WorldWideScience

Sample records for wine lactic acid

  1. Differential Real-Time PCR Assay for Enumeration of Lactic Acid Bacteria in Wine

    Science.gov (United States)

    Neeley, Ezekiel T.; Phister, Trevor G.; Mills, David A.

    2005-01-01

    Oenococcus oeni is often employed to perform the malolactic fermentation in wine production, while nonoenococcal lactic acid bacteria often contribute to wine spoilage. Two real-time PCR assays were developed to enumerate the total, and nonoenococcal, lactic acid bacterial populations in wine. Used together, these assays can assess the spoilage risk of juice or wine from lactic acid bacteria. PMID:16332898

  2. Potential of lactic acid bacteria as suppressors of wine allergies

    Directory of Open Access Journals (Sweden)

    Yıldırım Hatice Kalkan

    2017-01-01

    Full Text Available Allergens causes some symptoms as all asthma, allergic conjunctivitis, and allergic rhinitis. These symptoms are seen twice as many in women than in men. The major wine allergens reported in wines are endochitinase 4A and lipid-transfer protein (LTP. This review deal with possibilities of using lactic acid bacteria as suppressors of wine allergies. Phenolic compounds present in wines have not only antioxidant properties causing radical scavenging but also some special properties reported in many in vitro studies as regulating functions in inflammatory cells as mast cells. So what is the role of lactic acid bacteria in these cases? Lactic acid bacteria are used during malolactic fermentation step of wine production with purpose of malic acid reduction. During this bioconversion complex phenolic compounds could be hydrolysed by bacterial enzymes to their aglycone forms. Obtained aglycons could pass through the intestinal epithelium of human and allowed reduction of IgE antibody production by affecting Th1/ Th2 ratio. Considering different contents and quantities of phenols in different grape varieties and consequently in different wines more studies are required in order to determine which lactic acid bacteria and strains could be effective in suppressing wine allergens.

  3. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.

    Science.gov (United States)

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario

    2009-01-28

    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  4. Discrimination of wine lactic acid bacteria by Raman spectroscopy.

    Science.gov (United States)

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2017-08-01

    Species of Lactobacillus, Pediococcus, Oenococcus, and Leuconostoc play an important role in winemaking, as either inoculants or contaminants. The metabolic products of these lactic acid bacteria have considerable effects on the flavor, aroma, and texture of a wine. However, analysis of a wine's microflora, especially the bacteria, is rarely done unless spoilage becomes evident, and identification at the species or strain level is uncommon as the methods required are technically difficult and expensive. In this work, we used Raman spectral fingerprints to discriminate 19 strains of Lactobacillus, Pediococcus, and Oenococcus. Species of Lactobacillus and Pediococcus and strains of O. oeni and P. damnosus were classified with high sensitivity: 86-90 and 84-85%, respectively. Our results demonstrate that a simple, inexpensive method utilizing Raman spectroscopy can be used to accurately identify lactic acid bacteria isolated from wine.

  5. Linking wine lactic acid bacteria diversity with wine aroma and flavour.

    Science.gov (United States)

    Cappello, Maria Stella; Zapparoli, Giacomo; Logrieco, Antonio; Bartowsky, Eveline J

    2017-02-21

    In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. LACTIC ACID AND ACETIC ACID BACTERIA ISOLATED FROM RED WINE

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2013-02-01

    Full Text Available The aim of our study was the identification of red wine microbiota during the fermentation process using a classical microbiological method and real-time PCR. The changes in different groups of microorganisms were monitored in total counts of bacteria, Lactobacillus cells and Acetobacter cells. Microbiological parameters were observed during the current collection and processing of wine in 2012. Samples were taken during the fermentation process in wine enterprises and were storaged with different conditions. During this period were examined 4 bottles of wine berween Cabernet Sauvignon and Frankovka modra. The total counts of bacteria ranged from 4.98±0.08 in the wine Cabernet Sauvignon at 4 °C of storage to 5.63±0.13 log CFU.ml-1 in the wine Cabernet Sauvignon at 25 °C of storage. The number of lactobacilli ranged from 2.18±0.10 in the Cabernet Sauvignon at 4 °C to 2.49±0.04 log CFU.ml-1 in the Frankovka modra wine at 25 °C of storage and the number of Acetobacter cells ranged from 4.21±0.04 in the Cabernet Sauvignon at 4 °C of storage to 4.52±0.15 log CFU.ml-1 in Cabernet Sauvignon at 25 °C of storage. The presence and sensitivity of Gram-positive and Gram-negative bacterial species Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus salivarius, Acetobacter aceti, Acetobacter pasteurianus and Acetobacter orleaniensis were detected using Real time PCR.

  7. Lactic acid bacteria in the quality improvement and depreciation of wine.

    Science.gov (United States)

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  8. Occurrence of lactic Acid bacteria during the different stages of vinification and conservation of wines.

    Science.gov (United States)

    Lafon-Lafourcade, S; Carre, E; Ribéreau-Gayon, P

    1983-10-01

    We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for the malolactic fermentation. Isolates of this species varied in their ability to ferment pentoses and hexoses. The survival of Leuconostoc oenos in wines after malolactic fermentation depended on wine pH, alcohol concentration, SO(2) concentration, and temperature of storage.

  9. Biochemical characterisation of the esterase activities of wine lactic acid bacteria.

    Science.gov (United States)

    Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir

    2007-11-01

    Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.

  10. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    Science.gov (United States)

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Ribeira Sacra.

    Science.gov (United States)

    Mesas, J M; Rodríguez, M C; Alegre, M T

    2011-03-01

    This study was designed to isolate and characterize the lactic acid microbiota of the musts and wines of a young denomination of origin area, Ribeira Sacra in north-west Spain. Over three consecutive years (2007, 2008 and 2009), we examined musts and wines from four cellars in different zones of the region. Through biochemical and genetic tests, 459 isolates of lactic acid bacteria (LAB) were identified as the following species: Lactobacillus alvei (0·7%), Lactobacillus brevis (1·7%), Lactobacillus frumenti (0·9%), Lactobacillus kunkeei (12%), Lactobacillus plantarum (6·5%), Lactobacillus pentosus (0·9%), Lactococcus lactis ssp. lactis (3%), Leuconostoc citreum (0·7%), Leuconostoc fructosum (synon. Lactobacillus fructosum) (3·7%), Leuconostoc mesenteroides ssp. mesenteroides (2·8%), Leuconostoc pseudomesenteroides (0·2%), Oenococcus oeni (59%), Pediococcus parvulus (7%) and Weisella paramesenteroides (synon. Leuconostoc paramesenteroides) (0·9%). Of these species, O. oeni was the main one responsible for malolactic fermentation (MLF) in all cellars and years with the exception of Lact. plantarum, predominant in 2007, in one cellar, and Lact. brevis, Lact. frumenti and Ped. parvulus coexisting with O. oeni in one cellar in 2009. Different strains (84) of LAB species (14) were identified by biochemical techniques (API strips, the presence of plasmids, enzyme activities and MLF performance) and molecular techniques (PCR). All assays were carried out with every one of the 459 isolates. To select candidates for use as culture starters, we assessed malolactic, β-glucosidase and tannase activities, the presence of genes involved in biogenic amine production and plasmid content. A high diversity of LAB is present in the grape musts of Ribeira Sacra but few species are responsible for MLF; however, different strains of such species are involved in the process. As far as we are aware, this is the first report of Lact. frumenti thriving in wine. Information on LAB

  12. Assessment of probiotic properties in lactic acid bacteria isolated from wine.

    Science.gov (United States)

    García-Ruiz, Almudena; González de Llano, Dolores; Esteban-Fernández, Adelaida; Requena, Teresa; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2014-12-01

    Probiotic properties are highly strain-dependent but rarely studied in enological lactic acid bacteria (LAB). In this study, the probiotic features of 11 strains of Lactobacillus spp., Pediococcus spp., and Oenococcus oeni, including saliva and acid resistance, bile tolerance and exopolysaccharides' production, were investigated. The assays included two probiotic reference strains (Lactobacillus plantarum CLC 17 and Lactobacillus fermentum CECT5716). The Lactobacillus and Pediococcus strains showed high resistance to lysozyme (>80% resistance to 100 mg/L of lysozyme under conditions simulating the in vivo dilution by saliva) and were capable of surviving at low pH values (pH 1.8) and bile salts, suggesting good adaptation of the wine strains to gastrointestinal conditions. The ability of the strains to adhere to the intestinal mucosa and the inhibition of the adhesion of Escherichia coli to human intestinal cells were also evaluated. Adhesion levels of enological LAB to Caco-2 cells varied from 0.37% to 12.2%, depending on the strain. In particular, Pediococcus pentosaceus CIAL-86 showed a high percentage of adhesion to intestinal cells (>12%), even higher than that shown by the probiotic reference strains, and a high anti-adhesion activity against E. coli CIAL-153 (>30%), all of which support this wine LAB strain as a potential probiotic. Published by Elsevier Ltd.

  13. Influence of different yeast/lactic acid bacteria combinations on the aromatic profile of red Bordeaux wine.

    Science.gov (United States)

    Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles

    2017-09-01

    The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  15. DISTRIBUTION OF NATIVE LACTIC ACID BACTERIA IN WINERIES OF QUERETARO, MEXICO AND THEIR RESISTANCE TO WINE-LIKE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dalia E. Miranda-Castilleja

    2016-11-01

    Full Text Available Native lactic acid bacteria (LAB are capable of growing during winemaking, thereby strongly affecting wine quality. The species of LAB present in musts, wines during malolactic fermentation (MLF, and barrels/filters were investigated in wineries from the emerging wine region of Queretaro, México using multiplex PCR and culture. The resistance to wine-like conditions (WLC: ethanol (10, 12 and 13%, SO2 (30 mg·l-1 and low pH (3.5 of native LAB strains was also studied. Five species were detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum, Pediococcus parvulus, Lactobacillus hilgardi and Lactobacillus brevis. Four species (excepting L. brevis were found in must; O. oeni and P. parvulus were ubiquitous in wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while L. hilgardii was mostly detected at the advanced stage. Furthermore, some species detected in barrel/filter, sprove them to be hazardous reservoirs. From 822 LAB isolates, only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were the most strongly affected, especially those recovered from barrel/filter, with less than 10% of resistant isolates. This study evidences the presence of local strains able to be used as starter cultures, and also enabled the assessment of the risks derived from the presence of spoilage LAB strains resistant to WLC.

  16. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria.

    Science.gov (United States)

    García-Ruiz, Almudena; Moreno-Arribas, M Victoria; Martín-Álvarez, Pedro J; Bartolomé, Begoña

    2011-02-28

    This paper reports a comparative study of the inhibitory potential of 18 phenolic compounds, including hydroxybenzoic acids and their derivatives, hydroxycinnamic acids, phenolic alcohols and other related compounds, stilbenes, flavan-3-ols and flavonols, on different lactic acid bacteria (LAB) strains of the species Oenococcus oeni, Lactobacillus hilgardii and Pediococcus pentosaceus isolated from wine. In general, flavonols and stilbenes showed the greatest inhibitory effects (lowest IC₅₀ values) on the growth of the strains tested (0.160-0.854 for flavonols and 0.307-0.855 g/L for stilbenes). Hydroxycinnamic acids (IC₅₀ > 0.470 g/L) and hydroxybenzoic acids and esters (IC₅₀ >1 g/L) exhibited medium inhibitory effect, and phenolic alcohols (IC₅₀ > 2 g/L) and flavanol-3-ols (negligible effect) showed the lowest effect on the growth of the LAB strains studied. In comparison to the antimicrobial additives used in winemaking, IC₅₀ values of most phenolic compounds were higher than those of potassium metabisulphite for O. oeni strains (e.g., around 4-fold higher for quercetin than for potassium metabisulphite), but lower for L. hilgardii and P. pentosaceus strains (e.g., around 2-fold lower for quercetin). Lysozyme IC₅₀ values were negligible for L. hilgardii and P. pentosaceus, and were higher than those corresponding to most of the phenolic compounds tested for O. oeni strains, indicating that lysozyme was less toxic for LAB than the phenolic compounds in wine. Scanning electron microscopy confirmed damage of the cell membrane integrity as a consequence of the incubation with antimicrobial agents. These results contribute to the understanding of the inhibitory action of wine phenolics on the progress of malolactic fermentation, and also to the development of new alternatives to the use of sulphites in enology. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Vanillin production from simple phenols by wine-associated lactic acid bacteria.

    Science.gov (United States)

    Bloem, A; Bertrand, A; Lonvaud-Funel, A; de Revel, G

    2007-01-01

    The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.

  18. Influence of lactic acid bacteria strains on ester concentrations in red wines: Specific impact on branched hydroxylated compounds.

    Science.gov (United States)

    Gammacurta, Marine; Lytra, Georgia; Marchal, Axel; Marchand, Stéphanie; Christophe Barbe, Jean; Moine, Virginie; de Revel, Gilles

    2018-01-15

    This research investigated the influence of lactic acid bacteria (LAB) strains on ester levels in Bordeaux red wines. These wines were made in five Bordeaux areas in two vintages, using three yeast strains. Malolactic fermentation (MLF) was carried out using industrial starters or indigenous strains, each in triplicate. Ester concentrations were determined by liquid-liquid-extraction- or HS-SPME-GC/MS at various stages in the winemaking process. The levels of most compounds were slightly impacted by LAB, depending on grape variety. Nevertheless, branched hydroxylated esters, such as ethyl 2-hydroxy-3-methylbutanoate and ethyl 2-hydroxy-4-methylpentanoate were the only compounds to be strongly influenced by the bacteria strain, regardless of matrix composition or the yeasts used for alcoholic fermentation. Moreover, the effect observed after MLF persisted over time, for at least 12months. These esters are apparently important markers of LAB esterase activity. To our knowledge, this was the first time they had been identified in this role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ecology of Indigenous Lactic Acid Bacteria along Different Winemaking Processes of Tempranillo Red Wine from La Rioja (Spain

    Directory of Open Access Journals (Sweden)

    Lucía González-Arenzana

    2012-01-01

    Full Text Available Ecology of the lactic acid bacteria (LAB during alcoholic fermentation (AF and spontaneous malolactic fermentation (MLF of Tempranillo wines from four wineries of La Rioja has been studied analyzing the influence of the winemaking method, processing conditions, and geographical origin. Five different LAB species were isolated during AF, while, during MLF, only Oenococcus oeni was detected. Although the clonal diversity of O. oeni strains was moderate, mixed populations were observed, becoming at least one strain with distinct PFGE profile the main responsible for MLF. Neither the winemaking method nor the cellar situation was correlated with the LAB diversity. However, processing conditions influenced the total number of isolates and the percentage of each isolated species and strains. The winemaking method could cause that genotypes found in semicarbonic maceration did not appear in other wineries. Four genotypes of O. oeni were isolated in more than one of the rest wineries. These four together with other dominant strains might be included in a future selection process.

  20. Lactic acid test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  1. Identification of dominant lactic acid bacteria isolated from grape juices. Assessment of its biochemical activities relevant to flavor development in wine

    Directory of Open Access Journals (Sweden)

    Fabiana Maria Saguir

    2009-06-01

    Full Text Available Fabiana Maria Saguir1,3, Iris Eleonora Loto Campos1, Carmen Maturano1, Maria Cristina Manca de Nadra1,2,31Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina; 2Centro de Referencia para Lactobacilos (Cerela, Tucumán, Argentina; 3Career Investigators from Consejo Nacional de Investigaciones Científicas y Técnicas, ArgentinaAbstract: We investigated the dominant lactic acid bacteria (LAB from grape juice and commencement of malolactic fermentation (MLF samples of a cellar located in Argentina and assessment of its β-glucosidase activity and butter aroma compounds production. LAB number found in grape juice (approximately log10 3.3 was lower than that obtained in the MLF samples. Oenococcus oeni was predominant, accounting for 68% of the 81 LAB isolated. Majority of whole cells derived from O. oeni cultures at the end of the exponential growth showed detectable β-glucosidase activity. Contrarily, the highest proportion of them did not produce diacetyl, acetoin, and 2,3-butylene glycol. A direct relation between both properties among the O. oeni strains could not be established. In the selected MS25 strain, L-malic acid was compatible with good enzyme activity and was partially able to annul the negative influence of the low pH (3.8. In different conditions, the aroma compounds were lower than 4 mg/ml, especially at pH 3.8 and in presence of L-malic acid (2.5 g/l. This strain could have adequate characteristics for potential use in winemaking. Finally, the assessment of both biochemical properties in O. oeni should be considered as a quality criterion for selecting starter cultures for the improvement of the wines aroma.Keywords: isolation, lactic acid bacteria, biochemical properties, aroma, wine

  2. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  3. Aroma enhancement of cherry juice and wine using exogenous glycosidases from mould, yeast and lactic acid bacteria.

    Science.gov (United States)

    Wilkowska, A; Pogorzelski, E

    2017-12-15

    This study investigates the collateral activity of glycosidases in commercial pectinase preparations, and the release of aromas from their glycosidic counterparts in model cherry juices. It also examines possibilities for further enzymatic flavor modifications to cherry wine. The volatile aglycones released varied depending on the substrate specificities of the pectinolytic preparation, strain of yeast and bacteria used. Considerably larger amounts of monoterpenes, aliphatic alcohols and benzene derivatives, were released using pectinolytic preparations. The highest concentration of free aglycones was observed following hydrolysis with Pektopol PT. This was 93.9% of the total of volatiles detected in raw cherry juice. Many aglycones reached or exceeded their odor thresholds, enriching the flavor of the juice. The bacteria-derived glicosidases showed 3.4 times higher activity for free terpenoic and benzenoic aglycones than the yeast glycosidases. However, the total aroma in model wines inoculated with bacteria was still 88.6% lower than that in natural cherry juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  5. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion.

    Science.gov (United States)

    Liszt, Kathrin Ingrid; Eder, Reinhard; Wendelin, Sylvia; Somoza, Veronika

    2015-09-09

    Organic acids of wine, in addition to ethanol, have been identified as stimulants of gastric acid secretion. This study characterized the influence of other wine compounds, particularly phenolic compounds, on proton secretion. Forty wine parameters were determined in four red wines and six white wines, including the contents of organic acids and phenolic compounds. The secretory activity of the wines was determined in a gastric cell culture model (HGT-1 cells) by means of a pH-sensitive fluorescent dye. Red wines stimulated proton secretion more than white wines. Lactic acid and the phenolic compounds syringic acid, catechin, and procyanidin B2 stimulated proton secretion and correlated with the pro-secretory effect of the wines. Addition of the phenolic compounds to the least active white wine sample enhanced its proton secretory effect by 65 ± 21% (p wine contribute to its stimulatory effect on gastric acid secretion.

  6. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Science.gov (United States)

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  7. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  8. Relationship between Menthiafolic Acid and Wine Lactone in Wine.

    Science.gov (United States)

    Giaccio, Joanne; Curtin, Chris D; Sefton, Mark A; Taylor, Dennis K

    2015-09-23

    Menthiafolic acid (6-hydroxy-2,6-dimethylocta-2,7-dienoic acid, 2a) was quantified by GC-MS in 28 white wines, 4 Shiraz wines, and for the first time in 6 white grape juice samples. Menthiafolic acid was detected in all but one of the wine samples at concentrations ranging from 26 to 342 μg/L and in the juice samples from 16 to 236 μg/L. Various model fermentation experiments showed that some menthiafolic acid in wine could be generated from the grape-derived menthiafolic acid glucose ester (2b) during alcoholic and malolactic fermentation. Samples containing high concentrations of menthiafolic acid were also analyzed by enantioselective GC-MS and were shown to contain this compound in predominantly the (S)-configuration. Enantioselective analysis of wine lactone (1) in one of these samples, a four-year-old Chardonnay wine showed, for the first time, the presence of the 3R,3aR,7aS isomer of wine lactone (1b), which is the enantiomer of the form previously reported as the sole isomer present in young wine samples. The weakly odorous 3R,3aR,7aS 1b form comprised 69% of the total wine lactone in the sample. On the basis of the enantioselectivity of the hydrolytic conversion of menthiafolic acid to wine lactone at pH 3.0 determined previously and the relative proportions of (R)- and (S)-menthiafolic acid in the Chardonnay wine, the predicted ratio of wine lactone enantiomers that would be formed from hydrolysis at ambient temperature of the menthiafolic acid present in this wine was close to the ratio measured, which was consistent with menthiafolic acid being the major or sole precursor to wine lactone in this sample.

  9. Importance of lactic acid bacteria in Asian fermented foods.

    Science.gov (United States)

    Rhee, Sook Jong; Lee, Jang-Eun; Lee, Cherl-Ho

    2011-08-30

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet.

  10. 21 CFR 184.1061 - Lactic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactic acid. 184.1061 Section 184.1061 Food and... Substances Affirmed as GRAS § 184.1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598... hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  11. 21 CFR 582.1061 - Lactic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lactic acid. 582.1061 Section 582.1061 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1061 Lactic acid. (a) Product. Lactic acid. (b) Conditions of use. This substance is generally...

  12. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  13. Process for the preparation of lactic acid and glyceric acid

    Science.gov (United States)

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  14. Fungal inhibitory lactic acid bacteria

    OpenAIRE

    Ström, Katrin

    2005-01-01

    Lactic acid bacteria (LAB) are microorganisms that have been used for centuries to prepare and improve storage of food and for ensiling of different crops for animal feed. This thesis explores the possibility of using LAB to inhibit growth of spoilage fungi in food and feed products. LAB isolates, collected from plant material or dairy products, were screened for antifungal activity in a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity wa...

  15. 21 CFR 862.1450 - Lactic acid test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  16. Lactic acid polymers: strong, degradable thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrenberg, R.H.

    1981-01-01

    Copolymers of lactic and glycolic acids are being developed by researchers at Battelle and elsewhere as renewable-resource plastics. Other uses include matrices for controlled release of drugs and pesticides as well as in prosthetic devices. In contrast to conventional plastics, lactic acid polymers are biodegradable, and after several months exposure to moisture, these materials convert back to natural harmless products. The properties of lactic acid polymers are examined.

  17. Study of changes organic acids in red wines during malolactic fermentation

    Directory of Open Access Journals (Sweden)

    Jindřiška Kučerová

    2011-01-01

    Full Text Available The aim of this contribution is to be able to describe the movement of organic acids in red wine during malolactic fermentation. Wines from Znojmo wine region were represented by varieties of Svatovavřinecké (Saint Laurent, Rulandské modré (Pinot Noir, Zweigeltrebe, Frankovka (Lemberger and Dornfelder. The grapes went through the same way of wine making and after completion of alcoholic fermentation were inoculated with pure culture of lactic acid bacteria Oenococcus oeni. Samples were taken for chemical analysis during biodegradation of acids within the range of 2 to 4 days and they were measured using a device WineScan FT 120. Chemical analysis detected changes in the concentrations of the following parameters: total acidity, lactic, malic, tartaric and citric acids. The total content of acids statistically significantly (P = 0.05 differed only between samples of Svatovavřinecké T 66 and Zweigeltrebe T 2.The differences of average mass concentrations of lactic, malic and citric acids were not statistically relevant. Nevertheless, statistically relevant difference in the concentration of tartaric acid from all other wines was detected in a sample of SV T 66 which also reached the highest average value (5.18 g/l.

  18. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  19. Energy transduction in lactic acid bacteria

    NARCIS (Netherlands)

    Poolman, Bert

    In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes

  20. PHAGE RESISTANT LACTIC ACID BACTERIAL MUTANTS

    DEFF Research Database (Denmark)

    2001-01-01

    Method of obtaining mutated lactic acid bacteria having a reduced susceptibility towards attack by bacteriophages, the method comprising mutating a gene involved in the pyrimidine metabolism, including pyrG encoding CTP synthetase. Such lactic acid bacteria are useful in starter cultures...

  1. Genetics of proteinases of lactic acid bacteria

    OpenAIRE

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research has been carried out to characterize the enzymes involved. The intensified genetic research in the lactic acid streptococci and the development of gene cloning systems for these organisms have res...

  2. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  3. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    Science.gov (United States)

    Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295

  4. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.

    Science.gov (United States)

    Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  5. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    Directory of Open Access Journals (Sweden)

    Majdiah Othman

    2017-11-01

    Full Text Available Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  6. Lactic acid bacteria: microbiological and functional aspects

    National Research Council Canada - National Science Library

    Lahtinen, Sampo

    2012-01-01

    "Updated with the substantial progress made in lactic acid and bacteria research since the third edition, this fourth volume discusses improved insights in genetics and new molecular biological techniques...

  7. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in

  8. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  9. Potentials of Exopolysaccharides from Lactic Acid Bacteria

    OpenAIRE

    Patel, Seema; Majumder, Avishek; Goyal, Arun

    2011-01-01

    Recent research in the area of importance of microbes has revealed the immense industrial potential of exopolysaccharides and their derivative oligosaccharides from lactic acid bacteria. However, due to lack of adequate technological knowledge, the exopolysaccharides have remained largely under exploited. In the present review, the enormous potentials of different types of exopolysaccharides from lactic acid bacteria are described. This also summarizes the recent advances in the applications ...

  10. The proteolytic system of lactic acid bacteria.

    Science.gov (United States)

    Mayo, B

    1993-12-01

    Lactic acid bacteria are widely used throughout the world, empirically or deliberately, in the manufacturing of several food and feed stuffs, including milk products (such as cheese, butter, yoghurt, buttermilk, etc.), fermented vegetables (pickles, olives and sauerkraut), sausages, sourdough bread and silage, due to their ability to convert sugars into lactic acid. Of these, dairy products are of outstanding economic importance. Starter cultures used in the dairy industry are mixtures of carefully selected lactic acid bacteria which are added to the milk to fulfil the desired fermentation. Dairy starter cultures must reach high densities in milk in order to produce lactic acid at the required rates for manufacturing. Under these conditions, amino acids supply becomes limitant due to their scarce concentration in milk and to the auxotrophies shown by many starter bacteria. This implies the necessity of a proteolytic system, able to degrade the most abundant protein in milk, casein, into assimilable amino acids and peptides. Casein degradation and utilization require the concerted action of proteinases, peptidases and amino acid and peptide uptake systems. This whole set of enzymes constitutes the proteolytic system. In this article an overview of the recent biochemical and genetic data on the proteolytic system of lactic acid bacteria will be presented.

  11. Genetics of proteinases of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan; Venema, Gerhardus

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  12. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase, as substrate and enzyme.

    Science.gov (United States)

    Ueno, Takashi; Ozawa, Yasuhiro; Ishikawa, Masaki; Nakanishi, Kotoyoshi; Kimura, Toshinori

    2003-04-01

    Canned pineapple syrup, a food processing waste, was utilized as a substrate for lactic acid production by Lactococcus lactis. To improve the utilization of sucrose from the syrup, grape invertase from grape juice derived from wine production was used for sucrose hydrolysis. The highest lactic acid concentrations achieved were 20 and 92 g l-1 from 20 and 100 g total sugars l-1, respectively, without a lag period for sucrose consumption.

  13. Amino acids transport in lactic streptococci

    NARCIS (Netherlands)

    Driessen, Arnold Jacob Mathieu

    1987-01-01

    Lactic streptococci are extremely fastidious bacteria. For growth an exogenous source of amino acids and other nutrients is essential. The amino acid requirement in milk is fulfilled by the milk-protein casein, which is degraded by sequential hydrolysis, involving proteases and peptidases. ... Zie:

  14. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  15. Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage.

    Science.gov (United States)

    Kubo, Ryosuke; Ohta, Keisuke; Funakawa, Shinya; Kitabatake, Naofumi; Araki, Shigeru; Izawa, Shingo

    2014-12-01

    We investigated yeast strains used in Cameroonian microbreweries, and identified a Saccharomyces cerevisiae strain (OCY3) with an excellent capacity for alcoholic fermentation. OCY3 showed higher tolerance to lactic acid and better fermentation performance under acidic conditions than a representative Japanese sake yeast, Kyokai No. 7, and a wine yeast, EC1118. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Biotechnological Production of Lactic Acid and Its Recent Applications

    Directory of Open Access Journals (Sweden)

    Young-Jung Wee

    2006-01-01

    Full Text Available Lactic acid is widely used in the food, cosmetic, pharmaceutical, and chemical industries and has received increased attention for use as a monomer for the production of biodegradable poly(lactic acid. It can be produced by either biotechnological fermentation or chemical synthesis, but the former route has received considerable interest recently, due to environmental concerns and the limited nature of petrochemical feedstocks. There have been various attempts to produce lactic acid efficiently from inexpensive raw materials. We present a review of lactic acid-producing microorganisms, raw materials for lactic acid production, fermentation approaches for lactic acid production, and various applications of lactic acid, with a particular focus on recent investigations. In addition, the future potentials and economic impacts of lactic acid are discussed.

  17. Lactic acid fermentation from refectory waste: Factorial design analysis

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... method. At the end of the fermentation process, lactic acid exists in the complex medium of fermentation broth that contains whey proteins, biomass, salts and other impurities. Lactic acid is then recovered from this complex medium. Since the high cost of lactic acid purification process limits the utilization of ...

  18. Characterization of lactic acid bacteria isolated from Algerian arid ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria isolated from Algerian raw goats\\' milk in arid zones were studied by determination of morphological, cultural, physiological and biochemical characteristics. 206 lactic acid bacterial strains were isolated, with 115 of them belonging to lactic acid cocci and others to the genus, ...

  19. Polyphasic taxonomic characterization of lactic acid bacteria ...

    African Journals Online (AJOL)

    Polyphasic taxonomic characterization of lactic acid bacteria isolated from spontaneous sorghum fermentations used to produce ting, a traditional South African food. ... The results of these analyses showed that ting fermentation involved at least three different species of LAB, i.e. Lactobacillus fermentum, L. plantarum

  20. Stress physiology of lactic acid bacteria

    NARCIS (Netherlands)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; Angelis, De Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; Sinderen, Van Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-01-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and

  1. Stress Physiology of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the

  2. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  3. Biodegradable poly (lactic acid) microspheres containing total ...

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  4. Why engineering lactic acid bacteria for biobutanol

    Science.gov (United States)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  5. Reactive extraction of lactic acid using alamine

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, Albertus B.M.; Versteeg, Geert; Pangarkar, Vishwas G.

    2002-01-01

    Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid–amine (solvent)

  6. The proteolytic systems of lactic acid bacteria

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Mierau, Igor; Hagting, Anja; Poolman, Bert; Konings, Wil N.

    1996-01-01

    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The

  7. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  8. A method for the determination of D(-)-lactic acid

    NARCIS (Netherlands)

    Hamer, C.J.A. van den; Elias, R.W.

    A method for the determination of D(—)-lactic acid is described. An acetone powder from Escherichia coli B in the presence of methylene blue oxidizes D(—)-lactic specifically. Oxygen consumption in a Warburg apparatus was used as a measure of the D(—)-lactic acid.

  9. Making More of Milk Sugar by Engineering Lactic Acid Bacteria

    NARCIS (Netherlands)

    Vos, Willem M. de; Hols, Pascal; Kranenburg, Richard van; Luesink, Evert; Kuipers, Oscar P.; Oost, John van der; Kleerebezem, Michiel; Hugenholtz, Jeroen

    1998-01-01

    By exploiting their genetic and metabolic capacity, lactic acid bacteria can be used to generate a variety of products from milk sugar lactose other than the archetypical lactic acid. This review will outline the different genetic and metabolic engineering strategies that can be applied to lactic

  10. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    Directory of Open Access Journals (Sweden)

    Qing Qu

    2014-07-01

    Full Text Available As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs, polarization curves and electrochemical impedance spectroscopy (EIS. OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results.

  11. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  12. Antibiotic resistance of lactic acid bacteria

    OpenAIRE

    Bulajić Snežana; Mijačević Zora; Savić-Radovanović Radoslava

    2008-01-01

    Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolat...

  13. Stress Physiology of Lactic Acid Bacteria

    OpenAIRE

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel

    2016-01-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diver...

  14. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    Science.gov (United States)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  15. Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism.

    Science.gov (United States)

    Bokulich, Nicholas A; Mills, David A

    2012-08-01

    Lactic acid bacteria (LAB) are an important group of bacteria in beer and wine fermentations both as beneficial organisms and as spoilage agents. However, sensitive, rapid, culture-independent methods for identification and community analyses of LAB in mixed-culture fermentations are limited. We developed a terminal restriction fragment length polymorphism (TRFLP)-based assay for the detection and identification of lactic acid bacteria and Bacilli during wine, beer, and food fermentations. This technique can sensitively discriminate most species of Lactobacillales, and most genera of Bacillales, in mixed culture, as indicated by both bioinformatic predictions and empirical observations. This method was tested on a range of beer and wine fermentations containing mixed LAB communities, demonstrating the efficacy of this technique for discriminating LAB in mixed culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Production of lactic acid from Starchy-based food substrates

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... Titratable acidity Determination : The amount of the lactic acid produced in the fermenting starchy- based meal were determine daily for 7 days by the standard titration procedure for total titratable acidity (TTA) according to A.O.A.C, (1990) . Lactic acid content determination was done by titrating 25ml of the.

  17. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    SAM

    2014-07-09

    Jul 9, 2014 ... Amino acids analysis during lactic acid fermentation by single strain cultures of lactobacilli and mixed culture starter made from them. KiBeom Lee1*, Ho-Jin Kim1 and Sang-Kyu Park2. 1Bio Center Technopark, 7-50 Songdo, Yeonsu-Gu, Incheon 406-840, Republic of Korea. 2Nambu University, Chumdan ...

  18. Biopropionic acid production via molybdenumcatalyzed deoxygenation of lactic acid

    NARCIS (Netherlands)

    Korstanje, T.J.; Kleijn, H.; Jastrzebski, J.T.B.H.; Klein Gebbink, R.J.M.

    2013-01-01

    As the search for non-fossil based building blocks for the chemical industry increases, new methods for the deoxygenation of biomass-derived substrates are required. Here we present the deoxygenation of lactic acid to propionic acid, using a catalyst based on the non-noble and abundant metal

  19. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  20. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  1. 9th International Symposium on Lactic Acid Bacteria

    OpenAIRE

    Kuipers, Oscar P.; Poolman, Berend; Hugenholtz, Jeroen

    2008-01-01

    What’s new in the field of lactic acid bacteria? The 9th International Symposium on Lactic Acid Bacteria (LAB9) will take place 31 August to 4 September 2008 in Egmond aan Zee, The Netherlands. Traditionally, the triannual LAB symposium focuses on the themes of genetics, physiology, and applications of lactic acid bacteria (LAB). These microorganisms are widely used in the food industry but are also increasingly applied as probiotics, enzyme and metabolite factories, and vaccine delivery vehi...

  2. Antimutagenicity of fermented milk with lactic acid bacteria

    OpenAIRE

    細野, 明義; Akiyoshi, Hosono; 信州大学大学院農学研究科; Graduate School of Agriculture, Shinshu University

    2002-01-01

    Fermented milk and lactic acid bacteria have been considered to provide potential health benefits to human beings. Milk containing casein has been shown to be highly antimutagenic, and fermentation by lactic acid bacteria produces various hydrolytic peptides which contribute to the high antimutagenicity of fermented milk. The antimutagenic property of fermented milk was dependent on the strains of lactic acid bacteria and the fermentation time. Not only the proteolytic products of casein, but...

  3. Identification of subdominant lactic acid bacteria in dawadawa (a ...

    African Journals Online (AJOL)

    ) by lactic acid bacteria (LAB) was investigated for seven days. The LAB isolated were Pediococcus pentosaceus, Lactobacillus raffinolactus, Leuconostoc mesenteroides, Leuconostoc sp, Pediococcus halophilus, Pediococcus sp ...

  4. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  5. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  6. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  7. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

    OpenAIRE

    Belda Aguilar, Ignacio; Ruiz, Javier; Esteban Fernández, Adelaida; Navascués, Eva; Marquina Díaz, Domingo; Santos de la Sen, Antonio; Moreno Arribas, M. Victoria

    2017-01-01

    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer’s preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production ...

  8. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  9. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  10. Enzymatic synthesis of 11C-pyruvic acid and 11C-L-lactic acid

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; Chang, C.C.; Cook, J.S.; Macdonald, N.S.

    1980-01-01

    L-Lactic acid is formed as the end product of glycolysis under anaerobic conditions in all cells, but this reaction is of special significance in the myocardium. L-Lactic acid is reversibly formed from and is in equilibrium with myocardial pyruvic acid, which is its sole metabolic pathway. 11 C-Pyruvic acid is synthesized from 11 C carbon dioxide using pyruvate-ferredoxin oxidoreductase and coenzymes. The 11 C-pyruvic acid is then converted to 11 -L-lactic acid by lactic acid dehydrogenase. The availability of 11 C-pyruvic acid and 11 C-L-lactic acid will permit the in vivo investigation of lactate metabolism. (author)

  11. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  12. Water and UV degradable lactic acid polymers

    Science.gov (United States)

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  13. Mechanisms and improvement of acid resistance in lactic acid bacteria.

    Science.gov (United States)

    Wang, Chao; Cui, Yanhua; Qu, Xiaojun

    2018-03-01

    Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.

  14. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  15. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  16. Effect of yeast pretreatment on the characteristics of yeast-modified electrodes as mediated amperometric biosensors for lactic acid.

    Science.gov (United States)

    Garjonyte, R; Melvydas, V; Malinauskas, A

    2008-11-01

    Carbon paste electrode modified with baker' and wine yeast Saccharomyces cerevisiae (a source of flavocytochrome b(2)) were investigated as amperometric biosensors for L-lactic acid. Before immobilization on the electrode surface, yeast cells were pretreated with various electrolytes, alcohols and weak organic acids. Electrode responses to L-lactic acid were tested in the presence of various mediators (potassium ferricyanide, phenazine methosulfate, 2,6-dichlorophenolindophenol sodium salt hydrate, 1,2-naphthoquinone-4-sulfonic acid sodium salt). The highest (144+/-7 nA per 0.2 mM L-lactic acid) and the most stable responses were obtained after yeast pretreatment with 30% ethanol using potassium ferricyanide as a mediator. Different electrode sensitivities with mediator phenazine methosulphate probably reflected diverse changes in yeast membrane (and/or cell wall).

  17. Influence of carbohydrates on the isolation of lactic acid bacteria.

    Science.gov (United States)

    Endo, A; Futagawa-Endo, Y; Dicks, L M T

    2011-04-01

      To determine the influence of carbohydrates on enrichment isolation of lactic acid bacteria from different niches.   Lactic acid bacteria in three traditional fermented products in southern Africa (amasi, mahewu and tshwala) and in three fresh samples (two flowers and a fruit) were enrichment cultured in media supplemented with 13 different carbohydrates. Diversity of lactic acid bacteria was determined by PCR-denaturing-gradient gel electrophoresis. Carbohydrates used in enrichment media had a big impact on the isolation of lactic acid bacteria from fermented products. Depending on the carbohydrates tested, the number of species detected ranged from one to four in amasi, one to five in mahewu and one to three in tshwala. Fructose and mannitol selected for relatively higher numbers of lactic acid bacteria in fermented products. Specific relationships between substrates and lactic acid bacteria have been noted. On the other hand, small influences were found among carbohydrates tested in flowers and fruit.   Carbohydrates have a big impact on the isolation of a variety of lactic acid bacteria in fermented food.   This is the first study that reports the influence of carbohydrates on the enrichment of lactic acid bacteria. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Bacteriocins and lactic acid bacteria - a minireview | Savadogo ...

    African Journals Online (AJOL)

    Fermentation of various foods by lactic acid bacteria (LAB) is one of the oldest forms of biopreservation practised by mankind. Bacterial antagonism has been recognized for over a century but in recent years this phenomenon has received more scientific attention, particulary in the use of various strains of lactic acid bacteria.

  19. Screening and identification of lactic acid bacteria isolated from ...

    African Journals Online (AJOL)

    The lactic acid bacteria (LAB) isolated from sorghum (Sorghum bicolor. L.) silage were identified during different periods of evolution of sorghum silage in west Algeria. Morphological, physiological, biochemical and technological techniques were used to characterize lactic acid bacteria isolates. A total number of 27 ...

  20. Antimicrobial activity of autochthonous lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Twenty samples of traditional fermented milk “Raib” were collected in eastern Algeria from individual household. They were evaluated for the presence of autochthonous bacteriocin-producing lactic acid bacteria. From 13 of these samples 52 strains of lactic acid bacteria were isolated, and shown to exhibit inhibitory activity ...

  1. Time related total lactic acid bacteria population diversity and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... type. Comparison of 16S rDNA sequences of pure culture isolates with those in Genbank database revealed that, the dominating lactic acid bacteria were L. plantarum and Pediococcus species. Key words: Lactic acid bacteria, communities' diversity, fortified weaning foods, polymerase chain reaction.

  2. Biopreservative activity of lactic acid bacteria on suya produced from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... fermentative microorganisms (Ogunbanwo et al., 2004). *Corresponding author. E-mail: sokanisaac@yahoo.co.uk. Lactic acid bacteria (LAB) have been employed in the preservation of food materials for many centuries. In the meat industry, lactic acid bacteria are widely used as starter cultures for sausage ...

  3. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Key words: Bacteriocins, lactic acid bacteria (LAB), target organisms, antimicrobial activity. INTRODUCTION. Lactic acid bacteria (LAB) play essential roles in the fermentative production of many traditional foods. A wide variety of strains are routinely used as starter cultures in the manufacture of fermented ...

  4. Characterization of lactic acid bacteria from camel milk and their ...

    African Journals Online (AJOL)

    Proper selection and balance for starter culture is critical for the manufacture of fermented products of desirable texture and flavor. The objective of this study was to characterize lactic acid bacteria (LAB) from camel milk and elucidate their properties to use as a starter culture. Twenty-one lactic acid bacteria species were ...

  5. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive

  6. Convenient synthetic method of starch/lactic acid graft copolymer ...

    Indian Academy of Sciences (India)

    Copolymer of starch grafted with lactic acid (LA) could be directly prepared by reaction of cornstarch with lactic acid and with sodium hydroxide (NaOH) as the catalyst. The structure of starch/LA copolymer was characterized by IR, XRD, SEM and 1H-NMR. The effects of NaOH concentration, ratios of starch and LA, reaction ...

  7. The role of lactic acid adsorption by ion exchange chromatography.

    Science.gov (United States)

    Gao, Qiang; Liu, Fabao; Zhang, Tongcun; Zhang, Jian; Jia, Shiru; Yu, Changyan; Jiang, Kunyu; Gao, Nianfa

    2010-11-11

    The polyacrylic resin Amberlite IRA-67 is a promising adsorbent for lactic acid extraction from aqueous solution, but little systematic research has been devoted to the separation efficiency of lactic acid under different operating conditions. In this paper, we investigated the effects of temperature, resin dose and lactic acid loading concentration on the adsorption of lactic acid by Amberlite IRA-67 in batch kinetic experiments. The obtained kinetic data followed the pseudo-second order model well and both the equilibrium and ultimate adsorption slightly decreased with the increase of the temperature at 293-323K and 42.5 g/liter lactic acid loading concentration. The adsorption was a chemically heterogeneous process with a mean free energy value of 12.18 kJ/mol. According to the Boyd(_)plot, the lactic acid uptake process was primarily found to be an intraparticle diffusion at a lower concentration (70 g/liter). The values of effective diffusion coefficient D(i) increased with temperature. By using our Equation (21), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. Moreover, the negative value of ΔS° reflected the decrease of solid-liquid interface randomness at the solid-liquid interface when adsorbing lactic acid on IRA-67. With the weakly basic resin IRA-67, in situ product removal of lactic acid can be accomplished especially from an open and thermophilic fermentation system without sterilization.

  8. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by

  9. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are

  10. Capillary microreactors for lactic acid extraction: experimental and modelling study

    NARCIS (Netherlands)

    Susanti, Susanti; Winkelman, Jozef; Schuur, Boelo; Heeres, Hero; Yue, Jun

    2015-01-01

    Lactic acid is an important biobased chemical and, among others, is used for the production of poly-lactic acid. Down-stream processing using state of the art technology is energy intensive and leads to the formation of large amounts of salts. In this presentation, experimental and modeling studies

  11. Characterization of lactic acid bacteria isolated from poultry farms in ...

    African Journals Online (AJOL)

    The Lactobacilli strains, both isolated from faeces, produced higher amounts of cells and lactic acid from soils as compared to the lactococci strain isolated from feathers. L (+)-lactic acid is the only optical isomer for use in pharmaceutical and food industries because is only adapted to assimilate this form. The optical isomers ...

  12. Intensification of conversion of glucose to lactic acid : equilibria and kinetics for back extraction of lactic acid using trimethylamine

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

    2004-01-01

    Alamine 336 is an effective extractant for the recovery of lactic acid from aqueous solutions. An approach for regeneration and product recovery from such extracts is to back extract lactic acid with a water soluble, volatile tertiary amine such as trimethyl amine. Equilibrium data are presented

  13. Intensification of conversion of glucose to lactic acid: equilibria and kinetics for back extraction of lactic acid using trimethylamine

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, Albertus B.M.; Versteeg, Geert; Pangarkar, Vishwas G.

    2004-01-01

    Alamine 336 is an effective extractant for the recovery of lactic acid from aqueous solutions. An approach for regeneration and product recovery from such extracts is to back extract lactic acid with a water soluble, volatile tertiary amine such as trimethyl amine. Equilibrium data are presented

  14. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    OpenAIRE

    B. Srinu,; T. Madhava Rao,; P. V. Mallikarjuna Reddy; K. Kondal Reddy

    2013-01-01

    Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria) was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic di...

  15. DEVELOPMENT OF VEGETABLE PUREES AND DRINKS BY LACTIC ACID FERMENTATION

    Directory of Open Access Journals (Sweden)

    At. Kraevska

    2014-03-01

    Full Text Available The object of this work was to investigate the possibility for development of vegetable purees and drinks by lactic acid fermentation. It was found that by the direct lactic acid fermentation of Lb.plantarum strain 226/1 the vitamin composition of vegetable purees is preserved and the biological value is increased. Drinks, prepared from fermented vegetable purees were remarkable with the pleasant lactic acid taste, the sucrose-acid composition was stable and balanced and they can be used both in the rational and in the dietary nutrition.

  16. Biotechnological production of enantiomerically pure d-lactic acid.

    Science.gov (United States)

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  17. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  18. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    Directory of Open Access Journals (Sweden)

    Ana Lívia Chemeli Senedese

    2015-01-01

    Full Text Available Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid. L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v inoculum. Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid.

  19. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    Directory of Open Access Journals (Sweden)

    Enrico Prenesti

    2012-01-01

    Full Text Available A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria. Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture, ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing.

  20. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  1. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the...

  2. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....

  3. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques.

    Science.gov (United States)

    Regmi, U; Palma, M; Barroso, C G

    2012-06-30

    FT-IR with partial least squares (PLS) was used to establish a full calibration model for tartaric acid, malic acid, lactic acid, succinic acid, citric acid and acetic acid in wines, vinegars and spirits. Sample pre-treatment was not required except for filtering. The PLS method was employed and FT-IR spectra were correlated with the results from a reference HPLC method. In the validation with an independent set of samples, a strong correlation with the reference values was demonstrated for the highest concentration range (>0.6 g L(-1)) in all acids but the correlation was much weaker in the lower range (case of acetic acid, however, good results were obtained in the low concentration range for both red and white wine and for spirit drinks. This finding explains the fact that calibration and validation of the FT-IR spectroscopy method depends very strongly on the composition of the sample set and on the quality of the reference analysis. It was not possible to obtain a single calibration for all of the analysed samples and in some cases individual calibrations for specific samples were required. This situation was due to the different matrixes in the studied samples: 12-15% ethanol (wines), 30-40% ethanol (spirits) and 6-10% acetic acid (vinegars). As a result, a calibration model was developed for each acid in red and white wine, tartaric acid, acetic acid and total acidity in vinegar, and acetic acid in spirit drinks. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  5. Antibacterial Activity of Lactic Acid Bacteria Isolated from Healthy ...

    African Journals Online (AJOL)

    Lactic acid bacteria (LAB), namely, Lactobacillus acidophilus 1, Lactobacillus acidophilus 2, Lactobacillus brevis 1, Lactobacillus rhamnosus 1, Lactococcus lactis subsp. lactis 1, Lactococcus lactis subsp. lactis 2, Lactococcus raffinolactis 1, Pediococcus acidilactici 1, Pediococcus pentosaceus 1, and Pediococcus ...

  6. Response surface optimization of D(-)-lactic acid production by ...

    African Journals Online (AJOL)

    Response surface optimization of D(-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. CJ Bolner de Lima, LF Coelho, KC Blanco, J Contiero ...

  7. Production of L(+ lactic acid using Lactobacillus casei from whey

    Directory of Open Access Journals (Sweden)

    Parmjit S. Panesar

    2010-02-01

    Full Text Available The aim of this work was to study the fermentation of whey for the production of L(+ lactic acid using Lactobacillus casei. The effect of different process parameters such as pH of the medium, temperature, inoculum size, age of inoculum, agitation and incubation time was monitored to enhance the lactose conversion in whey to L(+ lactic acid. Fermentations were performed without any pH control. The optimization of the fermentation conditions resulted in significant decrease in fermentation time, besides increase in lactose conversion to lactic acid. The optimized process conditions resulted in high lactose conversion (95.62% to L(+ lactic acid production (33.73 g/L after an incubation period of 36 h.

  8. Efficacy of lactic acid bacteria in the reduction of trimethylamine ...

    African Journals Online (AJOL)

    Different strains of lactic acid bacteria (LAB) such as Pediococcus acidilactici, Pediococcus pentosaceous, Streptococcus thermophilus, Lactococcus lactis, Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus helveticus were procured from the NCL (National Chemical Laboratory), Pune, India. These LAB ...

  9. Screening of malting sorghum samples for lactic acid bacteria with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... fermentum and Lactobacillus acidophilus, respectively. LAB isolated from three varieties of sorghum grains undergoing malting exhibited the ability to produce bacteriocin and hydrogen peroxide. Key words: Lactic acid bacteria, sorghum varieties, malting, bacteriocin, hydrogen peroxide. INTRODUCTION.

  10. Technologically important properties of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... facultatively heterofermentative lactobacilli. Lactic acid bacteria were identified on the basis of phenotypic characters as Lactococcus lactis subsp. lactis, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum and.

  11. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  12. Characterization of lactic acid bacteria isolated from indigenous dahi ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria from indigenous dahi were studied by the determination of morphological, cultural, physiological and biochemical characteristics. A total of 143 isolates were identified phenotypically and divided into three genera: Lactobacillus, Lactococcus and Streptococcus.

  13. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...... at describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...... bacterial stimulation. Methods: CD3-CD56+ NK cells were isolated from buffy coats by negative isolation using a lineage specific antibody cocktail and magnetic beads binding the labelling antibodies on non-NK cells. NK cells were incubated either with 10 microg/ml UV-inactivated lactic acid bacteria or 10...

  14. Antibacterial Activity of Lactic Acid Bacteria Isolated from Salad ...

    African Journals Online (AJOL)

    To determine the inhibitory capacity of lactic acid bacteria (LAB) due to the action of antagonistic substances, 8 members of the LAB group namely, Lactobacillus brevis, Lactobacillus casei, Lactobacillus cellebiosuis, Lactobacillus delbruesckii, Lactobacillus fermentum, Lactobacillus plantarum, Leuconostoc mesenteroides ...

  15. The role of lactic acid adsorption by ion exchange chromatography.

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    Full Text Available BACKGROUND: The polyacrylic resin Amberlite IRA-67 is a promising adsorbent for lactic acid extraction from aqueous solution, but little systematic research has been devoted to the separation efficiency of lactic acid under different operating conditions. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we investigated the effects of temperature, resin dose and lactic acid loading concentration on the adsorption of lactic acid by Amberlite IRA-67 in batch kinetic experiments. The obtained kinetic data followed the pseudo-second order model well and both the equilibrium and ultimate adsorption slightly decreased with the increase of the temperature at 293-323K and 42.5 g/liter lactic acid loading concentration. The adsorption was a chemically heterogeneous process with a mean free energy value of 12.18 kJ/mol. According to the Boyd(_plot, the lactic acid uptake process was primarily found to be an intraparticle diffusion at a lower concentration (70 g/liter. The values of effective diffusion coefficient D(i increased with temperature. By using our Equation (21, the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. Moreover, the negative value of ΔS° reflected the decrease of solid-liquid interface randomness at the solid-liquid interface when adsorbing lactic acid on IRA-67. CONCLUSIONS/SIGNIFICANCE: With the weakly basic resin IRA-67, in situ product removal of lactic acid can be accomplished especially from an open and thermophilic fermentation system without sterilization.

  16. Materials and methods for efficient lactic acid production

    Science.gov (United States)

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  17. The importance of lactic acid in migraines and fibromyalgia.

    Science.gov (United States)

    de Sá Ribeiro, Guido Assis Cachuba; Scola, Rosana Hermínia; Piovesan, Elcio Juliato; Wollmann Junior, Darley Rugeri; Paiva, Eduardo Dos Santos; da Cunha, Claudio Leinig Pereira; Werneck, Lineu Cesar

    2015-01-01

    Lactic acid is a byproduct of both muscle metabolism and the central nervous system. Changes in metabolism are related to various physiological and pathological conditions. The aim of this study was to determine the relationship between migraine and fibromyalgia with the levels of lactic acid in the blood. We study of 93 patients was divided into five groups: 1) patients with fibromyalgia (n=20); 2) episodic migraine (n=20); 3) chronic migraine (n=20); 4) fibromyalgia and episodic migraine (n= 13); and 5) fibromyalgia and chronic migraine (n=20), and 20 healthy subjects (control group). Blood levels of lactic acid were measured at four different time points: at rest, during aerobic exercise, during anaerobic physical activity and while resting after anaerobic exercise. Lactic acid increased in all groups during anaerobic physical activity without predominance for either group. During aerobic physical activity, all groups increased lactic acid levels, but the increase was more expressive in the chronic migraine group and the chronic migraine with fibromyalgia group without statistical significance. We did not found abnormalities involving the metabolism of lactic acid in episodic and chronic migraine with or without fibromyalgia. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  18. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  19. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  20. Pediocin production by recombinant lactic acid bacteria.

    Science.gov (United States)

    Somkuti, G A; Steinberg, D H

    2003-03-01

    Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 degrees C, while incubation at 40 degrees C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51,000 units ml(-1) and 25,000 units ml(-1), respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.

  1. Heat capacity of poly(lactic acid)

    International Nuclear Information System (INIS)

    Pyda, M.; Bopp, R.C.; Wunderlich, B.

    2004-01-01

    The heat capacity of poly(lactic acid) (PLA) is reported from T=(5 to 600) K as obtained by differential scanning calorimetry (d.s.c.) and adiabatic calorimetry. The heat capacity of solid PLA is linked to its group vibrational spectrum and the skeletal vibrations, the latter being described by a Tarasov equation with Θ 1 =574 K, Θ 2 =Θ 3 =52 K, and nine skeletal vibrations. The calculated and experimental heat capacities agree to ±3% between T=(5 and 300) K. The experimental heat capacity of liquid PLA can be expressed by C p (liquid)=(120.17+0.076T) J · K -1 · mol -1 and has been compared to the ATHAS Data Bank, using contributions of other polymers with the same constituent groups. The glass transition temperature of amorphous PLA occurs at T=332.5 K with a change in heat capacity of 43.8 J · K -1 · mol -1 . Depending on thermal history, semi-crystalline PLA has a melting endotherm between T=(418 and 432) K with variable heats of fusion. For 100% crystalline PLA, the heat of fusion is estimated to be (6.55 ± 0.02) kJ · mol -1 at T=480 K. With these results, the enthalpy, entropy, and Gibbs function of crystalline and amorphous PLA were obtained. For semi-crystalline samples, one can check changes of crystallinity with temperature and judge the presence of rigid-amorphous fractions

  2. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  3. Development of a Method for Detection of Lactic Acid Bacteria Producing Exclusively the l-(+)- Isomer of Lactic Acid

    Science.gov (United States)

    Jehanno, D.; Thuault, D.; Bourgeois, C. M.

    1992-01-01

    A method was developed for the detection and isolation, within a population of lactic acid bacteria, of strains producing exclusively the l-(+)- isomer of lactic acid; the visual detection of colonies of these particular strains can be carried out directly on agar plates (50 to 70 colonies per plate). The method is based on an enzymatic stereospecific reaction involving d-(−)-lactate dehydrogenase and linked to a staining reaction; the diffusion area of the d-(−)- isomer stains red around the d-(−)- and the dl-lactic acid-producing colonies, while the colonies producing exclusively l-(+)-lactic acid are detected by the absence of the colored halo. The intensity of staining was increased when cellulose powder and Tween 20 were added to the agar medium. Images PMID:16348833

  4. Effect of extrinsic lactic acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B9 (Canada)

    2009-03-15

    In this paper we report the effect of extrinsic lactic acid on hydrogen production from a starch-containing medium by a mixed culture. Study of the effect of addition of four metabolites, namely ethanol, lactic acid, butyric acid and acetic acid illustrated that lactic acid had a positive effect on both the maximum hydrogen production and hydrogen production rate. The addition of 10 mM lactic acid to a batch containing starch increased the hydrogen production rate and hydrogen production yield from 4.31 to 8.23 mL/h and 5.70 to 9.08 mmol H{sub 2}/g starch, respectively. This enhancement in hydrogen production rate and yield was associated with a shift from acetic acid and ethanol formation to formation of butyric acid as the predominant metabolite. The increase in hydrogen production yield was attributed to the increase in the available residual NADH for hydrogen production. When lactic acid was used as the sole carbon source, no significant hydrogen production was observed. (author)

  5. Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)

    International Nuclear Information System (INIS)

    Parker, N G; Povey, M J W; Mather, M L; Morgan, S P

    2010-01-01

    Acoustics offers rich possibilities for characterizing and monitoring the biopolymer structures being employed in the field of biomedical engineering. Here we explore the rudimentary acoustic properties of two common biodegradable polymers: poly(lactic acid) and poly(lactic-co-glycolic acid). A pulse-echo technique is developed to reveal the bulk speed of sound, acoustic impedance and acoustic attenuation of small samples of the polymer across a pertinent temperature range of 0-70 0 C. The glass transition appears markedly as both a discontinuity in the first derivative of the speed of sound and a sharp increase in the acoustic attenuation. We further extend our analysis to consider the role of ethanol, whose presence is observed to dramatically modify the acoustic properties and reduce the glass transition temperature of the polymers. Our results highlight the sensitivity of acoustic properties to a range of bulk properties, including visco-elasticity, molecular weight, co-polymer ratio, crystallinity and the presence of plasticizers.

  6. Genetics of the proteolytic system of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1990-01-01

    The proteolytic system of lactic acid bacteria is of eminent importance for the rapid growth of these organisms in protein-rich media. The combined action of proteinases and peptidases provides the cell with small peptides and essential amino acids. The amino acids and peptides thus liberated have

  7. Stress Physiology of Lactic Acid Bacteria.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  9. Decomposition and detoxification of aflatoxin B1 by lactic acid.

    Science.gov (United States)

    Aiko, Visenuo; Edamana, Prasad; Mehta, Alka

    2016-04-01

    A degradation study of aflatoxin B1 (AFB1) was carried out using a combination of physical and chemical methods. AFB1 was heated at 80 °C in the presence of acetic, citric and lactic acids for various time periods. The cytotoxicity of the degraded AFB1 and its products were determined by MTT assay. The results showed that among the three organic acids lactic acid was most efficient in degrading AFB1. Although complete degradation was not observed, up to 85% degradation of AFB1 was obtained when heated for 120 min. Degradation of AFB1 was confirmed by the reduced toxicity on HeLa cells using MTT assay. Treatment with lactic acid resulted in the conversion of AFB1 into two degradation products. These products were observed at lower retention factors of 0.63 and 0.38, which were identified as AFB2 and AFB2a, respectively. The cytotoxicity of AFB2a exhibited much reduced toxicity on HeLa cells compared to that of AFB1. The results have shown the efficiency of lactic acid in degrading AFB1. This study suggest that lactic acid may be considered for use in the food and feed industry since it is present naturally in food and is considered safe. © 2015 Society of Chemical Industry.

  10. Spectroscopic and theoretical investigations of phenolic acids in white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Castet, Frédéric; Fritsch, Alain; Teissedre, Pierre-Louis; Jourdes, Michael; Guillaume, François

    2017-04-15

    Model solutions of white wines containing phenolic acids have been investigated by means of UV-vis, laser induced fluorescence and Raman spectroscopic techniques. In order to interpret the spectra, density functional theory calculations of phenolic acids have been performed. This work demonstrates that only hydroxynamic acids are in resonance with a laser excitation line with 325nm wavelength and are therefore at the origin of the strong enhancement of the Raman light scattering. Real white wines also display such resonance Raman scattering so that their content in hydroxycinnamic acids may be quite precisely determined. The analysis of the Raman spectrum of a real dry white wine reveals qualitatively the preponderance in its composition of p-coumaric and caftaric acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid...... fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main...

  12. Functional genomics of lactic acid bacteria: from food to health.

    Science.gov (United States)

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  13. Review - Lactic acid bacteria in traditional fermented Asian foods.

    Science.gov (United States)

    Azam, Mariya; Mohsin, Mashkoor; Ijaz, Hira; Tulain, Ume Ruqia; Ashraf, Muhammad Adnan; Fayyaz, Ahad; Abadeen, Zainul; Kamran, Qindeel

    2017-09-01

    Lactic acid bacteria play vital roles in various fermented foods in Asia. This paper reviews many types of the world's lactic acid fermented foods and discusses the beneficial effects of lactic acid fermentation of food. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Lactic acid bacteria (LAB) are involved in many fermentation processes of Asian traditional foods, demonstrating their profound effects on improving food quality and food safety. During the past few decades' interest has arisen in the use of the varied antagonistic activities of LAB to extent the shelf-life of protein-rich products such as meats and fish. This review article outlines the main types of LAB fermentation as well as their typical fermented foods such as idli, kishk, sauerkraut, koumiss, Suan-tsai, stinky tofu, Chinese sausage and kefir. The roles of LAB and the reasons for their common presence are also discussed.

  14. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    OpenAIRE

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  15. Isolation, characterization and identification of lactic acid bacteria ...

    African Journals Online (AJOL)

    Changes in pH, titratable acidity, Enterobacteriaceae, aerobic mesophiles, lactic acid bacteria (LAB) and yeast counts were investigated during borde fermentation. A rapid decrease in pH was associated with accelerated growth rate of LAB and inhibition of Enterobacteriaceae. Wide diversities of LAB strains were present at ...

  16. Compatible solutes in lactic acid bacteria subjected to water stress

    NARCIS (Netherlands)

    Kets, E.P.W.

    1997-01-01

    The goal of the research project described in this thesis was to investigate the protective effect of compatible solutes on tactic acid bacteria subjected to drying. Dried preparations of lactic acid bacteria are applied as starter cultures in feed and food industries. Dried starter

  17. Lactic Acid Bacterial Vaginosis among Outpatients in Addis Ababa ...

    African Journals Online (AJOL)

    Background: Bacterial vaginosis (BV) is a polymicrobial syndrome in which a decrease in vaginal acidity and concentration of lactobacilli is accompanied by an increase of other pathogenic micro-organisms. The distribution of lactic acid bacteria in vaginal environment of Ethiopian women has not been documented.

  18. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production

    Science.gov (United States)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  19. Optimization of lactic acid production with immobilized Rhizopus ...

    African Journals Online (AJOL)

    sule

    2012-04-26

    Apr 26, 2012 ... Lactic acid is the most widely utilized organic acid in the food, pharmaceutical, cosmetics and chemical industries. One of its most promising applications is for used biodegradable and ... polymer supports, by embedding with natural polymers like alginate gels and synthetic polymers (Tamada et al.,. 1992).

  20. Optimization of lactic acid production with immobilized Rhizopus ...

    African Journals Online (AJOL)

    A 23 full-factorial central composite design was chosen to explain three independent variables; glucose concentration, pH and agitation rate. ... acid from immobilized whole cells which are under optimum conditions was determined about 55% that is higher than production of lactic acid from suspension culture systems.

  1. Genetics of the proteolytic system of lactic acid bacteria

    OpenAIRE

    Kok, Jan

    1990-01-01

    The proteolytic system of lactic acid bacteria is of eminent importance for the rapid growth of these organisms in protein-rich media. The combined action of proteinases and peptidases provides the cell with small peptides and essential amino acids. The amino acids and peptides thus liberated have to be translocated across the cytoplasmic membrane. To that purpose, the cell contains specific transport proteins. The internalized peptides are further degraded to amino acids by intracellullar pe...

  2. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates. Copyright © 2016. Published by Elsevier B.V.

  3. Lactic acid bacteria and the human gastrointestinal tract

    DEFF Research Database (Denmark)

    Hove, H; Nørgaard, H; Mortensen, P B

    1999-01-01

    OBJECTIVE: This review summarises the effects of lactic acid bacteria on lactose malabsorption, bacterial/viral or antibiotic associated diarrhoea, and describes the impact of lactic acid bacteria on cancer and the fermentative products in the colon. RESULTS: Eight studies (including 78 patients......) demonstrated that lactase deficient subjects absorbed lactose in yogurt better than lactose in milk, while two studies (25 patients) did not support this. Two studies (22 patients) showed that unfermented acidophilus milk was absorbed better than milk, while six studies (68 patients) found no significant...... differences. Addition of lactose hydrolysing enzyme, lactase, to milk improved lactose malabsorption in seven studies (131 lactose malabsorbers), while one study (10 malabsorbers) demonstrated no improvement. Lactic acid bacteria alleviated travellers' diarrhoea in one study (94 individuals) while a study...

  4. Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-03-01

    Full Text Available Lactic acid bacteria exhibit the most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits. This review provides an update on multiple uses and production of exopolysaccharides with major emphasis on their chemical properties, characterization, and some other molecular strategies adopted for their genetics and biological tailoring to better understand the process of exopolysaccharide production along with their antiviral efficacy with multiple modes of action. Additionally, microbiological, biochemical, nutritional and biotechnological aspects of exopolysaccharide production have also been discussed. Moreover, appro-priate suggestions have been made on lactic acid bacteria improvements, leading to enhanced production with advanced modification and production process that may contribute to the economic soundness of applications in food and pharmacological industries with this promising group of biomolecules.

  5. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  6. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    International Nuclear Information System (INIS)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour

    2009-01-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  7. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lactic acid; exemption from the... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant growth...

  8. Lactose behaviour in the presence of lactic acid and calcium.

    Science.gov (United States)

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2016-08-01

    Physical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour. Concentrated solutions (50% w/w) containing lactose, lactic acid and Ca were analysed for thermal behaviour and structural changes by Differential Scanning Colorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Presence of 1% (w/w) lactic acid and 0·12% (w/w) Ca in lactose solution significantly increased the evaporation enthalpy of water, delayed and increased the energy required for lactose crystallisation as compared to pure lactose. FTIR analysis indicated a strong hydration layer surrounding lactose molecules, restricting water mobility and/or inducing structural changes of lactose, hindering its crystallisation. The formation of calcium lactate, which restricts the diffusion of lactose molecules, is also partly responsible. It appears that Ca removal from acid whey may be a necessary step in improving the processability of acid whey.

  9. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  10. (Liquid + liquid) equilibria of (water + lactic acid + alcohol) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Ismail Kirbaslar, S. [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2009-01-15

    (Liquid + liquid) equilibrium (LLE) measurements of the solubility (binodal) curves and tie-line end compositions were carried out for {l_brace}water (1) + lactic acid (2) + octanol, or nonanol, or decanol (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The relative mutual solubility of lactic acid is higher in the water layers than in the organic layers. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE results for the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  11. Probiotic lactic acid bacteria ? the fledgling cuckoos of the gut?

    OpenAIRE

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, J?rgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – th...

  12. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    Science.gov (United States)

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos.

  13. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  14. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  15. Unstructured Models for Lactic Acid Fermentation – A Review

    Directory of Open Access Journals (Sweden)

    Abdallah Bouguettoucha

    2011-01-01

    Full Text Available To describe a microbial process, two kinds of models can be developed, structured and unstructured models. Contrary to structured models, which take into account some basic aspects of cell structure, their function and composition, no physiological characterization of cells is considered in unstructured models, which only consider total cellular concentration. However, in spite of their simplicity, unstructured models have proven to accurately describe lactic acid fermentation in a wide range of experimental conditions and media. A partial link between cell growth and production, namely the Luedeking and Piret model, is mostly considered by the authors. Culture pH is the main parameter to be considered for model development. Acidic pH leads to inhibitory concentrations of undissociated lactic acid, the main inhibitory component, which causes cessation of growth and then production. On the other hand, pH control at optimal value for LAB growth allows to overcome product inhibition (by the total lactic acid produced or its undissociated part; hence nutritional limitations have to be considered for model development. Nitrogen is mainly involved in cessation of growth, owing to the fastidious nutritional requirements of LAB, while lactic acid production ceased when carbon was exhausted from the medium. The lack of substrate inhibition when usual concentrations of carbon substrate are used should be noted.

  16. Inhibition of the Decrease of Linalool in Muscat Wine by Phenolic Acids

    Directory of Open Access Journals (Sweden)

    Ioannis G. Roussis

    2005-01-01

    Full Text Available Two white wine extracts rich in phenolic acids, caffeic acid and gallic acid were tested as inhibitors of the decrease of linalool in Muscat wine. Each wine extract was added at 60 ppm and each phenolic acid at 40 ppm. Immediately after the addition of each wine extract or phenolic acid, no effect on the concentration of linalool was observed, but it decreased from the initial 470.9 to 223.3 μg/L after storage in open bottles at 20 °C for 4 days. Its decrease was significantly inhibited by each wine extract or phenolic acid.

  17. lactic acid production by Lactobacillus SMI8 using corn steep liquor

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Lactic acid: recent advances in products, processes and technologies- A review. J. Chem. Technol. Biotechnol. 81: 1119-1129. Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995). Technological and economic potential of poly-lactic acid and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231.

  18. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Science.gov (United States)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  19. Lactic acid delays the inflammatory response of human monocytes

    International Nuclear Information System (INIS)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-01-01

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors

  20. Technologically important properties of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Technologically important properties of lactic acid bacteria isolated from raw milk of three breeds of Algerian dromedary ( Camelus dromedarius ) ... isolated from Algerian dromedary milks that showed potentially important properties suggest that they are good candidate for camels milk processing or other dairy fermentation ...

  1. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  2. Isolation And Characterization Of Lactic Acid Bacteria In Kirario, An ...

    African Journals Online (AJOL)

    The lactic acid bacteria (LAB) are the most diverse groups of bacteria known, and have been used by many communities in the World in spontaneous fermentation to produce fermented porridges with unique technological characteristics. Kirario is a traditional fermented porridge based on green maize, millet and/or ...

  3. Identification of Lactic Acid Bacteria isolated from Opaque beer ...

    African Journals Online (AJOL)

    A study was carried out to identify lactic acid bacteria (LAB) isolated from chibuku that would be later assessed for potential as starter cultures. Thirty-eight isolates were Gram stained and the 20, which were Gram positive, were identified to genus level using morphological, physiological and biochemical tests. Five genera ...

  4. Antimicrobial susceptibility pattern of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Currently, the efficacies of antimicrobials have been threatened due to the development of resistance to antibiotics by some microorganisms. Lactic acid bacteria (LAB) from fermented products, may act as reservoir of antimicrobial resistance-genes that could be transferred to pathogens, either in the food matrix or in the ...

  5. Mucosal Vaccination and Therapy with Genetically Modified Lactic Acid Bacteria

    NARCIS (Netherlands)

    Wells, J.

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that

  6. Characterization of Lignocellulosic-Poly(lactic acid) reinforced composites

    Science.gov (United States)

    Q.X. Hou; X.S. Chai; R. Yang; T. Elder; A.J. Ragauskas

    2005-01-01

    The effects of adding poly(lactic acid) (PLA) to the physical strength of paper test sheets prepared from three unbleached loblolly pine kraft pulps with different amounts of lignin and an aspen bleached chemothermomechanical pulp were studied. The physical strength studies demonstrated that relatively low levels of PLA addition (0.5-4.0%) could dramatically improve...

  7. Recombinant lactic acid bacteria as mucosal biotherapeutic agents

    NARCIS (Netherlands)

    Daniel, C.; Roussel, Y.; Kleerebezem, M.; Pot, B.

    2011-01-01

    The safety status of lactic acid bacteria (LAB) and their capacity to survive the passage through the gastrointestinal tract (GI tract) have rendered them excellent candidates for the production of therapeutic proteins and their delivery in situ to the GI tract. During the past two decades, major

  8. Systems Biology of lactic acid bacteria: a critical review.

    NARCIS (Netherlands)

    Teusink, B.; Bachmann, H.; Molenaar, D.

    2011-01-01

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation

  9. Lactic acid bacteria in a changing legislative environment

    NARCIS (Netherlands)

    Feord, J.

    2002-01-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients,

  10. Synthesis of copolymer from lactic acid-polyethylene terephthalate ...

    African Journals Online (AJOL)

    Bio-plastic has been a need of the hour for the past few decades and the usage of lactic acid (LA) in the production of bio plastic opens a new window to the field. Polyethylene terephthalate (PET) thermoplastic polyester with excellent tensile and impact strength, chemical resistance, clarity, process ability, and transparency ...

  11. Antibacterial activity and probiotic properties of some lactic acid ...

    African Journals Online (AJOL)

    Several lactic acid bacteria strains were screened for the production of antibacterial substances active against some pathogenic bacteria. The inhibitory mechanism was investigated and was shown to be dependant of bacteriocin production. The objective was to isolate LAB with antibacterial activity from raib and to select ...

  12. Bacteriocin and cellulose production by lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Sixteen colonies of lactic acid bacteria (LAB) were selected and screened for their ability to produce bacteriocin by agar well diffusion method using the supernatant of centrifuged test cultures. Four isolates inhibited the growth of Listeria monocytogenes and Escherichia coli. Lactobacillus plantarum (6) and Lactobacillus ...

  13. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    Three lactic acid bacteria (LAB) isolates designated AS1, AS2 and KN4 isolated from kunun-zaki (a sorghum based non-alcoholic beverage widely consumed in Northern Nigeria) and identified as Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus delbruckii, respectively, produced significant inhibitory ...

  14. Antibacterial Activities of Lactic Acid Bacteria Isolated from Selected ...

    African Journals Online (AJOL)

    Members of lactic acid bacteria (LAB) are known probiotics and have been reported to have antimicrobial properties. Although various researchers have documented the isolation of these bacteria from fruits and vegetables, studies on LAB associated with lettuce, cucumber and cabbage are limited and non-existing in ...

  15. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria ...

    African Journals Online (AJOL)

    A total of six lactic acid bacteria (LAB) isolates were selected from five indigenously fermented cereal gruels and identified as Lactobacillus fermentum OYB, Lb. fermentum RS2, Lb. plantarum MW, Lb. plantarum YO, Lb. brevis WS3, and Lactococcus spp. RS3. Six aflatoxin-producing aspergilli were also selected from the ...

  16. Identification of exopolysaccharides-producing lactic acid bacteria ...

    African Journals Online (AJOL)

    Spacer region between 16S and 23 S rRNA genes of thirteen lactic acid bacteria strains from Burkina Faso fermented milk samples were amplified by the polymerase chain reaction (PCR). Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus fermentum, Streptococcus thermophilus, Pediococcus spp, ...

  17. Evaluation of the probiotic potential of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    The probiotic-related characteristics of 55 strains of lactic acid bacteria isolated from the faeces of 3 - 6 months old breast-fed infants were determined. The API 50 CH and SDS-PAGE techniques were employed to ascertain the identity of the isolated strains. The predominant species among the isolated strains were ...

  18. Systems solutions by lactic acid bacteria: from paradigms to practice.

    Science.gov (United States)

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.

  19. Lactic acid fermentation from refectory waste: Factorial design analysis

    African Journals Online (AJOL)

    A factorial experimental design method was used to optimize the lactic acid production using Lactobacillus bulgaricus from refectory waste obtained from Istanbul Technical University mess hall, Turkey. Fermentation experiments were carried out in a batch type reactor system which contains refectory waste with ...

  20. Novel applications of Lactic Acid Bacteria (LAB) and Recombinant ...

    African Journals Online (AJOL)

    Lactic acid bacteria (LAB), present in intestines of most animals and humans, plays an important role as starters of fermented food products where it acts as a biopreservative, preventing spoilage by pathogenic microorganisms through acidification, competition for essential nutrients, and / or production of inhibitory ...

  1. Mixed cultures of Kimchi lactic acid bacteria show increased cell ...

    African Journals Online (AJOL)

    ufuoma

    bioactive substances. This suggests that Lactobacilli isolated from kimchi could potentially be used for functional food. Foods containing probiotics can eliminate constipation symptoms arising from irregular eating habits, stress and excessive dieting (Kapka-Skrzypczak et al., 2012). Mixed cultures of lactic acid bacteria have.

  2. Antibacterial activity and probiotic properties of some Lactic Acid ...

    African Journals Online (AJOL)

    Client

    2013-05-15

    May 15, 2013 ... producing LAB like starter cultures for food preservation has received a special attention (Sabia et al., 2002). Moreover, bacteriocins are innocuous due to proteolytic degradation in the gastrointestinal tract ( Vuyst and. Vandammemmm, 1994). Streptococcus thermophilus is a lactic acid bacterium of.

  3. original article antimicrobial susceptibility pattern of lactic acid

    African Journals Online (AJOL)

    User

    Abstract. Currently, the efficacies of antimicrobials have been threatened due to the development of resistance to antibiotics by some microorganisms. Lactic acid bacteria (LAB) from fermented products, may act as reservoir of antimicrobial resistance-genes that could be transferred to pathogens, either in the food matrix or ...

  4. Lactic Acid Bacteria in Health and Disease | Ongol | Rwanda ...

    African Journals Online (AJOL)

    The genera, lactic acid bacteria (LAB) have been used by humans in production of fermented foods since time immemorial and in some ancient communities; consumption of LAB fermented foods products was associated with improved health. Currently there is a keen scientific interest in developed countries on health ...

  5. Thermal properties of poly (lactic acid)/milkweed composites

    Science.gov (United States)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (lactic Acid...

  6. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    Science.gov (United States)

    AbstractThe need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  7. Short Communication Antibacterial Activities of Lactic Acid Bacteria ...

    African Journals Online (AJOL)

    2011-12-20

    Dec 20, 2011 ... A total of four lactic acid bacteria were isolated as follows: Pediococcus pentosaceus 2 from cucumber, Lactobacillus cellobiosus from cabbage, Lactobacillus salivarius and Lactobacillus plantarum 1 from lettuce. Pediococcus pentosaceus 2 and L. salivarius showed inhibitory effects on all the standard ...

  8. Differentiation studies of predominant lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Several authors have noted that Lactobacillus spp. con- stitute the majority of lactic acid bacteria of the fermented cassava preparation (Rascana, 1986; Rahayu, 1996). Unfortunately, the identification of these LAB in growol is just based on their morphological and physiological characteristics in genus ...

  9. Fumonisin B 1 Reduction in Lactic Acid Bacteria Fermentation of ...

    African Journals Online (AJOL)

    This study investigated how fermentation can promote fumonisin B1 reduction in maize-based porridges. Four starter culture of lactic acid bacteria (Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus casei and Lactobacillus fermentum) were used, porridge samples was spiked with fumonisins B1 and allowed ...

  10. Effects of supplementing lactic acid bacteria on fecal microbiota ...

    African Journals Online (AJOL)

    Results: The results indicated that Lactobacillus plantarum strain L.p X3-2B increased fecal lactic acid bacteria(LAB) and Bifidobacterium while resisting the growth of harmful bacteria. Viable counts of LAB and Bifidobacterium reached 8 log cfu/mL after feeding for 14 days. Fecal pH in the control group was high in ...

  11. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  12. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  13. Biochemical and functional properties of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Objective: Fermentation is an important step in the post-harvest processing of cocoa beans. The quality of beans and chocolate depends strongly on the type and characteristics of microbial strains involved in the fermentation. This study investigates some functional properties of lactic acid bacteria (LAB), involved in Côte ...

  14. Production of lactic acid from corn cobs hydrolysate through ...

    African Journals Online (AJOL)

    This study describes several essential factors for indirect and effective lactic acid production from food wastes by strains of. Lactobaccillus delbrukii using corn cob hydrolysates. The fermentation conditions considered were glucose concentration (1 - 5%), temperature (34 - 40oC), time (0 - 8 days) and pH (5 - 6).

  15. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    Yomi

    2012-04-10

    Apr 10, 2012 ... In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of.

  16. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  17. Genetic manipulation of the peptidolytic system in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, J; Venema, G

    1995-01-01

    Due to their presumed involvenment in product flavour the peptidases of lactic acid bacteria have been subject to extensive research. A major breakthrough, was the isolation and purification of the various enzymes to homogeniety. This allowed a reevaluation of the number of different enzymes in one

  18. Systems solutions by lactic acid bacteria: from paradigms to practice

    NARCIS (Netherlands)

    Vos, de W.M.

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which

  19. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Science.gov (United States)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  20. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the

  1. Repressive efficacy of lactic acid bacteria against the human ...

    African Journals Online (AJOL)

    Different strains of lactic acid bacteria (LAB) namely Lactobacillus acidophilus NCIM 2287, Lactobacillus plantarum NCIM 2085, Lactobacillus helveticus NCIM 2126 and Lactococcus lactis NCIM 2114 were procured from the National Chemical Laboratory (NCL) Pune, India. These LAB cells were individually (107 cfu/ml) ...

  2. Differentiation studies of predominant lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Twelve isolates known as weakly amylolytic lactic acid bacteria were isolated from different time during growol fermentation, a cassava based product from Indonesia. Differentiation tests of these strains were performed using molecular and phenotypic characterization. 16S subunit of the ribosomal RNA and phenylalanyl ...

  3. Biomechanical comparison of osteosynthesis with poly‑L‑lactic acid ...

    African Journals Online (AJOL)

    Background and Aims: The aim of this study was to compare the biomechanical stability of poly‑L‑lactic acid and titanium screws in the fixation of intracapsular condylar fractures, in 10 polyurethane hemimandibles. Materials and Methods: Artificial intracapsular fractures were created with a steel disk and electronic ...

  4. Statistical optimization of lactic acid production by Lactococcus lactis ...

    African Journals Online (AJOL)

    The individual and interactive effects of a total inoculums size (% v/v), fermentation temperature and skim milk dry matter added (% w/v) on the lactic acid production by Lactococcus lactis LCL strain were studied by quadratic response surface methodology. The central composite design (CCD) was employed to determine ...

  5. Time related total lactic acid bacteria population diversity and ...

    African Journals Online (AJOL)

    The total lactic acid bacterial community involved in the spontaneous fermentation of malted cowpea fortified cereal weaning food was investigated by phenotypically and cultivation independent method. A total of 74 out of the isolated 178 strains were Lactobacillus plantarum, 32 were Pediococcus acidilactici and over 60% ...

  6. Antifungal Capacity of Lactic Acid Bacteria Isolated From Salad ...

    African Journals Online (AJOL)

    This study explores the use of lactic acid bacteria from fresh salad vegetables to inhibit fungal growth. The antifungal assay was done using the agar well diffusion method as reported by Schillinger and Lucke (1989). The largest zone of inhibition (25mm) was recorded by the antagonistic activity of the isolate identified to ...

  7. Controlled overproduction of proteins by lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1997-01-01

    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable

  8. Lactic acid bacteria : the bugs of the new millennium

    NARCIS (Netherlands)

    Konings, W.N; Kok, J.; Kuipers, O.P.; Poolman, B.

    2000-01-01

    Lactic acid bacteria (LABs) are widely used in the manufacturing of fermented food and are among the best-studied microorganisms. Detailed knowledge of a number of physiological traits has opened new potential applications for these organisms in the food industry, while other traits might be

  9. Advanced molecular tools for the identification of lactic acid bacteria

    NARCIS (Netherlands)

    Amor, Ben K.; Vaughan, E.E.; Vos, de W.M.

    2007-01-01

    Recent years have seen an explosion in the development and application of molecular tools for identifying microbes and analyzing their activity. These tools are increasingly applied to strains of lactic acid bacteria (LAB), including those used in fermentation and as well as those marketed as

  10. Antagonistic pattern of lactic acid bacteria against native spoilage ...

    African Journals Online (AJOL)

    CIBA

    2012-11-08

    Nov 8, 2012 ... Different strains of lactic acid bacteria (LAB) namely Lactobacillus acidophilus NCIM 2287,. Lactobacillus plantarum NCIM 2085, Lactobacillus helveticus NCIM 2126 and Lactococcus lactis NCIM. 2114 were procured from the National Chemical Laboratory (NCL) Pune, India. These LAB cells were.

  11. Lactic acid production from xylose by the fungus Rhizopus oryzae

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.; Eggink, G.; Weusthuis, R.A.

    2006-01-01

    Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce

  12. DRY COMPOSITION OF STARTER CULTURES FORM LACTIC ACID MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    At. Kraevska

    2014-03-01

    Full Text Available The purpose of this work is to investigate the possibility of producing of lyophilized lactic acid starter Lb. plantarum strain 226/1, designed for a starter culture in the production of pickles. The results of our studies demonstrate achievement of this goal by the specified process parameters.

  13. Antibacterial activities of lactic acid bacteria isolated from cow ...

    African Journals Online (AJOL)

    Objective: To determine the antimicrobial activity of cow's intestinal Lactic acid bacteria (LAB) against enteric commensals. Method: ... Conclusion: This study shows that LAB from cow faeces possess considerable antimicrobial activity against resistant Es- cherichia ... tries1. The meat from cattle, goat, sheep, pig and poul-.

  14. Effect of lactic acid bacteria starter culture fermentation of cassava ...

    African Journals Online (AJOL)

    The effects of lactic acid fermentation of cassava on the chemical and sensory characteristic of fufu flour were investigated. Two strains of Lactobacillus plantarum were used as starter cultures for the fermentation of cassava to fufu for 96 h. The resultant wet fufu samples were dried at 65oC in a cabinet dryer for 48 h and ...

  15. Characterization And Identification Of Lactic Acid Bacteria From ...

    African Journals Online (AJOL)

    $hr3k

    2013-06-05

    Jun 5, 2013 ... Diversity and density of lactic acid bacteria from indigenous dahi were studied by the determination of morphological, cultural, physiological and biochemical characteristics. A total of 143 isolates were identified phenotypically and divided into three genera: Lactobacillus, Lactococcus and Streptococcus.

  16. Chirality Matters: Synthesis and Consumption of the d-Enantiomer of Lactic Acid by Synechocystis sp. Strain PCC6803

    NARCIS (Netherlands)

    Angermayr, S.A.; van der Woude, A.D.; Correddu, D.; Kern, R.; Hagemann, M.; Hellingwerf, K.J.

    2015-01-01

    Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of

  17. Simple utilization of lactic acid whey in dairy processing

    Directory of Open Access Journals (Sweden)

    Csanádi J.

    2016-12-01

    Full Text Available The use of ultra-filtered lactic acid whey retentate was investigated for the making of sour cream. The utilization of lactic acid whey is limited due to its special properties, so the logical utilization way is to use it in fermented products. First, we concentrated lactic acid whey collected from cottage cheese making by ultrafiltration (UF, then UF Whey Retentate (UFWR was added (by 2, 5, and 10% into fat standardized cream for sour cream making. We investigated the texture and sensory properties of the sour cream samples compared with the industrial products. Generally, we can state that the use of small portion of UF whey retentate did not result noticeable changes and did not reduce the sensory value of sour creams. Higher UF whey retentate addition improved some texture properties of experimental samples, but the summarized evaluation of UFWR addition was not unequivocal. Control samples showed better results. Based on our results, the sample, which contained 5% UF whey retentate, had good texture and acceptable sensory properties. Furthermore, more than 5% UF lactic acid whey retentate (coming from our own ultrafiltration process resulted remarkably worse sensory properties than the other samples. Further investigation is needed to find the optimal composition and sensory properties of UFWR. Furthermore, we have to perform technological investigation to reach a higher concentration factor using pre-treatment of whey and to avoid the precipitation of whey proteins during the high temperature pasteurization of cream, cream mixed with UFWR or diafiltered whey retentate. We guess that the use of one-stage diafiltration would already decrease the unfavourable sensory properties of lactic acid whey retentate.

  18. Production, Purification, Stability and Efficacy of Bacteriocin from Isolates of Natural Lactic Acid Fermentation of Vegetables

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Joshi

    2006-01-01

    Full Text Available The antimicrobial activity of partially purified bacteriocin produced during natural lactic acid fermentation of carrot, radish and cucumber was assessed and characterized. Out of ten strains, the isolated strain CA 44 of Lactobacillus genus from carrot fermentation produced bacteriocin with maximum antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus cereus, though it was more effective against E. coli than others. Bacteriocin was stable at up to 100 °C but its activity declined compared to that at 68 °C and was completely lost at 121 °C. The maximum antimicrobial activity was retained within the pH range of 4–5, but it was adversely affected by the addition of papain. Bacteriocin was also effective against B. cereus in different fruit products (pulp, juice and wine indicating its potential application as a biopreservative in fruit products.

  19. pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    OpenAIRE

    Fayol-Messaoudi, Domitille; Berger, Cédric N.; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L.

    2005-01-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacill...

  20. Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions

    Directory of Open Access Journals (Sweden)

    F. G. Orozco

    2014-01-01

    Full Text Available Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria: Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum, and L. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained with L. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP to obtain poly-DL-lactic acid (PDLLA, with a viscosity average molecular weight (Mv of 19,264 g/mol.

  1. Effect of monolaurin and lactic acid on Listeria monocytogenes attached to catfish fillets.

    Science.gov (United States)

    Verhaegh, E G; Marshall, D L; Oh, D H

    1996-04-01

    The purpose of this study was to determine the effects of monolaurin and lactic acid, singly or combined, on Listeria monocytogenes attached to catfish fillets. Skinless catfish fillets were inoculated with L. monocytogenes and dip treated in monolaurin and/or lactic acid solution for various time periods. Results showed that monolaurin up to 400 micrograms/ml had no influence on counts. Conversely, lactic acid-treated fillets had reduced counts compared to controls. Dipping in 0.85, 1.70, or 2.55% lactic acid for 30 min reduced counts by 0.9, 1.4, or 1.3 logs, respectively. Extending the dipping time to 60 min resulted in little additional decrease in counts. Combining monolaurin with lactic acid yielded results similar to lactic acid alone. Hence, population reduction ability resides with lactic acid and not monolaurin.

  2. 27 CFR 24.244 - Use of acid to stabilize standard wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of acid to stabilize standard wine. 24.244 Section 24.244 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.244 Use of acid to stabilize standard wine....

  3. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    Science.gov (United States)

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  4. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.

    Science.gov (United States)

    Hernández-Orte, P; Peña, A; Pardo, I; Cacho, J; Ferreira, V

    2012-04-01

    The aim of the present paper is to compare the behaviour of industrial lactic bacteria and indigenous bacteria of the cellar when malolactic fermentation was carried out in barrels. The effects of these bacteria on the concentration of metabolised amino acids during malolactic fermentation and on the composition of volatile compounds both before and after malolactic fermentation are studied. The experiment was performed with wines of the Tempranillo and Cabernet Sauvignon varieties. An analysis has been made of the easily extractable volatile compounds of the wood and the compounds from the grapes, and the action of the yeasts during the alcoholic fermentation. Acetoin and diacetyl decreased during the malolactic fermentation in barrels and the concentrations of furfural and its derivatives were up to 100 times higher in wines not subjected to malolactic fermentation. Most of the volatile phenols increased during the malolactic fermentation in wines of the Tempranillo variety, while only guaiacol (p < 0.05) and t-isoeugenol increased in the Cabernet Sauvignon wines. The decrease in amino acids during the malolactic fermentation depends much more on the variety than on the bacterial strain which carries out the malolactic fermentation.

  6. Functional fermented whey-based beverage using lactic acid bacteria.

    Science.gov (United States)

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; de Valdez, Graciela Font

    2010-06-30

    Whey protein concentrate (WPC) is employed as functional food ingredient because of its nutritional value and emulsifying properties. However, the major whey protein beta-lactoglobulin (BLG) is the main cause of milk allergy. The aim of this study was to formulate a fermented whey beverage using selected lactic acid bacteria and WPC35 (WPC containing 35% of proteins) to obtain a fermented product with low lactose and BLG contents and high essential amino acid concentration. Cell viability, lactose consumption, lactic acid production, proteolytic activity, amino acid release and BLG degradation by the selected strains Lactobacillus acidophilus CRL 636, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and Streptococcus thermophilus CRL 804, as single or mixed (SLaB) cultures were evaluated in WPC35 (10%, w/v) incubated at 37 degrees C for 24h. Then, the fermented WPC35 was mixed with peach juice and calcium lactate (2%, w/v) and stored at 10 degrees C for 28 days. During fermentation, single cultures grew 1.7-3.1 log CFU/ml and produced 25.1-95.0 mmol/l of lactic acid as consequence of lactose consumption (14.0-41.8 mmol/l) after 12h fermentation. L. delbrueckii subsp. bulgaricus CRL 656 was the most proteolytic strain (626 microg/ml Leu) and released the branched-chain essential amino acids Leu (16 microg/ml), Ile (27 microg/ml) and Val (43 microg/ml). All strains were able to degrade BLG in a range of 41-85% after 12h incubation. The starter culture SLaB grew 3.0 log CFU/ml, showed marked pH reduction, produced 122.0 mmol/l of lactic acid, displayed high proteolytic activity (484 microg/ml Leu) releasing Leu (13 microg/ml), Ile (18 microg/ml) and Val (35 microg/ml), and hydrolyzed 92% of BLG. The addition of calcium lactate to WPC35 maintained the drink pH stable during shelf life; no contamination was detected during this period. After 28 days, a decrease in cell viability of all strains was observed being more pronounced for L. delbrueckii subsp. bulgaricus

  7. Recent Trends in the Production, Purification and Application of Lactic Acid

    OpenAIRE

    Vijayakumar, J.; Aravindan, R.; Viruthagiri, T.

    2008-01-01

    Lactic acid, a naturally occurring multifunctional organic acid, is a valuable industrial chemical used as an acidulant, preservative in the food industry, pharmaceutical, leather, and textile industries, as well as a chemical feedstock. One of the most promising applications of lactic acid is its use for biodegradable and biocompatible lactate polymers, such as polylactic acid. Lactic acid can be produced either by fermentation or by chemical synthesis but the biotechnological fermentation p...

  8. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Biological Demalication and Deacetification of Musts and Wines: Can Wine Yeasts Make the Wine Taste Better?

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2017-10-01

    Full Text Available Grape musts sometimes reveal excess acidity. An excessive amount of organic acids negatively affect wine yeasts and yeast fermentation, and the obtained wines are characterized by an inappropriate balance between sweetness, acidity or sourness, and flavor/aroma components. An appropriate acidity, pleasant to the palate is more difficult to achieve in wines that have high acidity due to an excess of malic acid, because the Saccharomyces species in general, cannot effectively degrade malic acid during alcoholic fermentation. One approach to solving this problem is biological deacidification by lactic acid bacteria or non-Saccharomyces yeasts, like Schizosaccharomyces pombe that show the ability to degrade L-malic acid. Excessive volatile acidity in wine is also a problem in the wine industry. The use of free or immobilized Saccharomyces cells has been studied to solve both these problems since these yeasts are wine yeasts that show a good balance between taste/flavor and aromatic compounds during alcoholic fermentation. The aim of this review is to give some insights into the use of Saccharomyces cerevisiae strains to perform biological demalication (malic acid degradation and deacetification (reduction of volatile acidity of wine in an attempt to better understand their biochemistry and enological features.

  10. Probiotic properties of lactic acid bacteria isolated from human milk.

    Science.gov (United States)

    Reis, N A; Saraiva, M A F; Duarte, E A A; de Carvalho, E A; Vieira, B B; Evangelista-Barreto, N S

    2016-09-01

    The objective of this study was to identify and characterize lactic acid bacteria isolated from human milk, with an emphasis on their probiotic properties. The strains were tested for their ability to inhibit growth of Enterococcus faecalis, Salmonella enterica subsp. enterica serotype Enteritidis, Listeria monocytogenes, Staphylococcus aureus and Escherichia coli, as well as for susceptibility to antimicrobial agents and for acid pH and bile salt tolerance. Gram-positive and catalase-negative were selected and identified as Enterococcus (83·3%) after sequencing the 16S rDNA gene. All the isolates inhibited growth of Ent. faecalis and S. serotype Enteritidis, 97% inhibited growth of L. monocytogenes and Staph. aureus and 78·8% inhibited growth of E. coli. Most of the isolates were resistant to gentamicin (50%) and vancomycin (47%). Twelve isolates grew when subjected to pH 3·0 and 0·1% bile salts. At lower pH (2·5-2·0), Ent. faecalis F1 and Weissella confusa F8 were more efficient. It was possible to isolate from human milk the lactic acid bacteria with potential for use as probiotics. Lactic acid bacteria isolated of nursing mothers have probiotic properties. © 2016 The Society for Applied Microbiology.

  11. Bacteriocins of lactic acid bacteria: extending the family.

    Science.gov (United States)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  12. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production.

    Science.gov (United States)

    Sauer, Michael; Russmayer, Hannes; Grabherr, Reingard; Peterbauer, Clemens K; Marx, Hans

    2017-08-01

    Lactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context. Here, we illuminate these features and describe why the distinctive adaptation of lactic acid bacteria is particularly useful when developing a microbial process for chemical production from renewable resources. High carbon uptake rates with low biomass formation combined with strictly regulated simple metabolic pathways, leading to a limited number of metabolites, are among the key factors defining their success in both nature and industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations.

    Science.gov (United States)

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P

    2007-12-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics.

  14. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  15. Crystallization kinetics of poly(lactic acid-talc composites

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available The crystallization kinetics of poly(lactic acid / talc composites were determined over a range of 0 to 15 wt% of talc. Talc was found to change the crystallization kinetics. The presence of talc increases the crystallization rate and this increase is related to talc concentration and to crystallization temperature. In order to understand the effect of talc and PLA crystallinity on mechanical properties, dynamic mechanical thermal analyses were performed on poly(lactic acid / talc composites before and after an annealing process. It was demonstrated that the presence of crystals improves thermomechanical properties but in order to achieve good results at high temperatures the reinforcing effect of a filler such as talc is necessary.

  16. Isolation and Characterization of Lactic Acid Bacteria from Inasua

    Directory of Open Access Journals (Sweden)

    Ferymon Mahulette

    2017-04-01

    Full Text Available Inasua is a traditionally product of wet salt fish fermentation produced by Teon, Nila and Serua (TNS Communities in Central Maluku, Indonesia. The community made this fermented fish to anticipate the lean time when fisherman could not go to sea.  The  fish that used as inasua raw material is demersal fishes that live around coral reefs, such as Samandar fish (Siganatus guttatus, Gala-gala fish (Lutjanus sp. and Sikuda fish (Lethrinus ornatus. The objective of the research was to isolate and characterize of bacterial indigenous in  Inasua from three producers in Seram Island. The measurement of pH from inasua samples were 5.9, 5.0 and 5.8, respectively. The highest number of lactic acid bacteria was found from  Gala – gala inasua was 2,5x107 cfu/g sample. Isolation of all isolates bacteria from inasua showed that a total of 7 isolates of bacteria was obtained  from Samadar inasua, 9 isolates from  Gala-gala inasua, and 7 isolates from  Sikuda inasua.  From a total of 23 isolates, only 6 isolates had characteristic as lactic acid bacteria that were Gram  positive, negative catalase, and cocci shape. The microscopic characteristics  of the isolates are coccid in pairs or uniforms which combine to form tetrads. Carbohydrate utilization test  of selected isolate by using API 50 CHB kit indicated that 13 carbohydrates are fermented by these isolates  after incubation for 48 hours. The research  was concluded that the dominant bacteria in inasua sample  is  cocci-lactic acid bacteria. Keywords : fermented fish, inasua, lactic acid bacteria, MRSA medium

  17. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  18. Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    Science.gov (United States)

    Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Shimizu-Kadota, Mariko; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2012-04-01

    We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.

  19. RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey; Bradley G. Stevens; John R. Gallagher

    2001-04-30

    This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater at a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough, orientable

  20. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    International Nuclear Information System (INIS)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-01-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using 14 C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  1. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Technology and economic assessment of lactic acid production and uses

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  3. Diversity of lactic acid bacteria isolated from AOC Salers cheese.

    Science.gov (United States)

    Callon, Cécile; Millet, Liliane; Montel, Marie-Christine

    2004-05-01

    The objective of this work was to describe the diversity of lactic acid bacteria in traditional raw milk Salers cheeses at the species and strain levels. The characterization of 381 strains isolated during ripening and various strain collections was investigated using physiological analysis and molecular techniques: Rep-PCR, species and genus specific amplifications and the sequence analysis of 16S rDNA for strain typing and taxonomic identification. The strains belonged to Lactobacillus plantarum, Lactobacillus paracasei, Lactococcus lactis, Lactococcus garviae, Enterococcus faecalis, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Streptococcus salivarius, Streptococcus millieri, Streptococcus macedonicus and Pediococcus pentosaceus. A wide phenotypic and genomic heterogeneity was observed within the different species (Lactobacillus plantarum, Lactobacillus paracasei and Leuconostoc mesenteroides) according to the origin and the time of ripening. The natural microflora was different from strain collection and each method must be combined to identify and characterize natural microflora. This study revealed the low selectivity of selective media used for the isolation of different groups of lactic acid bacteria except the Facultatively Heterofermentative lactobacilli medium selecting mesophile lactobacilli and SB medium selective for Enterococcus. The study reveals, for the first time, the microbial lactic acid bacteria community of Salers cheese and its diversity. A better knowledge of microbial flora will be useful to improve understanding of sensory quality of cheeses.

  4. Bioconversion of renewable resources into lactic acid: an industrial view.

    Science.gov (United States)

    Yadav, A K; Chaudhari, A B; Kothari, R M

    2011-03-01

    Lactic acid, an anaerobic product of glycolysis, can be theoretically produced by synthetic route; however, it is commercially produced by homo-fermentative batch mode of operations. Factors affecting its production and strategies improving it are considered while devising an optimized protocol. Although a hetero-fermentative mode of production exists, it is rarely used for commercial production. Attempts to use Rhizopus sp. for lactic acid production through either hetero-fermentative or thermophilic conditions were not economical. Since almost 70% of the cost of its production is accounted by raw materials, R & D efforts are still focused to find economically attractive agri-products to serve as sources of carbon and complex nitrogen inputs to meet fastidious nutrient needs for microbial growth and lactic acid production. Therefore, need exists for using multi-pronged strategies for higher productivity. Its present production and consumption scenario is examined. Its optically active isomers and chemical structure permit its use for the production of several industrially important chemicals, health products (probiotics), food preservatives, and bio-plastics. In addition, its salts and esters appear to have a variety of applications.

  5. Carrot juice fermentations as man-made microbial ecosystems dominated by lactic acid bacteria.

    Science.gov (United States)

    Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah

    2018-04-13

    carrot juices which are used as non-alcoholic alternatives for wine in a Belgian Michelin star restaurant. Samples were collected through an active citizen science approach with 38 participants in addition to three laboratory fermentations. Identification of the main microbial players revealed that mainly species of Leuconostoc and Lactobacillus mediated the fermentations in subsequent order. In addition, a high diversity of lactic acid bacteria was found; however, fermentation experiments with isolates showed that only strains belonging to the most prevalent lactic acid bacteria preserved the fermentation dynamics. Finally, this study showed that the usage of RNA-based 16S rRNA amplicon sequencing greatly reduces host read contamination. Copyright © 2018 American Society for Microbiology.

  6. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    Directory of Open Access Journals (Sweden)

    B. Srinu,

    2013-08-01

    Full Text Available Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic discs on de Mann Rogosa Sharpe broth (MRS agar plates seeded with the test probiotic organism. The antibacterial activity of LAB was assessed by using well diffusion method.Results: Among the six probiotic strains tested, all showed good survivability at high bile salt concentration (0.3 to 2.0 % oxgall and good growth at a low pH of 1.5 to 3.5. These probiotic species showed good survival abilities in acidic pH of 2.0 to 3.5 except Lactobacillus delbrueckii subspp. bulgaricus 281 which did not grown at pH of 2.0. Lactobacillus fermentum 141 was able to grow even at pH of 1.5 also. Among the six lactic acid species, Lactobacillus fermentum 141 (except Tetracycline, Lactobacillus delbrueckii subspp. Bulgaricus 281 except (Cefpodoxime and all other LAB were resistant to all the antibiotics tested (Ampicillin, Nalidixic acid , Ciprofloxacin ,Co-Trimoxazole, Gentamicin and Cefpodoxime. All these probiotic organisms were screened for their in vitro inhibition ability against pathogenic microorganisms namely, E.coli ATCC (American type culture collection centre, Pseudomonas aeruginosa, Salmonella paratyphi, Staphylococcus aureus. Lactobacillus delbrueckii subspp. bulgaricus 281, Lactobacillus casei 297 and Lactobacillus fermentum 141 inhibited the growth of all the pathogenic bacteria used in the study. Conclusion: The study indicated Lactobacillus fermentum 141 and Lactobacillus casei 297 as potential functional probiotics for future in vivo studies for

  7. Catalytic Cracking of Lactide and Poly(Lactic Acid) to Acrylic Acid at Low Temperatures.

    Science.gov (United States)

    Terrade, Frédéric G; van Krieken, Jan; Verkuijl, Bastiaan J V; Bouwman, Elisabeth

    2017-05-09

    Despite being a simple dehydration reaction, the industrially relevant conversion of lactic acid to acrylic acid is particularly challenging. For the first time, the catalytic cracking of lactide and poly(lactic acid) to acrylic acid under mild conditions is reported with up to 58 % yield. This transformation is catalyzed by strong acids in the presence of bromide or chloride salts and proceeds through simple S N 2 and elimination reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. [Screening and functional properties of cholesterol-degrading lactic acid bacteria from Jiangshui].

    Science.gov (United States)

    Li, Xueping; Li, Jianhong; Li, Minquan; Meng, Xiangang

    2015-08-04

    We intended to obtain and characterize lactic acid bacteria with high capacity of cholesterol-degrading. We chose Jiangshui as the experimental material, screened lactic acid bacteria by the culture medium with high cholesterol, and studied other features of lactic acid bacteria like salt-tolerant, acid resistance, then identified the species of lactic acid bacteria by combining physiological and biochemical methods and 16S rDNA sequence. All lactic acid bacteria isolated had the capacity of cholesterol-degrading to some extent. There were 4 strains had high cholesterol-degrading rate (> 75%). Four strains were Lactococcus lactis subsp. lactis, two were Brevibacterium casei, and one was Lactococcus raffinolactis. Cholesterol-degrading lactic acid bacteria were screened from Jiangshui, with application potential for cholesterol degradation.

  9. Evolution of acetic Acid bacteria during fermentation and storage of wine.

    Science.gov (United States)

    Joyeux, A; Lafon-Lafourcade, S; Ribéreau-Gayon, P

    1984-07-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH favored the development and metabolism of these species.

  10. Volatile Compounds and Lactic Acid Bacteria in Spontaneous Fermented Sourdough

    International Nuclear Information System (INIS)

    Kam, W.Y.; Aida, W.M.W.; Sahilah, A.M.; Maskat, M.Y.

    2011-01-01

    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75 % and acetic acid at relative abundance of 3.60 %. Esters that were formed at relatively low amount were butyl formate (1.23 %) and cis 3 hexenyl propionate (0.05 %). Butanol was also found at low amount with relative abundance of 0.60 %. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation. (author)

  11. Production of lactic acid from C6-polyols by alkaline hydrothermal reactions

    International Nuclear Information System (INIS)

    Zhou Huazhen; Jin Fangming; Wu Bing; Cao Jianglin; Duan Xiaokun; Kishita, Atsushi

    2010-01-01

    Production of lactic acid from C6-polyols (Mannitol) under alkaline hydrothermal conditions was investigated. Experiments were performed to examine the difference in the production of lactic acid between C6-polyols and C3-polyols (glycerine), as well as C6-aldoses (glucose). Results showed that the yield of lactic acid from C6-polyols was lower than that from both glycerine and glucose. It indicated that long chain polyols might follow a different reaction pathway from that of glycerine. Further investigation is needed to clarify the reaction mechanism and improve the relatively low lactic acid acid yield from C6-polyols.

  12. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  13. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  14. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid

    OpenAIRE

    Mason, Shayne; Reinecke, Carolus J.; Kulik, Willem; van Cruchten, Arno; Solomons, Regan; van Furth, A. Marceline Tutu

    2016-01-01

    Background The defining feature of the cerebrospinal fluid (CSF) collected from infants and children with tuberculous meningitis (TBM), derived from an earlier untargeted nuclear magnetic resonance (NMR) metabolomics study, was highly elevated lactic acid. Undetermined was the contribution from host response (L-lactic acid) or of microbial origin (D-lactic acid), which was set out to be determined in this study. Methods In this follow-up study, we used targeted ultra-performance liquid chroma...

  15. Effect of Skimmed-Milk and Starter Addition on Lactic Acid Formation in Soyghurt

    OpenAIRE

    Syamsuddin, Yanna; Meilina, Hesti; Septavia, Friday; Darmawan, Rahmad

    2013-01-01

    Research on Effect of Skimmed-Milk and Starter Addition on Lactic Acid Formation in Soyghurt has been done. Soyghurt is a probiotic drinking product made from soy-milk produced by fermentation process using lactic acid bacteria. The bacteria used as starter was Lactobacillus bulgaricus and Streptococcus thermophillus. The objective of this research was to evaluate the effect of skimmed-milk and starter addition on the formation of lactic acid. Variables used in this research was skimmed-milk ...

  16. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    OpenAIRE

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P < 0.05) than any single or paired combination effect, which demonstrates a synergistic interaction among the antimicrobials. Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the ...

  17. Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin.

    Science.gov (United States)

    Tokarskyy, Oleksandr; Marshall, Douglas L

    2008-12-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the cell membrane increased membrane fluidity resulting in increased nisin activity.

  18. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    Science.gov (United States)

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the cell membrane increased membrane fluidity resulting in increased nisin activity. PMID:18820062

  19. Analyses of Dynamics in Dairy Products and Identification of Lactic Acid Bacteria Population by Molecular Methods

    OpenAIRE

    Aytül Sofu

    2017-01-01

    Lactic acid bacteria (LAB) with different ecological niches are widely seen in fermented meat, vegetables, dairy products and cereals as well as in fermented beverages. Lactic acid bacteria are the most important group of bacteria in dairy industry due to their probiotic characteristics and fermentation agents as starter culture. In the taxonomy of the lactic acid bacteria; by means of rep-PCR, which is the analysis of repetitive sequences that are based on 16S ribosomal RNA (rRNA) gene seque...

  20. Potential lactic acid production from crude glycerol as the precursor of polylactic acid analog : literature review

    Science.gov (United States)

    Hastati, D. Y.; Hambali, E.; Syamsu, K.; Warsiki, E.

    2017-05-01

    Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated an abundant of crude glycerol, a low-value byproduct of biodiesel manufacturing. Conversion crude glycerol to valuable chemical such as lactic acid, a precursor of polylactic acid (PLA), has a great potential to substitute traditional feedstocks of PLA, i.e., carbohydrate or sugar sources. Some of the process perspectives and the potential of glycerol to produce lactic acid by chemical transformation or microbial conversion are discussed in this paper, as well as the possibility of extending lactic acid to polylactic acid (PLA).

  1. Protein haze formation in wines revisited. The stabilising effect of organic acids

    OpenAIRE

    Batista, L.; Monteiro, L.; Loureiro, V.; Teixeira, A.R.; Ferreira, R.B.

    2010-01-01

    The effect on the wine protein haze potential of five organic acids commonly encountered in wines (L(+)- tartaric, L( )-malic, citric, succinic and gluconic acids) was assessed. All five acids, tested at 20 mM, reduced dramatically the haze potential of proteins, either in wine or dissolved in water, throughout the range of pH values typical of wines (i.e., from 2.8 through 3.8). Subtle differences among the acid effects did not correlate with the number of their carboxyl groups, ...

  2. Otimização e validação de método para determinação de ácidos orgânicos em vinhos por cromatografia líquida de alta eficiência Optimization and validation method for organic acid determination in wines by high performance liquid cromatography

    Directory of Open Access Journals (Sweden)

    Luciana L. de Andrade Lima

    2010-01-01

    Full Text Available The organic acids (tartaric, malic, citric, lactic and succinic are de main components responsible for the acidity in the wine. This method for simultaneous determination of organic acids and interfering peaks in wines can be achieved in 16 min. The sample preceded by a dilution and filtration step. The chromatographic separation required one reversed phase column, isocratic mobile phase (acetonitrila, formic acid in water and detection wavelength was set at 212 nm. The validation confirmed good repeatability, recovery and application in red and white wines.

  3. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  4. L-(+-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste

    Directory of Open Access Journals (Sweden)

    Marcela Piassi Bernardo

    Full Text Available ABSTRACT Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid, a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.

  5. Biotechnological conversion of spent coffee grounds into lactic acid.

    Science.gov (United States)

    Hudeckova, H; Neureiter, M; Obruca, S; Frühauf, S; Marova, I

    2018-04-01

    This work investigates the potential bioconversion of spent coffee grounds (SCG) into lactic acid (LA). SCG were hydrolysed by a combination of dilute acid treatment and subsequent application of cellulase. The SCG hydrolysate contained a considerable amount of reducing sugars (9·02 ± 0·03 g l -1 , glucose; 26·49 ± 0·10 g l -1 galactose and 2·81 ± 0·07 g l -1 arabinose) and it was used as a substrate for culturing several lactic acid bacteria (LAB) and LA-producing Bacillus coagulans. Among the screened micro-organisms, Lactobacillus rhamnosus CCM 1825 was identified as the most promising producer of LA on a SCG hydrolysate. Despite the inhibitory effect exerted by furfural and phenolic compounds in the medium, reasonably high LA concentrations (25·69 ± 1·45 g l -1 ) and yields (98%) were gained. Therefore, it could be demonstrated that SCG is a promising raw material for the production of LA and could serve as a feedstock for the sustainable large-scale production of LA. Spent coffee grounds (SCG) represent solid waste generated in millions of tonnes by coffee-processing industries. Their disposal represents a serious environmental problem; however, SCG could be valorized within a biorefinery concept yielding various valuable products. Herein, we suggest that SCG can be used as a complex carbon source for the lactic acid production. © 2018 The Society for Applied Microbiology.

  6. POTENTIAL OF CEREALS AND PSEUDOCEREALS FOR LACTIC ACID FERMENTATIONS

    Directory of Open Access Journals (Sweden)

    Ľubomír Valík

    2011-04-01

    Full Text Available Cereals and pseudocereals play a significant role in human nutrition. They are source of specific carbohydrates, proteins, lipids, fibre and wide spectrum of vitamins and minerals. Moreover, pseudocereals have a higher content of essential amino acids, e.g. lysine and tryptophan. Cereals and pseudocereals may also contain some antinutrition factors, such as phytic acid, polyphenols, trypsin inhibitors and inhibitors of α-amylase. These are responsible for reducing of protein and carbohydrate digestibility and decreasing accessibility of minerals due to complex formation. This review assesses the applications of cereals and pseudocereals in fermentation technology including the effects of lactic acid bacteria on nutrition, sensory quality and shelf-life. This work is focusing also on fermentation process of cereal matrice leading in degradation of antinutritional factors increase of nutritional value and availability of minerals, proteins and carbohydrates. Lactic acid bacteria produce many aromatic compounds that are beneficial to organoleptic atributes of the products. However, a few questions have been not answered in experiments, yet. For eample, is there any space for evaluation of their suitability to act as carriers of probiotics? Could such the attempts lead in development some special formulae suitable for consumers with food allergies or deficiencies?doi:10.5219/127

  7. A rapid HPEAC method for determination of lactic acid produced by ...

    African Journals Online (AJOL)

    Poste

    Lactic acid bacteria (LAB) are important for the food and dairy industries, because lactic acid, as well as other organic acids produced by these bacteria is a ..... Endocarditis caused by culture-negative organisms visible by Brown and Brenn staining: utility of PCR and DNA sequencing for diagnosis. J. Clin. Microbiol.

  8. COMPARISON OF OCCURENCE LACTIC ACID BACTERIA IN CHOSEN YOGURTS

    Directory of Open Access Journals (Sweden)

    Silvia Pinterová

    2010-11-01

    Full Text Available The yogurt is healthy food, which contains at least 100 million cultures per gram. Probiotic bacteria have been proven to reduce the effects of some gastrointestinal problems, probiotics can greatly reduce lactose intolerance, have also been proven to prevent colon cancers, there are also a natural immune system booster. In our research we detected numbers of lactid acid bacteria in yogurts in slovak market. There were classical yogurts, yogurts with probiotics, yogurts with fat and non fat. We numbered lactid acid bacteria from and after expiration, in agars MRS and Lee´s. In examined yogurts we detected from expiration from 78.107  to 169.107  and after expiration from 59.107 to 133.107 lactic acid bacteria in 1 ml of yogurt. In agreement with Food Codex of SR (2010 of rules all these yogurts satisfy number of lactid acid bacteria. doi:10.5219/31

  9. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  10. Laser photocoagulation stops diabetic retinopathy by controlling lactic acid formation

    Science.gov (United States)

    Wolbarsht, Myron L.

    1994-08-01

    Many different types of proliferative retinopathy induced by various types of initial disorders have a common pathology in their mid and terminal stages. Thus, proper therapy is devoted toward elimination of the initial cause as well as alleviation of the proliferative processes. Vasodilatation, which is an initial symptom of diabetes, is itself destructive to the retinal capillary bed and appears to be a constant feature in all stages of diabetic retinopathy. In the mid and late stages, the vasodilatation seems very dependent upon capillary dropout, whereas the initial vasodilatation may derive from quite different causes. The efficacy of photocoagulation as a therapy for all stages seems to derive from decreasing the metabolism in the photoreceptor layer sufficiently to result in vasoconstriction of the retinal vessels. A model is proposed to show how diabetes, by altering the metabolism in the photoreceptor layer to produce excess lactic acid, causes the initial vasodilatation. The lactic acid also induces free radical (superoxide) formation; both act together to destroy the retinal capillary bed followed by vasoproliferation. Photocoagulation, thus, is even more appropriate for this particular syndrome than previously had been thought, as it not only reduces potentially destructive vasodilatation but also removes the metabolic cause of the free radical induced destruction of the capillary endothelium which is the initial step in capillary drop-out. A review of the present data indicates that the best type of pan- retinal photocoagulation is a very light type affecting the photoreceptors only with a minimal amount of damage to other parts of retina and the vessels in the choroid. The possible use of photochemical types of destruction of the photoreceptor as a therapeutic modality is attractive, but it is certainly too speculative to use until more detailed investigations have been completed. However, the basic therapeutic approach of choice may be to prevent the

  11. Gas chromatographic determination of amino acid enantiomers in bottled and aged wines.

    Science.gov (United States)

    Ali, Hatem Salama Mohammed; Pätzold, Ralf; Brückner, Hans

    2010-03-01

    Free L- and D-amino acids were determined by chiral GC-MS in 26 wines, comprising white wines, red wines, ice wines and sparkling wines. The aim of the work was to investigate whether quantities and pattern of D-amino acids, in particular D-proline, correlate with the storage time of bottled wines. The relative quantities with respect to the corresponding L-enantiomer ranged in white wines from 0.4 to 3.9% D-Ala, 0.9-8.3% D-Asx, and 0.5-8.9% D-Glx, in red wines from 2.9 to 10.6% D-Ala, 2.2-10.9% D-Asx, and 3.9-7.4% D-Glx, and in sparkling wines from 2.2 to 9.8% D-Ala, 2.1-4.4% D-Asx and 1.3-6.1% D-Glx. Low relative quantities of 0.3-0.7% D-Pro were detected in three white wines stored for more than 20 years and did not exceed 0.2% D-Pro in two red wines stored for 10 and 20 years, respectively. An ice wine stored for 24 years contained 0.9% D-Pro, 6.4% D-Glx, 3.0% D-Asp and 1.5% D-Ala. The data confirm the presence of D-amino acids in wines. They do not provide evidence for a correlation between the storage time of bottled wines and quantities of D-amino acids.

  12. On Pressure Affected Shear Viscosity of Poly(Lactic) Acid

    Science.gov (United States)

    Piyamanocha, Pongprapat; Sedlacek, Tomas; Saha, Petr

    2011-07-01

    Evaluation of pressure coefficient of polymer melt viscosity has become important parameter taken into account for flow behavior prediction in polymer processing simulation software. In this paper, the pressure coefficient of biodegradable polymers, poly(lactic) acid (PLA), was investigated. A capillary rheometer equipped with back pressure device controlling pressure in polymer melt during flow was employed for experiments. Pressure sensitivity was evaluated through pressure coefficient calculated via fitting of obtained viscosity data by the help of Carreau-Yasuda model. It was found that pressure coefficient of PLAs is strongly affected by the internal structure of tested polymer.

  13. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  14. Lactic acid bacteria isolated from yak milk show probiotic potential.

    Science.gov (United States)

    Kaur, Manpreet; Singh, Harjodh; Jangra, Manoj; Kaur, Lakhwinder; Jaswal, Pallavi; Dureja, Chetna; Nandanwar, Hemraj; Chaudhuri, Saumya Ray; Raje, Manoj; Mishra, Sunita; Pinnaka, Anil Kumar

    2017-10-01

    Probiotic industries strive for new, efficient and promising probiotic strains that impart a positive impact on consumer health. Challenges are persisting in isolation, screening, and selection of the new indigenous probiotic strains. In the present research, we explored the probiotic potential of 17 lactic acid bacteria isolated from Yak milk in a series of in vitro tests. We also demonstrated their health benefits, i.e., cholesterol degradation, lactose digestion, antimicrobial activity, antioxidant, and anticancer activities. Principal component analysis revealed that more than 50% of the strains fulfilled the examined criteria, e.g., survival in acidic pH, bile concentrations, and adherent property. Approximately all the strains produced antimicrobial substances against the maximum number of tested strains including clinical strains. Most strains degraded cholesterol in comparison to the reference probiotic strain whereas strain Yc showed 1.5 times higher the degradation efficiency of the control strain. Lan4 strain exhibited remarkable anticancer activity and induced the maximum apoptosis (87%) in the Hela cells and was non-toxic to the non-cancerous HEK293 cells. Around ten strains showed positive lactose digestion. Overall, this can be concluded that selected lactic acid bacteria revealed excellent probiotic properties along with desirable health benefits. These strains need to be further investigated in details for their application in the development of novel probiotic preparations for the improvement of public health.

  15. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  16. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  17. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  18. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Science.gov (United States)

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  19. The influence of ultrasound on wine and wine materials acidity during clarification process in tubular membrane filters

    Directory of Open Access Journals (Sweden)

    A. A. Ponedelchenko

    2016-01-01

    Full Text Available Researches on the experimental ultrasonic installation were carried out, using industrial equipment for bottling liquids and ultrasonic apparatus "Volna-M" UZTA-1/22-OM, for clarification and filtering of table wines by tangential microfiltration using membrane ceramic filtering elements with a pore size of 0.2 micron at a pressure of 0.5-2.0 bar. Membrane ultrafiltration upon application of ultrasound of 30-40 microns amplitude and a frequency of 20 kHz ± 1.65 Hz at high filter performance and work stability changes the quantitative content of the valuable wine components slightly. But much attention to the increase of titratable acidity and pH medium due to possible degradation and esterification intensification of higher acids and alcohols was paid. At the same time more intense and rich aroma and distinct flavor with berry notes appears in wine that along with the physical- and chemical indicators helped to improve organoleptic characteristics and to increase the tasting evaluation of wines. At the same time, the content of phenolic and nitrogen compounds is reduced resulting in wines stability to protein and colloidal opacification. It became possible to refuse multiple regeneration of ceramic filter elements for the  ecovery of their performance, as well as the use of preservatives and antiseptics at a high wines bottling stability. It is shown that the filtration with the dosing of ultrasound in the wine industry allows not only reducing the cost of consumables, equipment and removing some of the traditional processes, but also providing the cold sterilization of wine materials with an increase in their quality.

  20. Influence of different yeasts on the amino acid pattern of rosé wine

    Directory of Open Access Journals (Sweden)

    Mandl Karin

    2017-01-01

    Full Text Available In an experiment with Rosé wine, 27 different commercial yeasts were tested for their influence on the amino acid pattern of the wine. Amino acids are precursors for aromatic substances; therefore a large variation of the amino acid values in the wine was expected. Blaufränkisch grapes with 20° KMW were matured in the cellar with 27 different commercial yeasts. The fermentation was carried out in 34l vessels. The wines were measured for amino acids using an HP 1200 liquid chromatograph and HP-FLD1100 according to Umagat. The wines showed 13.5% alcohol and little residual sugar. The measurement results of the amino acids of the different wines showed large variations. For example, the amount of the amino acid alanine in wine varied from 17 to 138 mg. In particular, the wines of the yeast Pino Type showed the highest amounts of alanine in comparison to the other fermented wines.

  1. Molecular characterization of the phenolic acid metabolism in the lactic acid bacteria Lactobacillus plantarum

    OpenAIRE

    Barthelmebs, Lise; Diviés, Charles; Cavin, Jean-François

    2001-01-01

    International audience; The lactic acid bacteria Lactobacillus plantarum displays substrate-inducible decarboxylase activities on $p$-coumaric, caffeic and ferulic acids. Purification of the $p$-coumaric acid decarboxylase (PDC) was performed. Sequence of the N-terminal part of the PDC led to the cloning of the corresponding pdc gene. Expression of this gene in Escherichia coli revealed that PDC displayed a weak activity on ferulic acid, detectable in vitro in the presence of ammonium sulfate...

  2. Cocrystallization as a tool to solve deliquescence issues: The case of L-lactic acid

    Science.gov (United States)

    de Maere d'Aertrycke, J. B.; Robeyns, K.; Willocq, J.; Leyssens, T.

    2017-08-01

    L-Lactic acid is an organic acid used in various fields such as food, cosmetic or pharmaceutical industry. It furthermore is the building-block of poly-lactic acid, a biodegradable and bioavailable polymer. Still, handling L-lactic acid under its solid form remains less straightforward mainly due to its deliquescent behavior, a phase transition from the solid to the dissolved state resulting from air humidity absorption. If several techniques are already known to avoid or reduce deliquescence, the use of cocrystallization in this context is still poorly investigated. In this paper, we investigate whether cocrystallization can be used as a suitable solution for deliquescence in the case of L-lactic acid. Out of 32 possible coformers tested, four were found to form cocrystals with L-lactic acid and the crystal structures of 1:1 L-lactic acid:D-tryptophan and 1:1 L-lactic acid:3-nitrobenzamide were determined. The hygroscopic behavior of these latter two was studied and compared to the behavior of pure L-lactic acid. Significant improvement was observed: dynamic vapor sorption at 25 °C revealed that water absorbed at 90% relative humidity dropped from 1.3157 g/gsample to 0.0017 g/gsample or 0.0299 g/gsample, with cocrystals of D-tryptophan and 3-nitrobenzamide respectively. This illustrates the effectiveness of cocrystallization as a tool to treat deliquescent materials.

  3. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste. 

  4. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry.

    Science.gov (United States)

    Bucka-Kolendo, Joanna; Sokołowska, Barbara

    2017-01-01

    In this review we summarize stress factors that affect the lactic acid bacteria (LAB) and cause different molecular stress responses. LAB belong to a group of bacteria that is very widespread in food and beverages. They are present, and desired, in fermented products like yogurts, cheese, vegetables, meat or wine. In most of them, LAB are providing positive sensory and nutritive features. However, as harmless and desired microbes in one product, LAB can cause spoilage and a bad taste of others, especially in juices and beverages. LAB are resistant to many stress factors which allows them to survive in harsh environments. The most common stress factors they have to deal with are: heat, cold, acidity, NaCl and high hydrostatic pressure (HHP). Their ability to survive depends on their skills to cope with stress factors. Under stress conditions, LAB activate mechanisms that allow them to adjust to the new conditions, which can influence their viability and technological properties. This ability to adapt to different stress conditions may come from the cross-protection systems they have, as resistance to one factor may help them to deal with the other stress effectors. LAB are highly valuable for the food industry and that is why it is important to understand their stress response mechanisms.

  5. Facial volumetric correction with injectable poly-L-lactic acid.

    Science.gov (United States)

    Vleggaar, Danny

    2005-11-01

    Polymers of lactic acid'have been widely used for many years in different types of medical devices, such as resorbable sutures, intrabone implants, and soft tissue implants. Injectable poly-L-lactic acid (PLLA; Sculptra), a synthetic, biodegradable polymer, has gained widespread popularity in Europe for the treatment of facial changes associated with aging. To provide background information on injectable PLLA and to describe clinical experience with its use in Europe for facial volume enhancement. Technique varies with site of injection. Generally, the product is implanted subcutaneously or intradermally in a series of treatments. No allergy testing is required. Based on experience in more than 2,500 patients, injectable PLLA has been used successfully for the correction of nasolabial folds, mid- and lower facial volume loss, jawline laxity, and other signs of facial aging. Correction lasts for 18 to 24 months in most patients. Injectable PLLA treatment provides an excellent and prolonged correction of a variety of facial wrinkles, depressions, and laxity with a minimally invasive procedure that does not require allergy testing or a recovery period.

  6. Bacteriocins from lactic acid bacteria as an alternative to antibiotics.

    Science.gov (United States)

    Ołdak, Aleksandra; Zielińska, Dorota

    2017-05-05

    Bacteriocins are ribosomally synthesized, proteinaceous substances that inhibit the growth of closely related species through numerous mechanisms. The classification system used in this review divided bacteriocins into four sub-groups based on their size. Currently, there is extensive research focused on bacteriocins and their usage as a food preservative. The increasing incidence of multidrug resistant bacterial pathogens is one of the most pressing medical problems in recent years. Recently, the potential clinical application of LAB (Lactic Acid Bacteria) bacteriocin has been the subject of investigations by many scientists. Bacteriocins can be considered in a sense as antibiotic, although they differ from conventional antibiotics in numerous aspects. The gene-encoded nature of bacteriocins makes them easily amenable through bioengineering to either increase their activity or specify target microorganism. Owing to this feature of bacteriocins, antibiotic therapy would become less damaging to the natural gut microflora, which is a common drawback of conventional antibiotic use. Bacteriocins from lactic acid bacteria represent one of the most studied microbial defense systems and the idea of subjecting them to bioengineering to either increase antimicrobial activity or further specify their target microorganism is now a rapidly expanding field. This review aimed to present bacteriocins as a possible alternative to conventional antibiotics basic on latest scientific data.

  7. Probiotic properties of endemic strains of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Flora N. Tkhruni

    2013-01-01

    Full Text Available Strains of lactic acid bacteria (LAB isolated from various samples of matsun, yogurt and salted cheese from natural farms of Armenia were studied. They have high antimicrobial and probiotic activities, growth rate and differ by their resistance to enzymes. Supernatants of LAB retain bactericidal activity at рН 3.0-8.0 and inhibit growth of various microflora. The application of different methods of identification and LAB genotyping (API 50 CH, 16S rRNA sequencing, GS-PCR, RAPD PCR showed that isolated LAB evidenced a 99.9% similarity with L. rhamnosus, L. plantarum and L. pentosus species and coccoid forms of Streptococcus and Enterococcus species. It can be concluded, that some strains of lactic acid bacteria, isolated from dairy products from natural farms of Armenia, can be properly used for biopreservation of some foodstuffs. On the basis of experimental data, the LAB can be used as basis for obtaining the new products of functional nutrition.

  8. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    Science.gov (United States)

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Probiotic lactic acid bacteria for applications in vegetarian food products

    Directory of Open Access Journals (Sweden)

    Charernjiratrakul, W.

    2007-07-01

    Full Text Available Total of 225 isolates of lactic acid bacteria were isolated from 152 samples of various fermented foods. The strains were investigated for their probiotic properties based on stability in bile salt (0.30% and high acidity (pH 3, growth under both aerobic and anaerobic conditions, ability to grow without vitamin B12. According to the above criteria, 40 isolates were selected. Using an agar spot method, 16 isolates were able to inhibit Salmonella typhimurium, S. typhi, S. enteritidis, S. paratyphi and 4 strains of E. coli O157 : H7 as clear zone greater than 10 mm. Moreover, utilization of protein or fat or starch was also considered. Only 5 isolates were able to utilize protein and further selected for antibiotics sensitivity test. The selected isolates were susceptible to following antibiotics: ampicillin, chloramphenicol, erythromycin , kanamycin, tetracycline and vancomycin; however they were resistant to ceptazidime and norfloxacin. They all showed better growth in vegetarian medium (coconut juice medium than MRS medium both under static and shaking conditions. Five active isolates were identified as Lactobacillus plantarum LL13, LN18, LP11, LS35 and Pediococcus pentosaceus LT02 by API 50 CH system. All cultures grew well in carrot juice by reducing pH from 6.4 to below 4.0 after 24 h of fermentation at 35oC. The lactic cultures in fermented carrot juice lost their viability about 2 log cycles after 15 days of cold storage at 4oC.

  10. Bacteriocins from lactic acid bacteria as an alternative to antibiotics

    Directory of Open Access Journals (Sweden)

    Aleksandra Ołdak

    2017-05-01

    Full Text Available Bacteriocins are ribosomally synthesized, proteinaceous substances that inhibit the growth of closely related species through numerous mechanisms. The classification system used in this review divided bacteriocins into four sub-groups based on their size. Currently, there is extensive research focused on bacteriocins and their usage as a food preservative.The increasing incidence of multidrug resistant bacterial pathogens is one of the most pressing medical problems in recent years. Recently, the potential clinical application of LAB (Lactic Acid Bacteria bacteriocin has been the subject of investigations by many scientists.Bacteriocins can be considered in a sense as antibiotic, although they differ from conventional antibiotics in numerous aspects. The gene-encoded nature of bacteriocins makes them easily amenable through bioengineering to either increase their activity or specify target microorganism. Owing to this feature of bacteriocins, antibiotic therapy would become less damaging to the natural gut microflora, which is a common drawback of conventional antibiotic use. Bacteriocins from lactic acid bacteria represent one of the most studied microbial defense systems and the idea of subjecting them to bioengineering to either increase antimicrobial activity or further specify their target microorganism is now a rapidly expanding field. This review aimed to present bacteriocins as a possible alternative to conventional antibiotics basic on latest scientific data.

  11. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    Science.gov (United States)

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Determination of Titratable Acidity in Wine Using Potentiometric, Conductometric, and Photometric Methods

    Science.gov (United States)

    Volmer, Dietrich A.; Curbani, Luana; Parker, Timothy A.; Garcia, Jennifer; Schultz, Linda D.; Borges, Endler Marcel

    2017-01-01

    This experiment describes a simple protocol for teaching acid-base titrations using potentiometry, conductivity, and/or photometry to determine end points without an added indicator. The chosen example examines the titratable acidity of a red wine with NaOH. Wines contain anthocyanins, the colors of which change with pH. Importantly, at the…

  13. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    Science.gov (United States)

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  14. Human milk is a source of lactic acid bacteria for the infant gut.

    Science.gov (United States)

    Martín, Rocío; Langa, Susana; Reviriego, Carlota; Jimínez, Esther; Marín, María L; Xaus, Jordi; Fernández, Leonides; Rodríguez, Juan M

    2003-12-01

    To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.

  15. Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Bouteille, R; Gaudet, M; Lecanu, B; This, H

    2013-04-01

    When fermenting milk, lactic bacteria convert part of α- and β-lactoses into d- and l- lactic acids, causing a pH decrease responsible for casein coagulation. Lactic acid monitoring during fermentation is essential for the control of dairy gel textural and organoleptic properties, and is a way to evaluate strain efficiency. Currently, titrations are used to follow the quantity of acids formed during jellification of milk but they are not specific to lactic acid. An analytical method without the use of any reagent was investigated to quantify lactic acid during milk fermentation: in situ quantitative proton nuclear magnetic resonance spectroscopy. Two methods using in situ quantitative proton nuclear magnetic resonance spectroscopy were compared: (1) d- and l-lactic acids content determination, using the resonance of their methyl protons, showing an increase from 2.06 ± 0.02 to 8.16 ± 0.74 g/L during 240 min of fermentation; and (2) the determination of the α- and β-lactoses content, decreasing from 42.68 ± 0.02 to 30.76 ± 1.75 g/L for the same fermentation duration. The ratio between the molar concentrations of produced lactic acids and consumed lactoses enabled cross-validation, as the value (2.02 ± 0.18) is consistent with lactic acid bacteria metabolism. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Effect of different media on production of lactic acid from whey by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... biodegradable plastics (Onda et al., 2008; Panesar et al.,. 2007). One of the most important substrate for lactic acid production is whey. In this research the production of lactic acid from whey in batch process was investigated. For this the volume percent of ultra filtered whey and nutrition diluted with water ...

  17. Lactic acid – the innocent culprit of muscle fatigue | Shalayel | Sudan ...

    African Journals Online (AJOL)

    What causes muscle fatigue? Is lactic acid considered to be a major culprit in the underlying mechanisms of muscle fatigue? These are very important questions and the answers are difficult and sophisticated. For decades, lactic acid was the major culprit of muscle fatigue. This review reveals that muscle fatigue would occur ...

  18. Treating Simple Tibia Fractures with Poly-DL-Lactic Acid Screw as a ...

    African Journals Online (AJOL)

    blood loss, postoperative complications, fracture-healing time, and Johner-Wruh grade at the last follow- up time point of the two treatment ... Keywords: Simple tibia fracture, Fracture healing time Poly-DL-lactic acid, Poly-DL-Lactic Acid,. Absorbable screw, Dynamic ... The gender, age, wound, time of operation, position of ...

  19. Plasma D-Lactic Acid Level: A Useful Marker to Distinguish Perforated From Acute Simple Appendicitis

    Directory of Open Access Journals (Sweden)

    Mehmet Demircan

    2004-10-01

    Full Text Available Early diagnosis of perforated appendicitis is important for reducing morbidity rates. The aim of this study was to determine the value and utility of plasma D-lactic acid levels in identifying the type of appendicitis. In this clinical study, plasma D-lactic acid levels were assessed in 44 consecutive paediatric patients (23 with acute appendicitis, 21 with perforated appendicitis before laparotomy. D-lactic acid levels were determined by an enzymatic spectrophotometric technique using a D-lactic acid dehydrogenase kit. Patients with perforated appendicitis had higher D-lactic acid levels (3.970 ± 0.687 mg/dL than patients in the control group (0.478 ± 0.149 mg/dL and patients with acute appendicitis (1.409 ± 0.324 mg/dL; p < 0.05. For a plasma D-lactic acid level greater than 2.5 mg/dL, the sensitivity and specificity of the D-lactic acid assay were 96% and 87%, respectively. The positive predictive value was 87%, the negative predictive value was 96%, and the diagnostic value was 91%. These results suggest that the measurement of plasma D-lactic acid levels may be a useful adjunct to clinical and radiological findings in distinguishing perforated from acute non-perforated appendicitis in children.

  20. SLUG FLOW CAPILLARY MICROREACTORS FOR LACTIC ACID EXTRACTION: EXPERIMENTAL STUDY AND MASS TRANSFER MODELLING

    NARCIS (Netherlands)

    Susanti, Susanti; Winkelman, Jozef; Schuur, Boelo; Heeres, Hero; Yue, Jun

    2015-01-01

    Lactic acid is an important commercial product and has been widely used for manufacturing biodegradable polymer. Current method of lactic acid isolation from fermentation broths is energy intensive and leads to the formation of large amounts of salts. Reactive liquid-liquid extraction has been

  1. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Effect of different media on production of lactic acid from whey by ...

    African Journals Online (AJOL)

    Whey containing 50 g.l -1 lactose was fermented to lactic acid in batch process by Lactobacillus bulgaricus. The impact of 5 different media with change in volume percent of whey and nutrient was investigated at 32 ± 0.5°C. Substrate consumption and lactic acid production were determined at 0, 12, 24, 36, 48, 60 and 72 h.

  3. Lactic acid fermentation of two sorghum varieties is not affected by ...

    African Journals Online (AJOL)

    The study was conducted to investigate sorghum grain variety differences in lactic acid fermentation based on their differences in phenolic contents. The study wa s conductedas a 2 x 5 x 4 factorial design with three factors: Factor 1: Sorghum variety (white and red sorghum); Factor 2: Control treatment without lactic acid ...

  4. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  5. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  6. Bacteriocins produced by lactic acid bacteria: A review

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  7. Detoxification of cancerogenic compounds by lactic acid bacteria strains.

    Science.gov (United States)

    Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang

    2017-10-20

    Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.

  8. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  9. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  10. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    Science.gov (United States)

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    OpenAIRE

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel...

  12. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    Science.gov (United States)

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  13. A perspective on Serum Lactic acid, Lactic Acidosis in a Critical Care Unit

    Directory of Open Access Journals (Sweden)

    Agela A.Elbadri

    2013-06-01

    Full Text Available Breast cancer is one of the major surgical problems encountered in Libya. Lactic acidosis is a universal complication in breast cancer patients and can be considered a possible prognostic marker. Therefore, it will be beneficial to correctly understand and review the biochemistry underlying lactic acidosis and its possible significance as a prognostic marker in critical care patients, including breast cancer.

  14. Influence of Saccharomyces uvarum on Volatile Acidity, Aromatic and Sensory Profile of Malvasia delle Lipari Wine

    Directory of Open Access Journals (Sweden)

    Carlo Nicolosi Asmundo

    2007-01-01

    Full Text Available The present study investigated chemical and sensory properties of Malvasia delle Lipari DOC (Denomination of Controlled Origin wine fermented with a cryotolerant strain of Saccharomyces uvarum, characterized by low levels of acetic acid production. In particular, experimental wine was tested for volatile acidity and for aromatic profile by gas chromatography and the results were compared with the same wine produced with a commercial strain of Saccharomyces cerevisiae. Sensory analysis was carried out to assess the identification of experimental wine as Malvasia delle Lipari by defining its sensory profile. Fermentation with S. uvarum gave a final product with lower volatile acidity, lower alcohol content and higher total acidity. Moreover, differences in the aroma profile could be ascribed to different characteristics of the yeasts. Concerning sensorial analysis, the panel assigned higher scores in positive attributes to the wine fermented with S. uvarum.

  15. Increasing the efficiency of sulphur dioxide in wine by using of saturated higher fatty acids

    Directory of Open Access Journals (Sweden)

    Petra Bábíková

    2012-01-01

    Full Text Available This work is aimed on stopping of alcoholic fermentation to leave residual sugar and the possibility of sulfur dioxide reduction in wine technology and storage. As a very good opportunity showed mixture of higher saturated fatty acids with a reduced dose of sulfur dioxide. Experiments have confirmed that the concentration of viable yeasts in 1 ml of wine for variants treated with a mixture of fatty acids is significantly lower than in variants treated with sulfur dioxide alone. Then was monitored the influence of fatty acids on stored wine with residual sugar. At this point a dramatically prolongation of interval to secondary fermentation (depreciation of wine in the bottle was confirmed. Finally, attention was paid to influence on the organoleptic characteristics of wine treated this way. In this case, it is possible to consider the recommended concentration of fatty acid below the threshold of susceptibility.

  16. Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate.

    Science.gov (United States)

    Liu, Dajiang; Kim, Kwang Ho; Sun, Jian; Simmons, Blake A; Singh, Seema

    2018-02-09

    Lignocellulosic biomass conversion into value-added platform chemicals in the non-toxic, water-tolerant Lewis acid, and water solutions bears the hallmark of green chemistry. Lactic acid derived from biomass is an important chemical building block for biodegradable polymers such as polylactide. Herein, a universal method of converting lignocellulosic sugars into lactic acid using catalytic amount of water-stable Lewis acid La(OTf) 3 is demonstrated. The lignocellulosic sugars studied in this work include 1) pyrolytic sugars from pyrolysis oil, and 2) sugars derived from ionic liquid (IL)-pretreated biomass. Under moderate conditions (250 °C, 1 h), levoglucosan (major pyrolytic sugar), glucose, and xylose were converted into lactic acid with carbon-based molar yields of 75, 74, and 61 %, respectively. Furthermore, roughly 49 mol % (based on levoglucosan) and 74 wt % (relative to pretreated biomass) of lactic acid were obtained from the conversion of pyrolytic sugars and sugar-rich fraction after lignin removal from switchgrass, respectively. To our knowledge, this is the first reported conversion of pyrolytic sugar into lactic acid by chemocatalysis and also lignocellulosic sugars are converted into lactic acid without hydrolysis. This approach could potentially be extended to other lignocellulosic sugars after simple removal of lignin from biomass pretreatment, rendering moderate to high yields of lactic acid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri

    NARCIS (Netherlands)

    Elferink, S.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F.

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade

  18. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri

    NARCIS (Netherlands)

    Elferink, SJWHO; Krooneman, J; Gottschal, JC; Spoelstra, SF; Faber, F; Driehuis, F

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade

  19. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Aspasia A. Nisiotou

    2015-01-01

    Full Text Available Vineyard- and winery-associated lactic acid bacteria (LAB from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF. Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs. Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine.

  20. Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology.

    Science.gov (United States)

    Pérez-Martín, Fátima; Seseña, Susana; Izquierdo, Pedro Miguel; Martín, Raúl; Palop, María Llanos

    2012-04-01

    The aim of this study was to evaluate the ability from a number of lactic acid bacteria isolated from different sources to produce glycosidase enzymes. Representative isolates (225) from clusters obtained after genotyping, using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis, of 1,464 isolates, were screened for β-D-glucosidase activity. Thirty-five of them were selected for subsequent analysis. These strains were able to hydrolyze α-D-glucopyranoside, β-D-xylopyranoside and α-L-arabinofuranoside although β-D-glucosidase activity was the predominant activity for 22 of the selected strains. Only some of them did so with α-L-rhamnopyranoside. All of these were from wine samples and were identified as belonging to the Oenococcus oeni species using Amplification and Restriction Analysis of 16S-rRNA gene (16S-ARDRA). When the influence of pH, temperature and ethanol or sugars content on β-D-glucosidase activity was assayed, a strain-dependent response was observed. The β-D-glucosidase activity occurred in both whole and sonicated cells but not in the supernatants from cultures or obtained after cell sonication. Strains 10, 17, 21, and 23 retained the most β-D-glucosidase activity when they were assayed at the conditions of temperature, pH, ethanol and sugar content used in winemaking. These results suggest that these strains could be used as a source of glycosidase enzymes for use in winemaking.

  1. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  2. Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2010-01-01

    Full Text Available The antimicrobial activity of industrially important lactic acid bacteria as starter cultures and probiotic bacteria is the main subject of this review. This activity has been attributed to the production of metabolites such as organic acids (lactic and acetic acid, hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoine, carbon dioxide, reuterin, reutericyclin and bacteriocins. The potential of using bacteriocins of lactic acid bacteria, primarily used as biopreservatives, represents a perspective, alternative antimicrobial strategy for continuously increasing problem with antibiotic resistance. Another strategy in resolving this problem is an application of probiotics for different gastrointestinal and urogenital infection therapies.

  3. Food-grade Selection Markers in Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Song He

    2012-08-01

    Full Text Available Lactic acid bacteria (LAB are generally regarded as safe (GRAS microorganisms and widely used in industry and medicine. We are trying to add additional properties to them by gene engineering. However, the genetically modified bacteria are not acceptable to use in food and medicine due to the presence of antibiotic resistance genes in plasmids. Thus, it is necessary to develop food-grade selection markers. Food-grade markers can be divided into three classes based on their selected characteristics: dominant, complementary and sugar fermentation markers. The developments on these food-grade selection markers were reviewed in order to provide valuable references for the further study. [TAF Prev Med Bull 2012; 11(4.000: 499-510

  4. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  5. Future access and improvement of industrial lactic acid bacteria cultures.

    Science.gov (United States)

    Johansen, Eric

    2017-12-21

    Industrial fermentations based on micro-organisms such as the lactic acid bacteria (LAB) play an important role in several industries globally and represent multi-billion Euro/dollar businesses. LAB provide a natural way to produce safe, sustainable, and environmentally friendly products for a variety of industries. Product innovation is a key requirement for these industries to survive and grow globally. However, the development of new products may be affected by two man-made constraints; the Nagoya Protocol on benefit sharing and the opposition to the use of modern biotechnology for strain improvement. An expert workshop was held in Amsterdam, May 10-11, 2017 to discuss these challenges; a number of conclusions and recommendations were formulated and will be presented herein.

  6. Recombinant lactic acid bacteria as mucosal biotherapeutic agents.

    Science.gov (United States)

    Daniel, Catherine; Roussel, Yvonne; Kleerebezem, Michiel; Pot, Bruno

    2011-10-01

    The safety status of lactic acid bacteria (LAB) and their capacity to survive the passage through the gastrointestinal tract (GI tract) have rendered them excellent candidates for the production of therapeutic proteins and their delivery in situ to the GI tract. During the past two decades, major health benefits of mucosally administered recombinant LAB have been successfully demonstrated, predominantly using animal models. However, the field has recently moved into the era of human clinical trials. In this review, we provide a timely update on the recent important advances made in this field, and outline the potential of recombinant LAB as therapeutic tools for their safe and efficient use in human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  8. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various...... and mechanical properties. RESULTS: Two pairs of solvent mixtures, i.e. dimethylformamide (DMF)-tetrahydrofuran (THF) and DMF-chloroform (CHL), were identified to provide a stable cone-jet. Within the polymer concentration range studied (10-30%, w/v), RG750 solutions could be electrospun into uniform fibers...... interaction to generate uniform fibers. The solvent could influence the morphology and mechanical properties of the electrospun fibers by altering the properties of PLGA solution, and drying rate of fibers in the electrospinning process....

  9. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  10. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    Science.gov (United States)

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-09

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Directory of Open Access Journals (Sweden)

    Bita Forghani

    2012-05-01

    Full Text Available L-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218 were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA as a bioactive compound.

  12. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  13. Wine fermentation microbiome: a landscape from different Portuguese wine appellations

    Directory of Open Access Journals (Sweden)

    Cátia ePinto

    2015-09-01

    Full Text Available Grapes and wine musts harbour a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation – Initial Must (IM, and Start and End of alcoholic fermentation (SF and EF, respectively.The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p<0.05 were found in the fungal populations between IM, SF and EF, and in the bacterial population between MI and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the initial musts, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida and Schizosaccharomyces. Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae and acetic acid (Acetobacteriaceae were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of

  14. Wine fermentation microbiome: a landscape from different Portuguese wine appellations.

    Science.gov (United States)

    Pinto, Cátia; Pinho, Diogo; Cardoso, Remy; Custódio, Valéria; Fernandes, Joana; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2015-01-01

    Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation - Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.

  15. Biotyping of cultivable lactic acid bacteria isolated from donkey milk.

    Science.gov (United States)

    Carminati, D; Tidona, F; Fornasari, M E; Rossetti, L; Meucci, A; Giraffa, G

    2014-09-01

    The diversity of lactic acid bacteria (LAB) species in donkey's milk was analysed by culture-dependent microbial techniques. Dominant strains were isolated on agar media generally used for enumerating LAB. To enrich the number of acidifying LAB present, the milk samples were incubated at 37°C for 24 h (cultured milk samples, CM). One of the CM samples was heat-treated at 63°C for 10 min before incubation at 37°C (heat-treated and cultured milk sample, TCM) to select thermophilic LAB. The microflora in these CM and TCM samples was then compared to that of the raw milk samples (RM). Among the 129 LAB isolates, 10 different species (four Enterococcus, five Streptococcus and one Pediococcus) were identified by molecular methods. Although the 10 LAB species were present in the RM samples, only three and two isolates were found in CM and TCM samples, respectively. Despite the selection protocol being set up to favour the isolation of all LAB isolates present in donkey milk, relatively few species and biotypes were isolated. No LAB isolates belonging to the most technologically important dairy starter species were detected. The possible factors related to the limited LAB diversity in donkey's milk have been discussed below. There is increased interest in using donkey's milk as a source of human nutrition. The large amounts of antimicrobial components and defence factors present in donkey's milk provide protection from microbial infections and distinguish donkey's milk from the milks of other mammals. However, the microbiota in donkey's milk has so far been poorly characterized, specifically with regard to the lactic acid bacteria (LAB). This study has identified cultivable, acidifying and thermoduric LAB that could be used to develop starter cultures. This is the first study to investigate the culturable LAB microbiota present in donkey's milk. © 2014 The Society for Applied Microbiology.

  16. Lactic acid bacteria and health: are probiotics safe for human?

    Directory of Open Access Journals (Sweden)

    Izabela Kubiszewska

    2014-11-01

    Full Text Available The effect of Lactobacillus and Bifidobacterium on human health has been examined for many years. Numerous in vivo and in vitro studies have confirmed the beneficial activity of some exogenous lactic acid bacteria in the treatment and prevention of rotaviral infection, antibiotic-associated diarrhea, inflammatory bowel disease and other gastrointestinal disorders. Probiotics support the action of the intestinal microflora and exhibit a favorable modulatory effect on the host’s immune system. However, it should be remembered that relatively harmless lactobacilli can occasionally induce opportunistic infections. Due to reaching almost 20 x 1012 probiotic doses per year which contain live cultures of bacteria, it is essential to monitor the safety aspect of their administration. In recent years, infections caused by Lactobacillus and Bifidobacterium made up 0.05% to 0.4% of cases of endocarditis and bacteremia. In most cases, the infections were caused by endogenous microflora of the host or bacterial strains colonizing the host’s oral cavity. According to a review of cases of infections caused by bacteria of the genus Lactobacillus from 2005 (collected by J.P. Cannot’a, 1.7% of infections have been linked directly with intensive dairy probiotic consumption by patients. Additionally, due to the lack of a precise description of most individuals’ eating habits, the possible effect of probiotics on infection development definitively should not be ruled out. The present paper describes cases of diseases caused by lactic acid bacteria, a potential mechanism for the adverse action of bacteria, and the possible hazard connected with probiotic supplementation for seriously ill and hospitalized patients.

  17. [Lactic acid bacteria and health: are probiotics safe for human?].

    Science.gov (United States)

    Kubiszewska, Izabela; Januszewska, Milena; Rybka, Joanna; Gackowska, Lidia

    2014-11-17

    The effect of Lactobacillus and Bifidobacterium on human health has been examined for many years. Numerous in vivo and in vitro studies have confirmed the beneficial activity of some exogenous lactic acid bacteria in the treatment and prevention of rotaviral infection, antibiotic-associated diarrhea, inflammatory bowel disease and other gastrointestinal disorders. Probiotics support the action of the intestinal microflora and exhibit a favorable modulatory effect on the host's immune system. However, it should be remembered that relatively harmless lactobacilli can occasionally induce opportunistic infections. Due to reaching almost 20x10(12) probiotic doses per year which contain live cultures of bacteria, it is essential to monitor the safety aspect of their administration. In recent years, infections caused by Lactobacillus and Bifidobacterium made up 0.05% to 0.4% of cases of endocarditis and bacteremia. In most cases, the infections were caused by endogenous microflora of the host or bacterial strains colonizing the host's oral cavity. According to a review of cases of infections caused by bacteria of the genus Lactobacillus from 2005 (collected by J.P. Cannot'a), 1.7% of infections have been linked directly with intensive dairy probiotic consumption by patients. Additionally, due to the lack of a precise description of most individuals' eating habits, the possible effect of probiotics on infection development definitively should not be ruled out. The present paper describes cases of diseases caused by lactic acid bacteria, a potential mechanism for the adverse action of bacteria, and the possible hazard connected with probiotic supplementation for seriously ill and hospitalized patients.

  18. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  19. Who will win the race in childrens' oral cavities? Streptococcus mutans or beneficial lactic acid bacteria?

    Science.gov (United States)

    Güngör, Ö E; Kırzıoğlu, Z; Dinçer, E; Kıvanç, M

    2013-09-01

    Adhesion to oral soft and hard tissue is crucial for bacterial colonisation in the mouth. The aim of this work was to select strains of oral lactic acid bacteria that could be used as probiotics for oral health. To this end, the adhesive properties of some lactic acid bacteria were investigated. Seventeen lactic acid bacteria including two Streptococcus mutans strains were isolated from the oral cavity of healthy children, while other strains were isolated from fermented meat products. The bacterial strains were applied to teeth surfaces covered with saliva or without saliva. A significant diversity in adhesion capacity to teeth surfaces among the lactic acid bacteria was observed. Lactic acid bacteria isolated from the oral cavity adhered the best to teeth surfaces covered with saliva, whereas lactic acid bacteria isolated from fermented meat samples adhered the best to tooth surface without saliva. All strains of lactic acid bacteria were able to reduce the number of S. mutans cells, in particular on saliva-coated tooth surface. Therefore, they might have potential as probiotics for the oral cavity.

  20. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    Science.gov (United States)

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  1. Monascus ruber as cell factory for lactic acid production at low pH.

    Science.gov (United States)

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    OpenAIRE

    Dziuba, Bartłomiej; Nalepa, Beata

    2012-01-01

    In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs) and Fourier transform infrared spectroscopy (FTIR). Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evalu...

  3. BIOCONVERSION OF CITROFORTUNELLA MICROCARPA FRUIT WASTE INTO LACTIC ACID BY LACTOBACILLUS PLANTARUM

    Directory of Open Access Journals (Sweden)

    Cesar V. Ortinero

    2017-07-01

    Full Text Available The processing of Citrofortunella mircocarpa fruit juice generates large volume of solid waste, causing disposal problem. Several studies have demonstrated that wastes from agricultural and food processing industries such as fruit and vegetable peels contain high amount of polysaccharides that can be transformed into useful chemicals, including lactic acid, through fermentation. Lactic acid is widely used in various industries, such as in the manufacture of biodegradable plastic, and the demand for this chemical justifies the search of renewable feedstock for its biotechnological production. This study aimed to produce lactic acid from C. microcarpa fruit waste biomass through fermentation with Lactobacillus plantarum. The hydrolysate from C. microcarpa fruit waste was prepared, inoculated with different amounts of L. plantarum cell suspension, and incubated for three days. Lactic acid production was monitored daily. The lactic acid produced from the fermentation was precipitated as calcium lactate crystals. The identity of the crystals was evaluated using Fourier transform infrared spectroscopy (FTIR spectroscopy and paper chromatography. The highest lactic acid production was observed in fermentation mixtures containing the highest number of L. plantarum cells. Within three days of fermentation, the amount of lactic acid production increased with increasing period of incubation. Partial characterization of the crystals recovered from the fermentation mixtures by FTIR spectroscopy showed that the peaks in the spectrum were consistent with the chemical structure of lactate. Paper chromatography results likewise confirmed that the crystals are lactate. C. microcarpa fruit waste can afford lactic acid when fermented with L. plantarum. The results of the study may serve as basis for the development of technology for the utilization of C. microcarpa fruit waste biomass as renewable resource for industrial production of lactic acid.

  4. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii

    OpenAIRE

    Ortiz-Merino, Raúl A.; Kuanyshev, Nurzhan; Byrne, Kevin P.; Varela, Javier A.; Morrissey, John P.; Porro, Danilo; Wolfe, Kenneth H.; Branduardi, Paola

    2018-01-01

    ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional re...

  5. Nonstarter lactic acid bacteria volatilomes produced using cheese components.

    Science.gov (United States)

    Sgarbi, E; Lazzi, C; Tabanelli, G; Gatti, M; Neviani, E; Gardini, F

    2013-07-01

    In long-ripened cheese, flavor formation occurs during ripening. The metabolism of lactic acid bacteria (LAB) leads to the production of different compounds that contribute to the flavor of cheese. The contribution of LAB to the formation of cheese flavor has previously been studied. However, the specific nonstarter LAB (NSLAB) metabolic reactions in ripened cheese that lead to the formation of flavor compounds remain unclear. In ripened cheese, the nutrient sources available include small peptides or amino acids, citrate, lactate, free fatty acids, and starter LAB cell lysis products. Thus, the aim of this study was to evaluate the ability of NSLAB to produce volatile flavor compounds by using an in vitro system that used only the nutrients available in ripened cheese as the energy source. Moreover, the potential contribution of the NSLAB volatilome on total cheese flavor is discussed. For this purpose, the production of volatile compounds on cheese-based medium (CBM) and on starter LAB lysed cell medium (LCM) by 2 Lactobacillus casei and 2 Lactobacillus rhamnosus strains, previously isolated from ripened Parmigiano Reggiano cheese, was investigated. The generated volatile compounds were analyzed with head-space gas chromatography mass spectrometry. Overall, ketones, aldehydes, alcohols, and acids were the most abundant compounds produced. Differences in volatilome production were found between NSLAB grown in LCM and CBM. The catabolic metabolism of amino acids and fatty acids were required for NSLAB growth on LCM. Conversely, pyruvate metabolism was the main catabolic pathway that supported growth of NSLAB in CBM. This study can be considered a first step toward a better understanding of how microbiota involved in the long ripening of cheese may contribute to the development of cheese flavor. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Lactic acid fermentation in vegetable juices supplemented with different content of brewer’s yeast autolysate

    Directory of Open Access Journals (Sweden)

    Rakin Marica B.

    2005-01-01

    Full Text Available The work is concerned with the conditions for lactic acid fermentation in a mixture of beetroot (Beta vulgaris L juice and carrot (Daucus carota L juice and different content of brewer’s yeast autolysate with Lactobacillus plantarum A112 and with Lactobacillus acidophilus NCDO 1748.Both cultures showed good biochemical activity in these mixtures. The production of lactic acid has been stimulated using the higher content of brewer’s yeast autolysate. In these mixtures, L. plantarum A112 has shown better growth and lactic acid production than L. acidophilus NCDO 1748.

  7. Breeding L(+)-lactic acid high productive mutant from xylose by nitrogen ions

    International Nuclear Information System (INIS)

    Yang Yingge; Li Wen; Liu Dan; Fan Yonghong; Wang Dongmei; Zheng Zhiming; Yu Zengliang

    2007-01-01

    In order to obtain higher L(+)-lactic acid yield strain fermentating from xylose, the original strain Rhizopus oryzae RLC41-6 was mutated by 10keV N + ion implantation. A mutant strain RQ4012 was obtained. After 72h shake-flask cultivation, the concentration of L(+)-lactic acid reached 74.37g/L, and the productivity was 1.03g/(L.h). Its lactic acid yield was 160% higher than that of the original one, and the mutant strain has high genetic stability. (authors)

  8. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...

  9. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    Science.gov (United States)

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  10. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Fayol-Messaoudi, Domitille; Berger, Cédric N; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.

  11. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging.

    Science.gov (United States)

    Zhang, Xin-Ke; He, Fei; Zhang, Bo; Reeves, Malcolm J; Liu, Yue; Zhao, Xu; Duan, Chang-Qing

    2018-04-01

    Though non-anthocyanin phenolics normally do not have red color, they affect the red color expression in the copigmentation of red wines. In this study, the influence of prefermentative addition of 300mg/L gallic acid and ellagic acid, as cofactors, on aging dry red wines had been systematically evaluated at the industrial scales from the perspectives of color, phenolic profiles and copigmentation effects of anthocyanins. Red wines made with these two compounds exhibited better color properties than the control, having better CIELAB chromatic parameters. Additionally, significantly higher levels of detectable anthocyanins and copigmented anthocyanin ratio had been observed. Wines with ellagic acid showed better chromatic properties and phenolic profiles than wines with gallic acid, as shown in previous theoretical results. Anti-copigmentation phenomenon was noticed and elucidated. These practical results confirmed that ellagic acid was the better cofactor, and would give more additional guidance for the production of high quality wine. Malvidin-3-O-glucoside (PubChem CID: 443,652); Petunidin-3-O-glucoside (PubChem CID: 443,651); Delphinidin-3-O-glucoside (PubChem CID: 443,650); Peonidin-3-O-glucoside (PubChem CID: 443,654); Ellagic acid (PubChem CID: 5,281,855); Gallic acid (PubChem CID: 370); Quercetin (PubChem CID: 443,654); Caffeic acid (PubChem CID: 689,043); (+)-catechin (PubChem CID: 9064); Vanillic acid (PubChem CID: 8468). Copyright © 2017. Published by Elsevier Ltd.

  12. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine.

    Science.gov (United States)

    Barril, Célia; Clark, Andrew C; Scollary, Geoffrey R

    2012-06-30

    The impact of the combined ascorbic acid and sulfur dioxide antioxidants on white wine oxidation processes was investigated using a range of analytical techniques, including flow injection analysis for free and total sulfur dioxide and two chromatographic methods for ascorbic acid, its oxidative degradation products and phenolic compounds. The combination of different analytical techniques provided a fast and simultaneous means for the monitoring of oxidation processes in a model wine system. In addition, the initial mole ratio of sulfur dioxide to ascorbic acid was varied and the model wine complexity was increased by the inclusion of metal ions (copper(II) and iron(II)). Sulfur dioxide was found not to be a significant binder of ascorbic acid oxidative degradation products and could not prevent the formation of certain phenolic pigment precursors. The results provide a detailed insight into the ascorbic acid/sulfur dioxide antioxidant system in wine conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  14. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    Science.gov (United States)

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  15. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    L. salivarius alone showed relatively good assimilation of various amino acids that existed at only a little amounts in MRS media (Asn, Asp, Cit, Cys, Glu, His, Lys, Orn, Phe, Pro, Tyr, Arg, Ile, Leu, Met, Ser, Thr, Trp and Val), whereas Ala and Gly accumulated in L. salivarius cultures. P. acidilactici, in contrast, hydrolyzed the ...

  16. Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics.

    Science.gov (United States)

    Wasewar, Kailas L; Heesink, A Bert M; Versteeg, Geert F; Pangarkar, Vishwas G

    2002-07-17

    Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid-amine (solvent) system used. Equilibria for lactic acid extraction by alamine 336 in methyl-iso-butyl-ketone (MIBK) as a diluent have been determined. The extent to which the organic phase (amine +MIBK) may be loaded with lactic acid is expressed as a loading ratio, z=[HL](o)/[B](i,o). Calculations based on the stoichiometry of the reactive extraction and the equilibria involved indicated that more lactic acid is transferred to the organic phase than would be expected from the (1:1) stoichiometry of the reaction. The extraction equilibrium was interpreted as a result of consecutive formation of two acid-amine species with stoichiometries of 1:1 and 2:1. Equilibrium complexation constant for (1:1) and (2:1) has been estimated. Kinetics of extraction of lactic acid by alamine 336 in MIBK has also been determined. In a first study of its kind, the theory of extraction accompanied by a chemical reaction has been used to obtain the kinetics of extraction of lactic acid by alamine 336 in MIBK. The reaction between lactic acid and alamine 336 in MIBK in a stirred cell falls in Regime 3, extraction accompanied by a fast chemical reaction occurring in the diffusion film. The reaction has been found to be zero order in alamine 336 and first order in lactic acid with a rate constant of 1.38 s(-1). These data will be useful in the design of extraction processes.

  17. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    Science.gov (United States)

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  20. NATURE OF THE LIPIDS OF SOME LACTIC ACID BACTERIA1

    Science.gov (United States)

    Ikawa, Miyoshi

    1963-01-01

    Ikawa, Miyoshi (University of California, Berkeley). Nature of the lipids of some lactic acid bacteria. J. Bacteriol. 85:772–781. 1963.—Lactobacillus casei, L. plantarum, Leuconostoc mesenteroides, Pediococcus cerevisiae, and Streptococcus faecalis were grown on a lipid-free medium, and the amounts of acetone-soluble lipids, acetone-insoluble phospholipids, and unextracted or bound lipid in the cells were estimated. Neutral glycerides appeared to be absent, or present only in traces, in L. casei and S. faecalis. L. plantarum, L. mesenteroides, and P. cerevisiae, in addition to containing glycerides, appeared to contain glycolipids of glucose and galactose. Glycerol was present in the phospholipid fraction of all the organisms, and, in addition, galactose was present in L. mesenteroides. Paper chromatography of hydrolysates of the phospholipid fractions showed the absence of the usual phospholipid nitrogen bases, serine, ethanolamine, and choline, in these organisms. Microbiological assays of lyophilized unextracted cells for myo-inositol and choline also showed that lipids containing these components occurred in very small amounts at most. The principal ninhydrin-reacting substance in the phospholipid fraction of L. casei, L. plantarum, P. cerevisiae, and S. faecalis was lysine, which seemed to be exclusively of the l configuration. The principal ninhydrin-reacting substance in the L. mesenteroides phospholipid fraction was d-alanine. These amino acids appeared to be bound in components of the phospholipid fraction and not free. Images PMID:14044942

  1. Possible Probiotic Lactic Acid Bacteria Isolated from Oysters (Crassostrea gigas).

    Science.gov (United States)

    Kang, Chang-Ho; Gu, Takyong; So, Jae-Seong

    2017-09-05

    We attempted to isolate lactic acid bacteria (LAB) from the marine oyster (Crassostrea gigas) and selected several environmental stress-resistant isolates for the development of a future probiotic adjuvant for marine aquaculture. Twenty-six presumptive LAB isolates were extracted from oysters and screened (by an agar diffusion assay) for antimicrobial activity toward various pathogens: Vibrio parahaemolyticus, Streptococcus iniae, and Edwardsiella tarda. Eight isolates had an antibacterial activity toward V. parahaemolyticus; in particular, 6 isolates showed a growth-inhibitory activity, with inhibition zone diameters > 15 mm. Of these, 5 isolates (JL17, JL18, JL28, HL7, and HL32) were also active against S. iniae and E. tarda. Enterococcus faecium HL7 was selected as the isolate most resistant to environmental stressors: the minimum NaCl, ethanol, and hydrogen peroxide concentrations at which HL7 cells lost their viability were 1.9 M, 11%, and 0.013%, respectively. When an antibiotic sensitivity test was performed on E. faecium HL7, this isolate was found to be resistant to trimethoprim/sulfamethoxazole, cephalothin, ampicillin, rifampin, gentamicin, cefotaxime, cefepime, cefotetan, nalidixic acid, and kanamycin. While the oyster model studies provided indication that E. faecium HL7 could be a good candidate as biocontrol agent against V. vulnificus, further optimization is needed in the actual animal rearing situation.

  2. Antibacterial activity of acetic and lactic acid against Listeria monocytogenes and their effect on the intracellular constituent release

    Directory of Open Access Journals (Sweden)

    Zoleikha Shiravani

    2017-06-01

    Full Text Available Background: Organic acids (e.g. acetic and lactic acid have been used in foods as natural preservatives. Acetic acid and its salts are used in foods as antimicrobial and acidulant agents. The aim of this study was to evaluate the antibacterial activity of acetic and lactic acids against the Listeria monocytogenes. Materials and Methods: This experimental study was conducted at the Department of Food Hygiene (Faculty of Veterinary Medicine, Urmia University during autumn 2015. The antibacterial effects of acetic and lactic acid against Listeria monocytogenes were determined using minimum inhibitory concentration (MIC, minimum bactericidal concentration (MBC and cell constituents release methods. The concentration ranges of acetic and lactic acid (0.0195-10 and 0.043-22.2 μl/ml, respectively were used to determine the MIC of acids. Results: Based on the results, acetic and lactic acid inhibited the growth of Listeria monocytogenes and acetic acid had stronger effect against the the bacterium. The MIC values for acetic acid and lactic acid were 2.5 and 5 μl/ml, respectively. Cell constituents release showed that acetic and lactic acids are able to lyze the bacterial cell. Conclusion: Acetic and lactic acids were effective in inhibiting the growth of Listeria monocytogenes and the antibacterial effect of acetic acid was stronger than that lactic acid. These acids can be used in foods in combination with other preservatives to inhibit the food borne pathogens and food spoilage microorganisms.

  3. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.

    Science.gov (United States)

    Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola

    2018-03-01

    Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns

  4. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis.

    Science.gov (United States)

    Wang, Jingxuan; Zhao, Peng; Li, Ying; Xu, Lida; Tian, Pingfang

    2018-04-05

    Klebsiella pneumoniae is a promising industrial species for bioproduction of bulk chemicals such as 1,3-propanediol, 2,3-butanediol and 3-hydroxypropionic acid (3-HP). However, lactic acid is a troublesome by-product when optimizing for 3-HP production. Therefore, it is highly desirable to minimize lactic acid. Here, we show that lactic acid synthesis can be largely blocked by an engineered CRISPR interference (CRISPRi) system in K. pneumoniae. EGFP was recruited as a reporter of this CRISPRi system. Fluorescence assay of this CRISPRi system showed that enhanced green fluorescent protein (EGFP) expression level was repressed by 85-90%. To further test this CRISPRi system, guide RNAs were designed to individually or simultaneously target four lactate-producing enzyme genes. Results showed that all lactate-producing enzyme genes were significantly repressed. Notably, D-lactate dehydrogenase (ldhA) was shown to be the most influential enzyme for lactic acid formation in micro-aerobic conditions, as inhibiting ldhA alone led to lactic acid level similar to simultaneously repressing four genes. In shake flask cultivation, the strain coexpressing puuC (an aldehyde dehydrogenase catalyzing 3-hydroxypropionaldehyde to 3-HP) and dCas9-sgRNA inhibiting ldhA produced 1.37-fold 3-HP relative to the reference strain. Furthermore, in bioreactor cultivation, this CRISPRi strain inhibiting ldhA produced 36.7 g/L 3-HP, but only generated 1 g/L lactic acid. Clearly, this engineered CRISPRi system largely simplified downstream separation of 3-HP from its isomer lactic acid, an extreme challenge for 3-HP bioprocess. This study offers a deep understanding of lactic acid metabolism in diverse species, and we believe that this CRISPRi system will facilitate biomanufacturing and functional genome studies of K. pneumoniae or beyond.

  5. In vitro lactic acid inhibition and alterations in volatile fatty acid production by antimicrobial feed additives.

    Science.gov (United States)

    Nagaraja, T G; Taylor, M B; Harmon, D L; Boyer, J E

    1987-10-01

    Batch culture fermentations were used to determine the effects of avoparcin, lasalocid, monensin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, monensin + tylosin combination, and two new ionophore compounds (RO22-6924/004 and RO21-6447/009) on lactic acid and volatile fatty acid (VFA) production. Ruminal fluid from cattle fed a high alfalfa hay diet was incubated with glucose for 12 h in a buffered medium to determine the effect of antimicrobial compounds on lactic acid concentration. Fermentations treated with antimicrobial compounds had higher final pH and lower L(+) lactic acid concentration. Narasin and salinomycin were more inhibitory than other ionophore compounds. Monensin and tylosin in combination was more effective than monensin alone. Among the nonionophore compounds, avoparcin was the least effective and thiopeptin, tylosin and virginiamycin were extremely effective in reducing lactic acid concentration. Ruminal fluid from cattle fed a diet of alfalfa hay and grain (50:50) was incubated with a mixture of sugars, casein and urea for 12 h in a buffered medium to determine the effect of antimicrobial compounds on VFA production. Generally, total VFA concentration was not affected by antimicrobial compounds except RO22-6924/004, tylosin and virginiamycin, which caused a reduction at high concentrations. Tylosin, monensin and tylosin mixture, thiopeptin and virginiamycin at high concentrations (greater than 6.0 micrograms/ml) increased the acetate proportion. All compounds increased the molar proportion of propionate. Tylosin and virginiamycin at high concentrations (greater than 6.0 micrograms/ml) decreased the proportion of propionate. Monensin and tylosin in combination had no effect on propionate proportion. Among the compounds tested, narasin and salinomycin were the most effective in enhancing propionate proportion. Ionophore compounds were more inhibitory to butyrate production than the nonionophore compounds. Batch culture fermentations

  6. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  7. Decreased sugar concentration in vegetable and fruit juices by growth of functional lactic acid bacteria.

    Science.gov (United States)

    Ishii, Masaki; Matsumoto, Yasuhiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-03-22

    Leuconostoc carnosum #7-2, L. gelidum #4-2, and L. mesenteroides 8/11-3, which were isolated from fermented plant foods, are lactic acid bacteria. We previously reported that these bacteria are functional lactic acid bacteria whose innate immunity-stimulating activities are high based on a silkworm muscle contraction assay. The concentrations of these three lactic acid bacteria increased to more than 1 × 10 6 colony forming units (cfu)/mL in various vegetable and fruit juices when the pH values were appropriately adjusted. As the bacteria grew in the vegetable and fruit juices, the pH decreased and the concentrations of total sugars and glucose also decreased. These findings suggest that these functional lactic acid bacteria can be used to produce vegetable and fruit juices with reduced sugar levels, which is expected to be beneficial for human health.

  8. Lactic acid bacteria of the Leuconostoc genus with high innate immunity-stimulating activity.

    Science.gov (United States)

    Ishii, Masaki; Nishida, Satoshi; Kataoka, Keiko; Nishiyama, Yayoi; Abe, Shigeru; Sekimizu, Kazuhisa

    2017-03-22

    We screened lactic acid bacteria that exhibited high innate immunity-stimulating activity by monitoring muscle contraction activity in silkworms. Heat-treated fractions of lactic acid bacteria, Leuconostoc carnosum #7-2, Leuconostoc gelidum #4-2, and Leuconostoc mesenteroides 8/11-3, had high (250-460 units/mg) innate immunity-stimulating activity. These lactic acid bacteria proliferated in milk to concentrations of 1 × 10 6 colony forming unit/mL. The present findings suggest that the silkworm muscle contraction assay is useful for screening lactic acid bacteria with high innate immunity-stimulating activity, and that the assay can be used for the production of fermented foods made from milk.

  9. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid

    NARCIS (Netherlands)

    Mason, Shayne; Reinecke, Carolus J.; Kulik, Willem; van Cruchten, Arno; Solomons, Regan; van Furth, A. Marceline Tutu

    2016-01-01

    The defining feature of the cerebrospinal fluid (CSF) collected from infants and children with tuberculous meningitis (TBM), derived from an earlier untargeted nuclear magnetic resonance (NMR) metabolomics study, was highly elevated lactic acid. Undetermined was the contribution from host response

  10. A study on the effect of parameters on lactic acid production from whey

    Directory of Open Access Journals (Sweden)

    Taleghani Hamidreza Ghafouri

    2016-03-01

    Full Text Available In batch fermentation of whey, selection of suitable species at desired conditions such as substrate, product concentrations, temperature and inoculum size were investigated. Four Lactobacillus species and one Lactococcus species were screened for lactic acid production. Among them L. bulgaricus ATCC 11842 were selected for further studies. The optimal growth of the selected organism for variable size of inocula was examined. The results indicated that inoculum size had insignificant effect on the cell and lactic acid concentration. The effect of temperature was also studied at 32, 37, 42 and 47°C. Results showed that the concentration of cell dry weight increased with increment of temperature from 32 to 42°C. The maximum cell and lactic acid concentration was obtained at 42°C. The effect of initial substrate concentration on lactic acid production was also examined. The optimum initial lactose concentration was found to be 90 g/l.

  11. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    Science.gov (United States)

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid.

  12. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Science.gov (United States)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  13. High-level production of diacetyl in a metabolically engineered lactic acid bacterium

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention provides a genetically modified lactic acid bacterium capable of producing diacetyl under aerobic conditions. Additionally the invention provides a method for producing diacetyl using the genetically modified lactic acid bacterium under aerobic conditions in the presence...... of a source of iron-containing porphyrin and a metal ion selected from Fe3+, Fe2+ and Cu2+. The lactic acid bacterium is genetically modified by deletion of those genes in its genome that encode polypeptides having lactate dehydrogenase (E.C 1.1.1.27/E.C.1.1.1.28); α-acetolactate decarboxylase (E.C 4.......C. 1.1.1.4/1.1.1.-) and alcohol dehydrogenase (E.C. 1.2.1.10) activity. The invention provides for use of the genetically modified lactic acid bacterium for the production of diacetyl and a food product....

  14. Lactic acid production from Cellobiose and xylose by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step towards a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates co...

  15. Optimization of lactic acid production from glucose using geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, Balakrishnan; Naresh, Sandrasekaran; Safie, Mohammad Farhan Mohd

    2017-09-01

    This study investigated the conversion efficiency of glucose to lactic acid by Geobacillus stearothermophilus strain 15. Six parameters (temperature, pH, incubation time, agitation speed, carbon and nitrogen concentrations) were screened to identify the most significant factors in affecting lactic acid production using glucose. Three most significant factors (temperature, pH and incubation time) were further optimized in this experiment to determine the optimal production of lactic acid. Numerical optimization gave the point prediction of lactic acid concentration produced at 9.95 g/L with the desirability of 0.979 at 40°C, pH 8.5, 24 h, 100 rpm with 5% glucose and 3% yeast extract.

  16. Kinetics of free radical decay reactions in lactic acid homo and copolymers irradiated to sterilization dose

    International Nuclear Information System (INIS)

    Kantoglu, O.; Ozbey, T.; Gueven, O.

    1995-01-01

    The kinetics of free radical decay reactions of poly(L-Lactic acid), poly(DL-Lactic acid) and random copolymer of lactic and glycolic acid have been investigated for decays taking place in air and in vacuum. The change in ESR lines of γ-irradiated polymers have been followed over a long time period. The decay has been found to follow neither simple first-order nor second-order kinetics. Various kinetic approaches including composite first or second-order mechanisms and diffusion-controlled first or second-order equations were determined to be also unsatisfactory. The decay of radicals in bulk irradiated lactic acid homo and copolymers was found to be best described when the second-order non-classical equation with time dependent rate constant approach was used. (Author)

  17. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...... further characterized and 43 strains were inhibitory against Listeria monocytogenes. The strains were inhibitory to other Gram- positive (lactic acid) bacteria probably because of production of bacteriocins. All 44 strains inhibited both Vibrio cholerae and Vibrio parahaemolyticus and 37 were inhibitory...... to a mesophilic fish spoilage bacterium tan Aeromonas sp.). Inhibition of Gram-negative bacteria was attributed to production of lactic acid. Most strains were identified as Lactobacillus spp., and all grew well at ambient temperatures (25-37 degrees C) and tolerated up to 6.5% NaCl. Glucose was fermented rapidly...

  18. Influence of starter culture of lactic acid bacteria on the shelf life of ...

    African Journals Online (AJOL)

    A total of eight lactic acid bacteria were isolated from various fermented cereal gruels (ogi). They were identified as Lactobacillus plantarum, Lactobacillus casei, Leuconostoc mesenteroides, Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus acidophilus and Pediococcus acidilactici.

  19. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria

    NARCIS (Netherlands)

    Hijum, S.A.F.T. van; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; Geel-Schutten, G.H. van

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular,

  20. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation

    NARCIS (Netherlands)

    Sieuwerts, Sander; Bron, Peter A.; Smid, Eddy J.

    2018-01-01

    Interactions between microorganisms are key to their performance in food habitats. Improved understanding of these interactions supports rational improvement of food fermentations. This study aimed at identifying interactions between lactic acid bacteria and yeast during sourdough fermentation.

  1. Molecular Characterization of Intrinsic and Acquired antibiotic resistance in lactic Acid bacteria and Bifidobacteria

    NARCIS (Netherlands)

    Ammor, M.S.; Flórez, A.B.; Hoek, van A.H.A.M.; Reyes-Gavilan, de los C.G.; Aarts, H.J.M.; Margolles, A.; Mayo, B.

    2008-01-01

    The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species

  2. Effect of carbonyl inhibitors and their H₂O₂ detoxification on lactic acid fermentation.

    Science.gov (United States)

    Li, Jing; Zhu, Caiqing; Tu, Maobing; Han, Pingping; Wu, Yonnie

    2015-04-01

    Biomass degradation compounds significantly inhibit biochemical conversion of biomass prehydrolysates to biofuels and chemicals, such as lactic acid. To characterize the structure-activity relationship of carbonyl inhibition on lactic acid fermentation, we examined effects of eight carbonyl compounds (furfural, 5-hydroxymethyl furfural, vanillin, syringaldehyde, 4-hydroxybenzaldehyde, phthalaldehyde, benzoic acid, and pyrogallol aldehyde) and creosol on lactic acid production by Lactobacillus delbrueckii. Pyrogallol aldehyde reduced the cell growth rate by 35 % at 1.0 mM and inhibited lactic acid production completely at 2.0 mM. By correlating the molecular descriptors to the inhibition constants in lactic acid fermentation, we found a good relationship between the hydrophobicity (Log P) of aldehydes and their inhibition constants in fermentation. The inhibitory effect of carbonyl inhibitors appeared to correlate with their thiol reactivity as well. In addition, we found that H2O2 detoxified pyrogallol aldehyde and phthalaldehyde inhibitory activity. H2O2 detoxification was applied to real biomass prehydrolysates in lactic acid fermentation.

  3. Recent trends in lactic acid biotechnology: A brief review on production to purification

    Directory of Open Access Journals (Sweden)

    Tayyba Ghaffar

    2014-04-01

    Full Text Available Lactic acid is one of the most important organic acid which is being extensively used around the globe in a range of industrial and biotechnological applications. From its very old history to date, many methods have been introduced to improve the optimization of lactic acid to get highest yields of the product of industrial interests. In serious consideration of the worldwide economic and lactic acid consumption issues there has been increasing research interest in the value of materials with natural origin, which are cheap, abundant and easily available all around the year. Recent trends showed that lactic acid production through fermentation is advantageous over chemical due to the environmental concerns of the modern world. The eco-friendly processing and fermentable capability of many of the agricultural and agro-industrial based raw materials or by-products respectively makes them attractive candidates in fermentation biotechnology to produce a value-added product with multiple applications. In fact, major advances have already been achieved in recent years in order to get pure lactic acid with optimal yield. The present review work is summarized on the multi-step processing technologies to produce lactic acid from different substances as a starting material potentially from various agro-industrial based biomasses. The information is also given on a purification through schematic representation of the product of quality interests.

  4. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    Science.gov (United States)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  5. CHANGES IN VOLATILE COMPOSITION OF KRALJEVINA WINES BY CONTROLLED MALOLACTIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ana JEROMEL

    2008-11-01

    Full Text Available The effect of malolactic fermentation (MLF on the volatile composition of white wines made from autochtonous grape variety Kraljevina was studied by inoculation with selected lactic acid bacteria. At the end of malolactic fermentation, after the decomposition of the malic acid present in wine the non volatile compounds were analyzed by HPLC, while volatile compounds were analyzed by gas chromatography. All wines were also sensory analyzed. Results showed changes in acetaldehyde, some higher alcohols, ethyl esters, free and bound monoterpenes and some organic acids that contribute to enhance the sensory properties and quality of Kraljevina wines that underwent malolactic fermentation.

  6. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.

    Science.gov (United States)

    Watanabe, Masanori; Techapun, Charin; Kuntiya, Ampin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Takenaka, Shinji; Maeda, Isamu; Koyama, Masahiro; Nakamura, Kozo

    2017-02-01

    A lactic acid producing bacterium, Lactobacillus rhamnosus M-23, newly isolated from a rice washing drainage storage tank was found to produce l-(+)-lactic acid from a non-sterilized mixture of rice washing drainage and rice bran without any additions of nutrients under the simultaneous saccharification and fermentation (SSF) process. This strain has the ability to utilize the non-sterilized rice washing drainage and rice bran as a source of carbohydrate, saccharifying enzymes and nutrients for lactic acid production. Observation of extracellular protease activity in SSF culture broth showed that a higher protease activity was present in strain M-23 than in other isolated lactic acid producing bacteria (LABs). To investigate the structural changes of solid particles of rice washing drainage throughout LAB cultivation, scanning electron microscopic (SEM) observation and Fourier transform infrared-spectroscopy (FT-IR) analysis were performed. The results of the SEM observation showed that the surface material could be removed from solid particles of rice washing drainage treated by culture broth (supernatant) of strain M-23, thus exposing the crystal structure of the starch particle surface. The results of the FT-IR analysis revealed that the specific transmittance decrease of the CC and CO stretching and OH group of the solid particles of the rice washing drainage were highly correlated with the produced lactic acid concentration and extracellular protease activity, respectively. These results demonstrate the high lactic acid producing ability of strain M-23 from a non-sterilized mixture of rice washing drainage and rice bran under the SSF condition due to the removal of proteinaceous material and exposure of the starch particle surface by extracellular protease. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Addition of phenolic acids on the reduction of methanol content in wine.

    Science.gov (United States)

    Hou, C-Y; Lin, Y-S; Wang, Y T; Jiang, C-M; Lin, K T; Wu, M-C

    2008-06-01

    Utilization of phenolic acids, including gallic acid, coumaric acid, caffic acid, cinnamic acid, and ferulic acid, for methanol reduction in wine was investigated. Enzyme activities of pectinesterase and pectin lyase decreased significantly when 0.1 mg/L of gallic acid, coumaric acid, caffic acid, cinnamic acid, or ferulic acid was added. However, no inhibition on polygalacturonase activity was observed when 0.5 mg/L of phenolic acid was added. Methanol content in commercial pectic enzyme (CPE) group increased from 11.53 +/- 1.34 to 56.67 +/- 3.75 ppm in the final products. Adding gallic acid or coumaric acid with CPE inhibited the increase of methanol production. In addition, when 0.2 mg/L of phenolic acid (gallic acid or coumaric acid) was added, the amount of total phenolic acid released from CPE + gallic acid or CPE + coumaric acid groups became higher than CPE group by approximately 466 and 539 mg/L, respectively. In conclusion, the values of lightness, red content, yellow content, total pigment, and total phenolic acid increased in the presence of gallic acid or coumaric acid with CPE, suggesting that adding gallic acid or coumaric acid into winemaking process is a potential method for reducing methanol content, improving wine quality, as well as increasing healthy compounds in wine production.

  8. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    OpenAIRE

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by cam...

  9. Characterization of lactic acid bacteria isolated from poultry farms in Senegal

    OpenAIRE

    Coulibaly, Ibourahema; Dubois Dauphin, Robin; Destain, Jacqueline; Thonart, Philippe

    2008-01-01

    The group that includes the lactic acid bacteria is one of the most diverse groups of bacteria known and these organisms have been characterized extensively by using different techniques. In this study, thirty lactic acid bacterial strains were isolated from soils chicken faeces and feathers. A total of nineteen isolates were obtained and by sequential screening for catalase activity and Gram-staining, eight were determined to be LAB out of which six were established to be homofermentative by...

  10. Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441)

    OpenAIRE

    Altıok, Duygu; Tokatlı, Figen; Harsa, Hayriye Şebnem

    2006-01-01

    The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9-77 g dm-3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with co...

  11. Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics

    OpenAIRE

    Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

    2002-01-01

    Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid–amine (solvent) system used. Equilibria for lactic acid extraction by alamine 336 in methyl-iso-butyl-ketone (MIBK) as a diluent have been determined. The extent to which the organic phase (amine +MIBK) may be loade...

  12. Production of lactic acid from corn cobs through fermentation lactobacillus delbruekii

    International Nuclear Information System (INIS)

    Ali, Z.; Anjum, M.; Zahoor, T.

    2007-01-01

    Corn cobs were used as the source of reducing sugars for conversion into lactic acid through fermentation by a local strain of Lactobacillus delbruekii, under varying parameters of time, temperature, pH and glucose concentration, The production of lactic acid significantly increased with increase in Ph, fermentation time and glucose concentration (1-5%) and was significantly high (8.40 g/1) at pH 6, while significantly low (7.67 g/1) at pH 5. (author)

  13. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  14. Microbial diversity and biochemical characteristics of Borassus akeassii wine.

    Science.gov (United States)

    Tapsoba, F; Savadogo, A; Legras, J-L; Zongo, C; Traore, A S

    2016-10-01

    Palm wine produced traditionally and consumed by many people in the South-West of Burkina Faso is subject to alteration. In this study, we carried out a follow-up of two palm wines' fermentation during the 10 days in which palm wines are classically produced and consumed. We monitored biochemical characteristics of fermenting wines as well as followed the microflora kinetics using culture-dependent and culture-independent methods. The analysis of the acid content and the bacterial population revealed the correlation between the development of Lactic acid bacteria, acetic acid, and total acidity. Ribosomal intergenic spacer analysis and sequencing results revealed different yeast and bacterial populations for the two palm wines. Although Saccharomyces cerevisiae remained the sole yeast species in one fermentation, it was quickly replaced by Clavispora lusitaniae in the second fermentation, which had never been described until now in palm wine. When considering bacteria, the species Corynebacterium sp., Lactobacillus casei, Lactobacillus paracasei and Leuconostoc sp. were detected in both palm wines. But we also detected Acetobacter pasteurianus, Bacillus cereus and Bacillus thuringiensis in the second fermentation. Our results highlight the evolution of palm wine during the 10 days separating palm tapping and consumption of the fermented wine. The fermentation step is performed within few hours and completed after 24 h. The next days, its acidity increases progressively with the production of lactic and acetic acids by bacteria. The high production of acetic acid is very likely one of the main cause of palm wine degradation during this period. This indicates that the solution to palm wine preservation might be protection against oxygen, as well as the limit of bacterial growth through the use of preservatives. © 2016 The Society for Applied Microbiology.

  15. Green biorefinery: separation of lactic acid from grass silage juice by chromatography using neutral polymeric resin.

    Science.gov (United States)

    Thang, Vu Hong; Novalin, Senad

    2008-07-01

    The aim of this work was to recover lactic acid in undissociated form from grass silage juice. For this aim, chromatographic separation using neutral polymeric resin Amberlite XAD1600 was investigated. Up to now, there is no hint in the literatures about using neutral polymeric resin for lactic acid separation from a mixture. Important factors (flow-rate, concentration of feed and loaded volume) that affect separation performance were firstly investigated with model solutions. The obtained results showed that lactic acid solutions with the purity varying from 93.2% to 99.9% could be obtained at the recovery yields over 99.4%. After that, trials with silage juice were carried out. Due to the complex composition of the feed, the purity of products decreased to 94% at a recovery yield of 97%. Although 99% of inorganic salts and sugars were separated from lactic acid organic acids in general and acetic acid in particular caused a purity problem. It seems that organic acids could not be separated from lactic acid by neutral resin Amberlite XAD1600. Besides the organic acid problem, some amino acids were remained in the products as impurities.

  16. Development of a new lactic acid bacterial inoculant for fresh rice straw silage

    Directory of Open Access Journals (Sweden)

    Jong Geun Kim

    2017-07-01

    Full Text Available Objective Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods Lactic acid bacteria (LAB from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821 were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841, two commercial inoculants (HM/F and P1132 and no additive as a control. Results After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p0.05 effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP content and in vitro DM digestibility (IVDMD increased after inoculation of LAB 1821 (p<0.05. Conclusion LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH3-N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  17. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Characterization of the spoilage lactic acid bacteria in "sliced vacuum-packed cooked ham".

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-03-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples.

  19. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  20. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Directory of Open Access Journals (Sweden)

    Daneysa Lahis Kalschne

    2015-03-01

    Full Text Available The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc/Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus, following by Lactobacillus sakei and Leuconostoc mesentereoides; the Enterococcus sp. was not present in the samples.

  1. Kefir immobilized on corn grains as biocatalyst for lactic acid fermentation and sourdough bread making.

    Science.gov (United States)

    Plessas, Stavros; Alexopoulos, Athanasios; Bekatorou, Argyro; Bezirtzoglou, Eugenia

    2012-12-01

    The natural mixed culture kefir was immobilized on boiled corn grains to produce an efficient biocatalyst for lactic acid fermentation with direct applications in food production, such as sourdough bread making. The immobilized biocatalyst was initially evaluated for its efficiency for lactic acid production by fermentation of cheese whey at various temperatures. The immobilized cells increased the fermentation rate and enhanced lactic acid production compared to free kefir cells. Maximum lactic acid yield (68.8 g/100 g) and lactic acid productivity (12.6 g/L per day) were obtained during fermentation by immobilized cells at 37 °C. The immobilized biocatalyst was then assessed as culture for sourdough bread making. The produced sourdough breads had satisfactory specific loaf volumes and good sensory characteristics. Specifically, bread made by addition of 60% w/w sourdough containing kefir immobilized on corn was more resistant regarding mould spoilage (appearance during the 11(th) day), probably due to higher lactic acid produced (2.86 g/Kg of bread) compared to the control samples. The sourdough breads made with the immobilized biocatalyst had aroma profiles similar to that of the control samples as shown by headspace SPME GC-MS analysis. © 2012 Institute of Food Technologists®

  2. Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide

    Directory of Open Access Journals (Sweden)

    Puspita Aini Apsari

    2018-01-01

    Full Text Available Lactic Acid as a platform chemical has broad application in various industries, especially in the production of Poly Lactic Acid (PLA for biodegradable plastic. Empty fruit bunch (EFB, abundant by product from palm oil mill industry, is one of potential feedstock to be used in the production of lactic acid from lignocellulose biomass. EFB contains high cellulose and hemicellulose about 37– 59.7% w/w and 16–28% w/w, respectively. The aim of this paper is to study the effects of the operating conditions, such as temperature, reaction time, biomass loading, and catalyst concentration on the yield of lactic acid using barium hydroxide as alkaline catalyst. EFB pretreatment with steam explosion was applied to remove lignin content. The results showed that pretreatment reduced the lignin content from 22.66% to 9.69% w/w. Meanwhile, hemicellulose and cellulose increased from 14.40% to 16.40% w/w and 29.37% to 63.57% w/w, respectively. The highest yield of lactic acid was 21.57% C-mol, achieved by using 0.25 M Ba(OH2 as the catalyst, with 5% w/v biomass loading, temperature 240°C, during 4 h reaction times. The yield was approximately equal to yield of lactic acid (~ 20% compared with Pb2+ as the catalyst for EFB conversion although the later catalyst produced fewer by products during conversion.

  3. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    International Nuclear Information System (INIS)

    Fan Yonghong; Yang Yingge; Zheng Zhiming; Li Wen; Wang Peng; Yao Liming; Yu Zengliang

    2008-01-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N + implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 x 10 15 ions/cm 2 . Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ∼ 80 g/L of initial glucose, 38 deg. C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  4. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.

    Science.gov (United States)

    Skory, Christopher D

    2003-01-01

    This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2 micro -containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25-0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased.

  5. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.

    Science.gov (United States)

    Okano, Kenji; Hama, Shinji; Kihara, Maki; Noda, Hideo; Tanaka, Tsutomu; Kondo, Akihiko

    2017-03-01

    Simultaneous saccharification and fermentation (SSF) of D-lactic acid was performed using brown rice as both a substrate and a nutrient source. An engineered Lactobacillus plantarum NCIMB 8826 strain, in which the ʟ-lactate dehydrogenase gene was disrupted, produced 97.7 g/L D-lactic acid from 20% (w/v) brown rice without any nutrient supplementation. However, a significant amount of glucose remained unconsumed and the yield of lactic acid was as low as 0.75 (g/g-glucose contained in brown rice). Interestingly, the glucose consumption was significantly improved by adapting L. plantarum cells to the low-pH condition during the early stage of SSF (8-17 h). As a result, 117.1 g/L D-lactic acid was produced with a high yield of 0.93 and an optical purity of 99.6% after 144 h of fermentation. SSF experiments were repeatedly performed for ten times and D-lactic acid was stably produced using recycled cells (118.4-129.8 g/L). On average, D-lactic acid was produced with a volumetric productivity of 2.18 g/L/h over 48 h.

  6. Mutation-Screening in l-(+)-Lactic Acid Producing Strains by Ion Implantation.

    Science.gov (United States)

    Shichang, Li; Zhaoyang, Zhu; Shaobin, Gu; Hongxia, Liu; Dongdong, Wang

    2011-06-01

    In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N(+) implantation was 50 × 2.6 × 10(13) ions/cm(2). In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.

  7. Assessing wines based on total phenols, phenolic acids and ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the phenolic profile of some red wines produced from native Turkish grape varieties (Vitis vinifera Öküzgözü, V. vinifera Boğazkere and V. vinifera Shiraz) and some red fruit wines produced from pomegranate (Punica granatum L.), myrtle (Myrtus communis L.) and black mulberry ...

  8. Poly (lactic acid) (PLA)/clay/wood nanocomposites

    Science.gov (United States)

    Meng, Qingkai

    Poly (lactic acid) (PLA) is a promising substitute for conventional petroleum-based polymer materials as a result of its environmentally benign quality and suitable physical properties. However, there are also problems associated with properties, such as brittleness, low heat deflection temperature, low melt viscosity, as well as cost that prevent wide-range applications of PLA. This work reports on melt extrusion preparation of PLA/clay/wood nanocomposites involving various compatibilizers, resulting in remarkable improvements in mechanical as well as in thermal material properties. In particular, the tensile and flexural moduli of PLA/clay/wood nanocomposites with 30 wt. % wood flour and 5 wt. % nanoclay respectively increased from 3.75 to 7.08 GPa and from 3.83 to 6.01 GPa compared to neat PLA. The thermal decomposition temperature improved by about 10°C compared to that of PLA/wood composites. A mathematical model was developed based on Eshelby's equivalent inclusion method and Mori-Tanaka's background analysis to successfully predict longitudinal elastic moduli of complex structured nanocomposite materials.

  9. Toxicity reduction of ochratoxin A by lactic acid bacteria.

    Science.gov (United States)

    Luz, C; Ferrer, J; Mañes, J; Meca, G

    2018-02-01

    Ochratoxin A (OTA) is a mycotoxin produced by the metabolism of fungus belonging to the genus Aspergillus and Penicillium. In this paper we report, the capacity of different cultures of lactic acid bacteria (LAB) to degrade OTA present in MRS broth at both pH 3.5 and 6.5. A study of OTA reduction during gastrointestinal digestion carried out with the LAB was also performed. Taking into account the two reduction mechanisms of OTA studied in this work as the enzymatic one and the adsorption on the cell wall, as well as at pH 3.5 and 6.5 the reduction values of OTA were in a range of 30-99%, being the strains with greater reduction (97% and 95%) Lb. rhamnosus CECT 278T and Lb. plantarum CECT 749 respectively. In the experiments carried out digesting the OTA in MRS medium with LAB, the highest bioaccessibility reduction was observed by the strain of Lb. johnsonii CECT 289, showing a mean reduction around all the gastrointestinal digestion process of 97.4%. The mass spectrometry associated to the linear ion trap method identified ochratoxin alpha (OTα) m/z = 256.1 and phenylalanine (Phe) m/z = 166.1 as the major metabolites of OTA degradation in LAB cultures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Isolation and characterisation of lactic acid bacteria from donkey milk.

    Science.gov (United States)

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.

  11. Optimization of β-galactosidase production from lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Carević Milica

    2015-01-01

    Full Text Available β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1 was accomplished after 2 days shake flask culture fermentation (150 rpm at 37ºC, with modified Man Rogosa Sharpe culture broth using lactose (2.5% as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 μm as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45°C and the optimum range pH 6.5-7.5.

  12. Diversity of lactic acid bacteria of the bioethanol process

    Directory of Open Access Journals (Sweden)

    Azevedo Vasco

    2010-11-01

    Full Text Available Abstract Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.

  13. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  14. CHARACTERIZATION OF LACTIC ACID BACTERIA ISOLATED FROM SUMBAWA MARE MILK

    Directory of Open Access Journals (Sweden)

    Nengah Sujaya

    2008-06-01

    Full Text Available A study was carried out to isolate and characterize lactic acid bacteria (LAB from the Sumbawa mares milk The Isolation of LAB was conducted in Man Rogosa Sharpe (MRS agar. The isolates were characterized by standard methods, such as Gram staining, cell morphology study and fermentation activities. The ability of the isolates to inhibit some pathogenic bacteria was studied by dual culture assay. Isolates showing the widest spectrum of inhibiting pathogenic bacteria were further identified using API 50 CHL. The results showed that Sumbawa mare milk was dominated by lactobacilli and weisella/leuconostoc. As many as 26 out 36 isolates belong to homofermentative lactobacilli and another 10 isolates belong to both heterofermentative lactobacilli and weissella or leuconostoc. Twenty four isolates inhibited the growth of Escherichia coli 25922, Shigela flexneri, Salmonella typhimurium, and Staphylococcus aureus 29213. Two promising isolates with the widest spectrum of inhibiting pathogenic bacteria, Lactobacillus sp. SKG34 and Lactobacillus sp. SKG49, were identified respectively as Lactobacillus rhamnosus SKG34 and Lactobacillus ramnosus SKG49. These two isolates were specific strains of the sumbawa mare milk and are very potential to be developed as probiotic for human.

  15. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  16. Antibiotics influence on lactic acid bacteria inhibiting gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Andreja Čanžek Majhenič

    2001-04-01

    Full Text Available Lactic acid bacteria (LAB are common inhabitants of the gastrointestinal (GI tract and have important role in maintaining the equilibrium of GI flora, which can be influenced by various factors like diets, antimicrobials and stress. Minimal inhibitory concentrations (MIC and minimal bactericidal concentrations (MBC of 6 antibiotics, commonly used in human medicine for 8 selected lactobacilli strains were determined by macrodilution and microdilution methods in liquid media and by diffusion method on agar plates. The effects of Penicillin G and Ampicillin on intestinal LAB were tested in vivoon mice as well. Lactobacilli were sensitive to Penicillin G, (penicillines and their derivatives and Erythromycin (macrolides by in vitro testing. Clyndamycin (pyranosid showed moderate inhibitory effect. All lactobacilli strains were resistant to Kanamycin and Neomycin (aminoglycosides, while L. salivarius IM 124 has shown extra resistance to Erythromycin and Clyndamycin. The influence of orally administered Ampicillin showed no significant influence on LAB count in mice faeces. The effect of Penicillin G on mice LAB total count was significant, while no effect of orally administered lactobacilli was determined.

  17. Fracture behavior of quenched poly(lactic acid

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available The effect of a quenching treatment applied on heated cast sheet extruded films of two poly(lactic acid (PLA commercial grades, with different optical purities, was studied. The thermal and mechanical properties of the films, as well as their fracture behavior, were assessed by differential scanning calorimetry (DSC, tensile tests, and the essential work of fracture (EWF approach. The heating-quenching treatment causes a de-aging effect with an increase in the free volume of polymer chains evidenced by a decrease in the glass transition temperature (Tg and a decrease in the tensile stiffness and yield stress. As a result, there is an abrupt increase in ductility, finding a dramatic change in the fracture behavior, from brittle to ductile. The use of digital image correlation (DIC of the strain field analysis during fracture testing has allowed relating the decrease on the yield stress promoted by quenching with the crack propagation kinetics. The use of the EWF method to characterize the fracture toughness of PLA has allowed to measure this enhancement on toughness, finding that the specific essential work of fracture (we and the plastic term (βwp parameters increased 120% and 1200%, respectively, after the quenching process.

  18. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Mari Vasama

    2014-07-01

    Full Text Available Paralytic shellfish toxins (PSTs are non-protein neurotoxins produced by saltwater dinoflagellates and freshwater cyanobacteria. The ability of Lactobacillus rhamnosus strains GG and LC-705 (in viable and non-viable forms to remove PSTs (saxitoxin (STX, neosaxitoxin (neoSTX, gonyautoxins 2 and 3 (GTX2/3, C-toxins 1 and 2 (C1/2 from neutral and acidic solution (pH 7.3 and 2 was examined using HPLC. Binding decreased in the order of STX ~ neoSTX > C2 > GTX3 > GTX2 > C1. Removal of STX and neoSTX (77%–97.2% was significantly greater than removal of GTX3 and C2 (33.3%–49.7%. There were no significant differences in toxin removal capacity between viable and non-viable forms of lactobacilli, which suggested that binding rather than metabolism is the mechanism of the removal of toxins. In general, binding was not affected by the presence of other organic molecules in solution. Importantly, this is the first study to demonstrate the ability of specific probiotic lactic bacteria to remove PSTs, particularly the most toxic PST-STX, from solution. Further, these results warrant thorough screening and assessment of safe and beneficial microbes for their usefulness in the seafood and water industries and their effectiveness in vivo.

  19. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  20. THE SEARCH AND PROPERTIES OF LACTIC ACID BACTERIA PERSPECTIVE FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Naumenko О. V.

    2014-10-01

    Full Text Available Search of biologically active Lactobacillus strains prospective for functional milk food production was the aim of the research. The study involved the lactic acid bacteria isolated from biological material of healthy humen and non- dairy lactic products. Using modern methodological approaches, the strains of lactic acid bacteria such as Lactobacillus casei 302, Lactobacillus acidophilus 35 and Streptococcus thermophilus 21 having high level of biological activity were selected. High biological potential of selected cultures of lactic acid bacteria, which could provide stability for the technological process of production and essential characteristics of bacterial preparations and fermented their products, was set. In vitro the experiments demonstrated that selected strains had valuable production properties, namely the ability to reduce level of cholesterol and lactose during development in milk, were resistant to virulent bacteriophages and aggressive compounds of the gastrointestinal tract, and high adhesive and antagonistic activities as well.

  1. Poly(lactic acid) Polymer Brushes as Dynamic Surfaces

    Science.gov (United States)

    Xu, Le Bo

    Degradable Poly(lactic acid), PLA, polymer brushes, were prepared to use as a temporary protective layer on a substrate. The PLA brushes degraded under basic conditions, which distinguished from bulk PLA, as well as PLA oligomer. The underlying substrate was able to be exposed with the removal of PLA brushes, resulting in a dynamic behavior. PLA brushes were grafted from silicon and gold substrates through surface initiated ring opening polymerization, ROP, of lactide catalyzed by tin octoate. The surface silanol groups on silicon and hydroxyl-terminated thiol self-assembled monolayers, SAMs, on gold were used as immobilized initiators for the surface initiated polymerization. The surface silanol groups worked equally well as the alcohol species to serve as initiator for the ROP of lactide. Synthesis conditions, such as temperature, monomer concentration and the type of catalyst and solvent, were explored to pursue the maximum brush thickness and well controlled growth on the surface. It was highlighted the different optimized synthesis conditions between the ROP in solution and the surface initiated ROP due to the equilibrium behavior of ROP. Both molecular weight and monomer conversion were considered in solution ROP. However, monomer conversion was not that important for surface ROP given merely trace amount of polymer was grafted on the surface as brushes. It was also demonstrated that the thickness of PLA brush could be tuned by varying either growth time or grafting density. The PLA brushes with a gradient thickness were prepared by gradually filling a reaction container with reactive solution. PLA brushes were able to be removed by immersing them in basic aqueous solution. The degradation of PLA brushes was found to be unique. Bulk PLA degraded under acidic conditions. The degradation of PLA oligomer occurred under both acidic and basic conditions. While the PLA brushes only degraded under basic conditions. The base-catalyzed degradation suggests the

  2. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

    Science.gov (United States)

    Sonni, Francesca; Clark, Andrew C; Prenzler, Paul D; Riponi, Claudio; Scollary, Geoffrey R

    2011-04-27

    Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine.

  3. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Science.gov (United States)

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  4. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Directory of Open Access Journals (Sweden)

    Deirdre E O'Hanlon

    Full Text Available Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3 Nugent scores (indicating a lactobacillus-dominated vaginal microbiota and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD, range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  5. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  6. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    Science.gov (United States)

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  7. Lactic acid production by irradiated Bacillus NF17 and poly-L-lactate biopolymer formation

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Poonsawat, Choosak; Khansawai, Paveena; Piadaeng, Nattaya

    2006-09-01

    This study was conducted to manipulate the thermo tolerant, lactic acid-producing bacteria, Bacillus coagulans strain NF 1 7, in the production of L-lactic acid and a bio polymer: poly-L-lactate. The bacterial isolate NF 1 7 kept in the culture collection of Khon Kaen University and could tolerate high temperature and produce lactic acid, was employed in this research work. Cell suspension of isolate NF 1 7 was exposed to gamma irradiation at various doses (1-5 KGy). The irradiated survivors were screened on the basis of forming larger colonies and clear zones than the parent strain NF 1 7 when grown on Glucose-Yeast extract-Peptone (GYP) containing CaCO 3 . We obtained 55 effective isolates which the isolate L5I2-14(5), designated as K 1 4, was chosen together with the parent strain NF 1 7 for fermentation experiments. Each bacterial strain was inoculated into GYP broth and incubated statically at 50 o C with daily pH neutralization. After 5 days of incubation, the isolate K 1 4 and NF 1 7 produced 9.71 g/l and 7.42 g/l of L-lactic acid, respectively with a small amount of D-lactic acid. Lactic acid production from sugar cane molasses by batch fermentation of Bacillus Sp. K 1 4 was carried out in a 7 l jar fermentor containing 5 l of fermentation medium. It was found that 20% molasses with the agitation speed of 100 rpm gave the highest yield of lactic acid. Poly-L-lactic acid was chemically polymerized by bulk polymerization process at 140 o C under 40 mmHg conditions. We could obtain the off-white polymer in a small amount of powder form. Improvement the yield of poly-L-lactic acid would be achieved by using polyisoprene-g-polyvinyl monomer to separate lactic acid from the fermenting liquid prior to polymerization processes

  8. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids.

    Science.gov (United States)

    Dusselier, Michiel; Sels, Bert F

    2014-01-01

    This review discusses topical chemical routes and their catalysis for the conversion of cellulose, hexoses, and smaller carbohydrates to lactic acid and other useful α-hydroxy acids. Lactic acid is a top chemical opportunity from carbohydrate biomass as it not only features tremendous potential as a chemical platform molecule; it is also a common building block for commercially employed green solvents and near-commodity bio-plastics. Its current scale fermentative synthesis is sufficient, but it could be considered a bottleneck for a million ton scale breakthrough. Alternative chemical routes are therefore investigated using multifunctional, often heterogeneous, catalysis. Rather than summarizing yields and conditions, this review attempts to guide the reader through the complex reaction networks encountered when synthetic lactates from carbohydrate biomass are targeted. Detailed inspection of the cascade of reactions emphasizes the need for a selective retro-aldol activity in the catalyst. Recently unveiled catalytic routes towards other promising α-hydroxy acids such as glycolic acid, and vinyl and furyl glycolic acids are highlighted as well.

  9. Impact of lactic acid bacteria on conjugated linoleic acid content and atherogenic index of butter

    Directory of Open Access Journals (Sweden)

    L Roufegari-Nejad

    2012-11-01

    Full Text Available This is a study aimed to investigate the effect of lactic acid bacteria including Lactobacillus acidophilus and Sterptococcus thermophilus (as thermophilic culture, Lactococcus lactis subsp. lactis, cremoris and diacetylactis, Leuconostoc citrovorum (as mesophilic culture, Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium lactis and a mixed culture of L.acidophilus, L. casei and B. lactis on fatty acid profile, conjugated linoleic acid (CLA and atherogenic index (AI of butter. Fatty acid analysis with gas chromatography indicated that application of thermophilic and mixed culture decreased the ratio of saturated to unsaturated fatty acid; whereas, the butters made with L. acidophilus had the highest content of CLA. Moreover, AI in the samples prepared with thermophilic cultures was the least. Sensory evaluation of the treatments revealed no significant differences (p> 0/05 in appearance and color. However, the butters prepared with thermophilic and mesophilic cultures had more desirable taste in comparison with the samples made with L. acidophilus, L. casei and B. lactis. From the nutritional point of view, the adverse effect of butter could be diminished via the application of selected lactic acid bacteria.

  10. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    International Nuclear Information System (INIS)

    Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; Saja, J.A. de; Rodríguez-Méndez, M.L.

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S DOD AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S DOD AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10 −6 mol L −1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity

  11. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); García-Cabezón, C. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); García-Hernández, C.; Bramorski, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); Blanco-Val, Y.; Martín-Pedrosa, F. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); Kawai, T. [Department of Industrial Chemistry, Tokyo University of Science (Japan); Saja, J.A. de [Department of Condensed Matter Physics, Universidad de Valladolid (Spain); Rodríguez-Méndez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain)

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S{sub DOD}AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S{sub DOD}AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10{sup −6} mol L{sup −1} were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio

  12. Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    In this report we describe amino acid-metabolism and amino acid-dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare that with two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a genome-scale

  13. Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey.

    Science.gov (United States)

    Alvarez, M M; Aguirre-Ezkauriatza, E J; Ramírez-Medrano, A; Rodríguez-Sánchez, A

    2010-12-01

    Lactobacillus casei is a lactic acid bacterium (LAB) that colonizes diverse ecological niches and that has found broad commercial application. The aim of this study was to characterize the kinetics of biomass production, lactic acid production, and substrate consumption of Lactobacillus casei var. rhamnosus cultured in deproteinized milk whey. Batch culture experiments were performed in an instrumented, 2-L, stirred tank bioreactor using different inoculum concentrations (0.5 to 1.0 g/L) and lactose levels (35 to 70 g/L). The time series of experimental data corresponding to biomass growth, lactose consumption, and lactic acid formation were differentiated to calculate the corresponding kinetic rates. Strong exponentially dependent product inhibition effects were evident at low lactic acid concentrations, and lactic acid production rate was partially associated with biomass growth. A mathematical model is presented that reproduces the experimental lactose, biomass, and lactic acid concentration profiles. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    Science.gov (United States)

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  16. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.

    1992-01-01

    digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...... decreased in the same substrates. The final pH of the cereal lactic beverage was in the range of 3.4 - 4.1, L. mesenteroides(sikhae) had relatively higher pH compared to other lactic acid bacteria. L. mesenteroides(sikhae) produced apple juice-like flavor, while L. plantarum, L. casei and L. lactis yielded...

  18. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.

    Science.gov (United States)

    Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su

    2017-01-01

    Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    Science.gov (United States)

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  20. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    Science.gov (United States)

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  1. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions.

    Science.gov (United States)

    Andreev, N; Ronteltap, M; Boincean, B; Wernli, M; Zubcov, E; Bagrin, N; Borodin, N; Lens, P N L

    2017-08-01

    During storage of urine, urea is biologically decomposed to ammonia, which can be lost through volatilization and in turn causes significant unpleasant smell. In response, lactic acid fermentation of urine is a cost-effective technique to decrease nitrogen volatilization and reduce odour emissions. Fresh urine (pH = 5.2-5.3 and NH 4 + -N = 1.2-1.3 g L -1 ) was lacto-fermented for 36 days in closed glass jars with a lactic acid bacterial inoculum from sauerkraut juice and compared to untreated, stored urine. In the lacto-fermented urine, the pH was reduced to 3.8-4.7 and the ammonium content by 22-30%, while the pH of the untreated urine rose to 6.1 and its ammonium content increased by 32% due to urea hydrolysis. The concentration of lactic acid bacteria in lacto-fermented urine was 7.3 CFU ml -1 , suggesting that urine is a suitable growth medium for lactic acid bacteria. The odour of the stored urine was subjectively perceived by four people to be twice as strong as that of lacto-fermented samples. Lacto-fermented urine induced increased radish germination compared to stored urine (74-86% versus 2-31%). Adding a lactic acid bacterial inoculum to one week old urine in the storage tanks in a urine-diverting dry toilet reduced the pH from 8.9 to 7.7 after one month, while the ammonium content increased by 35%, probably due to the high initial pH of the urine. Given that the hydrolyzed stale urine has a high buffering capacity, the lactic acid bacterial inoculum should be added to the urine storage tank of a UDDT before urine starts to accumulate there to increase the efficiency of the lactic acid fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Effect of ZnSO4 on L-lactic acid production by Rhizopus oryzae].

    Science.gov (United States)

    Ge, Chunmei; Pan, Renrui; Zhang, Jie; Cai, Jingmin; Yu, Zengliang

    2013-05-04

    To improve the yield and quality of L-lactic acid by Rhizopus oryzae, we aim to understand the relationship between inorganic salts utilization and the L-lactic acid metabolism of the strain RLC41-6, through systematic analysis of the effects of zinc ion concentration on the production of L-lactic acid and the Lactic Dehydrogenase (LDH) activity. Rhizopus oryzae was cultured at 36 degrees C for 36h with different quantity of ZnSO4 in fermentation medium. The fermentation products were monitored by reversed-phase high performance liquid chromatography (RP-HPLC), LDH isoenzyme composition in the cell was analysed by non-denatured polyacrylamide gel electrophoresis (PAGE). Our results showed that the concentration of ZnSO4 in medium could modulate the expression of LDH isoenzyme except LDH1, especially stimulated the expression of LDH4 and LDH5. When initial concentration of ZnSO4 is above 0.02%, the LDH4 and LDH5 reached the highest level. However, the activity of LDH was inhibited by higher concentration zinc ion in extracellular environment. When ZnSO4 concentration is 0.02%, LDH activity reaches its maximum 200U/mL, the HPLC assay showed only L-lactic in the fermentation products (137 g/L), while the conversion rate of glucose to lactic acid is 91%. Zinc ion can regulate the metabolic processes of Rhizopus oryzae and modulate the types of the final fermentation products. An optimal concentration of ZnSO4 can not only facilitate the LDH expression but also prevent pyruvate from transformation into the malic acid and fumaric acid during the metabolism process, thereby enhance the metabolism of glucose to lactic acid of Rhizopus oryzae.

  3. Examination of Lactic Acid Bacteria to Secretion of Bacteriocins

    Directory of Open Access Journals (Sweden)

    Maira Urazova

    2014-01-01

    Full Text Available Introduction: Bacteriocins produced by lactic acid bacteria (LAB have the potential to cover a very broad field of applications, including the food industry and the medical sector. In the food industry, bacteriocinogenic LAB strains can be used as starter cultures, co-cultures, and bioprotective cultures, which would be used to improve food quality and safety. In the medical sector, bacteriocins of probiotic LAB might play a role in interactions, which take place in human gastrointestinal tract, and contribute to gut health. The aim of this study was the examine the effect of LAB antimicrobial activity. Methods: LAB were isolated from different commercial and home made products, such as kazy and sour cream. To screen for bacteriocin producing LAB, we used an agar diffusion bioassay, described in a previous study by Dr. Yang, with three modifications in cell-free supernatant (CFS. First we had a clear supernatant, second we adjusted the CFS to pH 6.0 to eliminate acids antimicrobial effects, and third the CFS pH 6.0 was treated with catalase to exclude the action of H2O2 and confirm action of bacteriocin-like substances. Pathogenic S.marcescens, E. coli, S.aureus cultures were used as indicators. Results: Screening of 95 strains of LAB through deferred antagonism to six indicator cultures showed that all of the selected strains had a high value of antibacterial activity. However, CFS of only 50 strains retained their antimicrobial activity, and 10 of them lost this activity in the second modification of CFS with pH 6.0 to test culture S.marcescens, which confirmed the acidic nature of antimicrobial activity of CFS. Lb.rhamnosus (P-1, Lb.fermentum (N-6, and Lc.lactis (7M lost antibacterial activity in the presence of the catalase. All modifications of CFS of three strains: Lb.pentosus (16al, Lb.pentosus (P-2, and Pediococcusacidilactici (8 retained inhibitory activity to E.coli and S. aureus. Supernatants of only Lactococcusgarvieae (10a and

  4. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Systems biology of lactic acid bacteria: a critical review.

    Science.gov (United States)

    Teusink, Bas; Bachmann, Herwig; Molenaar, Douwe

    2011-08-30

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For example, different strains or species can be the parts of a community, or we could study only the chemical reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux balance analysis. As long as we have some understanding of the properties of these parts, we can investigate whether their interaction leads to novel or unanticipated behaviour of the system that they constitute. There has been a tendency in the Systems Biology community to think that the collection and integration of data should continue ad infinitum, or that we will otherwise not be able to understand the systems that we study in their details. However, it may sometimes be useful to take a step back and consider whether the knowledge that we already have may not explain the system behaviour that we find so intriguing. Reasoning about systems can be difficult, and may require the application of mathematical techniques. The reward is sometimes the realization of unexpected conclusions, or in the worst case, that we still do not know enough details of the parts, or of the interactions between them. We will discuss a number of cases, with a focus on LAB-related work, where a typical systems approach has brought new knowledge or perspective, often counterintuitive, and clashing with conclusions from simpler approaches. Also novel types of testable hypotheses may be generated by the systems approach, which we will illustrate. Finally we will give an outlook on the fields of research where the systems approach may point the way for the near future.

  6. Selection of Lactic Acid Bacteria as Probiotic Candidate for Chicken

    Directory of Open Access Journals (Sweden)

    F. Hamida

    2015-08-01

    Full Text Available Lactic acid bacteria (LAB regarded as safe microorganisms; they can naturally live in gastrointestinal tract, so appropriately used as a probiotic for chicken. This study aimed to select six isolates of LAB (E1223, E3, E4, E5, E7, and E8 to obtain the isolates potentially as probiotic candidate for chicken. The six isolates were derived from spontaneous fermented corn obtained from Laboratory of Animal Biotechnology and Biomedical, PPSHB, Bogor Agricultural University, Indonesia. LAB isolates were tested their susceptibility to antibiotics (bambermycin, erythromycin, chloramphenicol, and tetracycline then were examined in vitro for their tolerance to gastrointestinal pH (2, 3, 4, and 7.2 and 0.5% bile salt condition, antimicrobial activity against Salmonella enteritidis and Enterococcus casseliflavus, and ability to adhere to chicken ileal cells. The results showed the isolates E5, E7, and E8 were sensitive to tetracycline and chloramphenicol, they could survive at pH 2, 3, 4, and 7.2, could survive at 0.5% bile salts, produced antimicrobial activity, and able to adhere to ileal cells (9.40±0.00 Log CFU/cm2 of E8 and were significantly (P<0.05 higher than those of control (5.30±0.14 Log CFU/cm2. In conclusion, this study showed that isolate E8 had better potential compared to isolates E5 and E7 in most in vitro assays as a probiotic candidate for chicken. E5, E7, and E8 were closely related with Pediococcus pentosaceus based on 16S rRNA gene.

  7. Determination of primary amino acids in wines by high performance liquid magneto-chromatography.

    Science.gov (United States)

    Barrado, E; Rodriguez, J A; Castrillejo, Y

    2009-05-15

    Eight amino acids (ethanolamine, glycine, alanine, beta-aminobutyric acid, leucine, methionine, histidine and asparagine) were identified and quantified in Spanish wines by high performance liquid magneto-chromatography (HPLMC) with UV-V spectrophotometry. For this method, the amino acids are first complexed with mono(1,10-phenanthroline)-Cu(II) to confer them paramagnetic properties, and then separated by application of a low magnetic field intensity (5.5 mT) to the stationary phase contained in the chromatographic column. Principal components analysis of the results obtained grouped together the wine samples according to their denomination of origin: "Ribera del Duero", "Rueda" or "Rioja" (Spain). Through cluster analysis, a series of correlations was also observed among certain amino acids, and between these groupings and the type of wine. These clusters were found to reflect the role played by the amino acids as primary or secondary nutrients for the bacteria involved in alcoholic and malolactic fermentation.

  8. Assessing wines based on total phenols, phenolic acids and ...

    African Journals Online (AJOL)

    FIDIL

    After filtration ('Seitz, D.6800 / Mannheim, Germany, plate filter) and bottling, wines were stored at 15°C. The ... After 3 to 6 min, 0.5 ml saturated sodium carbonate (20 g Na2CO3 in 100 ml H2O) (Merck) was added. After .... different wines produced from grapes (V. vinifera L. cv. origin var:. Öküzgözü, Boğazkere, Shiraz.) ...

  9. Characterization and application of lactic acid bacteria for tropical silage preparation.

    Science.gov (United States)

    Pholsen, Suradej; Khota, Waroon; Pang, Huili; Higgs, David; Cai, Yimin

    2016-10-01

    Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  10. Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction.

    Science.gov (United States)

    Planas, J; Kozlowski, A; Harris, J M; Tjerneld, F; Hahn-Hägerdal, B

    1999-01-01

    A new family of polymer conjugates is proposed to overcome constraints in the applicability of aqueous two-phase systems for the recovery of lactic acid. Polyethylene glycol-polyethylenimine (PEI) conjugates and ethylene oxide propylene oxide-PEI (EOPO-PEI) conjugates were synthesized. Aqueous two-phase systems were generated when the conjugates were mixed with fractionated dextran or crude hydrolyzed starch. With 2% phosphate buffer in the systems, phase diagrams with critical points of 3.9% EOPO-PEI-3.8% dextran (DEX) and 3.5% EOPO-PEI-7.9% crude starch were obtained. The phase separation temperature of 10% EOPO-PEI solutions titrated with lactic acid to pH 6 was 35 degrees C at 5% phosphate, and increased linearly to 63 degrees C at 2% phosphate. Lactic acid partitioned to the top conjugate-rich phase of the new aqueous two-phase systems. In particular, the lactic acid partition coefficient was 2.1 in 10% EOPO-PEI-8% DEX systems containing 2% phosphate. In the same systems, the partitioning of the lactic acid bacterium, Lactococcus lactis subsp. lactis, was 0.45. The partitioning of propionic, succinic, and citric acids was also determined in the new aqueous two-phase systems. Copyright 1999 John Wiley & Sons, Inc.

  11. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2016-10-01

    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  12. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    Science.gov (United States)

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  13. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Kelly, Joan M

    2008-06-01

    Cultivations of filamentous fungi in stirred tank reactors (STRs) to produce metabolites are often limited by insufficient mixing and mass transfer because of the formation of mycelial clumps inside the reactors. This study developed an acid-adapted preculture approach to control the morphology of filamentous Rhizopus arrhizus in a STR, consequently to enhance the production yield and productivity of L(+)-lactic acid efficiently using waste potato starch as substrate. Using the acid-adapted precultures as inoculum, the morphology of R. arrhizus was maintained as large clumps, coalesced loose small pellets, and freely dispersed small pellets. The highest lactic acid concentration of 85.7 g/L with a yield of 86% was obtained in association with the formation of coalesced loose small pellets. The results indicate that the use of the acid-adapted precultures as inoculum is a promising approach for lactic acid production in STRs.

  15. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    Science.gov (United States)

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Comparison of methods for the detection and enumeration of lactic acid bacteria in yogurt].

    Science.gov (United States)

    Briceño, A G; Martínez, R

    1995-09-01

    It is generally agreed that the population of lactic acid bacteria in yogurt must be not less than 10(6) ufc/g. Viability of the lactic flora until the end of shelf-life is affected for many factors, which has incidence in the recuperability of this microflora. MRS and LEE agar were selected for the total count of lactic bacteria, the M17 was used for the S salivarius ssp thermophilus and the RCA for L. delbrueckii ssp bulgaricus. Different methodologies were used for detection and enumeration of this bacteria: direct plate count; thermal treatment and recuperation of the injured cells in Soy Tripticase broth. The enumeration was done at time zero and 3 hours after the start of the fermentative process and during storage at 4, 12 and 21 days. The results shown an excellent recuperability of the lactic flora in the selected media and methods that were used: however the enumeration was significatively lower in the RCA agar. The counts in the LEE agar shown a better recuperability. The thermal treatment affected negatively the counts of lactic flora and the repair method shown better results in the yogurt sample during storage. pH and acidity were determined at the beginning and during the storage period. It was observed a pH decrease because of the lactic acid production at the end of shelf-life.

  17. Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria.

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Moens, Frédéric; Gobert, William; De Vuyst, Luc

    2011-09-01

    Among various lactic acid bacterial strains tested, cocoa-specific strains of Lactobacillus fermentum were best adapted to the cocoa pulp ecosystem. They fermented glucose to lactic acid and acetic acid, reduced fructose to mannitol, and converted citric acid into lactic acid and 2,3-butanediol.

  18. [Composition diversity and metabolic characters of lactic acid bacteria community SGL].

    Science.gov (United States)

    Liu, Jingjing; Yang, Fuyu; Wang, Xiaofen; Liu, Jinhuan; Yuan, Xufeng; Cui, Zongjun

    2015-11-04

    We aimed to select a stable lactic acid bacteria community from switchgrass silage, that was efficient in lactic acid production. We obtained the community by continuous restricted subcultivation in MRS broth, and analysed the composition diversity and stability of the community by 16S rRNA gene-based pyrosequencing and Denaturing Gradient Gel Electrophoresis (DGGE), respectively. In addition, we studied the effect of different nitrogen sources on growth and lactic acid production of the community, through adding different concentrations of yeast extraction, different nitrogen sources [yeast extract, peptone, urea and (NH4) 2SO4] and different proportions of (NH4)2SO4 and yeast extract leveled with elemental nitrogen 1.8 g/L. The microbial composition of SGL became stable from the 8th generation according to the results of DGGE. The pH value of the MRS inoculated with SGL dropped to 3.7, and the concentration of lactic acid reached 26 g/L after 24 h cultivation. The result of the pyrosequencing showed that the major composition of SGL were Lactobacillus nantensis (78.78%), Lactobacillus plantarum (7.92%), Lactobacillus pantheris (5.27%), Bacillus coagulans (4.41%) and Lactococcus lactics (3.31%). The best supplementation of yeast extraction for SGL was 20 g/L. When the elemental nitrogen ratio of (NH4) 2SO4 to yeast extract was 1:4, the growth and lactic acid production were no significant difference with 0:5 (P lactic acid production. This study would offer theoretical basis for cultivate and application of SGL in production.

  19. D-lactic acid interferes with the effects of platelet activating factor on bovine neutrophils.

    Science.gov (United States)

    Alarcón, P; Conejeros, I; Carretta, M D; Concha, C; Jara, E; Tadich, N; Hidalgo, M A; Burgos, R A

    2011-11-15

    D-lactic acidosis occurs in ruminants, such as cattle, with acute ruminal acidosis caused by ingestion of excessive amounts of highly fermentable carbohydrates. Affected animals show clinical signs similar to those of septic shock, as well as acute laminitis and liver abscesses. It has been proposed that the inflammatory response and susceptibility to infection could both be caused by the inhibition of phagocytic mechanisms. To determine the effects of d-lactic acid on bovine neutrophil functions, we pretreated cells with different concentrations of D-lactic acid and measured intracellular pH using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and calcium flux using FLUO-3 AM-loaded neutrophils. Reactive oxygen species (ROS) production was measured using a luminol chemiluminescence assay, and MMP-9/gelatinase-B granule release was measured by zymography. CD11b and CD62L/l-selectin expression, changes in cell shape, superoxide anion production, phagocytosis of Escherichia coli-Texas red bioparticles, and apoptosis were all measured using flow cytometry. Our results demonstrated that D-lactic acid reduced ROS production, CD11b upregulation and MMP-9 release in bovine neutrophils treated with 100 nM platelet-activating factor (PAF). D-lactic acid induced MMP-9 release and, at higher concentrations, upregulated CD11b expression, decrease L-selectin expression, and induces late apoptosis. We concluded that D-lactic acid can interfere with neutrophil functions induced by PAF, leading to reduced innate immune responses during bacterial infections. Moreover, the increase of MMP-9 release and CD11b expression induced by 10mM D-lactic acid could promote an nonspecific neutrophil-dependent inflammatory reaction in cattle with acute ruminal acidosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. New trends and challenges in lactic acid production on renewable biomass

    Directory of Open Access Journals (Sweden)

    Đukić-Vuković Aleksandra J.

    2011-01-01

    Full Text Available Lactic acid is a relatively cheap chemical with a wide range of applications: as a preservative and acidifying agent in food and dairy industry, a monomer for biodegradable poly-lactide polymers (PLA in pharmaceutical industry, precursor and chemical feedstock for chemical, textile and leather industries. Traditional raw materials for fermentative production of lactic acid, refined sugars, are now being replaced with starch from corn, rice and other crops for industrial production, with a tendency for utilization of agro industrial wastes. Processes based on renewable waste sources have ecological (zero CO2 emission, eco-friendly by-products and economical (cheap raw materials, reduction of storage costs advantages. An intensive research interest has been recently devoted to develop and improve the lactic acid production on more complex industrial by-products, like thin stillage from bioethanol production, corncobs, paper waste, straw etc. Complex and variable chemical composition and purity of these raw materials and high nutritional requirements of Lare the main obstacles in these production processes. Media supplementation to improve the fermentation is an important factor, especially from an economic point of view. Today, a particular challenge is to increase the productivity of lactic acid production on complex renewable biomass. Several strategies are currently being explored for this purpose such as process integration, use of Lwith amylolytic activity, employment of mixed cultures of Land/or utilization of genetically engineered microorganisms. Modern techniques of genetic engineering enable construction of microorganisms with desired characteristics and implementation of single step processes without or with minimal pre-treatment. In addition, new bioreactor constructions (such as membrane bioreactors, utilization of immobilized systems are also being explored. Electrodialysis, bipolar membrane separation process, enhanced filtration

  1. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle

    NARCIS (Netherlands)

    Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J.

    2016-01-01

    Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility,

  2. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  3. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    Directory of Open Access Journals (Sweden)

    Banjoko Immaculata

    2012-12-01

    Full Text Available Abstract Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lactobacillus helveticus (CK60 in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 was incorporated, B (unfermented high fat diet or C (commercial rat chow respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lb helveticus (CK 60 fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the

  4. Extraction, isolation and purification of exopolysaccharide from lactic acid bacteria using ethanol precipitation method

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-09-01

    Full Text Available Lactic acid bacteria are classified ‘Generally Recognized As Safe’ (GRAS with most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits, such as modulation of immune response system and more importantly in food and pharma industries as a texturizer, viscosifer, emulsifier and syneresis-lowering agent. Its purification methodology involves: a Extraction of cell-free supernatant from lactic acid bacteria; b Denature of protein using trichloroacetic acid; c Ethanol precipitation; d Dialysis; and e Freeze drying. However, depending on nature of research, compounds can be further purified using scanning electron microscopy (SEM, infrared spectrum (IR; and nuclear magnetic resonance (NMR spectral analyses.

  5. The shikimic acid: an important metabolite for the Aglianico del Vulture wines

    Directory of Open Access Journals (Sweden)

    Pasquale Tamborra

    2014-12-01

    Full Text Available Shikimic acid is a precursor for the biosynthesis of aromatic amino acids and flavonoids (anthocyanins, tannins and flavonols. In the pharmaceutical industry, it is obtained by extraction of star anise from China, and at a yield of 3-7% it is used for the production of antiviral drug, e.g. oseltamivir. Unlike flavonoids which are only present in the grape skins, shikimic acid is present in the juice together with hydroxycinnamil tartaric acids (caffeic, ferulic and p-coumaric acid. Therefore, their content in white wines may not be negligible and their presence may explain the epidemiological studies that showed a reduced incidence of cardiovascular diseases also in people with moderate white wine consumption. The content of shikimic acid has been used to characterize wines. In southern Italy it has been used to distinguish Aglianico grape, which holds medium-high content, from Negroamaro, Primitivo and Uva di Troia grapes who have rather lower levels. It could be useful also to distinguish Fiano di Avellino (high value from Fiano Minutolo (low value. However, results of a recent work showed that the shikimic acid content decreases significantly during the ripening of the grapes and therefore its content in wine is strongly influenced by the harvest period. Finally, in a recent paper it was highlighted the increase in shikimic acid content at the end of fermentation in an Aglianico del Vulture wine, produced in the area of Rapolla (PZ, Italy municipality during the 2013 harvest. These last experimental results explain why the values of shikimic acid were lower in grapes and surprisingly higher in wines produced in the 2011 and 2012 harvest.

  6. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  7. Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening.

    Science.gov (United States)

    Park, Boyeon; Hwang, Hyelyeon; Chang, Ji Yoon; Hong, Sung Wook; Lee, Se Hee; Jung, Min Young; Sohn, Sung-Oh; Park, Hae Woong; Lee, Jong-Hee

    2017-09-07

    Lactic acid bacteria produce diverse functional metabolites in fermented foods. However, little is known regarding the metabolites and the fermentation process in kimchi. In this study, the culture broth from Leuconostoc lactis, a lactic acid bacterium isolated from kimchi, was analysed by liquid chromatography-tandem mass spectrometry and identified by the MS-DIAL program. The MassBank database was used to analyse the metabolites produced during fermentation. A mass spectrum corresponding to 2-hydroxyisocaproic acid (HICA) was validated based on a collision-induced dissociation (CID) fragmentation pattern with an identified m/z value of 131.07. HICA production by lactic acid bacteria was monitored and showed a positive correlation with hydroxyisocaproate dehydrogenases (HicDs), which play a key role in the production of HICA from leucine and ketoisocaproic acid. Interestingly, the HICA contents of kimchi varied with Leuconostoc and Lactobacillus content during the early stage of fermentation, and the addition of lactic acid bacteria enhanced the HICA content of kimchi. Our results suggest that HICA production in kimchi is dependent on the lactic acid bacterial composition.

  8. Antimicrobial activity of preparations after combined cultivation of lactic acid bacteria and yeast strains.

    Science.gov (United States)

    Balabekyan, Ts R; Karapetyan, K J; Khachatryan, T V; Khachatryan, G E; Tatikyan, S Sh

    2018-03-30

    Use of antimicrobials in both human and animal populations over the past several decades has led to the emergence of multidrug-resistant bacteria populations that are resistant to many commercially available drugs. For example, acquired resistance to first-line antimicrobial agents increasingly complicates the management of extra-intestinal infections due to Escherichia coli, which are a major source of illness and death. The continued development of new classes of natural antimicrobial agents, possessing antibacterial activity, has become of increasing importance for medicine and veterinary. So, selection of lactic acid bacteria and yeast strains for their combined cultivation with the aim of increasing of the activity is topical. It was shown that during combined cultivation of the lactic acid bacteria with probiotic properties and yeast strains, antimicrobial activity depends on the genus and species to which the strain of lactic acid bacteria and yeast belongs. They inhibited the growth of multidrug-resistant bacteria with better efficiency. Increasing of the antimicrobial activity can be explained by the synergetic effect of products of cultures metabolism and by interaction between lactic acid bacteria cells with the cell wall of yeasts. Our data showed perspectives of combined cultivation of yeast and lactic acid bacteria for creation of a new class of antimicrobial preparations with high antibacterial activity and broad spectrum of action. Preparation can be recommended for treatment of animals. © 2018 Blackwell Verlag GmbH.

  9. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka".

    Science.gov (United States)

    Todorov, Svetoslav Dimitrov; Stojanovski, Saso; Iliev, Ilia; Moncheva, Penka; Nero, Luis Augusto; Ivanova, Iskra Vitanova

    The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented "lulanka" salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity). The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. In vivo blood lactic acid monitoring using microdialysis and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Hsu, Po-Hsiang; Tsai, Tung-Hu; Chiang, Huihua Kenny

    2008-08-01

    Blood lactic acid concentration is an important indicator for physiological functions. To develop a rapid and sensitive measurement technique for monitoring blood lactic acid may provide a useful tool in clinical diagnosis. We proposed to develop a microdialysis surface-enhanced Raman spectroscopy (microdialysis-SERS) approach to filter/reduce interference from other large metabolites in blood and enhance the detection sensitivity for blood lactic acid. In this study, a microdialysis probe was constructed using 13 kDa cut-off dialysis membrane. The dialysate was mixed with 50 nm Ag colloidal nanoparticles automatically in a micro-fluid chamber for SERS detection under blood microdialysis of Sprague-Dawley rat. The linear range of SERS-lactic acid measurement is 10-5~3x10-4 M with R2 value of 0.99. The optimal mixing flow rate of nanoparticles is 18 μl/min under microdialysis at constant flow rate (2 μl/min). Real time lactic acid monitoring in vivo also has been demonstrated using microdialysis-SERS system.

  11. Characterization of lactic acid bacteria from local cow´s milk kefir

    Science.gov (United States)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  12. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    Science.gov (United States)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  13. Production of D- and L-Lactic Acid by Mono- and Mixed Cultures of Lactobacillus sp.

    Directory of Open Access Journals (Sweden)

    Antonija Trontel

    2011-01-01

    Full Text Available Batch cultivation of monoculture of Lactobacillus sp. and two–strain mixed culture of Lactobacillus sp. and Lactobacillus amylovorus DSM 20531T was carried out with the aim of producing L-(+- and D-(–/L-(+-lactic acid to be implemented in poly(lactic acid polymer production. Metabolic capacity of two Lactobacillus strains to ferment different carbon sources (glucose, sucrose or soluble starch during cultivation in MRS medium at 40 °C, in a laboratory-scale stirred tank bioreactor was defined. Lactobacillus sp. showed similar affinity towards mono- and disaccharide substrates, which were homofermentatively converted mostly to L-(+-lactic acid. L. amylovorus DSM 20531T has been characterized as a D/L-lactate producer and it is capable of conducting simultaneous saccharification and fermentation. Due to the interaction of Lactobacillus sp. with L. amylovorus DSM 20531T, starch was hydrolysed and fermented to the mixture of L-(+- and D-(–-lactic acid. Modified Luedeking-Piret kinetics used for the description of substrate utilization, growth of mono- and mixed cultures and production of lactic acid stereoisomers showed good agreement with experimental data.

  14. Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes.

    Science.gov (United States)

    Oh, D H; Marshall, D L

    1993-12-01

    Minimal inhibitory concentrations (MIC) and antimicrobial effects of glycerol monolaurate (monolaurin), ethanol and lactic acid, either alone or in combination, against Listeria monocytogenes in tryptic soy broth were determined. Ethanol at concentrations up to 1.25% did not inhibit growth, but growth was strongly inhibited in the presence of 5% ethanol. MIC values of monolaurin and ethanol alone were 10 micrograms/ml (0.001%) and 50,000 micrograms/ml (5%), respectively. However, MIC values were not changed when monolaurin was combined with ethanol. When 5 micrograms/ml monolaurin was combined with 5% ethanol, the inhibitory effect of the combination was similar to the most active compound alone after 24 h incubation. These data indicate little interaction between monolaurin and ethanol against L. monocytogenes. MIC value of lactic acid alone was 5000 micrograms/ml (0.5%), but was lower when 1.25% ethanol was combined with 0.25% lactic acid. When 2.5% ethanol was combined with 0.25% lactic acid, the combination did not increase the inhibitory effect of the most active single compound alone. This result also indicates that there was little interaction between ethanol and lactic acid.

  15. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Utilization of Encapsulated CaCO3 in Liquid Core Capsules for Improving Lactic Acid Fermentation

    International Nuclear Information System (INIS)

    Boon-Beng, Lee; Nurul Ainina Zulkifli

    2016-01-01

    Lactic acid bacteria (LAB) have been used for food fermentation due to its fermentative ability to improve and enhance the quality of the end food products. However, the performance of LAB is affected as fermentation time elapsed because the microbial growth is inhibited by its end product, for example lactic acid. In this study, a new approach was introduced to reduce the product inhibition effect using CaCO 3 which is encapsulated in spherical liquid core capsules of diameter 3.5 mm and 3.6 mm produced through extrusion dripping method. The results showed that the pH and lactic acid concentration of LAB fermentation was well maintained by the capsules. The results of the fermentation conducted to control pH and lactic acid concentration using the capsules were better than those of the control set and comparable with that of the free CaCO 3 set. In addition, the viable cell concentration of L. casei shirota was high at the end of fermentation when the fermentation was conducted using the capsules. The results of this study suggested that the capsules have high potential to be applied for pH and lactic acid level control in LAB fermentation for various productions. (author)

  17. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka"

    Directory of Open Access Journals (Sweden)

    Svetoslav Dimitrov Todorov

    Full Text Available Abstract The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented "lulanka" salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity. The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation.

  18. Effectiveness of Higher Fatty Acids C8, C10 and C12, Dimethyl Dicarbonate and Sulphur Dioxide for Inhibition of Re-fermentation and Malolactic Activities in Wine

    Directory of Open Access Journals (Sweden)

    Mojmír Baroň

    2014-01-01

    Full Text Available The issue of preventing the re-fermentation and protection against undesirable malolactic fermentation (MLF in order to safe content of acids in wine is very complicated. In this paper the saturated higher fatty acids (HFA – C8, C10 and C12, dimethyldicarbonate (DMDC and sulphur dioxide (SO2 were tested. The re-fermentation test showed the strongest inhibition power at ratio 2:8, 1:9 and 0:10 as C8:C10 acids – 65 days without re-fermentation. MLF experiments confirmed that addition of SO2 into the fermenting media causes rapid inhibition of lactic acid bacteria metabolic activity. Malic acid concentrations were proportionally decreasing during 6 days of experiment and at the end the content of this acid varied between 0.16 and 0.22 g/L, the only exception formed a variant with the addition of SO2 (1.57 g/L of malic acid. After calculation of the average consumption rate of malic acid, the results showed the inhibition power – SO2 (81.05% followed by variant of 40 mg/L mixture of HFA (40.76%, a variant of 200 mg/L of DMDC (31.98% and a variant of 20 mg/L mixture of HFA (12.59%. The addition of HFA can significantly reduce the dosage of other preservatives, especially SO2. Based on results, this method can be recommend in the production of wines with residual sugar and also wines made from over-mature material to prevent undesirable MLF.

  19. Microbial export of lactic and 3-hydroxypropanoic acid : implications for industrial fermentation processes

    NARCIS (Netherlands)

    van Maris, AJA; Konings, WN; Pronk, Jack T.; Dijken, J.P. van

    2004-01-01

    Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be

  20. Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

    Directory of Open Access Journals (Sweden)

    Boyeon Park

    2017-10-01

    Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ∼2.6 μg/mL to 6.5 μg/mL and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.