satellite - Palehua (21.4 deg. N, 201.9 deg. E) radio signal path for a middle solar activity year is calculated. To this end, IRI model is used to obtain the electron density at different points of the signal path. Equinoxes and solstices are considered. Measurements obtained with Faraday rotation technique at Palehua are compared with the modelled values. Although overestimation was observed for night hours, the results show good SEC predictions for several hours at period of maximum ionisation, suggesting that would be possible to model the STEC using IRI. (author)

  17. Electron Cloud Parameterization Studies in the LHC

    CERN Document Server

    Dominguez, O; Baglin, V; Bregliozzi, G; Jimenez, J M; Metral, E; Rumolo, G; Schulte, D; Zimmermann, F

    2011-01-01

    During LHC beam commissioning with 150, 75 and 50-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. The main strategy to combat the LHC electron cloud, defined about ten years ago, relies on the surface conditioning arising from the chamber-surface bombardment with cloud electrons. In a standard model, the conditioning state of the beam-pipe surface is characterized by three parameters: 1. most importantly, the secondary emission yield δmax; 2. the incident electron energy at which the yield is maximum, ε_max; and 3. the probability of elastic reflection of low-energy primary electrons hitting the chamber wall, R. Since at the LHC no in-situ secondary-yield measurements are available, we compare the relative local pressure-rise measurements taken for different beam configurations against simulations in which surface parameters are scanned. This benchmarking of measurements and simulations is used to infer the s...

  18. The electron drift velocity and longitudinal diffusion coefficient of an electron swarm in hydrogen at elevated swarm energies

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1976-01-01

    A study of the photons produced at electron-molecule excitation collisions has been used to obtain information on the behaviour of an electron swarm moving through a neutral gas under the influence of a uniform electric field. Specifically, values have been obtained for the electron drift velocity and the longitudinal diffusion coefficients under equilibrium swarm conditions, i.e. remote from any electrode. (author)

  19. WINE ROAD - AN INSTRUMENT FOR THE VALORISATION OF WINE TOURISM POTENTIAL CASE STUDY: ALBA COUNTY VINEYARDS

    OpenAIRE

    UNGUREANU Mihaela

    2015-01-01

    The main aim of this study is to highlight the wine-growing and wine-making potential of Alba County and the way it can be valorised. Alba county has a rich winegrowing and wine-making heritage, a fact which is due to the long-standing tradition of winegrowing on these area, as well as to the characteristics of the natural factors (relief, geology, climate, soil), favourable for obtaining high-quality wines, the reputation of which has been acquired at national and international competitions....

  20. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Science.gov (United States)

    2013-02-19

    ...; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation...) associated with the control surface awareness and mode annunciation of the electronic flight control system... a fly-by-wire electronic flight control system and no direct coupling from the flightdeck controller...

  1. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  2. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    OpenAIRE

    Padilla, Beatriz; Garc?a-Fern?ndez, David; Gonz?lez, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of...

  3. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  4. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  5. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  6. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  7. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  8. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  9. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  10. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  11. Formation condition of internal transport barrier in JT-60U plasmas

    International Nuclear Information System (INIS)

    Koide, Y.; Fujita, T.; Takizuka, T.; Shirai, H.; Hatae, T.; Isayama, A.; Isei, N.; Sakamoto, Y.; Kamada, Y.; Kikuchi, M.

    2001-01-01

    Onset condition of Internal Transport Barrier (ITB) in reversed shear discharges was investigated. Local values of electron density, electron temperature, and ion temperature seem not to be essential for the ITB onset. Remarkable correlation between electron temperature gradient and magnetic shear was observed at the onset. In addition, ITB well outside the q-minimum position was found. Its onset condition seems to be continuous with that observed in negative shear region. (author)

  12. Larva of Glyptotendipes (Glyptotendipes) glaucus (Meigen 1818) (Chironomidae, Diptera)-morphology by Scanning Electron Microscope (SEM), karyotype, and biology in laboratory conditions.

    Science.gov (United States)

    Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva

    2016-09-21

    Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.

  13. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  14. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  15. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Science.gov (United States)

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  16. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    Science.gov (United States)

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  17. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  18. Development and characterization of hybrids from native wine yeasts

    Directory of Open Access Journals (Sweden)

    Verónica García

    2012-06-01

    Full Text Available For commercial purposes, the winemaking industry is constantly searching for new yeast strains. Historically, this has been achieved by collecting wild strains and selecting the best for industrial use through an enological evaluation. Furthermore, the increasing consumer demands have forced the industry to incorporate new strategies such as genetic engineering to obtain improved strains. In response to the lack of public acceptance of this methodology, alternative strategies based on breeding have gained acceptance in recent years. Through the use of conjugation of individual spores without the support of genetic engineering methods we generated intraspecific hybrids from wild strains with outstanding enological characteristics and interdelta fingerprinting was used to confirm the hybrid condition. A detailed enological characterization of the hybrids in synthetic and natural must indicates that physiological parameters such as sporulation, residual sugar, ethanol yield and total nitrogen uptake are within the levels determined for the parental strains, however, other parameters such as growth rate, lag phase and ethanol production show statistical differences with some parental or commercial strains. These findings allow us to propose these hybrids as new wine-making strains.

  19. Secondary Electron Emission Yields from PEP-II Accelerator Materials

    International Nuclear Information System (INIS)

    Kirby, Robert E.

    2000-01-01

    The PEP-II B-Factory at SLAC operates with aluminum alloy and copper vacuum chambers, having design positron and electron beam currents of 2 and 1 A, respectively. Titanium nitride coating of the aluminum vacuum chamber in the arcs of the positron ring is needed in order to reduce undesirable electron-cloud effects. The total secondary electron emission yield of TiN-coated aluminum alloy has been measured after samples of beam chamber material were exposed to air and again after electron-beam bombardment, as a function of incident electron beam angle and energy. The results may be used to simulate and better understand electron-cloud effects under actual operating conditions. We also present yield measurements for other accelerator materials because new surface effects are expected to arise as beam currents increase. Copper, in particular, is growing in popularity for its good thermal conductivity and self-radiation-shielding properties. The effect of electron bombardment, ''conditioning'', on the yield of TiN and copper is shown

  20. The cycles of Argentine wine exports / Los ciclos de las exportaciones de vino argentinas

    OpenAIRE

    Cerdá Juan Manuel; Duarte y Ricardo Hernández

    2016-01-01

    This paper analyses the different episodes that the Argentina wine industry transited between the years 1980 to 2012, within a context of globalization of the wine-grape industry. In particular, we study the significance that some winemakers had in the process and the effect of the exchange rate and recipients of Argentine wine in the expansion of exports in recent years. The hypothesis of this article is that, from the 80 s, the winemakers observed in exports as a solution to face their most...

  1. Monoenergetic electron parameters in a spheroid bubble model

    Science.gov (United States)

    Sattarian, H.; Sh., Rahmatallahpur; Tohidi, T.

    2013-02-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.

  2. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  3. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    Science.gov (United States)

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  4. Focusing of relativistic electron bunch, moving in cylindrical plasma waveguide

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Ehlbakyan, S.S.; Sekhpossyan, E.V.

    1994-01-01

    The problem on the focusing of electron bunches moving with the relativistic velocity along the axis of cylindrical overdense plasma waveguide with the conducting internal surface is considered. The existence of periodic and nonperiodic components of the fields, generated in the plasma is shown. The conditions of electron bunch self-focusing by transverse electrical field and azimuthal magnetic field are derived. The possibility of the acceleration and focusing of electron or positron bunches by driving electron bunch wake field is discussed. The conditions, when the bunch in plasma waveguide moves without wake fields generating are obtained, which could be of the interest for the transport of relativistic electron (positron) bunches. 5 refs

  5. Irreversible electron attachment--a key to DNA damage by solvated electrons in aqueous solution.

    Science.gov (United States)

    Westphal, K; Wiczk, J; Miloch, J; Kciuk, G; Bobrowski, K; Rak, J

    2015-11-07

    The TYT and TXT trimeric oligonucleotides, where X stands for a native nucleobase, T (thymine), C (cytosine), A (adenine), or G (guanine), and Y indicates a brominated analogue of the former, were irradiated with ionizing radiation generated by a (60)Co source in aqueous solutions containing Tris as a hydroxyl radical scavenger. In the past, these oligomers were bombarded with low energy electrons under an ultra-high vacuum and significant damage to TXT trimers was observed. However, in aqueous solution, hydrated electrons do not produce serious damage to TXT trimers although the employed radiation dose exceeded many times the doses used in radiotherapy. Thus, our studies demonstrate unequivocally that hydrated electrons, which are the major form of electrons generated during radiotherapy, are a negligible factor in damage to native DNA. It was also demonstrated that all the studied brominated nucleobases have a potential to sensitize DNA under hypoxic conditions. Strand breaks, abasic sites and the products of hydroxyl radical attachment to nucleobases have been identified by HPLC and LC-MS methods. Although all the bromonucleobases lead to DNA damage under the experimental conditions of the present work, bromopyrimidines seem to be the radiosensitizers of choice since they lead to more strand breaks than bromopurines.

  6. Development of an electron gun for high power CW electron linac (1). Beam experiment for basic performance of electron gun

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro; Komata, Tomoki

    1999-05-01

    Presently, the Beam Group of Oarai Engineering Center in Japan Nuclear Cycle Development Institute (JNC) completed the high power CW electron linac. Then we started full-scale beam experiments after the government permission for a radiation equipment had given last January. Measurements of basic performance for the mesh-grid type electron gun have been done to launch stable beam at 300 mA peak current downstream of the accelerator. These experiments disclosed to increase beam loss in the electron gun in some cases of voltage supplied the mesh-grid in spite of same beam current from gun. Consequently, we could find the best condition for mesh-grid voltage and heater current to supply stable beam at 300 mA peak current for accelerator study. (author)

  7. LEP - Large Electron Positron Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.

  8. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... Government by electronic funds transfer through the Treasury Fedline Payment System (FEDLINE) or the... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods...

  9. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  10. Reliability and corrosion induced degradation of electronic system

    International Nuclear Information System (INIS)

    Tapas, V.K.; Varde, P.V.

    2014-01-01

    This paper describe the corrosion induced degradation of electronic system failures due to environmental conditions such as humidity, temperature, ionic or organic contaminants, residuals; etc. which can accelerates as electrochemical reaction and causes corrosion of electronic components, Corrosive gases and water vapours from humid condition come into contact with the base metal results in buildup of various chemical reaction products. Ionic contamination responsible for electrochemical reaction, forms soluble complexes with metals, it can degrade the protective oxide film that forms on the positively biased metallization and/or lead to change in the local pH. Deterioration of metal components or electronic circuitry due to electrochemical migration needs to be controlled in order to reduce the corrosion. With explosive increase in demand and miniaturization in electronic system resulted in smaller components, closer spacing and thinner metallic path, it is expected that the corrosion and deterioration of electronic components may become cause or concern. This paper summarises the current understanding of chemistry behind possible causes of corrosion of electronic devices and its failure mechanism. (author)

  11. Monoenergetic electron parameters in a spheroid bubble model

    International Nuclear Information System (INIS)

    Sattarian, H.; Rahmatallahpur, Sh.; Tohidi, T.

    2013-01-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model. (physics of gases, plasmas, and electric discharges)

  12. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  13. Electrons in water radiolysis

    International Nuclear Information System (INIS)

    Laverne, J.A.; Pimblott, S.M.

    2006-01-01

    The hydrated electron is the main reducing species produced in the radiolysis of water. Many studies have examined its reactivity using pulsed radiolysis techniques and competition kinetics. Data bases list hundreds of rate coefficients for reaction of the hydrated electron with substances ranging from inorganic ions like nitrate to biopolymers like DNA. Although the chemistry of the hydrated electron is often examined, its mechanism of formation and variation in yield are considerable less known, especially under extreme conditions such as in high temperature water or with heavy ion radiolysis. This work will examine various aspects of the radiation chemistry of the hydrated electron beginning with the generation of secondary electrons in primary energy loss events during the passage of ionizing radiation to the radiolytic yields of the hydrated electron produced by different types of radiation. Ion radiation is a 'white light source.' Energy losses range from the minimum excitation energy of the medium up to the kinematic maximum determined by the collision parameters. However, certain energy loss events are more probable than others. The dipole oscillator strength distributions of media essentially give the probability of energy loss events in collisions with no momentum transfer. Dipole oscillator distributions have been constructed from experimental data for a wide variety of materials including all the phases of water. Calculations using cross sections based on dipole oscillator distributions show that the most probable energy loss event in water is only about 20 eV with an average value closer to 60 eV. The preponderance of energy loss events of less than 100 eV means that many low energy electrons are formed by the passage of a single ion. Low energy electrons have short mean free paths and they remain in the vicinity of the primary energy loss events. The spatial distribution of these low energy electrons defines the radial track structure of the incident

  14. Toward Environmentally Robust Organic Electronics: Approaches and Applications.

    Science.gov (United States)

    Lee, Eun Kwang; Lee, Moo Yeol; Park, Cheol Hee; Lee, Hae Rang; Oh, Joon Hak

    2017-11-01

    Recent interest in flexible electronics has led to a paradigm shift in consumer electronics, and the emergent development of stretchable and wearable electronics is opening a new spectrum of ubiquitous applications for electronics. Organic electronic materials, such as π-conjugated small molecules and polymers, are highly suitable for use in low-cost wearable electronic devices, and their charge-carrier mobilities have now exceeded that of amorphous silicon. However, their commercialization is minimal, mainly because of weaknesses in terms of operational stability, long-term stability under ambient conditions, and chemical stability related to fabrication processes. Recently, however, many attempts have been made to overcome such instabilities of organic electronic materials. Here, an overview is provided of the strategies developed for environmentally robust organic electronics to overcome the detrimental effects of various critical factors such as oxygen, water, chemicals, heat, and light. Additionally, molecular design approaches to π-conjugated small molecules and polymers that are highly stable under ambient and harsh conditions are explored; such materials will circumvent the need for encapsulation and provide a greater degree of freedom using simple solution-based device-fabrication techniques. Applications that are made possible through these strategies are highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... cooperative agreement will be made by the Government by electronic funds transfer through the Treasury Fedline... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic...

  16. Communication: Two types of flat-planes conditions in density functional theory.

    Science.gov (United States)

    Yang, Xiaotian Derrick; Patel, Anand H G; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E; Ayers, Paul W

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  17. Effect of electron beam on in vitro cultured orchid organs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jaihyunk; Bae, Seho; Bae, Changhyu [Sunchon National Univ., Suncheon (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy {approx} 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner.

  18. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Optimising electron microscopy experiment through electron optics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Gatel, C.; Snoeck, E. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Houdellier, F., E-mail: florent.houdellier@cemes.fr [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France)

    2017-04-15

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  20. Optimising electron microscopy experiment through electron optics simulation

    International Nuclear Information System (INIS)

    Kubo, Y.; Gatel, C.; Snoeck, E.; Houdellier, F.

    2017-01-01

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  1. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  2. Quantifying the impact of chronic conditions on a diagnosis of major depressive disorder in adults: a cohort study using linked electronic medical records.

    Science.gov (United States)

    Ryu, Euijung; Chamberlain, Alanna M; Pendegraft, Richard S; Petterson, Tanya M; Bobo, William V; Pathak, Jyotishman

    2016-04-26

    Major depressive disorder (MDD) is often comorbid with other chronic mental and physical health conditions. Although the literature widely acknowledges the association of many chronic conditions with the risk of MDD, the relative importance of these conditions on MDD risk in the presence of other conditions is not well investigated. In this study, we aimed to quantify the relative contribution of selected chronic conditions to identify the conditions most influential to MDD risk in adults and identify differences by age. This study used electronic health record (EHR) data on patients empanelled with primary care at Mayo Clinic in June 2013. A validated EHR-based algorithm was applied to identify newly diagnosed MDD patients between 2000 and 2013. Non-MDD controls were matched 1:1 to MDD cases on birth year (±2 years), sex, and outpatient clinic visits in the same year of MDD case diagnosis. Twenty-four chronic conditions defined by Chronic Conditions Data Warehouse were ascertained in both cases and controls using diagnosis codes within 5 years of index dates (diagnosis dates for cases, and the first clinic visit dates for matched controls). For each age group (45 years or younger, between 46 and 60, and over 60 years), conditional logistic regression models were used to test the association between each condition and subsequent MDD risk, adjusting for educational attainment and obesity. The relative influence of these conditions on the risk of MDD was quantified using gradient boosting machine models. A total of 11,375 incident MDD cases were identified between 2000 and 2013. Most chronic conditions (except for eye conditions) were associated with risk of MDD, with different association patterns observed depending on age. Among 24 chronic conditions, the greatest relative contribution was observed for diabetes mellitus for subjects aged ≤ 60 years and rheumatoid arthritis/osteoarthritis for those over 60 years. Our results suggest that specific chronic

  3. Electron impact spectroscopy of methane, silane, and germane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Wang, R.G.; Spence, D.

    1985-01-01

    Electronic spectra of the group IV/sub a/ hydrides, i.e., methane (CH 4 ), silane (SiH 4 ), and germane (GeH 4 ) have been investigated by means of electron energy loss spectroscopy in an energy range that includes all single-electron excitation from the valence shell. Electron impact spectra of the three gases recorded using electrons of 200-eV incidence are presented. The conditions employed were chosen to favor the excitation of states by direct scattering and to exclude those transitions requiring an exchange mechanism

  4. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  5. The winemaker’s bug

    Science.gov (United States)

    Pretorius, Isak S.; Curtin, Christopher D.; Chambers, Paul J.

    2012-01-01

    The past three decades have seen a global wine glut. So far, well-intended but wasteful and expensive market-intervention has failed to drag the wine industry out of a chronic annual oversupply of roughly 15%. Can yeast research succeed where these approaches have failed by providing a means of improving wine quality, thereby making wine more appealing to consumers? To molecular biologists Saccharomyces cerevisiae is as intriguing as it is tractable. A simple unicellular eukaryote, it is an ideal model organism, enabling scientists to shed new light on some of the biggest scientific challenges such as the biology of cancer and aging. It is amenable to almost any modification that modern biology can throw at a cell, making it an ideal host for genetic manipulation, whether by the application of traditional or modern genetic techniques. To the winemaker, this yeast is integral to crafting wonderful, complex wines from simple, sugar-rich grape juice. Thus any improvements that we can make to wine, yeast fermentation performance or the sensory properties it imparts to wine will benefit winemakers and consumers. With this in mind, the application of frontier technologies, particularly the burgeoning fields of systems and synthetic biology, have much to offer in their pursuit of “novel” yeast strains to produce high quality wine. This paper discusses the nexus between yeast research and winemaking. It also addresses how winemakers and scientists face up to the challenges of consumer perceptions and opinions regarding the intervention of science and technology; the greater this intervention, the stronger the criticism that wine is no longer “natural.” How can wine researchers respond to the growing number of wine commentators and consumers who feel that scientific endeavors favor wine quantity over quality and “technical sophistication, fermentation reliability and product consistency” over “artisanal variation”? This paper seeks to present yeast research

  6. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions

    International Nuclear Information System (INIS)

    Xu Lin; Luo Mingfang; Li Wangliang; Wei Xuetuan; Xie Keng; Liu Lijun; Jiang Chengying; Liu Huizhou

    2011-01-01

    Research highlights: → Growing cells have high Cr (VI) resistant and reducing ability aerobically. → Resting cells show strong anaerobic-reduction potential. → Acetate can highly stimulate both aerobic and anaerobic reduction process. - Abstract: A novel Cr (VI) resistant bacterial strain LSSE-09, identified as Pannonibacter phragmitetus, was isolated from industrial sludge. It has strong aerobic and anaerobic Cr (VI)-reduction potential under alkaline conditions. At 37 o C and pH 9.0, growing cells of strain LSSE-09 could completely reduce 100 and 1000 mg L -1 Cr (VI)-Cr (III) within 9 and 24 h, respectively under aerobic condition. Resting cells showed higher anaerobic reduction potential with the rate of 1.46 mg g -1 (dryweight) min -1 , comparing with their aerobic reduction rate, 0.21 mg g -1 min -1 . External electron donors, such as lactate, acetate, formate, pyruvate, citrate and glucose could highly increase the reduction rate, especially for aerobic reduction. The presence of 3000 mg L -1 acetate enhanced anaerobic and aerobic Cr (VI)-reduction rates up to 9.47 mg g -1 min -1 and 4.42 mg g -1 min -1 , respectively, which were 5 and 20 times faster than those without it. Strain LSSE-09 retained high activities over six batch cycles and NO 3 - and SO 4 2- had slightly negative effects on Cr (VI)-reduction rates. The results suggest that strain LSSE-09 has potential application for Cr (VI) detoxification in alkaline wastewater.

  7. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    Science.gov (United States)

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  9. Fundamental problems in the evaluation of electron micrographs

    International Nuclear Information System (INIS)

    Huiser, A.M.J.

    1979-01-01

    A theoretical assessment of optical images in electron microscopy is presented. The relation between the structure of the objects one usually encounters in electron microscopy and the recorded images is found to depend upon the scattering by the object of fast electrons from the source and the propagation of the scattered electrons through the rest of the microscope. A model is developed which enables the calculation of the mutual intensity in the object plane, under conditions which usually apply in electron microscopy, such as small angle scattering. The phase problem in electron microscopy is also fully discussed. (C.F.)

  10. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    International Nuclear Information System (INIS)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei

    2014-01-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device at zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition

  11. Research and design of electron gun of electrocurtain

    International Nuclear Information System (INIS)

    Chen Pengfei; Zhang Mingchao; Li Xinmin; Wang Yuhong

    1998-01-01

    The characteristics of the electron beam current transport in the electron gun of the electrocurtain accelerator were studied and the origin of the influence on longitudinal uniformity of beam current was analysed. The deflection of the cathode is considered under the boundary condition of perfect constraint. Then a newly designed electron gun is introduced with longitudinal uniformity of current within +-10%

  12. Electron beam generation in z-pinch discharges

    Energy Technology Data Exchange (ETDEWEB)

    Vikhrev, V.V.; Baronova, E.O. [Kurchatov Inst., Moscow (Russian Federation). Russian Research Center

    1997-12-31

    Numerical modelling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column and the zigzag drift current motion through the plasma have accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression and it is not related with the current break effect. (author)

  13. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  14. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  15. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  16. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  17. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F. [Centro de Investigaciones Opticas, La Plata (Argentina); Borges, F.O., E-mail: borges@if.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica. Lab. de Plasma e Espectroscopia; Di Rocco, H.O. [Instituto de Fisica Arroyo Seco (IFAS), Universidad Nacional del Centro, Tandil (Argentina); Mercado, R.S. [Grupo de Espectroscopia Optica de Emision y Laser (GEOEL), Universidad del Atlantico, Barranquilla (Colombia); Villagran-Muniz, M. [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (Mexico); Palleschi, V. [Applied Laser Spectroscopy Laboratory, ICCOM-CNR, Pisa (Italy)

    2013-08-15

    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  18. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    International Nuclear Information System (INIS)

    Bredice, F.; Borges, F.O.; Mercado, R.S.; Villagran-Muniz, M.; Palleschi, V.

    2013-01-01

    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  19. An EPR measure of phenolic content in various wine grapeseeds from marc and grapeseed meals left after oil extraction

    International Nuclear Information System (INIS)

    Jordan, R.

    2002-01-01

    Full text: Marc is the leftover material (skins, pulp, seeds, stems) from the fermentation mainly of red wines. Owing to the increase in Australian wine production for home and export, and the decrease in Spirits consumption, marc could be in surfeit- Marc seeds for example, still contain oil and tannins which are useful products. So the titular study by EPR was undertaken. Grapeseeds of various varieties were collected on the vine, and from marc after fermentation. The meal remaining from marc seeds after oil extraction was also collected, and climate was taken into account. From this very limited trial, there appears to be no obvious effect of climate on phenolic content. In most cases, the phenolic content of grapeseeds post-winemaking is lower than that pre-winemaking, consistent with the winemaking process significantly affecting phenolic content. For grapeseed meal, in most cases the phenolic content is lower than that of the seeds used to produce the meal. This 'negative' effect of the oil extraction process is consistent with our previously unpublished work (commercial - in - confidence), but is not necessarily economically significant

  20. A high precision radiation-tolerant LVDT conditioning module

    CERN Document Server

    Masi, A; Losito, R; Peronnard, P; Secondo, R; Spiezia, G

    2014-01-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. ...

  1. Growth of electron plasma waves above and below f(p) in the electron foreshock

    Science.gov (United States)

    Cairns, Iver H.; Fung, Shing F.

    1988-01-01

    This paper investigates the conditions required for electron beams to drive wave growth significantly above and below the electron plasma frequency, f(p), by numerically solving the linear dispersion equation. It is shown that kinetic growth well below f(p) may occur over a broad range of frequencies due to the beam instability, when the electron beam is slow, dilute, and relatively cold. Alternatively, a cold or sharp feature at low parallel velocities in the distribution function may drive kinetic growth significantly below f(p). Kinetic broadband growth significantly above f(p) is explained in terms of faster warmer beams. A unified qualitative theory for the narrow-band and broad-band waves is proposed.

  2. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  3. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  4. Communication: Two types of flat-planes conditions in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaotian Derrick; Patel, Anand H. G.; González-Espinoza, Cristina E.; Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Miranda-Quintana, Ramón Alain [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana (Cuba); Heidar-Zadeh, Farnaz [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, N{sub α} and N{sub β}, has a derivative discontinuity on a line segment where the number of electrons, N{sub α} + N{sub β}, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, N{sub α} – N{sub β}, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare—we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested—but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  5. Spaceradiation effects on electronics

    International Nuclear Information System (INIS)

    Salminen, Arto.

    1989-01-01

    The failure mechanisms and radiation hardening of electronic devices in spaceborne environment are considered. Radiation hardened components and radiation shielding of electronics are described. Because of the radiation belts and particle radiation from the Sun, the near earth space is hostile to electronics. Besides cosmic radiation represents fully random failure source, against which redundant methods have to be applied. Failures caused by absorbed doses can be dealt with component selection, layout adjustment and addition of absorber. Prepairing for radiation damage presupposes the calculation of absorbed doses and SEU-cross sections from flight parameters. Thus the expected lifetime for spacecraft can be estimated. The above observations belong to the domain of normal routine operation in space electronic engineering and product assurance, which has a crucial meaning in space technology. Devices are to operate years without failure in demanding conditions. The reliable products are result of careful consideration of space environment from the beginning of device design. This applies especially to component selection and circuit design

  6. Neutron induced electron radiography

    International Nuclear Information System (INIS)

    Andrade, Marcos Leandro Garcia

    2008-01-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 μm in 24 μm of aluminum at a resolution of 32 μm. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  7. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity.

    Science.gov (United States)

    Sun, Baoshan; Neves, Ana C; Fernandes, Tiago A; Fernandes, Ana L; Mateus, Nuno; De Freitas, Vítor; Leandro, Conceição; Spranger, Maria I

    2011-06-22

    The objective of this work was to study the evolution of the phenolic composition of red wine during vinification and storage and its relationship with some sensory properties (astringency and bitterness) and antioxidant activities. Thus, red wine was made by a classic vinification method with Castelão and Tinta Miúda grapes (Vitis vinifera L.) harvested at maturity (3:2; w/w). Samples were taken at 2 and 7 days of maceration, at second racking, at the time of bottling and at 6 and 14 months after bottling. The total polyphenols extract (TPx) in each sample was isolated by column chromatography. The phenolic composition (anthocyanins and proanthocyanidins), in vitro antioxidant activity, and sensory property (astringency, bitterness) of the isolated TPx from different winemaking stages were evaluated through high-performance liquid chromatography-diode array detection, 1,1-diphenyl-2-picrylhidrazyl radical test, ferric reducing antioxidant power assay, total phenolic index, MWI (polyphenol molecular weight index), TSA (tannin specific activity), and sensory panel tasting. The results showed that the phenolic composition of red wine varied significantly during winemaking. The intensity of astringency (IA) and the intensity bitterness (IB) of the isolated TPx from different winemaking stages increased from 2 days of maceration until second racking and then decreased. Furthermore, MWI and TSA are positively correlated with IA and IB. The in vitro antioxidant activity of the isolated TPx from different winemaking stages maintained unchanged after alcoholic fermentation, which was independent of the variation of phenolic composition and sensory properties.

  8. Exo-electrons and initiation of electric discharges

    International Nuclear Information System (INIS)

    Laube, Sylvain

    1992-01-01

    As some observations seemed to indicate that glass submitted to an electric field could be a source of electrons, and that any dielectric could play the role, this research thesis aimed at verifying this hypothesis, at least for two industrially used dielectrics (Teflon and Kapton). The author also shows the advantage which could be taken from such an emission, as well in the field of electric discharges as in the field of their applications. Electrons emitted in such conditions are herein called exo-electrons. In a first part, the author analysed the characteristic magnitudes which govern the conditions of discharge initiation, i.e. the initiation voltage and the statistic delay between the application of an electric field and the initiative occurrence. The second part presents the different measurements devices which have been designed, and the third part presents and discusses experimental results, and shows that the theoretical model is in compliance with initiation voltage measurements. As far as electron emission is concerned, a possible explication of this phenomenon is proposed [fr

  9. 48 CFR 14.406 - Receipt of an unreadable electronic bid.

    Science.gov (United States)

    2010-10-01

    ... an unreadable electronic bid. If a bid received at the Government facility by electronic data... electronic bid. 14.406 Section 14.406 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... bid as originally submitted; and (b) That the unreadable condition of the bid was caused by Government...

  10. Slow and fast electron concentrations

    International Nuclear Information System (INIS)

    MacDougall, P.J.

    1991-01-01

    We consider the physical significance of the topology of the Laplacian of the electron momentum density. Via a single simple postulate, the electrical properties of metals, superconductors, and insulators are linked to well-defined and observable topological features in this distribution From this postulate it follows that a necessary condition for superconductivity is a closed path of cusp singularities in the material's time-averaged distribution. The topology of the path is constrained by the geometry of the sample and its environment. Yet, by virtue of the postulate, the unique collision properties of this path (in momentum space suggest that it charts a common course for electrons throughout the material, along which there is absolute minimum resistance to electron flow. As a further consequence of the postulate, it is also predicted that the preferred planes or axes of electron transport in anisotropic conductors with correspond to uniquely and unambiguously defined topological features of the Laplacian of the electron momentum distribution. (Author) 34 refs., 2 figs., tab

  11. Radioisotope production with electron accelerators

    International Nuclear Information System (INIS)

    Brinkman, G.A.

    1978-01-01

    The production of radio isotopes with electron accelerators proceeds mainly by secondary photons (bremsstrahlung), produced in an interaction between the electrons and the Coulomb field of the nuclei of a converter. The production yields depend on: the initial electron energy, the Z and thickness of the bremsstrahlung-converter, the Z, A and the thickness of the target, the geometric set up and the cross section for a particular reaction. In this article the production is only considered for thin bremsstrahlung converters in combination with an electron 'sweep' magnet. Simple formulae are given for the calculations of production yields under standard conditions with only sigmasub(q) (the cross section per equivalent quantum) and f (the fraction of the photons that hit the target) as variables and for the calculations of the dose rate at the production point. The units in which the yields are expressed in the literature (units of sigmasub(q) dose, electron beam intensity, monitor response) are discussed. (Auth.)

  12. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  13. Improved age-diffusion model for low-energy electron transport in solids. I. Theory

    International Nuclear Information System (INIS)

    Devooght, J.; Dubus, A.; Dehaes, J.C.

    1987-01-01

    We have developed in this paper a semianalytical electron transport model designed for parametric studies of secondary-electron emission induced by low-energy electrons (keV range) and by fast light ions (100 keV range). The primary-particle transport is assumed to be known and to give rise to an internal electron source. The importance of the nearly isotropic elastic scattering in the secondary-electron energy range (50 eV) and the slowing-down process strongly reduce the influence of the anisotropy of the internal electron source, and the internal electron flux is nearly isotropic as is evidenced by the experimental results. The differential energy behavior of the inelastic scattering kernel is very complicated and the real kernel is replaced by a synthetic scattering kernel of which parameters are obtained by energy and angle moments conservation. Through a P 1 approximation and the use of the synthetic scattering kernel, the Boltzmann equation is approximated by a diffusion--slowing-down equation for the isotropic part of the internal electron flux. The energy-dependent partial reflection boundary condition reduces to a Neumann-Dirichlet boundary condition. An analytical expression for the Green's function of the diffusion--slowing-down equation with the surface boundary condition is obtained by means of approximations close to the age-diffusion theory and the model allows for transient conditions. Independently from the ''improved age-diffusion'' model, a correction formula is developed in order to take into account the backscattering of primary electrons for an incident-electron problem

  14. Electron-beam welding of thorium-doped iridium alloy sheets

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.; Hudson, J.D.

    1979-04-01

    Modified iridium alloys containing 100 ppM Th were found to be very susceptible to hot-cracking during gas tungsten-arc and electron-beam welding. However, the electron-beam welding process showed greater promise of success in welding these alloys, in particular Ir--0.3% W doped with 200 ppM Th and 50 ppM Al. The weldability of this particular alloy was extremely sensitive to the welding parameters, such as beam focus condition and welding speed, and the resulting fusion zone structure. At low speed successful electron-beam welds were made over a narrow range of beam focus conditions. However, at high speeds successful welds can be made over an extended range of focus conditions. The fusion zone grain structure is a strong function of welding speed and focus condition, as well. In the welds that showed hot-cracking, a region of positive segregation of thorium was identified at the fusion boundary. This highly thorium-segregated region seems to act as a potential source for the nucleation of a liquation crack, which later grows as a centerline crack

  15. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  16. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  17. The large density electron beam-plasma Buneman instability

    International Nuclear Information System (INIS)

    Mantei, T.D.; Doveil, F.; Gresillon, D.

    1976-01-01

    The threshold conditions and growth rate of the Buneman (electron beam-stationary ion) instability are calculated with kinetic theory, including a stationary electronic population. A criteria on the wave energy sign is used to separate the Buneman hydrodynamic instability from the ion-acoustic kinetic instability. The stationary electron population raises the instability threshold and, for large beam velocities yields a maximum growth rate oblique to the beam. (author)

  18. Electron beam irradiation of simulated diluted sulfurous off-gases from copper smelters

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumada, L.; Chmielewski, A.G.; Zimek, Z.; Bulka, S.; Licki, J.

    1998-01-01

    An experimental work for the verification of potential use of electron-beam irradiation processing for S O 2 removal from reduced-S O 2 -strength gases, between 1,000 and 10,000 ppm, was conducted in a laboratory unit equipped with a multi-purpose electron accelerator working with beam energy of 800 keV. During experimental tests performed, influence of different operating parameters on the overall S O 2 removal process was established. Tests were conducted under two main conditions, using only electron beam irradiation and using electron beam irradiation plus ammonia injection. Tests results proved the technical feasibility to move S O 2 from off-gases under working experimental conditions, i.e., S O 2 removal is achieved under the two modes of operation. When using only electron beam irradiation S O 2 removal efficiencies found were rather low, up to 40%, but in the case of using electron beam irradiation in conjunction with ammonia injection, it was found that S O 2 removal efficiency raises up to 85% under experimental conditions. (author)

  19. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin.

    Science.gov (United States)

    Ricci, A; Lagel, M-C; Parpinello, G P; Pizzi, A; Kilmartin, P A; Versari, A

    2016-07-15

    Tannin of chestnut (Castanea sativa Mill.) wood, commonly used in winemaking was characterised with a spectroscopy qualitative approach that revealed its phenolic composition: several vibrational diagnostic bands assigned using the Attenuated Total Reflectance-Infrared Spectroscopy, and fragmentation patterns obtained using the Laser-Desorption-Ionization Time-of-Flight technique evidenced polygalloylglucose, e.g. castalagin/vescalagin-like structures as the most representative molecules, together with sugar moieties. The implication of these findings on winemaking application and the potential influence of the chemical structure on the sensory properties of wine are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Discussion and analytical test for inclusion of advanced field and boundary condition in theory of free electron lasers

    Science.gov (United States)

    Niknejadi, Pardis; Madey, John M. J.

    2017-09-01

    By the covariant statement of the distance in space-time separating transmitter and receivers, the emission and absorption of the retarded and advanced waves are all simultaneous. In other words, for signals carried on electromagnetic waves (advanced or retarded) the invariant interval (cdt) 2 -dr2 between the emission of a wave and it's absorption at the non-reflecting boundary is always identically zero. Utilizing this principle, we have previously explained the advantages of including the coherent radiation reaction force as a part of the solution to the boundary value problem for FELs that radiate into "free space" (Self Amplified Spontaneous Emission (SASE) FELs) and discussed how the advanced field of the absorber can interact with the radiating particles at the time of emission. Here we present an analytical test which verifies that a multilayer mirror can act as a band pass filter and can contribute to microbunching in the electron beam. Here we will discuss motivation, conditions and requirements, and method for testing this effect.

  1. Time ordering in multi-electron dynamics

    International Nuclear Information System (INIS)

    McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J

    2003-01-01

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data

  2. Time ordering in multi-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2003-01-28

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.

  3. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  4. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  5. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  6. WEBEXPIR: Windowless target electron beam experimental irradiation

    International Nuclear Information System (INIS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait

    2008-01-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications

  7. Electron self-injection in the donut bubble wakefield

    Science.gov (United States)

    Firouzjaei, Ali Shekari; Shokri, Babak

    2018-05-01

    We investigate electron self-injection in a donut bubble wakefield driven by a Laguerre-Gauss laser pulse. The present work discusses the electron capture by modeling the analytical donut bubble field. We discuss the self-injection of the electrons from plasma for various initial conditions and then compare the results. We show that the donut bubble can trap plasma electrons forming a hollow beam. We present the phase spaces and longitudinal momentum evolution for the trapped electrons in the bubble and discuss their characteristic behaviors and stability. It will be shown that the electrons self-injected in the front are ideal for applications in which a good stability and low energy spread are essential.

  8. Production of runaway electrons by negative streamer discharges

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2010-01-01

    thunderstorms, the so-called Terrestrial Gamma-Ray Flashes. The radiation is thought to be bremsstrahlung from energetic (MeV) electrons accelerated in a thunderstorm discharge. The observation goes against conventional wisdom that discharges in air are carried by electrons with energies below a few tens of e...... and the conditions on the electric field for the acceleration of electrons into the runaway regime. We use particle codes to describe the process of stochastic acceleration and introduce a novel technique that improves the statistics of the relatively few electrons that reach high energies. The calculation...

  9. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    Science.gov (United States)

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. STAGE TECHNOLOGY FOR OBTAINIGN AN ECONOMIC WHITE WINE TO AN INDUSTRIAL SCALE

    Directory of Open Access Journals (Sweden)

    Juan Esteban Miño Valdés

    2015-07-01

    Full Text Available The purpose of this work was to develop a sustainable technology to produce economical white wine, industrial scale, not viniferous grapes grown in Misiones. This technological project started at laboratory scale, it continued in a pilot plant and planned to an industrial scale. It was considered as productive unit 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: the development of dry white wine at laboratory scale, the evaluation of the variables of the process in the vilification, the Mathematical modeling of alcoholic fermentation in winemaking conditions, the assessment of the fitness of wines for human consumption, the establishment of a technological process for winemaking in a pilot plant, the evaluation in pilot plant of the technological process established, the calculation and selection of industrial equipment and finally, the costs estimation and profitability of the industrial technological process. A technology for a production capacity of 5,834 L day-1, with dynamic economic indicators was reached whose values were 6,602,666 net present value of U$D, an internal rate of return of 60 % for a period of payback a value net of three years to date.

  11. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  12. Replacing Electron Transport Cofactors with Hydrogenases

    KAUST Repository

    Laamarti, Rkia

    2016-12-01

    Enzymes have found applications in a broad range of industrial production processes. While high catalytic activity, selectivity and mild reaction conditions are attractive advantages of the biocatalysts, particularly costs arising from required cofactors pose a sever limitation. While cofactor-recycling systems are available, their use implies constraints for process set-up and conditions, which are a particular problem e.g. for solid-gas-phase reactions. Several oxidoreductases are able to directly exchange electrons with electrodes. Hence, the co-immobilization of both, an electron-utilizing and an electron-generating oxidoreductase on conductive nanoparticles should facilitate the direct electron flow from an enzymatic oxidation to a reduction reaction circumventing redox-cofactors requirements. In such a set-up, hydrogenases could generate and provide electrons directly form gaseous hydrogen. This thesis describes the co-immobilization of the oxygen tolerant hydrogenases from C. eutropha or C. metallidurans and cytochrome P450BM3 as test system. Conductive material in the form of carbon nanotubes (CNT) serves as a suitable support. A combination of the hydrogenase and the catalytic domain of P450BM3 immobilized on carbon nanotubes were tested for the oxidation of lauric acid in the presence of hydrogen instead of an electron-transport cofactor. The GC-MS analysis reveals the conversion of 4% of lauric acid (LA) into three products, which correspond to the hydroxylated lauric acid in three different positions with a total turnover (TON) of 34. The product distribution is similar to that obtained when using the wildtype P450BM3 with the nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. Such electronic coupling couldn’t be achieved for the conversion of other substrates such as propane and cyclohexane, probably due to the high uncoupling rate within the heme-domain of cytochrome P450BM3 when unnatural substrates are introduced.

  13. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Cryogenic instrumentation with cold electronics-A review

    International Nuclear Information System (INIS)

    Rao, M.G.; Scurlock, R.G.

    1986-01-01

    The low level signals from cryogenic sensors and transducers are usually carried to the electronic signal conditioning and data handling systems at ambient temperatures by long electrical leads running from the cyrogenic environment to ambient. There are many applications, outside those using superconducting devices, in which there are advantages to be gained by placing part or all of the electronic system in the cryogenic environment adjacent to the measuring point. This paper discusses the requirements for an ideal cold electronic instrumentation system and then reviews the present state of the art in relation to off-the-shelf electronic components, devices and integrated circuits, and the published literature. The integration of sensors/transducers with cold electronics is discussed and areas for development are outlined

  15. Few electron quantum dot coupling to donor implanted electron spins

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. Effect of protonation on the electronic properties of DNA base pairs: applications for molecular electronics.

    Science.gov (United States)

    Mallajosyula, Sairam S; Pati, Swapan K

    2007-10-11

    Protonation of DNA basepairs is a reversible phenomenon that can be controlled by tuning the pH of the system. Under mild acidic conditions, the hydrogen-bonding pattern of the DNA basepairs undergoes a change. We study the effect of protonation on the electronic properties of the DNA basepairs to probe for possible molecular electronics applications. We find that, under mild acidic pH conditions, the A:T basepair shows excellent rectification behavior that is, however, absent in the G:C basepair. The mechanism of rectification has been discussed using a simple chemical potential model. We also consider the noncanonical A:A basepair and find that it can be used as efficient pH dependent molecular switch. The switching action in the A:A basepair is explained in the light of pi-pi interactions, which lead to efficient delocalization over the entire basepair.

  17. Calculation of spin-spin zero-field splitting within periodic boundary conditions: Towards all-electron accuracy

    Science.gov (United States)

    Biktagirov, Timur; Schmidt, Wolf Gero; Gerstmann, Uwe

    2018-03-01

    For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008), 10.1103/PhysRevB.77.035119], and complete it by adding a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in agreement with the common assumption, we show that in general it significantly improves the calculated ZFS towards the all-electron results.

  18. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  19. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  20. Distribution of Native Lactic Acid Bacteria in Wineries of Queretaro, Mexico and Their Resistance to Wine-Like Conditions

    Science.gov (United States)

    Miranda-Castilleja, Dalia E.; Martínez-Peniche, Ramón Álvar; Aldrete-Tapia, J. A.; Soto-Muñoz, Lourdes; Iturriaga, Montserrat H.; Pacheco-Aguilar, J. R.; Arvizu-Medrano, Sofía M.

    2016-01-01

    Native lactic acid bacteria (LAB) are capable of growing during winemaking, thereby strongly affecting wine quality. The species of LAB present in musts, wines during malolactic fermentation (MLF), and barrels/filters were investigated in wineries from the emerging wine region of Queretaro, México using multiplex PCR and culture. The resistance to wine-like conditions (WLC): ethanol (10, 12, and 13%), SO2 (30 mg⋅l-1), and low pH (3.5) of native LAB strains was also studied. Five species were detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum, Pediococcus parvulus, Lactobacillus hilgardi, and Lactobacillus brevis. Four species (excepting L. brevis) were found in must; O. oeni and P. parvulus were ubiquitous in wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while L. hilgardii was mostly detected at the advanced stage. Furthermore, some species detected in barrel/filter, prove them to be hazardous reservoirs. From 822 LAB isolates, only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were the most strongly affected, especially those recovered from barrel/filter, with less than 10% of resistant isolates. This study evidences the presence of local strains able to be used as starter cultures, and also enabled the assessment of the risks derived from the presence of spoilage LAB strains resistant to WLC. PMID:27877164

  1. Quality control of the documentation process in electronic economic activities

    Directory of Open Access Journals (Sweden)

    Krutova A.S.

    2017-06-01

    Full Text Available It is proved that the main tool that will provide adequate information resources e economic activities of social and economic relations are documenting quality control processes as the basis of global information space. Directions problems as formation evaluation information resources in the process of documentation, namely development tools assess the efficiency of the system components – qualitative assessment; development of mathematical modeling tools – quantitative evaluation. A qualitative assessment of electronic documentation of economic activity through exercise performance, efficiency of communication; document management efficiency; effectiveness of flow control operations; relationship management effectiveness. The concept of quality control process documents electronically economic activity to components which include: the level of workflow; forms adequacy of information; consumer quality documents; quality attributes; type of income data; condition monitoring systems; organizational level process documentation; attributes of quality, performance quality consumer; type of management system; type of income data; condition monitoring systems. Grounded components of the control system electronic document subjects of economic activity. Detected components IT-audit management system economic activity: compliance audit; audit of internal control; detailed multilevel analysis; corporate risk assessment methodology. The stages and methods of processing electronic transactions economic activity during condition monitoring of electronic economic activity.

  2. The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

    Science.gov (United States)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Fraser, D.; Leary, M.; Yang, Y. F.; Qian, M.

    2016-03-01

    Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650- μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

  3. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  4. Advanced cryocooler electronics for space

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, D.; Danial, A.; Godden, J.; Jackson, M.; McCuskey, J.; Valenzuela, P. [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Davis, T. [Air Force Research Lab., Albuquerque, NM (United States)

    2004-08-01

    Space pulse-tube cryocoolers require electronics to control the cooling temperature and self-induced vibration. Other functions include engineering diagnostics, telemetry and safety protection of the unit against extreme environments and operational anomalies. The electronics must survive the harsh conditions of launch and orbit, and in some cases severe radiation environments for periods exceeding 10 years. A number of our current generation high reliability radiation hardened electronics units have been launched and others are in various stages of assembly or integration on a number of space flight programs. This paper describes the design features and performance of our next generation flight electronics designed for the STSS payloads. The electronics provides temperature control with better than +/-50 mK short-term stability. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter limits peak-to-peak reflected ripple current on the primary power bus to less than 3% of the average DC current. The 3 kg unit is capable of delivering 180 W continuous to NGST's high-efficiency cryocooler (HEC). (author)

  5. Sub-electron transport in single-electron-tunneling arrays

    Science.gov (United States)

    Kaplan, Daniel; Sverdlov, Viktor; Korotkov, Alexander; Likharev, Konstantin

    2002-03-01

    We have analyzed quasi-continuous charge transport in two-dimensional tunnel junction arrays with a special distribution of background charges, providing a complete suppression of Coulomb blockade thresholds of tunneling between any pair of islands. Numerical simulations show that at low currents the dc I-V curve is indeed linear, while the shot noise is strongly suppressed and approaches 1/N of the Schottky value (where N is the array length). Thus both conditions of quasi-continuous transport, formulated earlier by Matsuoka and Likharev (Phys. Rev. B, v57, 15613, 1998), are satisfied. At higher fields the electron-hole pair production begins, and shot noise grows sharply. At higher voltages still, the array enters the "plasma" regime (with nearly balanced number of electrons and holes) and the Fano factor drops to 1/N once again. We have studied the resulting shot noise peak in detail, and concluded that its physics is close to that of critical opalescence.

  6. Hyphal formation of Candida albicans is controlled by electron transfer system

    International Nuclear Information System (INIS)

    Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2006-01-01

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growth of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition

  7. The electron gun for the Daresbury SRS linac

    International Nuclear Information System (INIS)

    Dykes, D.M.

    1996-01-01

    The electron gun for the Daresbury SRS linac injector has been modified to use the cathode-grid assembly from the Eimac planar triode 8755. The gun now has improved beam characteristics, is more reliable and the cathode assembly is quicker and easier to change. This paper describes the assembly of the electron gun, and then the re-conditioning of the cathode highlighting the vacuum environment. The action of the grid modulation system on the electron beam, which pre-bunches the electron beam, is described, and typical gun characteristics are shown. Proposed developments to the gun system are discussed. (author)

  8. Volumetric Studies of Earth's Electron Foreshock Using PEACE Data

    Science.gov (United States)

    Goldstein, Melvyn L.; Gurgiolo, Chris; Fazakersley, Andrew

    2010-01-01

    We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE) electron data from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. What is found is that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath) and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity.

  9. Upgrade of the ALICE muon trigger electronics

    International Nuclear Information System (INIS)

    Dupieux, P; Joly, B; Jouve, F; Manen, S; Vandaële, R

    2014-01-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb–Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm 2 with rates up to 100 Hz/cm 2 , which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments

  10. A high precision radiation-tolerant LVDT conditioning module

    Energy Technology Data Exchange (ETDEWEB)

    Masi, A. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Danzeca, S. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); IES, F-34000 Montpellier (France); Losito, R.; Peronnard, P. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Secondo, R., E-mail: raffaello.secondo@cern.ch [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Spiezia, G. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  11. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  12. The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage.

    Science.gov (United States)

    Garijo, Patrocinio; Santamaría, Pilar; López, Rosa; Sanz, Susana; Olarte, Carmen; Gutiérrez, Ana Rosa

    2008-07-15

    This research studies the presence of microorganisms of enological interest (yeasts, bacteria and molds) and their evolution in the air of a wine cellar. The samples were taken throughout the winemaking campaign (September-December) in a winery of the D.O.Ca. Rioja, Spain. They were collected using an airIDEAL atmosphere sampler from Biomerieux. For the isolation, specific selective media were used for each group of microorganisms. The results obtained indicate that the presence in the winery air of the various different microorganisms studied is directly related to the winemaking processes that are taking place in the winery. Thus, the number of molds present decreases once grapes have ceased to be brought into the winery. The maximum number of yeasts in the air is found when all the vats in the cellar are fermenting, while the lactic bacteria are not detected until the first malolactic fermentation begins. The species of yeasts and molds identified are also related to the winemaking processes. The coincidence of strains of Saccharomyces cerevisiae among those present in the vats during alcoholic fermentation and those isolated from the air, confirms the role of the latter as a transmitter of microorganisms.

  13. Rank restriction for the variational calculation of two-electron reduced density matrices of many-electron atoms and molecules

    International Nuclear Information System (INIS)

    Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.

    2011-01-01

    Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N 2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.

  14. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  15. Dynamic aspects of electronic predissociation

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1996-01-01

    We consider electronic excitation induced with a continuous wave laser to an excited bound state which can predissociate due to a radiationless transition to a dissociative state. The conditions for a separation of the process into the preparation of a vibrational eigenstate which subsequently...

  16. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back......In power electronic systems, capacitor is one of the reliability critical components . Recently, the condition monitoring of capacitors to estimate their health status have been attracted by the academic research. Industry applications require more reliable power electronics products...... with preventive maintenance. However, the existing capacitor condition monitoring methods suffer from either increased hardware cost or low estimation accuracy, being the challenges to be adopted in industry applications. New development in condition monitoring technology with software solutions without extra...

  17. Backscattering of projectile-bound electrons from solid surfaces

    International Nuclear Information System (INIS)

    Tobisch, M.; Schosnig, M.; Kroneberger, K.; Kuzel, M.; Maier, R.; Jung, M.; Fiedler, C.; Rothard, H.; Clouvas, A.; Suarez, S.; Groeneveld, K.O.

    1994-01-01

    The contribution of projectile ionization (PI) to secondary electron emission is studied by collision of H 2 + and H 3 + ions (400 keV/u and 700 keV/u) with carbon, copper and gold targets (600 A). The measured doubly differential intensity distribution shows a peak of lost projectile electrons near - v p . We describe the subtraction of the contribution of target ionization (TI), and compare the remaining electron intensities with a BEA calculation. For solids we observe a strong energy shift of the electron loss peak, which is compared with the influence of electron transport and binding energy. Furthermore, the low energy tail of the electron loss peak indicates the simultaneous occurrence of PI and TI. Finally we discuss the influence of surface conditions and the dependence of the observation angles on the measured electron intensities. (orig.)

  18. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency

    International Nuclear Information System (INIS)

    Luong, M.

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics (β, A e ) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  19. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  20. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electron string phenomenon: physics and use

    International Nuclear Information System (INIS)

    Donets, Evgeny D

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS 'Krion-2' in the string mode of operation is used for production of N 7+ , Ar 16+ and Fe 24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron 'Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA - Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied

  2. Electron string phenomenon: physics and use

    Science.gov (United States)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  3. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  4. Electrons, Electronic Publishing, and Electronic Display.

    Science.gov (United States)

    Brownrigg, Edwin B.; Lynch, Clifford A.

    1985-01-01

    Provides a perspective on electronic publishing by distinguishing between "Newtonian" publishing and "quantum-mechanical" publishing. Highlights include media and publishing, works delivered through electronic media, electronic publishing and the printed word, management of intellectual property, and recent copyright-law issues…

  5. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  6. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    International Nuclear Information System (INIS)

    Fang, Jyan-Min.

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO 2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator

  7. Experimental study and simulation of the extraction conditions of a multicharged ion beam from an electron cyclotron resonance source

    International Nuclear Information System (INIS)

    Mandin, J.

    1996-01-01

    This thesis concerns the beam extraction studies of ECR Ion Sources for the SPIRAL project at GANIL (France). The optical properties (i.e. the emittances) of the radioactive ion beam production source is a crucial point in this project. We performed emittance measurements with a very high transport efficiency and developed a computer code for simulating the extraction and transport conditions. This simulation takes into account all the parameters acting on the extraction process: the characteristics of the ions and electrons emitted by the plasma, their space and energy distributions, the space charge, the magnetic filed of the source and the accelerating electric field. We explained the evolution of the emittances for two different types of ECR Ion Source. The simulation-experiment comparison showed us that the magnetic field and the intrinsic energy of the ions seem to be the most important parameters for explaining the overall emittance behaviour of the ECRIS. We precise their values and comment them. (author)

  8. Developing Argumentation Strategies in Electronic Dialogs: Is Modeling Effective?

    Science.gov (United States)

    Mayweg-Paus, Elisabeth; Macagno, Fabrizio; Kuhn, Deanna

    2016-01-01

    The study presented here examines how interacting with a more capable interlocutor influences use of argumentation strategies in electronic discourse. To address this question, 54 young adolescents participating in an intervention centered on electronic peer dialogs were randomly assigned to either an experimental or control condition. In both…

  9. Electron emission from tungsten surface induced by neon ions

    Science.gov (United States)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli

    2014-04-01

    The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".

  10. Buildup of electrons with hot electron beam injection into a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Bashko, V.A.; Krivoruchko, A.M.; Tarasov, I.K.

    1989-01-01

    The injection of the monoenergetic beam of electrons into the vacuum drift channel under the conditions when the beam current exceeds a certain threshold value involves a virtual cathode creation. The process of virtual cathode creation leads to an exchange of one-fluid movement of beam particles to three-fluid one corresponding to incident, reflected and passed through anticathode beam particles. For the monoenergetic beam case when the velocity spread Δv dr (v dr is the beam drift velocity), the beam instability was predicted in theory and was observed in experiment. Meanwhile, the injection in the drift space of the 'hot' beam having finite spread in velocities may be accompanied not only by the reflection of particles if their velocity v 1/2 (where φ is the electrostatic potential dip value, e and m are the electron charge and mass, respectively), but also the mutual Coulomb scattering of incident and reflected electrons. The scattering process leads in its turn to appearance of viscosity forces and to trapping of a part of beam electrons into the effective potential well formed by electrostatic potential dip and the viscous force potential. The interaction of travelling and trapped particles may occur even at the stage preceding the virtual electrode formation and it may influence the process of its appearance and also the current flow through the drift space. In this report there are described the experimental results on accumulation of electrons when electron beam propagates in vacuum and has a large spread in particle velocities Δv dr in the homogeneous longitudinal magnetic field when ω pe He where ω pe is the electron Langmuir frequency of beam electrons, ω He is the electron cyclotron frequency. (author) 6 refs., 2 figs

  11. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  12. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  13. Electron emission at the rail surface

    International Nuclear Information System (INIS)

    Thornhill, L.; Battech, J.

    1991-01-01

    In this paper the authors examine the processes by which current is transferred from the cathode rail to the plasma armature in an arc-driven railgun. Three electron emission mechanisms are considered, namely thermionic emission, field-enhanced thermionic emission (or Schottky emission), and photoemission. The author's calculations show that the dominant electron emission mechanism depends, to a great extent, on the work function of the rail surface, the rail surface temperature, the electric field at the rail surface, and the effective radiation temperature of the plasma. For conditions that are considered to be typical of a railgun armature, Schottky emission is the dominant electron emission mechanism, providing current densities on the order of 10 9 A/m 2

  14. Electron-electron Bremsstrahlung for bound target electrons

    International Nuclear Information System (INIS)

    Haug, E.

    2008-01-01

    For the process of electron-electron (e-e) Bremsstrahlung the momentum and energy distributions of the recoiling electrons are calculated in the laboratory frame. In order to get the differential cross section and the photon spectrum for target electrons which are bound to an atom, these formulae are multiplied by the incoherent scattering function and numerically integrated over the recoil energy. The effect of atomic binding is most pronounced at low energies of the incident electrons and for target atoms of high atomic numbers. The results are compared to those of previous calculations. (authors)

  15. Surface influence on convoy electron emission at low energies

    International Nuclear Information System (INIS)

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  16. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  17. Optical Performance of Carbon-Nanotube Electron Sources

    International Nuclear Information System (INIS)

    Jonge, Niels de; Allioux, Myriam; Oostveen, Jim T.; Teo, Kenneth B. K.; Milne, William I.

    2005-01-01

    The figure of merit for the electron optical performance of carbon-nanotube (CNT) electron sources is presented. This figure is given by the relation between the reduced brightness and the energy spread in the region of stable emission. It is shown experimentally that a CNT electron source exhibits a highly stable emission process that follows the Fowler-Nordheim theory for field emission, fixing the relationship among the energy spread, the current, and the radius. The performance of the CNT emitter under realistic operating conditions is compared with state-of-the-art electron point sources. It is demonstrated that the reduced brightness is a function of the tunneling parameter, a measure of the energy spread at low temperatures, only, independent of the geometry of the emitter

  18. Capacitor ageing in electronic devices

    Directory of Open Access Journals (Sweden)

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  19. Strict calculation of electron energy distribution functions in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Winkler, R.

    1996-01-01

    It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)

  20. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions

  1. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    Science.gov (United States)

    Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine

  2. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  3. Motives and perceptions regarding electronic nicotine delivery systems (ENDS) use among adults with mental health conditions.

    Science.gov (United States)

    Spears, Claire Adams; Jones, Dina M; Weaver, Scott R; Pechacek, Terry F; Eriksen, Michael P

    2018-05-01

    Smoking rates are disproportionately high among adults with mental health conditions (MHC), and recent research suggests that among former smokers, those with MHC are more likely to use electronic nicotine delivery systems (ENDS). This study investigated reasons for ENDS use and related risk perceptions among individuals with versus without MHC. Among adult current ENDS users (n=550), associations between self-reported MHC diagnoses and motives for ENDS use and ENDS risk perceptions were examined, stratified by smoking status. There were no significant associations between MHC status and ENDS motives or perceptions in the overall sample. However, current smokers with MHC indicated thinking more about how ENDS might improve their health, and former smokers with MHC reported thinking less about how ENDS might harm their health, compared to their counterparts without MHC. Former smokers with MHC rated several reasons for ENDS use (e.g., less harmful than regular cigarettes; to quit smoking; appealing flavors) as more important than did those without MHC. Current and former smokers with MHC may be especially optimistic about health benefits of ENDS. However, they might also be prone to health risks of continued ENDS use or concurrent use with traditional cigarettes. It will be important for public health messaging to provide this population with accurate information about benefits and risks of ENDS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Electron emission from tungsten surface induced by neon ions

    International Nuclear Information System (INIS)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Liu, Xueliang; Xiao, Guoqing; Li, Fuli; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang

    2014-01-01

    The electron emission from W surface induced by Ne q+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for ''trampoline effect''

  5. Growth of electron plasma waves above and below f/sub p/ in the electron foreshock

    International Nuclear Information System (INIS)

    Cairns, I.H.; Fung, S.F.

    1988-01-01

    With increasing penetration into the electron foreshock the characteristics of the electrostatic waves driven by streaming electrons change continuously from the familiar intense waves near the electron plasma frequency f/sub p/ to weak bursts of broadband waves initially significantly above f/sub p/ and then well below f/sub p/. Growth well below f/sub p/ has been demonstrated theoretically for slow, cold electron beams, and the broadband waves below f/sub p/ in the foreshock have been interpreted in terms of the very cold or sharp ''cutoff'' feature of a cutoff distribution for small cutoff speeds. However, an approximate theoretical criterion indicates that the electron beams studied hitherto are unstable to reactive rather than kinetic growth, thereby favoring very narrow-band growth contrary to the observed broadband growth. In this paper we determine conditions for kinetic growth well above and below f/sub p/ for both cold and warm beams over a wide range of beam densities and speeds. We verify that kinetic growth below f/sub p/ is possible for cold, slow beams and for warm, dense beams (over wide range of beam velocities)

  6. Auroral electron time dispersion

    International Nuclear Information System (INIS)

    Kletzing, C.A.

    1989-01-01

    A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R e in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV

  7. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  8. Acute radiation nephritis. Light and electron microscopic observations

    International Nuclear Information System (INIS)

    Kapur, S.; Chandra, R.; Antonovych, T.

    1977-01-01

    Light and electron microscopy were used to observe acute radiation nephritis. By light microscopy the changes were of fibrinoid necrosis of the arteries and arterioles with segmental necrosis of the glomerular tufts. By electron microscopy the endocapillary cells reacted by hypertrophy and hyperplasia with increase in cytoplasmic organelles. In addition, disruption of endothelial and epithelial cells from the basement membranes were seen. It is concluded that the electron microscopic changes were unique and may be helpful in differentiating the necrotizing glomerulitis seen in other conditions, especially malignant hypertension

  9. Electron-beam-induced fracture of Kevlar single fibers

    International Nuclear Information System (INIS)

    Dickinson, J.T.; Jensen, L.C.; Klakken, M.L.

    1986-01-01

    We examine the unique situation involving the exposure of polymers to both electron bombardment and mechanical stress. Under certain conditions, crack formation, crack growth, and fracture can occur due to this combination of stimuli. These studies relate to the performance of a number of materials under hostile environments such as space, plasma, and propulsion systems. In this paper we present our initial measurements on the response of single Kevlar fibers loaded in tension to bombardment by 3-keV electrons. We present evidence that the resulting electron-beam-induced fracture is due to bond breaking

  10. Corrosion in electronics: Overview of failures and countermeasures

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Verdingovas, Vadimas; Conseil, Helene

    2014-01-01

    Many field failure returns of electronics are marked as “no failure found”, yet numerous of these failures are likely due to corrosion, since corrosion related failures are not easily detected during subsequent failure analysis. In some cases failures are intermittent and occur because of service...... life conditions (humidity and contamination) where water film formation on the printed circuit board assembly (PCBA) leads to leakage currents resulting in wrong output signal of the electronic device. If the leakage current itself will not result in malfunctioning of the electronics, the formed water...

  11. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  12. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  13. Conditions for the growth of smooth La0.7Sr0.3MnO3 thin films by pulsed electron ablation

    International Nuclear Information System (INIS)

    Graziosi, P.; Prezioso, M.; Gambardella, A.; Kitts, C.; Rakshit, R.K.; Riminucci, A.; Bergenti, I.; Borgatti, F.; Pernechele, C.; Solzi, M.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.A.

    2013-01-01

    We report on the optimisation of the growth conditions of manganite La 0.7 Sr 0.3 MnO 3 thin films prepared by Channel Spark Ablation (CSA). CSA belongs to pulsed electron deposition methods and its energetic and deposition parameters are quite similar to those of pulsed laser deposition. The method has been already proven to provide manganite films with good magnetic properties, but the films were generally relatively rough (a few nm coarseness). Here we show that increasing the oxygen deposition pressure with respect to previously used regimes, reduces the surface roughness down to unit cell size while maintaining a robust magnetism. We analyse in detail the effect of other deposition parameters, like accelerating voltage, discharging energy, chamber pressure and substrate temperature and provide on this basis a set of optimal conditions for the growth of atomically flat films. The thicknesses for which atomically flat surface was achieved is as high as about 10–20 nm, corresponding to films with room temperature magnetism. We believe such magnetic layers represent appealing and suitable electrodes for various spintronic devices. - Highlights: ► Atomically flat manganite thin films ► Robust ferromagnetism at room temperature ► Perovskite thin films deposited by channel spark ablation ► Magnetotransport and magnetometry comparison

  14. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  15. Core electron-root confinement (CERC) in helical plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Ida, K.; Maassbcrg, H.

    2006-10-01

    The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r , in the core region are common fractures for this improved confinement. Such observations are consistent with a transition to the electron-root' solution of the ambipolarity condition for E r in the context of the neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The electron heat diffusivity is much reduced due to the electron-root E r compared to that with E r =0 assumed, which clearly demonstrates that 1/v ripple diffusion (ν being the collision frequency) in low-collisional helical plasmas could be overcome. The magnetic configuration properties play important roles in this transition, and thresholds are found for the collisionality and electron cyclotron heating (ECH) power. (author)

  16. Development of a high power free-electron laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB 6 -based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author)

  17. A Thermoelectric Generation System and Its Power Electronics Stage

    DEFF Research Database (Denmark)

    Gao, Junling; Sun, Kai; Ni, Longxian

    2012-01-01

    stage and signal-conditioning circuits of the load, including DC–DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG...... system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC–DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features...... a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify...

  18. Long-term changes in the surface conditions of PLT

    International Nuclear Information System (INIS)

    Cohen, S.A.; Dylla, H.F.; Rossnagel, S.M.; Picraux, S.T.; Borders, J.A.; Magee, C.W.

    1977-01-01

    Long-term changes in the surface conditions of the PLT vacuum vessel wall have been monitored by the periodic analysis of a variety of sample substrates (stainless steel, alumina, silicon), exposed to PLT discharges for periods of up to several months and subsequently removed for analysis by Auger electron spectroscopy (AES), photoelectron spectroscopy, ion backscattering, nuclear reaction analysis, secondary ion mass spectroscopy, and scanning electron microscopy

  19. Interplay between electron-phonon and electron-electron interactions

    International Nuclear Information System (INIS)

    Roesch, O.; Gunnarsson, O.; Han, J.E.; Crespi, V.H.

    2005-01-01

    We discuss the interplay between electron-electron and electron-phonon interactions for alkali-doped fullerides and high temperature superconductors. Due to the similarity of the electron and phonon energy scales, retardation effects are small for fullerides. This raises questions about the origin of superconductivity, since retardation effects are believed to be crucial for reducing effects of the Coulomb repulsion in conventional superconductors. We demonstrate that by treating the electron-electron and electron-phonon interactions on an equal footing, superconductivity can be understood in terms of a local pairing. The Jahn-Teller character of the important phonons in fullerides plays a crucial role for this result. To describe effects of phonons in cuprates, we derive a t-J model with phonons from the three-band model. Using exact diagonalization for small clusters, we find that the anomalous softening of the half-breathing phonon as well as its doping dependence can be explained. By comparing the solution of the t-J model with the Hartree-Fock approximation for the three-band model, we address results obtained in the local-density approximation for cuprates. We find that genuine many-body results, due to the interplay between the electron-electron and electron-phonon interactions, play an important role for the the results in the t-J model. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Production of an electron-positron plasma in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Istomin, Y.N.

    1985-01-01

    A study is made of the production of electron-positron plasma in the vacuum state (''breakdown'' of the vacuum) in the presence of an inhomogeneous electric field and a strong curvilinear magnetic field. Such conditions are encountered in the magnetosphere of a rotating neutron star. A general system of kinetic equations is derived for the electrons, positrons, and γ photons in the curvilinear magnetic field with allowance for the production of electron-positron pairs and the emission of curvature and synchrotron photons. The conditions of occurrence of ''breakdown'' are determined, and the threshold value of the jump in the value of the electric field at the surface of the star is found. The process of multiplication of particles in the magnetosphere is investigated, and the distribution functions of the electrons, positrons, and photons are found. The extinction limit of pulsars is determined. It is shown that the theory is in agreement with observational data

  1. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  2. OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

    Directory of Open Access Journals (Sweden)

    JEONG DONG KIM

    2014-06-01

    As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

  3. Magnetic properties of confined electron gas

    International Nuclear Information System (INIS)

    Felicio, J.R.D. de.

    1977-04-01

    The effects of confinement by a two or three-dimensional harmonic potential on the magnetic properties of a free electron gas are investigated using the grand-canonical ensemble framework. At high temperatures an extension of Darwin's, Felderhof and Raval's works is made taking into account spin effects at low temperature. A comprehensive description of the magnetic properties of a free electron gas is given. The system is regarded as finite, but the boundary condition psi=0 is not introduced. The limits of weak and strong confinement are also analysed [pt

  4. Development of splitting convergent beam electron diffraction (SCBED)

    Energy Technology Data Exchange (ETDEWEB)

    Houdellier, Florent, E-mail: Florent.Houdellier@cemes.fr [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Röder, Falk [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Triebenberg Lab, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Snoeck, Etienne [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse (France)

    2015-12-15

    Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. - Highlights: • Using a condenser biprism, we split the CBED pattern in two half-CBED disks. • We have determined the electron optical conditions used to perform various SCBED. • We propose new applications possible for this new SCBED configuration.

  5. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  6. Progress Towards a Laboratory Test of Alfvénic Electron Acceleration

    Science.gov (United States)

    Schroeder, J. W. R.; Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2016-10-01

    Alfvén waves are thought to be a key mechanism for accelerating auroral electrons. Due to inherent limitations of single point measurements, in situ data has been unable to demonstrate a causal relationship between Alfvén waves and accelerated electrons. Electron acceleration occurs in the inner magnetosphere where the Alfvén speed is greater than the electron thermal speed. In these conditions, Alfvén waves can have an electric field aligned with the background magnetic field B0 if the scale of wave structure across B0 is comparable to the electron skin depth. In the Large Plasma Device (LaPD), Alfvén waves are launched in conditions relevant to the inner magnetosphere. The reduced parallel electron distribution function is measured using a whistler-mode wave absorption diagnostic. The linear electron response has been measured as oscillations of the electron distribution function at the Alfvén wave frequency. These measurements agree with linear theory. Current efforts focus on measuring the nonlinear acceleration of electrons that is relevant to auroral generation. We report on recent progress including experiments with a new higher-power Alfvén wave antenna with the goal of measuring nonlinear electron acceleration. This work was supported by the NSF GRFP and by Grants from NSF, DOE, and NASA. Experiments were performed at the Basic Plasma Science Facility which is funded by DOE and NSF.

  7. Electron capture in asymmetric collisions

    International Nuclear Information System (INIS)

    Graviele, M.S.; Miraglia, J.E.

    1988-01-01

    It is calculated the electronic capture of K shell by protons using the on-shell impulsive wave functions, exact and eikonal, in the initial and final channels respectively. Both wave functions are normalized and have the correct asyntotic conditions. A good agreement to the experimental data is found. (A.C.A.S.) [pt

  8. ELECTRONIC PAYMENT SYSTEMS AND THEIR POSSIBLE WAY OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    K. V. Karvai

    2013-01-01

    Full Text Available With development of a century of technologies, the economy has had access also for development in Internet industry sphere too. Thanks to this development have appeared: e-money, electronic payment systems, Internet-banking. In the given work the general scheme of works of electronic payment systems, their conditions and function, examples of possible ways of development are presented. In the conclusion the recommendations how it is possible to optimize the market for development of electronic commerce are given and resulted

  9. Atomistic observations and analyses of lattice defects in transmission electron microscopes

    CERN Document Server

    Abe, H

    2003-01-01

    The transmission electron microscope (TEM) -accelerators was developed. TEM-Accelerator made possible to observe in situ experiments of ion irradiation and implantation. The main results are the experimental proof of new lattice defects by irradiation, the formation process and synthesized conditions of carbon onion by ion implantation, the microstructure and phase transformation conditions of graphite by ion irradiated phase transformation, the irradiation damage formation process by simultaneous irradiation of electron and ion and behavior of fullerene whisker under irradiation. The microstructural evolution of defect clusters in copper irradiated with 240-keV Cu sup + ions and a high resolution electron micrograph of carbon onions synthesized by ion implantation are explained as the examples of recent researches. (S.Y.)

  10. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  11. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  12. From new clones to flowers – innovative business models in the Hungarian wine economy

    Directory of Open Access Journals (Sweden)

    Kismarjai Balázs

    2017-01-01

    Full Text Available Due to the ovestocked Hungarian wine sector wineries often need to find entirely new ways that enable them to increase their market share. These opportunities are determined by the current market potentials, the geographic location and of course the wine district itself. In this study I examined some examples of outbreak opportunities for producers in this difficult economic situation. Young winemakers from different Hungarian wine districts unite to open wine bars - these are now present in several towns all over the country. Other winemakers have been experimenting with new clones in less recognized wine districts. A small winery from a historic wine district recommends its wines with flowers in a new shop.

  13. Factores determinantes de la utilización de instrumentos públicos para la gestión del riesgo en la industria vitivinícola chilena: un modelo logit binomial

    Directory of Open Access Journals (Sweden)

    Germán Lobos

    2008-12-01

    Full Text Available The main objective of this research was to identify the determining factors of the use of public instruments to manage risk in the Chilean wine industry. A binomial logistic regression model was proposed. Based on a survey of 104 viticulture and winemaking companies, a database was constructed between January and October 2007. The model was fitted using maximum likelihood estimation. The variables that turned out to be statistically significant were: risk of the wine price, availability of external consultancy and number of permanent workers. From the Public Management point of view, the main conclusion suggests that the use of public instruments could be increased if viticulturists and winemakers had more external counseling.

  14. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  15. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  16. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas

    International Nuclear Information System (INIS)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes

  17. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    .1% of the surface of the planet with a device that converts solar energy into a useable form at 10% efficiency would give more than the present worldwide consumption of fossil energy. Photocatalysts are of fundamental interest for sustainable energy research because they provide a viable route for converting solar...... energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  18. Proteomic evolution of a wine yeast during the first hours of fermentation.

    Science.gov (United States)

    Salvadó, Zoel; Chiva, Rosana; Rodríguez-Vargas, Sonia; Rández-Gil, Francisca; Mas, Albert; Guillamón, José Manuel

    2008-11-01

    The inoculation of active dry wine yeast (ADWY) is one of the most common practices in winemaking. This inoculation exposes the yeast cells to strong osmotic, acidic and thermal stresses, and adaptation to the new medium is crucial for successful fermentation. We have analysed the changes that occur in the ADWY protein profile in the first hours after inoculation under enological-like conditions at a low temperature. Protein changes mainly included enzymes of the nitrogen and carbon metabolism and proteins related to the cellular stress response. Most of the enzymes of the lower part of the glycolysis showed an increase in their concentration 4 and 24 h after inoculation, indicating an increase in glycolytic flux and in ATP production. However, the shift from respiration to fermentation was not immediate in the inoculation because some mitochondrial proteins involved in oxidative metabolism were induced in the first hours after inoculation. Inoculation in this fresh medium also reduced the cellular concentration of stress proteins produced during industrial production of the ADWY. The only exception was Cys3p, which might be involved in glutathione synthesis as a response to oxidative stress. A better understanding of the yeast stress response to rehydration and inoculation will lead to improvements in the handling efficiency of ADWY in winemaking and presumably to better control of fermentation startup.

  19. Using the Electronic Medical Record to Enhance Physician-Nurse Communication Regarding Patients' Discharge Status.

    Science.gov (United States)

    Driscoll, Molly; Gurka, David

    2015-01-01

    The fast-paced environment of hospitals contributes to communication failures between health care providers while impacting patient care and patient flow. An effective mechanism for sharing patients' discharge information with health care team members is required to improve patient throughput. The communication of a patient's discharge plan was identified as crucial in alleviating patient flow delays at a tertiary care, academic medical center. By identifying the patients who were expected to be discharged the following day, the health care team could initiate discharge preparations in advance to improve patient care and patient flow. The patients' electronic medical record served to convey dynamic information regarding the patients' discharge status to the health care team via conditional discharge orders. Two neurosciences units piloted a conditional discharge order initiative. Conditional discharge orders were designed in the electronic medical record so that the conditions for discharge were listed in a dropdown menu. The health care team was trained on the conditional discharge order protocol, including when to write them, how to find them in the patients' electronic medical record, and what actions should be prompted by these orders. On average, 24% of the patients discharged had conditional discharge orders written the day before discharge. The average discharge time for patients with conditional discharge orders decreased by 83 minutes (0.06 day) from baseline. Qualitatively, the health care team reported improved workflows with conditional orders. The conditional discharge orders allowed physicians to communicate pending discharges electronically to the multidisciplinary team. The initiative positively impacted patient discharge times and workflows.

  20. Lowering effect of radioactive irradiation on breakdown voltage and electron avalanche pulse characteristics

    International Nuclear Information System (INIS)

    Kawahashi, Akira; Nakano, Toru; Hosokawa, Tatsuzo; Miyoshi, Yosinori.

    1976-01-01

    In the time resolving measurement of the growing process and breakdown of electron avalanche in a gap of uniform electric field, the phenomenon that DC breakdown voltage slightly lowered was observed when β ray was irradiated as the initial electron source, as compared with unirradiated condition. Beta source used is 90 Sr- 90 Y of 2 mCi in radiative equilibrium. The experimental results and the examination are described in detail. In brief, the remarkable superposition of succeeding avalanche pulse over the preceeding avalanche pulse waveform was observed under the gap condition in which the breakdown voltage decreased in β-ray irradiation. Thus this superposition of avalanche pulses is considered as one of the causes of the breakdown voltage reduction. When β source is used as the initial electron source, the number of supplied initial electrons is very large as compared with unity, and at the same time, a great number of initial electrons can be supplied within the diffusion radius r of avalanche. Then the effect of initial electron number n 0 was considered by employing a diagram for breakdown scheme. The transition from Townsend type breakdown to streamer type breakdown occurs owing to increasing n 0 , and in that condition, the breakdown voltage lowers slightly. (Wakatsuki, Y)

  1. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    Science.gov (United States)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  2. Numerical Simulation of Transient Moisture Transfer into an Electronic Enclosure

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisturetransfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermalstresses. It is therefore essential to study the local climate...... inside the enclosures to be able to protect the electronic systems.In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce theCPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which...

  3. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  4. Laboratory design for high-performance electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  5. ELECTRONIC PUBLICATION OF DATA AND METHODS FOR COASTAL MONITORING AND ASSESSMENT

    Science.gov (United States)

    We are designing an electronic report on coastal conditions in the Northeast (from Delaware to Maine) for release in 2005. The report will be similar in appearance to a chapter on Northeast Coastal Conditions (EPA, National Coastal Condition Report 2), but based on twice as many...

  6. Non-impact modeling of electron broadening of hydrogen spectral lines in dense but relatively cold plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Buescher, S.; Wrubel, Th.; Kunze, H.-J.; Calisti, A.; Stamm, R.; Talin, B.

    2001-01-01

    The standard static-ion/impact-electron theory of line broadening is assessed with calculations of hydrogen lines over a broad range of plasma conditions. In most cases, discrepancies between results from theory and experiments are explained by the neglect of ion-dynamics effects. Nevertheless, recent experiments involving high density but low temperature plasmas indicate that ion-dynamics/impact-electron models may seriously overestimate the broadening for such conditions. We show that the observed discrepancies are not due to the ion modeling but due to the impact approximation of the electrons in the Original Frequency Fluctuation Model (FFM). This situation arises for plasma conditions where the interactions with the electrons are a major broadening mechanism and quasi-static, i.e. non-binary, electron effects are important. An alternative approach to a binary collision operator is therefore proposed by means of the FFM code generalized to the two components (ions and electrons) of the plasma. Accurate simulations accounting for the electron plus ion field dynamics have been used to corroborate the FFM as applied to both ion and electron perturbers, and good agreement is found with recent experiments on H α and P α for dense but relatively cold plasmas

  7. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  8. WINE ROAD - AN INSTRUMENT FOR THE VALORISATION OF WINE TOURISM POTENTIAL CASE STUDY: ALBA COUNTY VINEYARDS

    Directory of Open Access Journals (Sweden)

    UNGUREANU Mihaela

    2015-12-01

    Full Text Available The main aim of this study is to highlight the wine-growing and wine-making potential of Alba County and the way it can be valorised. Alba county has a rich winegrowing and wine-making heritage, a fact which is due to the long-standing tradition of winegrowing on these area, as well as to the characteristics of the natural factors (relief, geology, climate, soil, favourable for obtaining high-quality wines, the reputation of which has been acquired at national and international competitions. In order to render useful the wine tourism resources, the development of a specific infrastructure is needed, as well as the creation of complex tourist products, able to satisfy a wide range of tourist motivations. An efficient instrument to make productive the wine potential of a region is the „Wine Road" – a tourist trail which includes the tourist attractions of a delimited area, usually with a controlled designation of origin, and also a diverse range of tourist services (transportation, accommodation, catering leisure etc.. In Alba County, the „Wine Road" can be considered as a tourist attraction in itself, but also a means of harnessing the rich cultural-historical and natural heritage and, implicitly, the wine-growing and wine-making heritage.

  9. Theory of the Electron Sheath and Presheath

    Science.gov (United States)

    Scheiner, Brett; Baalrud, Scott; Yee, Benjamin; Hopkins, Matthew; Barnat, Edward

    2015-09-01

    Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the velocity distribution function (VDF). This work provides a dedicated theory of electron sheaths, which suggests that electron sheaths are not so simple. Motivated by VDFs observed in recent Particle-In-Cell (PIC) simulations, we develop a 1D model for the electron sheath and presheath. In the model, under low temperature plasma conditions, an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient allows the generation of large flows compared to those that would be generated by the electric field alone. It is due to this pressure gradient that the electron presheath extends much further into the plasma (nominally by a factor of √{mi /me }) than an analogous ion presheath. Results of the model are compared with PIC simulations. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under contract DE-AC04-94SL85000 and by the Office of Science Graduate Student Research (SCGSR) program under Contract Number DE-AC05-06OR23100.

  10. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    International Nuclear Information System (INIS)

    Jeffcoat, David B.; DePrince, A. Eugene

    2014-01-01

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations

  11. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    Science.gov (United States)

    Jeffcoat, David B.; DePrince, A. Eugene

    2014-12-01

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations.

  12. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  13. Many-beam electron extinction distances in zirconium

    International Nuclear Information System (INIS)

    Cann, C.D.

    1977-05-01

    Many-beam extinction distances have been calculated for twenty-two of the lowest order reflections in zirconium. Ten beams comprising the directly transmitted and the nine lowest order systematic reflections were included in each calculation. Extinction distances for each reflection were determined for electron accelerating voltages of 100 and 200 kV, both at the exact Bragg condition and at deviations up to two Bragg angles from this condition. (author)

  14. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  15. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Hirscht, Julian

    2015-08-01

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  16. CONDITIONS FOR CSR MICROBUNCHING GAIN SUPPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng Ying [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); di Mitri, Simone [Elettra–Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy

    2016-05-01

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we try to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain.

  17. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    Science.gov (United States)

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of the time evolution of the electron-temperature profile of reactor-like plasmas from the measurement of blackbody electron-cyclotron emission

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.A.; Hosea, J.C.

    1982-04-01

    Plasma characteristics (i.e., n/sub e/ greater than or equal to 1 x 10 13 cm -3 , T/sub e/ greater than or equal to 10 7 0 K, B/sub psi/ greater than or equal to 20 kG) in present and future magnetically confined plasma devices, e.g., Princeton Large Torus (PLT) and Tokamak Fusion Test Reactor (TFTR), meet the conditions for blackbody emission near the electron cyclotron frequency and at few harmonics. These conditions, derived from the hot plasma dielectric tensor, have been verified by propagation experiments on PLT and the Princeton Model-C Stellarator. Blackbody emission near the fundamental electron cyclotron frequency and the second harmonic have been observed in PLT and is routinely measured to ascertain the time evolution of the electron temperature profile. These measurements are especially valuable in the study of auxiliary heating of tokamak plasma. Measurement and calibration techniques will also be discussed with special emphasis on our fast-scanning heterodyne receiver concept

  19. Generation of stationary current in a tokamak by electron cyclotron waves

    International Nuclear Information System (INIS)

    Parail, V.V.; Pereverzev, G.V.

    1982-01-01

    Analytical expression for stationary longitudinal current generated in plasma with electron-cyclotron (EC) waves has been derived on the basis of a kinetic equation for electrons with provision for electron-electron and electron- ion collisions. Comparative analysis of efficiency of current excitation with EC and low hybrid (LH) waves has been carried out. It is shown that under similar conditions (for the same introduced powers and the same intervals of interaction of LH waves and electrons) the current value generated with LH waves turns out to be functionally (Vsub(o)/Vsub(e))sup(2) times higher as compared with the current generated with EC waves (vsub(o)-initial velocity of electrons, Vsub(e)-√2Tsub(e)/m) [ru

  20. Cost-effectiveness of electronic training in domestic violence risk assessment: ODARA 101.

    Science.gov (United States)

    Hilton, N Zoe; Ham, Elke

    2015-03-01

    The need for domestic violence training has increased with the development of evidence-based risk assessment tools, which must be scored correctly for valid application. Emerging research indicates that training in domestic violence risk assessment can increase scoring accuracy, but despite the increasing popularity of electronic training, it is not yet known whether it can be an effective method of risk assessment training. In the present study, 87 assessors from various professions had training in the Ontario Domestic Assault Risk Assessment either face-to-face or using an electronic training program. The two conditions were equally effective, as measured by performance on a post-training skill acquisition test. Completion rates were 100% for face-to-face and 86% for electronic training, an improvement over a previously evaluated manual-only condition. The estimated per-trainee cost of electronic training was one third that of face-to-face training and expected to decrease. More rigorous evaluations of electronic training for risk assessment are recommended. © The Author(s) 2014.

  1. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  2. Electronic emission and electron guns

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    This paper reviews the process of electron emission from metal surface. Although electrons move freely in conductors like metals, they normally do not leave the metal without some manipulation. In fact, heating and bombardment are the two primary ways in which electrons are emitted through the use of a heating element behind the cathode (termed thermionic emission) or as a result of bombardment with a beam of electrons, ions, or metastable atoms (termed secondary emission). Another important emission mechanism called Explosive Electron Emission (EEE) is also often used in various High Voltage Pulse Power Systems to generate very high current (few hundreds of kA) pulsed electron beams. The electron gun is the device in that it shoots off a continuous (or pulsed) stream of electrons. A brief idea about the evolution of the electron gun components and their basis of functioning are also discussed. (author)

  3. Electron impact ionization of large krypton clusters

    Institute of Scientific and Technical Information of China (English)

    Li Shao-Hui; Li Ru-Xin; Ni Guo-Quan; Xu Zhi-Zhan

    2004-01-01

    We show that the detection of ionization of very large van der Waals clusters in a pulsed jet or a beam can be realized by using a fast ion gauge. Rapid positive feedback electron impact ionization and fragmentation processes,which are initially ignited by electron impact ionization of the krypton clusters with the electron current of the ion gauge, result in the appearance of a progressional oscillation-like ion spectrum, or just of a single fast event under critical conditions. Each line in the spectrum represents a correlated explosion or avalanche ionization of the clusters.The phenomena have been analysed qualitatively along with a Rayleigh scattering experiment of the corresponding cluster jet.

  4. 42 CFR 486.330 - Condition: Information management.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Information management. 486.330 Section...: Information management. An OPO must establish and use an electronic information management system to maintain the required medical, social and identifying information for every donor and transplant recipient and...

  5. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  6. Estimation of absorbed dose for poor shields under conditions of near-earth space flight

    International Nuclear Information System (INIS)

    Konyukov, V.V.; Krajnyukov, V.I.; Trufanov, A.I.

    1995-01-01

    Estimation of electron absorbed dose in materials of a space vehicle for poor shields under conditions of near-earth space flight is carried out. Impact of power and angular distribution of incidence electrons and radiation scattering processes under conditions of complex geometry and multitude of materials of flight vehicle elements and nodes is studied through simulator model by example of isolating layer of aluminium-polyethylene assembly. 3 refs.; 2 figs

  7. Dosimetry measurements during the commissioning of the GJ-2 electron accelerator

    DEFF Research Database (Denmark)

    Chosdu, R.; Hilmy, N.; Tobing, R.

    1995-01-01

    The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions. The elec......The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions......, ethanol-chlorobenzene dosimeter solution and FWT-60 film dosimeters. The applicability of polystyrene calorimeters designed for low electron energies at Ris phi National Laboratory was also tested for nominal dose determination....

  8. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  9. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  10. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    International Nuclear Information System (INIS)

    Holtzapple, R.L.; Campbell, R.C.; McArdle, K.E.; Miller, M.I.; Totten, M.M.; Tucker, S.L.; Billing, M.G.; Dugan, G.F.; Ramirez, G.A.; Sonnad, K.G.; Williams, H.A.; Flanagan, J.; Palmer, M.A.

    2016-01-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions

  11. Advances in DC photocathode electron guns

    International Nuclear Information System (INIS)

    Dunham M, Bruce; Heartmann, P.; Reza Kazimi; Hongxiu Liu; Poelker, B.M.; Price, J.S.; Rutt, P.M.; Schneider, W.J.; Sinclair K, Charles

    1998-01-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion back-bombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns

  12. Advances in DC photocathode electron guns

    International Nuclear Information System (INIS)

    Dunham, B. M.; Hartmann, P.; Kazimi, R.; Liu, H.; Poelker, B. M.; Price, J. S.; Rutt, P. M.; Schneider, W. J.; Sinclair, C. K.

    1999-01-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughput. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, we will review recent results and discuss implications for future photocathode guns

  13. Buneman instability in hot electron plasma (Te>>Ti)

    International Nuclear Information System (INIS)

    Khalil, S.M.; Sayed, Y.A.; Sayed, R.A.

    1986-07-01

    We shall investigate the linear excitation of electrostatic current Buneman instability in both unmagnetized and magnetized homogeneous plasma. The frequency, growth rate and conditions of excitation of such instability are obtained analytically. We consider that the current velocity u (due to relative streaming of ions and electrons) slightly exceeds the instability threshold velocity u cr and that the electron temperature is much higher than the ion temperature (T e >>T i ). (author)

  14. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr_2FeMoO_6 using electron energy-loss magnetic chiral dichroism

    International Nuclear Information System (INIS)

    Wang, Z.C.; Zhong, X.Y.; Jin, L.; Chen, X.F.; Moritomo, Y.; Mayer, J.

    2017-01-01

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr_2FeMoO_6, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale. - Highlights: • We demonstrate how to choose the optimal experimental conditions by using dynamical diffraction calculations in Sr_2FeMoO_6. • With optimized diffraction conditions, the signal-to-noise ratio of experimental EMCD spectra has been significantly improved. • We have determined orbital to spin magnetic moment ratio of Sr_2FeMoO_6 quantitatively. • We have discussed the effects of dynamical diffraction conditions on the error bar of quantitative magnetic parameters.

  15. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Konvalina, Ivo; Oral, Martin; Hudec, Jiří

    2015-01-01

    Roč. 21, S4 (2015), s. 264-269 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : electron-gas interactions * Monte Carlo simulation * signal amplification * segmented ionization detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  16. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  17. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  18. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  19. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  20. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...